151
|
Pan M, Wang C, Bai Y, Xu M, Qi Y, Chen R. Correlation between preoperative cephalic vein pathological types and autogenous arteriovenous fistula (AVF) maturation in patients with stage 5 chronic kidney disease. Langenbecks Arch Surg 2024; 409:296. [PMID: 39365313 DOI: 10.1007/s00423-024-03487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE To explore the correlation between preoperative cephalic vein pathological types and the maturation of autogenous arteriovenous fistula (AVF) in patients with chronic kidney disease (CKD), providing new ideas and methods for clinical prediction of fistula maturation. METHODS A retrospective analysis was performed in 80 patients who underwent AVF creation surgery from June 2021 to June 2023 at our hospital. Patients were followed up for 6 months. Patients were classified into the mature group (n = 57) and the power loss group (n = 23) based on the AVF maturation status. Preoperative excised venous tissues were examined using Masson's trichrome staining to compare the intimal area (Ia), medial area (Ma), lumen diameter (Ld), average intimal thickness (Avg It), and average medial thickness (Avg Mt), along with the calculations and comparisons of Ia/Ma, Avg It/Avg Mt ratios. Factors influencing AVF power loss were identified using the multifactorial logistic regression analysis. RESULTS Ia, Ia/Ma, and Ld were lower in the power loss group compared to the mature group (P < 0.01). No significant difference was found in Avg Mt and Avg It/Avg Mt levels between the two groups (P > 0.05). The level of Avg It was higher in the power loss group (P < 0.05). Avg It was a risk factor (P < 0.001), while Ld was a protective factor for AVF power loss (P < 0.05). CONCLUSION The levels of Avg It and Ld in preoperative cephalic vein tissue before AVF formation were correlated with AVF power loss. Early monitoring may improve therapeutic outcomes and prognosis of patients with stage 5 CKD.
Collapse
Affiliation(s)
- Mingjiao Pan
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China
| | - Cuijuan Wang
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China
| | - Yafei Bai
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China
| | - Mingzhi Xu
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China
| | - Yonghui Qi
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China
| | - Ruman Chen
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, P.R. China.
| |
Collapse
|
152
|
Pettersson C, Wu R, Demirel I. Estrogen-stimulated uropathogenic E. coli mediate enhanced neutrophil responses. Sci Rep 2024; 14:23030. [PMID: 39362931 PMCID: PMC11449900 DOI: 10.1038/s41598-024-74863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections worldwide and the most common cause is uropathogenic Escherichia coli (UPEC). Current research is mostly focused on how UPEC affects host factors, whereas the effect of host factors on UPEC is less studied. Our previous studies have shown that estrogen alters UPEC virulence. However, the effect of this altered UPEC virulence on neutrophils is unknown. The aim of the present study was to investigate how the altered UPEC virulence mediated by estrogen modulates neutrophil responses. We found that estradiol-stimulated CFT073 increased neutrophil phagocytosis, NETs formation and intracellular ROS production. We observed that the total ROS production from neutrophils was reduced by estradiol-stimulated CFT073. We also found that estradiol-stimulated CFT073 induced less cytotoxicity in neutrophils. Additionally, we found that several cytokines and chemokines like IL-8, IL-1β, CXCL6, MCP-1 and MCP-4 were increased upon estradiol-stimulated CFT073 infection. In conclusion, this study demonstrates that the estrogen-mediated alterations to UPEC virulence modulates neutrophil responses, most likely in a host-beneficial manner.
Collapse
Affiliation(s)
- Carolina Pettersson
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden.
| |
Collapse
|
153
|
Covino DA, Farina I, Catapano L, Sozzi S, Spadaro F, Cecchetti S, Purificato C, Gauzzi MC, Fantuzzi L. Induction of the antiviral factors APOBEC3A and RSAD2 upon CCL2 neutralization in primary human macrophages involves NF-κB, JAK/STAT, and gp130 signaling. J Leukoc Biol 2024; 116:876-889. [PMID: 38798090 DOI: 10.1093/jleuko/qiae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The CCL2/CC chemokine receptor 2 axis plays key roles in the pathogenesis of HIV-1 infection. We previously reported that exposure of monocyte-derived macrophages to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at postentry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, including APOBEC3A and RSAD2. This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in monocyte-derived macrophages. Through a combination of pharmacologic inhibition, quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-κB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IκB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of IκB kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of monocyte-derived macrophages to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interference with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 upregulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.
Collapse
Affiliation(s)
- Daniela Angela Covino
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Iole Farina
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Catapano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia Sozzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Serena Cecchetti
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Cristina Gauzzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
154
|
Ho KL, Yong PH, Lim SH, Ng ZX. Peperomia pellucida (L.) Kunth suppresses glycation-induced inflammatory response in human retinal pigment epithelial cell line ARPE-19 via JAK-STAT3 signaling. Arch Pharm (Weinheim) 2024; 357:e2400299. [PMID: 39037823 DOI: 10.1002/ardp.202400299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
The formation of advanced glycation end product (AGE) is a risk factor for diabetic retinopathy. Since the current treatment for diabetic retinopathy is accompanied by side effects, preliminary findings have suggested Peperomia pellucida (L.) Kunth as a potential alternative therapeutic option for diabetic retinopathy. This study aimed to elucidate the anti-inflammatory mechanism of P. pellucida in the AGE-stimulated human retinal pigment epithelial cell line ARPE-19. Phytochemical analysis revealed phenylpronanoids, terpenes, and fatty acids in P. pellucida. Through in vitro cell viability assay, the P. pellucida methanolic extract (IC50 = 8.70 mg/mL) and ethyl acetate fraction (IC50 = 7.34 mg/mL) were considered as non toxic for ARPE-19. AGE induced an inflammatory response in ARPE-19 by upregulating the gene (2.4-5.8-fold) and protein (1.4-2.3-fold) expression of signal transducer and activator of transcription 3 (STAT3), interleukin-8 (IL-8), monocyte chemoattractant protein-1, matrix metalloproteinase 2, and vascular endothelial growth factor. At 1.5 mg/mL, P. pellucida methanolic extract suppressed IL-8 expression (p < 0.05), implying its anti-inflammatory action at the early inflammatory stage through the Janus kinase (JAK)-STAT3 pathway. The methanolic extract also restored the ARPE-19 viability under AGE-induced inflammatory stress. The downregulation of inflammatory biomarkers along the JAK-STAT3 pathway suggested P. pellucida as a promising anti-inflammatory source for diabetic retinopathy.
Collapse
Affiliation(s)
- Keat Lam Ho
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Phaik Har Yong
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
155
|
Nii Otinkorang Ankrah J, Gyilbagr F, Vicar EK, Antwi Boasiako Frimpong E, Alhassan RB, Sibdow Baako I, Boakye AN, Akwetey SA, Karikari AB, Sorvor FKB, Walana W. T cells exhaustion, inflammatory and cellular activity markers in PBMCs predict treatment outcome in pulmonary tuberculosis patients. Cytokine 2024; 182:156708. [PMID: 39053080 DOI: 10.1016/j.cyto.2024.156708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) is a well-known disease caused by Mycobacterium tuberculosis. Its pathogenesis is premised on evasion of the immune system and dampened immune cells activity. METHODS Here, the transcription pattern of immune cells exhaustion, inflammatory, and cellular activity markers were examined in peripheral blood mononuclear cells (PBMCs) from PTB patients at various stages of treatment. PBMCs were isolated, and RNA extracted. cDNA synthesis was performed, then amplification of genes of interest. RESULTS The T cell exhaustion markers (PD-L1, CTLA4, CD244 and LAG3) showed varied levels of expressions when comparing 0 T and 1 T to the other treatment phases, suggesting their potential roles as markers for monitoring TB treatment. IL-2, IFN-g and TNF-a expression at the gene level returned to normal at completion of treatment, while granzyme B levels remained undetectable at the cured stage. At the cured stage, the cellular activity monitors Ki67, CD69, GATA-3, CD8 and CD4 expressions were comparable to the healthy controls. Correlation analysis revealed a significantly strong negative relationship with CD244 expression, particularly between 1 T and 2 T (r = -0.94; p = 0.018), and 3 T (r = -0.95; p = 0.013). Comparing 0 T and 3 T, a genitive correlation existed in PD-L1 (r = -0.74) but statistically not significant, as seen in CTLA4 and LAG-3 expressions. CONCLUSION Collectively, the findings of the study suggest that T-cells exhaustion marker particularly CD244, inflammatory markers IL-2, IFN-g and TNF-a, and cellular activity indicators such as Ki67, CD69, GATA-3, CD8 and CD4 are promising markers in monitoring the progress of PTB patients during treatment.
Collapse
Affiliation(s)
| | - Fredrick Gyilbagr
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ezekiel Kofi Vicar
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Rukaya Baanah Alhassan
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ibrahim Sibdow Baako
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Alahaman Nana Boakye
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Samuel Addo Akwetey
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Akosua Bonsu Karikari
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Williams Walana
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| |
Collapse
|
156
|
Xia Q, Liu F, Zhou Y, Yang G, Li F, Liang T, Liu J, Li W, Huang Y, Zhu C. CD47-SIRPα signaling-inspired engineered monocytes for preventing the progression of atherosclerotic plaques. Mater Today Bio 2024; 28:101178. [PMID: 39211288 PMCID: PMC11357865 DOI: 10.1016/j.mtbio.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The accumulation of foam cells in the subendothelial space of the vascular wall to form plaques is the real cause of atherosclerotic lesions. Conventional interventions, such as statins and anti-cytokine or anti-inflammatory therapies, suffer problems in terms of their short therapeutic outcomes and potential disruption of the immune system. The development of more efficient therapeutics to restrict the initial progression of plaques appears to be crucial for treating and preventing atherosclerosis. Decreasing foam cell formation by reversing the excessive phagocytosis of modified low-density lipoprotein (LDL) in macrophages is highly desirable. Here, we developed a strategy based on engineered monocytes to dynamically regulate lipid uptake by macrophages inspired by a CD47-SIRPα signaling-induced defect in the phagocytosis of lesional macrophages at the advanced stage of AS. Briefly, a complex called CD47p-GQDs-miR223, which is designed to interact with SIRPα, was synthesized to remodel monocytes by decreasing the uptake of oxidized LDL through the activation of CD47-SIRPα signaling. After injection, these monocytes compete for recruitment to atherosclerotic plaques, release gene drugs and mediate anti-inflammatory phenotypic remodeling of the aboriginal macrophages, effectively inhibiting the development of foam cells. Our strategy provides a new therapeutic for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guanyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
157
|
Batty LM, Mackenzie C, Landwehr C, Webster KE, Feller JA. The Role of Biomarkers in Predicting Outcomes of Anterior Cruciate Ligament Reconstruction: A Systematic Review. Orthop J Sports Med 2024; 12:23259671241275072. [PMID: 39380669 PMCID: PMC11460236 DOI: 10.1177/23259671241275072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background Anterior cruciate ligament (ACL) injury is frequently associated with injuries to other parts of the knee, including the menisci and articular cartilage. After ACL injury and reconstruction, there may be progressive chondral degradation. Biomarkers in blood, urine, and synovial fluid can be measured after ACL injury and reconstruction and have been proposed as a means of measuring the associated cellular changes occurring in the knee. Purpose To systematically review the literature regarding biomarkers in urine, serum, or synovial fluid that have been associated with an outcome measure after ACL reconstruction. Study Design Systematic review; Level of evidence, 3. Methods This review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The MEDLINE, Embase, CINAHL, and Web of Science databases were searched to identify studies published before September 2023 that reported on patients undergoing ACL reconstruction where a biomarker was measured and related to an outcome variable. Of 9360 results, 16 studies comprising 492 patients were included. Findings were reported as descriptive summaries synthesizing the available literature. Results A total of 45 unique biomarkers or biomarker ratios were investigated (12 serum, 3 urine, and 38 synovial fluid; 8 biomarkers were measured from >1 source). Nineteen different outcome measures were identified, including the International Knee Documentation Committee Subjective Knee Form, Knee injury and Osteoarthritis Outcome Score, numeric pain scores, radiological outcomes (magnetic resonance imaging and radiography), rates of arthrofibrosis and cyclops lesions, and gait biomechanics. Across the included studies, 17 biomarkers were found to have a statistically significant association (P < .05) with an outcome variable. Serum interleukin 6 (s-IL-6), serum and synovial fluid matrix metalloproteinase-3 (s-MMP-3 and sf-MMP-3), urinary and synovial fluid C-terminal telopeptide of type 2 collagen (u-CTX-II and sf-CTX-II), and serum collagen type 2 cleavage product (s-C2C) showed promise in predicting outcomes after ACL reconstruction, specifically regarding patient-reported outcome measures (s-IL-6 and u-CTX-II), gait biomechanical parameters (s-IL-6, sf-MMP-3, s-MMP-3, and s-C2C), pain (s-IL-6 and u-CTX-II), and radiological osteoarthritis (ratio of u-CTX-II to serum procollagen 2 C-propeptide). Conclusion The results highlight several biomarkers that have been associated with clinically important postoperative outcome measures and may warrant further research to understand if they can provide meaningful information in the clinical environment.
Collapse
Affiliation(s)
- Lachlan M. Batty
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- St. Vincent’s Hospital Melbourne, Melbourne, Victoria, Australia
| | | | - Chelsea Landwehr
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
| | - Kate E. Webster
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Julian A. Feller
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
158
|
Tenhoeve SA, Owens MR, Rezk R, Hanna AG, Lucke-Wold B. Emerging and Current Biologics for the Treatment of Intracranial Aneurysms. BIOLOGICS 2024; 4:364-375. [DOI: 10.3390/biologics4040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
Abstract
The integration of biologics in endovascularly treated intracranial aneurysms is a significant area of focus in an evolving field. By presenting the clinical relevance, pathogenesis, management (historical and current), and emerging biologics themselves, this work provides a broad overview of the current landscape of the biologics under current investigation. Growth factors, cytokines, and biologic-coated coils are compared and described as modalities to increase healing, aneurysm occlusion, and long-term recovery. These emerging biologics may increase the efficacy and durability of less invasive endovascular methods and potentially change standard practice with continued exploration.
Collapse
Affiliation(s)
| | - Monica-Rae Owens
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Rogina Rezk
- School of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Abanob G. Hanna
- School of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
159
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis. Int J Mol Sci 2024; 25:10321. [PMID: 39408651 PMCID: PMC11476780 DOI: 10.3390/ijms251910321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
160
|
Huang M, Ke Z, Lyu MA, Masarova L, Sadeghi T, Flowers CR, Parmar S. CXCR4-enriched T regulatory cells preferentially home to bone marrow and resolve inflammation. iScience 2024; 27:110830. [PMID: 39314243 PMCID: PMC11418154 DOI: 10.1016/j.isci.2024.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
CXCR4 cell surface expression is critical for the homing of T regulatory (Treg) cells to the bone marrow (BM). We hypothesize that CXCR4 enrichment on Tregs cell surface may abbreviate their transit time to reach BM. Umbilical cord-blood CD25+ Tregs underwent CXCR4 dual enrichment and ex vivo expansion using the CRANE process to generate CXCR4-enriched Tregs (TregCXCR4) cells, which showed a faster migration across the Transwell membrane toward CXCL12/stromal cell-derived factor 1α (SDF1α) at 15, 30, and 60 min, when compared to unmanipulated Tregcontrol cells (p < 0.0001). TregCXCR4 exhibited preferential homing to BM in vivo at 12 and 24 h. Metacluster analysis of BM showed a decrease in CD8+ and an increase in CD39 and CD73 and CXCR5 when compared to Tregcontrol. TregCXCR4 decreased plasma TGF-β1/β2 and IFN-γ levels. When compared to control, TregCXCR4 cells decreased in CD8+ T cell, IFN-γ, and TNF-α expression in BM. We conclude that TregCXCR4 show enhanced migration toward CXCL12/SDF1α and a preferential homing to BM resulting in resolution of inflammation.
Collapse
Affiliation(s)
- Meixian Huang
- Department of Lymphoma/ Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Zeng Ke
- Department of Lymphoma/ Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Mi-Ae Lyu
- Department of Lymphoma/ Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Lucia Masarova
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Simrit Parmar
- Department of Lymphoma/ Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
161
|
Soni UK, Tripathi R, Jha RK. MCP-1 exerts the inflammatory response via ILK activation during endometriosis pathogenesis. Life Sci 2024; 353:122902. [PMID: 39004271 DOI: 10.1016/j.lfs.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
AIMS MCP-1 has been shown to be elevated in endometriosis. ILK functions in several cellular events and interacts with MCP-1-signaling. In the current study, we evaluated the role of MCP-1-ILK signaling in human endometriotic cell's (Hs832(C).TCs) potential for colonization, invasion, adhesion, etc. and differentiation of macrophage along with inflammation in an endometriosis mouse model. MATERIALS AND METHODS A mouse model of endometriosis with elevated levels of MCP-1 was developed by injecting MCP-1. We examined the migration, adhesion, colonization and invasion of Hs832(C).TCs in response to MCP-1-ILK signaling. We also examined the differentiation of THP-1 cells to macrophage in response to MCP-1-ILK signaling. KEY FINDINGS We observed that MCP-1 increased Ser246 phosphorylation of ILK in Hs832(C).TCs and enhanced the migration, adhesion, colonization, and invasion of Hs832(C).TCs. In the mouse model of endometriosis, we found elevated chemokines (CCL-11, CCL-22 and CXCL13) levels. An increased level of MCP-1 mediated ILK activation, leading to increased inflammatory reaction and infiltration of residential and circulatory macrophages, and monocyte differentiation, but suppressed the anti-inflammatory reaction. The inhibitor (CPD22) of ILK reversed the MCP-1-mediated action by restoring Hs832(C).TCs and THP-1 phenotype. ILK inhibition in a mouse model of endometriosis reduced the effects of MCP-1 mediated pro-inflammatory cytokines, but increased anti-inflammatory response along with T-regulatory and T-helper cell restoration. SIGNIFICANCE Targeting ILK restores MCP-1 milieu in the peritoneal cavity and endometrial tissues, reduces the inflammatory response, improves the T-regulatory and T-helper cells in the endometriosis mouse model and decreases the migration, adhesion, colonization and invasion of endometriotic cells.
Collapse
Affiliation(s)
- Upendra Kumar Soni
- Endocrinology Division, Council of Scientific and Industrial; Research (CSIR)-Central Drug Research Institute (CDRI), Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Rupal Tripathi
- Endocrinology Division, Council of Scientific and Industrial; Research (CSIR)-Central Drug Research Institute (CDRI), Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Kumar Jha
- Endocrinology Division, Council of Scientific and Industrial; Research (CSIR)-Central Drug Research Institute (CDRI), Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
162
|
do Amaral SR, Amantino CF, Atanasov A, Sousa SO, Moakes R, Oliani SM, Grover LM, Primo FL. Photodynamic Therapy as a Novel Therapeutic Modality Applying Quinizarin-Loaded Nanocapsules and 3D Bioprinting Skin Permeation for Inflammation Treatment. Pharmaceuticals (Basel) 2024; 17:1169. [PMID: 39338332 PMCID: PMC11434822 DOI: 10.3390/ph17091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Skin inflammation associated with chronic diseases involves a direct role of keratinocytes in its immunopathogenesis, triggering a cascade of immune responses. Despite this, highly targeted treatments remain elusive, highlighting the need for more specific therapeutic strategies. In this study, nanocapsules containing quinizarin (QZ/NC) were developed and evaluated in an in vitro model of keratinocyte-mediated inflammation, incorporating the action of photodynamic therapy (PDT) and analyzing permeation in a 3D skin model. Comprehensive physicochemical, stability, cytotoxicity, and permeation analyses of the nanomaterials were conducted. The nanocapsules demonstrated desirable physicochemical properties, remained stable throughout the analysis period, and exhibited no spectroscopic alterations. Cytotoxicity tests revealed no toxicity at the lowest concentrations of QZ/NC. Permeation and cellular uptake studies confirmed QZ/NC permeation in 3D skin models, along with intracellular incorporation and internalization of the drug, thereby enhancing its efficacy in drug delivery. The developed model for inducing the inflammatory process in vitro yielded promising results, particularly when the synthesized nanomaterial was combined with PDT, showing a reduction in cytokine levels. These findings suggest a potential new therapeutic approach for treating inflammatory skin diseases.
Collapse
Affiliation(s)
- Stéphanie R. do Amaral
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (S.R.d.A.); (C.F.A.)
| | - Camila F. Amantino
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (S.R.d.A.); (C.F.A.)
- São Paulo Federal Institute of Education, Science and Technology (IFSP), Matão 15991-502, SP, Brazil
| | - Aleksandar Atanasov
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (R.M.); (L.M.G.)
| | - Stefanie Oliveira Sousa
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (S.O.S.); (S.M.O.)
| | - Richard Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (R.M.); (L.M.G.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (S.O.S.); (S.M.O.)
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (R.M.); (L.M.G.)
| | - Fernando L. Primo
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (S.R.d.A.); (C.F.A.)
| |
Collapse
|
163
|
Tsamou M, Kremers FAC, Samaritakis KA, Roggen EL. Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. Int J Mol Sci 2024; 25:9551. [PMID: 39273498 PMCID: PMC11395538 DOI: 10.3390/ijms25179551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic syndromes of unknown etiology, accompanied by numerous symptoms affecting neurological and physical conditions. Despite frequent revisions of the diagnostic criteria, clinical practice guidelines are often outdated, leading to underdiagnosis and ineffective treatment. Our aim was to identify microRNA (miRNA) biomarkers implicated in pathological mechanisms underlying these diseases. A comprehensive literature review using publicly accessible databases was conducted. Interesting miRNAs were extracted from relevant publications on ME/CFS and/or FM, and were then linked to pathophysiological processes possibly manifesting these chronic diseases. Dysregulated miRNAs in ME/CFS and FM may serve as promising biomarkers for these diseases. Key identified miRNAs, such as miR-29c, miR-99b, miR-128, miR-374b, and miR-766, were frequently mentioned for their roles in immune response, mitochondrial dysfunction, oxidative stress, and central sensitization, while miR-23a, miR-103, miR-152, and miR-320 were implicated in multiple crucial pathological processes for FM and/or ME/CFS. In summary, both ME/CFS and FM seem to share many dysregulated biological or molecular processes, which may contribute to their commonly shared symptoms. This miRNA-based approach offers new angles for discovering molecular markers urgently needed for early diagnosis or therapeutics to tackle the pathology of these medically unexplained chronic diseases.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| | | | | | - Erwin L Roggen
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| |
Collapse
|
164
|
Steiner K, Yilmaz SN, Gern A, Marksteiner J, Faserl K, Villunger M, Sarg B, Humpel C. From Organotypic Mouse Brain Slices to Human Alzheimer Plasma Biomarkers: A Focus on Microglia. Biomolecules 2024; 14:1109. [PMID: 39334874 PMCID: PMC11430359 DOI: 10.3390/biom14091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder, and the discovery of biomarkers is crucial for early diagnosis. While the analysis of biomarkers in cerebrospinal fluid is well accepted, there are currently no blood biomarkers available. Our research focuses on identifying novel plasma biomarkers for Alzheimer's disease. To achieve this, we employed a technique that involves coupling human plasma to mouse organotypic brain slices via microcontact prints. After culturing for two weeks, we assessed Iba1-immunopositive microglia on these microcontact prints. We hypothesized that plasma from Alzheimer's patients contains factors that affect microglial migration. Our data indicated that plasma from Alzheimer's patients significantly inhibited the migration of round Iba1-immunoreactive microglia (13 ± 3, n = 24, p = 0.01) compared to healthy controls (50 ± 16, n = 23). Based on these findings, we selected the most promising plasma samples and conducted mass spectrometry using a differential approach, and we identified four potential biomarkers: mannose-binding protein C, macrophage receptor MARCO, complement factor H-related protein-3, and C-reactive protein. Our method represents a novel and innovative approach to translate research findings from mouse models to human applications.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| | - Sakir Necat Yilmaz
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin 33110, Turkey
| | - Alessa Gern
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria;
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Mathias Villunger
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (M.V.); (B.S.)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.S.); (S.N.Y.); (A.G.)
| |
Collapse
|
165
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Brasel K, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile tissue-injectable hydrogels capable of the extended hydrolytic release of bioactive protein therapeutics. Bioeng Transl Med 2024; 9:e10668. [PMID: 39553428 PMCID: PMC11561820 DOI: 10.1002/btm2.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 11/19/2024] Open
Abstract
Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA-approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)-based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization. Our hydrogel solutions polymerize in situ in a temperature-sensitive manner, persist in tissue, and facilitate the delivery of bioactive therapeutics in subsurface locations. Demonstrating the efficacy of our approach, recombinant anti-CD47 monoclonal antibodies, when incorporated into subsurface-injected hydrogel solutions, exhibited cytotoxic activity against infiltrative high-grade glioma xenografts in the rodent brain. To enhance the gel's versatility, recombinant protein cargos can undergo site-specific modification with hydrolysable "azidoester" adapters, allowing for user-defined release profiles from the hydrogel. Hydrogel-generated gradients of murine CXCL10, linked to intratumorally injected hydrogel solutions via azidoester linkers, resulted in significant recruitment of CD8+ T-cells and the attenuation of tumor growth in a "cold" syngeneic melanoma model. This study highlights a highly customizable, hydrogel-based delivery system for local protein therapeutic administration to meet diverse clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Steven J. Reed
- Seattle Children's Research InstituteSeattleWashingtonUSA
| | - Steven M. Adelmund
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Barry A. Badeau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jared A. Shadish
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Emily J. Girard
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Kenneth Brasel
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | | | - Andrew J. Mhyre
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Jason P. Price
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
| | - Surojit Sarkar
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Vandana Kalia
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Institute for Protein Design, University of WashingtonSeattleWashingtonUSA
| | - James M. Olson
- Seattle Children's Research InstituteSeattleWashingtonUSA
- Fred Hutch Cancer CenterSeattleWashingtonUSA
- Department of PharmacologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
166
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
167
|
Chowdhury RN, Armato A, Culver E, Shteynman L, Kurien C, Cradin B, Margolin F, Nguyen T, Cardona C, Kabir N, Garruto RM, Lum JK, Wander K. Quantitative and qualitative analysis of stability for 16 serum immunoregulators over 50 freeze-thaw cycles. Am J Hum Biol 2024; 36:e24087. [PMID: 38682460 DOI: 10.1002/ajhb.24087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES To evaluate the reliability of data from the assay of bio-archived specimens, a 50-freeze-thaw-cycle (FTC) degradation study of fresh sera was conducted to test the stability of 16 immunoregulators. METHODS Twenty de-identified serum specimens were obtained from volunteers at United Health Services-Wilson Memorial Hospital. Specimens were stored at -20°C and underwent daily 1 h thawing and subsequent freezing for each FTC over 50 consecutive days. Immunoregulator concentrations were assessed via enzyme-linked immunosorbent assay (ELISA) in participant samples at 2 FTC (baseline), 25 FTC, and 50 FTC. Specific immunoregulators observed in the study were C-reactive protein (CRP), interleukin (IL)-1α, 4, 6, 8, 10, monocyte chemoattractant protein-1 (MCP-1, CCL2), monocyte chemoattractant protein-2 (MCP-2, CCL8), eotaxin-1, thymus-and-activation-regulated chemokine (TARC, CCL17), regulated on activation normal T-cell expressed and secreted (RANTES, CCL5), growth-regulated oncogene-alpha (GRO-α, CXCL1), small inducible cytokine A1 (I-309, CCL1), interferon-gamma (IFN-γ), interferon-gamma inducible protein-10 (IP-10, CXCL10), and tumor necrosis factor-alpha (TNF-α). RESULTS Quantitative stability of serum immunoregulators: Serum CRP, IL-8, IL-10, IFN-γ, IP-10, and eotaxin-1 levels appear to be statistically equivalent from baseline to 50 FTC (p ≤ .05). Retention of patterns in serum immunoregulators: patterns across FTC were retained for TARC (age) and CRP, IFN-γ, and MCP-2 (sex). CONCLUSIONS While the effect of multiple FTC on serum immunoregulator levels may not replicate prolonged freezer storage, the results of this study provide valuable information on the robustness of immunoregulators for research using bio-archived sera.
Collapse
Affiliation(s)
- R N Chowdhury
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Child and Family Studies, University of South Florida, Tampa, Florida, USA
| | - A Armato
- United Health Services Wilson Memorial Hospital, Johnson City, New York, USA
| | - E Culver
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - L Shteynman
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - C Kurien
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
- College of Osteopathic Medicine, New York Institute of Technology, Long Island, New York, USA
| | - B Cradin
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - F Margolin
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - T Nguyen
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - C Cardona
- Department of Integrative Neuroscience, Binghamton University, Binghamton, New York, USA
| | - N Kabir
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Lake Erie College of Osteopathic Medicine, Elmira, New York, USA
| | - R M Garruto
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - J K Lum
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - K Wander
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
168
|
Kim JW, Kim JY, Bae HE, Kim CD. Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:449-456. [PMID: 39198225 PMCID: PMC11361998 DOI: 10.4196/kjpp.2024.28.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/ min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ju Yeon Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hee Eun Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
169
|
Furuta K, Fujimoto D, Matsunashi A, Shibaki R, Taniya S, Tanaka M, Shimada Y, Nagata K, Tomii K, Yamamoto N. Prognostic impact of cytokines and chemokines in bronchoalveolar lavage fluid on acute exacerbation of fibrosing interstitial lung disease. Respir Med 2024; 231:107721. [PMID: 38972608 DOI: 10.1016/j.rmed.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/16/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbation of fibrosing interstitial lung disease (AE-FILD) is a serious condition with a high mortality rate. We aimed to comprehensively analyze cytokines in bronchoalveolar lavage fluid and their association with the clinical course of AE-FILD. METHODS We retrospectively enrolled 60 patients with AE-FILD who underwent bronchoalveolar lavage. We comprehensively measured 44 cytokines and chemokines in the obtained bronchoalveolar lavage fluid using a Luminex analyzer. Patients were grouped into those who died within 90 days (non-survival group) and survived beyond 90 days (survival group) to investigate the association of the levels of cytokines and chemokines with mortality. RESULTS The levels of matrix metalloproteinase 1 (p = 0.003), granulocyte-macrophage colony-stimulating factor (p = 0.040), interleukin 6 (p = 0.047), interleukin 8 (p = 0.050), monocyte chemoattractant protein-1 (p = 0.043), and eotaxin (p = 0.044) were significantly higher in the non-survival group than in the survival group. In the receiver operating characteristic analysis, their areas under the curve were 0.80, 0.68, 0.71, 0.70, 0.70, and 0.72, respectively. Using machine learning with these six cytokines and chemokines, the predictive accuracy for the survival group was 0.94. CONCLUSIONS Our study demonstrated that several cytokines and chemokines in bronchoalveolar lavage fluid could be prognostic predictors in patients with AE-FILD.
Collapse
Affiliation(s)
- Katsuyuki Furuta
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Daichi Fujimoto
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
| | - Atsushi Matsunashi
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital Kobe, Japan
| | - Ryota Shibaki
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | - Masanori Tanaka
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Yuri Shimada
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital Kobe, Japan
| | - Kazuma Nagata
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital Kobe, Japan
| | | |
Collapse
|
170
|
Gallo LH, Akanda N, Autar K, Patel A, Cox I, Powell HA, Grillo M, Barakat N, Morgan D, Guo X, Hickman JJ. A functional aged human iPSC-cortical neuron model recapitulates Alzheimer's disease, senescence, and the response to therapeutics. Alzheimers Dement 2024; 20:5940-5960. [PMID: 39077965 PMCID: PMC11633364 DOI: 10.1002/alz.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The degeneration of cortical layers is associated with cognitive decline in Alzheimer's disease (AD). Current therapies for AD are not disease-modifying, and, despite substantial efforts, research and development for AD has faced formidable challenges. In addition, cellular senescence has emerged as a significant contributor to therapy resistance. METHODS Human iPSC-derived cortical neurons were cultured on microelectrode arrays to measure long-term potentiation (LTP) noninvasively. Neurons were treated with pathogenic amyloid-β (Aβ) to analyze senescence and response to therapeutic molecules. RESULTS Microphysiological recordings revealed Aβ dampened cortical LTP activity and accelerated neuronal senescence. Aging neurons secreted inflammatory factors previously detected in brain, plasma, and cerebral spinal fluid of AD patients, in which drugs modulated senescence-related factors. DISCUSSION This platform measures and records neuronal LTP activity in response to Aβ and therapeutic molecules in real-time. Efficacy data from similar platforms have been accepted by the FDA for neurodegenerative diseases, expediting regulatory submissions. HIGHLIGHTS This work developed a progerontic model of amyloid-β (Aβ)-driven cortical degeneration. This work measured neuronal LTP and correlated function with aging biomarkers. Aβ is a driver of neuronal senescence and cortical degeneration. Molecules rescued neuronal function but did not halt Aβ-driven senescence. Therapeutic molecules modulated secretion of inflammatory factors by aging neurons.
Collapse
Affiliation(s)
- Leandro H. Gallo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Nesar Akanda
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Kaveena Autar
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Aakash Patel
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Ian Cox
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Haley A. Powell
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Marcella Grillo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Natali Barakat
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Dave Morgan
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand Rapids Research CenterGrand RapidsMichiganUSA
| | - Xiufang Guo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - James J. Hickman
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| |
Collapse
|
171
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
172
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
173
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
174
|
Chen M, Chen W, Sun S, Lu Y, Wu G, Xu H, Yang H, Li C, He W, Xu M, Li X, Jiang D, Cai Y, Liu C, Zhang W, He Z. CDK4/6 inhibitor PD-0332991 suppresses hepatocarcinogenesis by inducing senescence of hepatic tumor-initiating cells. J Adv Res 2024:S2090-1232(24)00374-6. [PMID: 39218249 DOI: 10.1016/j.jare.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Owing to the limited treatment options for hepatocellular carcinoma (HCC), interventions targeting pre-HCC stages have attracted increasing attention. In the pre-HCC stage, hepatic tumor-initiating cells (hTICs) proliferate abnormally and contribute to hepatocarcinogenesis. Numerous studies have investigated targeted senescence induction as an HCC intervention. However, it remains to be clarified whether senescence induction of hTICs could serve as a pre-HCC intervention. OBJECTIVES This study was designed to investigate whether senescence induction of hTICs in the precancerous stage inhibit HCC initiation. METHODS AND RESULTS HCC models developed from chronic liver injury (CLI) were established by using Fah-/- mice and N-Ras + AKT mice. PD-0332991, a selective CDK4/6 inhibitor that blocks the G1/S transition in proliferating cells, was used to induce senescence during the pre-HCC stage. Upon administration of PD-0332991, we observed a significant reduction in HCC incidence following selective senescence induction in hTICs, and an alleviation liver injury in the CLI-HCC models. PD-0332991 also induced senescence in vitro in cultured hTICs isolated from CLI-HCC models. Moreover, RNA sequencing (RNA-seq) analysis delineated that the "Cyclin D-CDK4/6-INK4-Rb" pathway was activated in both mouse and human liver samples during the pre-HCC stage, while PD-0332991 exhibited substantial inhibition of this pathway, thereby inducing cellular senescence in hTICs. Regarding the immune microenvironment, we demonstrated that senescent hTICs secrete key senescence-associated secretory phenotypic (SASP) factors, CXCL10 and CCL2, to activate and recruit macrophages, and contribute to immune surveillance. CONCLUSION We found that hTICs can be targeted and induced into a senescent state during the pre-HCC stage. The SASP factors released by senescent hTICs further activate the immune response, facilitating the clearance of hTICs, and consequently suppressing HCC occurrence. We highlight the importance of pre-HCC interventions and propose that senescence-inducing drugs hold promise for preventing HCC initiation under CLI.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Huiru Yang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Chong Li
- Zhoupu Community Health Service Center of Pudong New Area, Shanghai, China
| | - Weizhi He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Dong Jiang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yongchao Cai
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China.
| |
Collapse
|
175
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
176
|
Balogun M. LEVEL OF MONOCYTE CHEMOATTRACTANT PROTEIN-1 (MCP-1) AND PATTERN OF INJURIES IN POLYTRAUMA PATIENTS. Ann Ib Postgrad Med 2024; 22:42-46. [PMID: 40007704 PMCID: PMC11848364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/01/2024] [Indexed: 02/27/2025] Open
Abstract
Introduction Trauma and trauma-related injuries are rife worldwide and constitutes part of the most common cause of hospital admission. Monocyte Chemoattractant Protein-1 is produced by several array of cells in acute traumatic injury and tissue repair. Materials and Method This research is a prospective hospital-based study carried out at a tertiary hospital in south western Nigeria. Patients admitted through the Emergency department were categorized based on the inclusion criteria. Those eligible for inclusion were recruited and had their blood samples taken into an endotoxin free test tube at 48 +/- 2 hours after trauma. MCP-1 levels in the serum was estimated though the Human MCP-1 ELISA kit. This process was carried out using the ELISA technique based on the manufacturer's guide. Results The samples of 110 patients were analyzed, patient with the highest combination of injury had injuries to the Head and Neck, Face, chest, Abdomen, Extremity fractures and skin with MCP-1 value of 463pg/ml. The test of relationship using the F-test (0.299), and P-value (1.000) does not demonstrate any correlation between patterns of injury to MCP-1 values in polytrauma patients. Conclusion The study showed no significant relationship between the patterns of injury in polytrauma patients with serum MCP-1 levels. Therefore, injury pattern cannot be used to predict MCP-1 levels.
Collapse
Affiliation(s)
- M Balogun
- Department of Surgery, College of Medicine, University of Ibadan and Consultant, Trauma and Orthopaedic Surgeon, University College Hospital, Ibadan
| |
Collapse
|
177
|
Shrwani KJ, Mahallawi WH, Mohana AI, Algaissi A, Dhayhi N, Sharwani NJ, Gadour E, Aldossari SM, Asiri H, Kameli N, Asiri AY, Asiri AM, Sherwani AJ, Cunliffe N, Zhang Q. Mucosal immunity in upper and lower respiratory tract to MERS-CoV. Front Immunol 2024; 15:1358885. [PMID: 39281686 PMCID: PMC11392799 DOI: 10.3389/fimmu.2024.1358885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV can cause severe respiratory tract disease and multiorgan failure. Therefore, therapeutic vaccines are urgently needed. This intensive review explores the human immune responses and their immunological mechanisms during MERS-CoV infection in the mucosa of the upper and lower respiratory tracts (URT and LRT, respectively). OBJECTIVE The aim of this study is to provide a valuable, informative, and critical summary of the protective immune mechanisms against MERS-CoV infection in the URT/LRT for the purpose of preventing and controlling MERS-CoV disease and designing effective therapeutic vaccines. METHODS In this review, we focus on the immune potential of the respiratory tract following MERS-CoV infection. We searched PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar using the following terms: "MERS-CoV", "B cells", "T cells", "cytokines", "chemokines", "cytotoxic", and "upper and lower respiratory tracts". RESULTS We found and included 152 studies in this review. We report that the cellular innate immune response, including macrophages, dendritic cells, and natural killer cells, produces antiviral substances such as interferons and interleukins to prevent the virus from spreading. In the adaptive and humoral immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and plasma cells protect against MERS-CoV infection in URT and LRT. CONCLUSION The human nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) could successfully limit the spread of several respiratory pathogens. However, in the case of MERS-CoV infection, limited research has been conducted in humans with regard to immunopathogenesis and mucosal immune responses due to the lack of relevant tissues. A better understanding of the immune mechanisms of the URT and LRT is vital for the design and development of effective MERS-CoV vaccines.
Collapse
Affiliation(s)
- Khalid J. Shrwani
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Public Health Authority, Saudi Center for Disease Prevention and Control (SCDC), Jazan, Saudi Arabia
| | - Waleed H. Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdulrhman I. Mohana
- Department of Antimicrobial Resistance, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Endemic Infectious Diseases Research Unit, Health Sciences Research Center, Jazan University, Jazan, Saudi Arabia
| | - Nabil Dhayhi
- Department of Pediatrics, King Fahad Central Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nouf J. Sharwani
- Department of Surgery, Mohammed bin Nasser Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa, Saudi Arabia
- Department of Medicine, Faculty of Medicine, Zamzam University College, Khartoum, Sudan
| | - Saeed M. Aldossari
- Medical Laboratory Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Asiri
- Medical Laboratory Department, Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ayad Y. Asiri
- Intensive Care Unit Department, Al Inma Medical Group, Al Hayat National Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah M. Asiri
- Preventive Medicine Assistant Deputyship, Ministry of Health, Riyadh, Saudi Arabia
| | - Alaa J. Sherwani
- Department of Pediatrics, Abu-Arish General Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qibo Zhang
- Academic and Research Departments, Section of Immunology, School of Biosciences, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
178
|
Tohme C, Haykal T, Yang R, Austin TJ, Loughran P, Geller DA, Simmons RL, Tohme S, Yazdani HO. ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia-Reperfusion Injury and the Progression of Hepatic Metastases. Cells 2024; 13:1448. [PMID: 39273020 PMCID: PMC11393917 DOI: 10.3390/cells13171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.
Collapse
Affiliation(s)
- Celine Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Tony Haykal
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Ruiqi Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Taylor J. Austin
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| |
Collapse
|
179
|
Pantaleo V, Furlanello T, Ventura L, Solano-Gallego L. Serum and urinary monocyte chemoattractant protein-1 as markers of inflammation and renal damage in dogs with naturally occurring leishmaniosis. Parasit Vectors 2024; 17:366. [PMID: 39210379 PMCID: PMC11363603 DOI: 10.1186/s13071-024-06432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Renal disease in canine leishmaniosis is of great importance owing to increased risk of mortality. In human visceral leishmaniosis, monocyte chemoattractant protein-1 (MCP-1) has been used as a marker of renal damage and inflammation. The purpose of this study was first to determine the serum MCP-1 and urinary MCP-1-to-creatinine ratio (uMCP-1/Cr) in healthy dogs and dogs with leishmaniosis at diagnosis, and second to determine whether these markers can differentiate disease severity at diagnosis. METHODS In total, 19 healthy seronegative dogs and 38 dogs with leishmaniosis were included in the study. Dogs with leishmaniosis were classified as LeishVet clinical staging and as International Renal Interest Society (IRIS) staging. Serum and urinary MCP-1 concentrations were measured with an enzyme-linked immunosorbent assay. A receiver operating characteristic (ROC) curve determined disease severity at diagnosis between two LeishVet groups (Stage II versus stage III and IV). RESULTS Dogs in Leishvet stages IIb, III, and IV had a median serum MCP-1 and uMCP-1/Cr concentration higher than healthy dogs (P < 0.0001). No statistical differences were found in serum MCP-1 and uMCP-1/Cr between dogs in LeishVet stage IIa and healthy dogs. The dogs in LeishVet stage IV had significantly higher serum MCP-1 and uMCP-1/Cr compared with the dogs in LeishVet stage IIa (P < 0.0001). Serum MCP-1 and uMCP-1 were significantly higher in dogs in IRIS stage I and II + III + IV compared with healthy dogs. Dogs stage II + III + IV of IRIS had a significantly higher serum MCP-1 compared with dogs in IRIS stage I (P < 0.0001). The area under the ROC curve for serum MCP-1 was 0.78 [95% confidence interval (CI) 0.64-0.93] and for uMCP-1/Cr it was 0.86 (95% CI, 0.74-0.99). The optimal cutoff value for serum MCP-1 and uMCP-1/Cr was 336.85 pg/ml (sensitivity of 79% and specificity of 68%) and 6.89 × 10-7 (sensitivity of 84% and specificity of 79%), respectively. CONCLUSIONS Serum MCP-1 and uMCP-1/Cr are increased in dogs with leishmaniosis compared with healthy dogs, suggesting the presence of inflammation and renal injury. Serum MCP-1 and uMCP-1/Cr were more elevated in the advanced stages of the disease compared with the moderate stages and, therefore, can be markers of the severity of the disease process.
Collapse
Affiliation(s)
- Valeria Pantaleo
- San Marco Veterinary Clinic and Laboratory, Veggiano, Padua, Italy
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Laura Ventura
- Department of Statistical Sciences, University of Padova, Padua, Italy
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
180
|
Wen J, Guan Y, Niu H, Dang Y, Guan J. Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to attenuate inflammation after myocardial infarction. Acta Biomater 2024:S1742-7061(24)00469-0. [PMID: 39182804 PMCID: PMC11846964 DOI: 10.1016/j.actbio.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
Collapse
Affiliation(s)
- Jiaxing Wen
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Ya Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Yu Dang
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Jianjun Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA.
| |
Collapse
|
181
|
Zhu A, Baur C, Götz P, Elbs K, Lasch M, Faro A, Preissner KT, Deindl E. The Complement System Is Essential for Arteriogenesis by Enhancing Sterile Inflammation as a Relevant Step in Collateral Artery Growth. Cells 2024; 13:1405. [PMID: 39272977 PMCID: PMC11394660 DOI: 10.3390/cells13171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Arteriogenesis is an inflammatory driven mechanism, describing the growth of a natural bypass from pre-existing collateral arteries to compensate for an occluded artery. The complement system component C3 is a potent natural inflammatory activator. Here, we investigated its impact on the process of collateral artery growth using C3-deficient (C3 -/-) and wildtype control mice in a murine hindlimb model of arteriogenesis. Induction of arteriogenesis by unilateral femoral artery ligation resulted in decreased perfusion recovery in C3 -/- mice on day 7 as shown by Laser Doppler imaging. Immunofluorescence staining revealed a reduced vascular cell proliferation in C3 -/- mice. Gene expression analysis displayed a significant reduction in monocyte chemoattractant protein-1 (MCP-1) expression in C3 -/- mice. Interestingly, 3 days after induction of arteriogenesis, the number of macrophages (CD68+) recruited to growing collaterals was not affected by C3 deficiency. However, a significant reduction in inflammatory M1-like polarized macrophages (CD68+/MRC1-) was noted. Forced mast cell activation by Compound 48/80 as well as exogenous MCP-1 application rescued the number of M1-like polarized macrophages along with perfusion recovery in C3 -/- mice. In summary, this study demonstrates that complement C3 influences arteriogenesis by mediating MCP-1 expression, which is essential for the induction and enhancement of sterile inflammation.
Collapse
Affiliation(s)
- Amanda Zhu
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Carolin Baur
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Katharina Elbs
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Manuel Lasch
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anna Faro
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T. Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Elisabeth Deindl
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
182
|
Karrer S, Unger P, Gruber M, Gebhardt L, Schober R, Berneburg M, Bosserhoff AK, Arndt S. In Vitro Safety Study on the Use of Cold Atmospheric Plasma in the Upper Respiratory Tract. Cells 2024; 13:1411. [PMID: 39272983 PMCID: PMC11394226 DOI: 10.3390/cells13171411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) to reduce the incidence of ventilator-associated bacterial pneumonia (especially superinfections with multi-resistant pathogens) or viral infections (e.g., COVID-19). For this purpose, the surface-microdischarge-based plasma intensive care (PIC) device was developed by terraplasma medical GmbH. This study analyzes the safety aspects using in vitro assays and molecular characterization of human oral keratinocytes (hOK), human bronchial-tracheal epithelial cells (hBTE), and human lung fibroblasts (hLF). A 5 min CAP treatment with the PIC device at the "throat" and "subglottis" positions in the URT model did not show any significant differences from the untreated control (ctrl.) and the corresponding pressurized air (PA) treatment in terms of cell morphology, viability, apoptosis, DNA damage, and migration. However, pro-inflammatory cytokines (MCP-1, IL-6, and TNFα) were induced in hBTE and hOK cells and profibrotic molecules (collagen-I, FKBP10, and αSMA) in hLF at the mRNA level. The use of CAP in the oropharynx may make an important contribution to the recovery of intensive care patients. The results indicate that a 5 min CAP treatment in the URT with the PIC device does not cause any cell damage. The extent to which immune cell activation is induced and whether it has long-term effects on the organism need to be carefully examined in follow-up studies in vivo.
Collapse
Affiliation(s)
- Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (S.K.); (P.U.); (M.B.)
| | - Petra Unger
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (S.K.); (P.U.); (M.B.)
| | - Michael Gruber
- Department of Anesthesiology, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Lisa Gebhardt
- Terraplasma Medical GmbH, 85748 Garching, Germany; (L.G.); (R.S.)
| | - Robert Schober
- Terraplasma Medical GmbH, 85748 Garching, Germany; (L.G.); (R.S.)
| | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (S.K.); (P.U.); (M.B.)
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (S.K.); (P.U.); (M.B.)
| |
Collapse
|
183
|
Henderson E, Wilson K, Huynh G, Plebanski M, Corrie S. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43329-43340. [PMID: 39109853 DOI: 10.1021/acsami.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating the interactions between nanomaterials and the cells they are likely to encounter in vivo is a critical aspect of designing nanomedicines for imaging and therapeutic applications. Immune cells such as dendritic cells, macrophages, and myeloid derived suppressor cells have a frontline role in the identification and removal of foreign materials from the body, with interactions shown to be heavily dependent on variables such as nanoparticle size, charge, and surface chemistry. Interactions such as cellular association or uptake of nanoparticles can lead to diminished functionality or rapid clearance from the body, making it critical to consider these interactions when designing and synthesizing nanomaterials for biomedical applications ranging from drug delivery to imaging and biosensing. We investigated the interactions between PEGylated organosilica nanoparticles and naturally endocytic immune cells grown from stem cells in murine bone marrow. Specifically, we varied the particle size from 60 nm up to 1000 nm and investigated the effects of size on immune cell association, activation, and maturation with these critical gatekeeper cells. These results will help inform future design parameters for in vitro and in vivo biomedical applications utilizing organosilica nanoparticles.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
184
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
185
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
186
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
187
|
Zhang M, Lotfollahzadeh S, Elzinad N, Yang X, Elsadawi M, Gower AC, Belghasem M, Shazly T, Kolachalama VB, Chitalia VC. Alleviating iatrogenic effects of paclitaxel via antiinflammatory treatment. Vasc Med 2024; 29:369-380. [PMID: 38623630 PMCID: PMC11365010 DOI: 10.1177/1358863x241231942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Paclitaxel (PTX) is touted as an essential medicine due to its extensive use as a chemotherapeutic agent for various cancers and an antiproliferative agent for endovascular applications. Emerging studies in cardio-oncology implicate various vascular complications of chemotherapeutic agents. METHODS We evaluated the inflammatory response induced by the systemic administration of PTX. The investigation included RNAseq analysis of primary human endothelial cells (ECs) treated with PTX to identify transcriptional changes in pro-inflammatory mediators. Additionally, we used dexamethasone (DEX), a well-known antiinflammatory compound, to assess its effectiveness in counteracting these PTX-induced changes. Further, we studied the effects of PTX on monocyte chemoattractant protein-1 (MCP-1) levels in the media of ECs. The study also extended to in vivo analysis, where a group of mice was injected with PTX and subsequently harvested at different times to assess the immediate and delayed effects of PTX on inflammatory mediators in blood and aortic ECs. RESULTS Our RNAseq analysis revealed that PTX treatment led to significant transcriptional perturbations in pro-inflammatory mediators such as MCP-1 and CD137 within primary human ECs. These changes were effectively abrogated when DEX was administered. In vitro experiments showed a marked increase in MCP-1 levels in EC media following PTX treatment, which returned to baseline upon treatment with DEX. In vivo, we observed a threefold increase in MCP-1 levels in blood and aortic ECs 12 h post-PTX administration. Similar trends were noted for CD137 and other downstream mediators like tissue factor, vascular cell adhesion molecule 1, and E-selectin in aortic ECs. CONCLUSION Our findings illustrate that PTX exposure induces an upregulation of atherothrombotic mediators, which can be alleviated with concurrent administration of DEX. Considering these observations, further long-term investigations should focus on understanding the systemic implications associated with PTX-based therapies and explore the clinical relevance of DEX in mitigating such risks.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA, USA
| | - Saran Lotfollahzadeh
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA, USA
| | - Nagla Elzinad
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA, USA
| | - Xiaosheng Yang
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA, USA
| | - Murad Elsadawi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mostafa Belghasem
- Department of Biomedical Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| | - Tarek Shazly
- College of Engineering & Computing, University of South Carolina, Columbia, SC, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Computer Science and Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| | - Vipul C Chitalia
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA, USA
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
188
|
Schaler L, Ghanim M, Guardiola J, Kaulsay J, Ibrahim A, Brady G, McCormack W, Conlon N, Kelly VP, Wingfield M, Glover L. Impact of COVID-19 vaccination on seminal and systemic inflammation in men. J Reprod Immunol 2024; 164:104287. [PMID: 38964132 DOI: 10.1016/j.jri.2024.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Expedited development of SARS-CoV-2 vaccines led to public concerns regarding impacts of the novel vaccine on gametes in patients seeking assisted reproduction. In cases of an acute intermittent illness or fever in men, it is often advised to postpone ART treatments so that efforts can be made to enhance wellbeing and improve sperm parameters. However, it is unknown whether sperm parameters are altered in the acute (24-72 hour) phase following COVID-19 vaccination. We performed a longitudinal cohort study of 17 normospermic male patients attending a fertility clinic for semen analysis. Semen and matched peripheral blood samples were collected prior to vaccination, within 46 + 18.9 hours of vaccine course completion (acute) and at 88.4 + 12 days (3 months) post-vaccination. No overall change from baseline was seen in symptoms, mean volume, pH, sperm concentration, motility, morphology or DNA damage in the acute or long phase. Seminal plasma was found to be negative for anti-SARS-CoV2 Spike antibody detection, and MCP-1 levels showed an acute but transient elevation post-vaccine, while IL-8 was marginally increased 3 months after completion of vaccination. A modest, positive correlation was noted between serum levels of the anti-inflammatory cytokine IL-10 and self-reported symptoms post-vaccine. Our findings are reassuring in that no significant adverse effect of vaccination was noted and provide evidence to support the current recommendations of reproductive medicine organisations regarding timing of vaccination during fertility treatment.
Collapse
Affiliation(s)
- Laurentina Schaler
- Merrion Fertility Clinic, 60 Lower Mount Street, Dublin 2, Ireland; National Maternity Hospital, Holles Street, Dublin 2, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Magda Ghanim
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jordi Guardiola
- Merrion Fertility Clinic, 60 Lower Mount Street, Dublin 2, Ireland
| | - Julia Kaulsay
- Merrion Fertility Clinic, 60 Lower Mount Street, Dublin 2, Ireland
| | - Aya Ibrahim
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin 8, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin 8, Ireland
| | - William McCormack
- Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin 8, Ireland
| | - Niall Conlon
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin 8, Ireland; Department of Immunology, St. James's Hospital, Dublin 8, Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary Wingfield
- Merrion Fertility Clinic, 60 Lower Mount Street, Dublin 2, Ireland; National Maternity Hospital, Holles Street, Dublin 2, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland; School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Louise Glover
- Merrion Fertility Clinic, 60 Lower Mount Street, Dublin 2, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland; School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
189
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
190
|
Yong Q, Huang C, Chen B, An J, Zheng Y, Zhao L, Peng C, Liu F. Gentiopicroside improves NASH and liver fibrosis by suppressing TLR4 and NLRP3 signaling pathways. Biomed Pharmacother 2024; 177:116952. [PMID: 38917754 DOI: 10.1016/j.biopha.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) and liver fibrosis are progressive conditions associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatocyte pyroptosis and hepatic stellate cell (HSC) activation. Gentiopicroside (GPS) has emerged as a potential treatment for NASH, yet its underlying mechanism remains unclear. AIM To confirm that GPS can improve NASH and liver fibrosis by blocking the NLRP3 signaling pathway STUDY DESIGN: Initially, different animal models were used to study the effects and mechanisms of GPS on NASH and fibrosis. Subsequent in vitro experiments utilized co-cultures and other techniques to delve deeper into its mechanism, followed by validation of the findings in mouse liver tissues. METHODS C57BL/6 mice were fed high-fat, high-cholesterol (HFHC), or methionine-choline-deficient (MCD) diets to induce NASH and fibrosis. RAW264.7 cells and born marrow bone marrow-derived macrophages (BMDMs) were stimulated with LPS and ATP to induce inflammation, then co-cultured with primary hepatocytes and HSCs, treated with GPS, and its efficacy and mechanism were analyzed. RESULTS In vivo, GPS alleviated NASH and liver fibrosis by inhibiting the NLRP3 pathway. In vitro, GPS attenuated inflammation induced by BMDMs by inhibiting TLR4 and NLRP3 signaling pathways, and Co-culture studies suggested that GPS reduced hepatocyte pyroptosis and HSC activation, which was also confirmed in liver tissues CONCLUSION: GPS improves NASH and liver fibrosis by inhibiting the TLR4 and NLRP3 signaling pathways. The specific mechanism may be related to the suppression of macrophage-mediated inflammatory responses, thereby reducing hepatocyte pyroptosis and HSC activation.
Collapse
Affiliation(s)
- Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinqi An
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
191
|
Opgenorth J, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Rhoads RP, McMillan RP, McGill JL, Baumgard LH. Intramammary lipopolysaccharide challenge in early- versus mid-lactation dairy cattle: Immune, production, and metabolic responses. J Dairy Sci 2024; 107:6252-6267. [PMID: 38460880 DOI: 10.3168/jds.2023-24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Study objectives were to compare the immune response, metabolism, and production following intramammary LPS (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 DIM) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL of sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h after LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h after LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h after LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased after LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased after LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and DMI (14%) on d 1 that did not differ by LS. Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. β-Hydroxybutyrate slightly increased (14%) over time after LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen increased after LPS, and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36% and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h after LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation, and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - R P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
192
|
Zhang XJ, Zhang JX, Qu Y, Peng RM, Zhang P, Hong J. Cytokine analysis of aqueous humor in patients with cytomegalovirus corneal endotheliitis. Graefes Arch Clin Exp Ophthalmol 2024; 262:2593-2600. [PMID: 38446197 DOI: 10.1007/s00417-024-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024] Open
Abstract
PURPOSE To evaluate cytokine levels of aqueous humor in patients with cytomegalovirus (CMV) corneal endotheliitis and their relationships with CMV DNA load. METHODS 44 aqueous humor samples were obtained from 26 patients with CMV corneal endotheliitis at various stages of treatment. 33 samples obtained from cataract patients during the same period were selected as a control group. Each sample was used to measure the concentration of the CMV DNA load using real-time quantitative polymerase chain reaction, and to examine the levels of IL-6, IL-8, IL-10, MCP-1, VCAM-1, VEGF, IP-10, G-CSF, ICAM-1 and IFN-γ using a cytometric bead array. RESULTS All 10 cytokines were found to have statistically significant differences between the CMV endotheliitis and cataract groups. The Spearman correlation test showed that the concentration of CMV DNA load was significantly associated with the levels of IL-6 (P = 0.005, r = 0.417), IL-8 (P < 0.001, r = 0.514), IL-10 (P < 0.001, r = 0.700), MCP-1 (P = 0.001, r = 0.487), VEGF (P < 0.001, r = 0.690), IP-10 (P = 0.001, r = 0.469), G-CSF (P < 0.001, r = 0.554) and ICAM-1 (P < 0.001, r = 0.635), but not significantly associated with VCAM-1 (P = 0.056) and IFN-γ (P = 0.219). CONCLUSIONS There was a combined innate and adaptive immune response in aqueous humor in patients with CMV endotheliitis. Levels of multiple cytokines were significantly correlated with viral particle. Cytokines are potential indicators to help diagnose CMV endotheliitis, evaluate disease activity and assess treatment response.
Collapse
Affiliation(s)
- Xuan-Jun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jia-Xin Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yi Qu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Rong-Mei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
193
|
Chen X, Zhou J, Wang Y, Wang X, Chen K, Chen Q, Huang D, Jiang R. PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC. Oncogene 2024; 43:2517-2530. [PMID: 39004633 DOI: 10.1038/s41388-024-03100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Elevated infiltration of tumor-associated macrophages (TAMs) drives tumor progression and correlates with poor prognosis for various tumor types. Our research identifies that the ablation of the Pim-1 proto-oncogene (PIM1) in non-small cell lung cancer (NSCLC) suppresses TAM infiltration and prevents them from polarizing toward the M2 phenotype, thereby reshaping the tumor immune microenvironment (TME). The predominant mechanism through which PIM1 exerts its impact on macrophage chemotaxis and polarization involves CC motif chemokine ligand 2 (CCL2). The expression level of PIM1 is positively correlated with high CCL2 expression in NSCLC, conferring a worse overall patient survival. Mechanistically, PIM1 deficiency facilitates the reprogramming of TAMs by targeting nuclear factor kappa beta (NF-κB) signaling and inhibits CCL2 transactivation by NSCLC cells. The decreased secretion of CCL2 impedes TAM accumulation and their polarization toward a pro-tumoral phenotype. Furthermore, Dual blockade of Pim1 and PD-1 collaboratively suppressed tumor growth, repolarized macrophages, and boosted the efficacy of anti-PD-1 antibody. Collectively, our findings elucidate the pivotal role of PIM1 in orchestrating TAMs within the TME of NSCLC and highlight the potential of PIM1 inhibition as a strategy for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Youhui Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Qin Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, PR China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, 300000, China.
| |
Collapse
|
194
|
Nagar N, Naidu G, Panda SK, Gulati K, Singh RP, Poluri KM. Elucidating the role of chemokines in inflammaging associated atherosclerotic cardiovascular diseases. Mech Ageing Dev 2024; 220:111944. [PMID: 38782074 DOI: 10.1016/j.mad.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Santosh Kumar Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, Gujarat 382355, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
195
|
Tao Y, Fukushima M, Shimokawa S, Zhao H, Okita A, Fujiwara K, Takeda A, Mukai S, Sonoda KH, Murakami Y. Ocular and Serum Profiles of Inflammatory Molecules Associated With Retinitis Pigmentosa. Transl Vis Sci Technol 2024; 13:18. [PMID: 39120884 PMCID: PMC11318359 DOI: 10.1167/tvst.13.8.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose To investigate the profiles and correlations between local and systemic inflammatory molecules in patients with retinitis pigmentosa (RP). Methods The paired samples of aqueous humor and serum were collected from 36 eyes of 36 typical patients with RP and 25 eyes of age-matched patients with cataracts. The concentration of cytokines/chemokines was evaluated by a multiplexed immunoarray (Q-Plex). The correlations between ocular and serum inflammatory molecules and their association with visual function were analyzed. Results The aqueous levels of IL-6, Eotaxin, GROα, I-309, IL-8, IP-10, MCP-1, MCP-2, RANTES, and TARC were significantly elevated in patients with RP compared to controls (all P < 0.05). The detection rate of aqueous IL-23 was higher in patients with RP (27.8%) compared with controls (0%). In patients with RP, Spearman correlation test demonstrated positive correlations for IL-23, I-309, IL-8, and RANTES between aqueous and serum expression levels (IL-23: ⍴ = 0.8604, P < 0.0001; I-309: ρ = 0.4172, P = 0.0113; IL-8: ρ = 0.3325, P = 0.0476; RANTES: ρ = 0.6685, P < 0.0001). In addition, higher aqueous IL-23 was associated with faster visual acuity loss in 10 patients with RP with detected aqueous IL-23 (ρ = 0.4119 and P = 0.0264). Multiple factor analysis confirmed that aqueous and serum IL-23 were associated with visual acuity loss in patients with RP. Conclusions These findings suggest that ocular and systemic inflammatory responses have a close interaction in patients with RP. Further longitudinal studies with larger cohorts are needed to explore the correlation between specific inflammatory pathways and the progression of RP. Translational Relevance This study demonstrates the local-systemic interaction of immune responses in patients with RP.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sakurako Shimokawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Huanyu Zhao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Okita
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shizuo Mukai
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
196
|
Nishimura J, Morita Y, Tobe-Nishimoto A, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Takeshita A, Matsunaga K, Imai T, Uzawa N. CDDP-induced desmoplasia-like changes in oral cancer tissues are related to SASP-related factors induced by the senescence of cancer cells. Int Immunopharmacol 2024; 136:112377. [PMID: 38838554 DOI: 10.1016/j.intimp.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The tumor microenvironment (TME) concept has been proposed and is currently being actively studied. The development of extracellular matrix (ECM) in the TME is known as desmoplasia and is observed in many solid tumors. It has also been strongly associated with poor prognosis and resistance to drug therapy. Recently, cellular senescence has gained attention as an effect of drug therapy on cancer cells. Cellular senescence is a phenomenon wherein proliferating cells become resistant to growth-promoting stimuli, secrete the SASP (senescence-associated phenotypic) factors, and stably arrest the cell cycle. These proteins are rich in pro-inflammatory factors, such as interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand 1, C-C motif chemokine ligand (CCL)2, CCL5, and matrix metalloproteinase 3. This study aimed to investigate the desmoplasia-like changes in the TME before and after cancer drug therapy in oral squamous cell carcinomas, evaluate the effect of anticancer drugs on the TME, and the potential involvement of cancer cell senescence. Using a syngeneic oral cancer transplant mouse model, we confirmed that cis-diamminedichloroplatinum (II) (CDDP) administration caused desmoplasia-like changes in cancer tissues. Furthermore, CDDP treatment-induced senescence in tumor-bearing mouse tumor tissues and cultured cancer cells. These results suggest CDDP administration-induced desmoplasia-like structural changes in the TME are related to cellular senescence. Our findings suggest that the administration of anticancer drugs alters the TME of oral cancer cells. Additionally, oral cancer cells undergo senescence, which may influence the TME through the production of SASP factors.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan.
| | - Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Akinori Takeshita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
197
|
Argue BMR, Casten LG, McCool S, Alrfooh A, Gringer Richards J, Wemmie JA, Magnotta VA, Williams AJ, Michaelson J, Fiedorowicz JG, Scroggins SM, Gaine ME. Patterns of Immune Dysregulation in Bipolar Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311078. [PMID: 39211848 PMCID: PMC11361205 DOI: 10.1101/2024.07.26.24311078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Bipolar disorder is a debilitating mood disorder associated with a high risk of suicide and characterized by immune dysregulation. In this study, we used a multi-faceted approach to better distinguish the pattern of dysregulation of immune profiles in individuals with BD. Methods We analyzed peripheral blood mononuclear cells (bipolar disorder N=39, control N=30), serum cytokines (bipolar disorder N=86, control N=58), whole blood RNA (bipolar disorder N=25, control N=25), and whole blood DNA (bipolar disorder N=104, control N=66) to identify immune-related differences in participants diagnosed with bipolar disorder compared to controls. Results Flow cytometry revealed a higher proportion of monocytes in participants with bipolar disorder together with a lower proportion of T helper cells. Additionally, the levels of 18 cytokines were significantly elevated, while two were reduced in participants with bipolar disorder. Most of the cytokines altered in individuals with bipolar disorder were proinflammatory. Forty-nine genes were differentially expressed in our bipolar disorder cohort and further analyses uncovered several immune-related pathways altered in these individuals. Genetic analysis indicated variants associated with inflammatory bowel disease also influences bipolar disorder risk. Discussion Our findings indicate a significant immune component to bipolar disorder pathophysiology and genetic overlap with inflammatory bowel disease. This comprehensive study supports existing literature, whilst also highlighting novel immune targets altered in individuals with bipolar disorder. Specifically, multiple lines of evidence indicate differences in the peripheral representation of monocytes and T cells are hallmarks of bipolar disorder.
Collapse
|
198
|
Mitsis A, Myrianthefs M, Sokratous S, Karmioti G, Kyriakou M, Drakomathioulakis M, Tzikas S, Kadoglou NPE, Karagiannidis E, Nasoufidou A, Fragakis N, Ziakas A, Kassimis G. Emerging Therapeutic Targets for Acute Coronary Syndromes: Novel Advancements and Future Directions. Biomedicines 2024; 12:1670. [PMID: 39200135 PMCID: PMC11351818 DOI: 10.3390/biomedicines12081670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Acute coronary syndrome (ACS) remains a major cause of morbidity and mortality worldwide, requiring ongoing efforts to identify novel therapeutic targets to improve patient outcomes. This manuscript reviews promising therapeutic targets for ACS identified through preclinical research, including novel antiplatelet agents, anti-inflammatory drugs, and agents targeting plaque stabilization. Preclinical studies have expounded these agents' efficacy and safety profiles in mitigating key pathophysiological processes underlying ACS, such as platelet activation, inflammation, and plaque instability. Furthermore, ongoing clinical trials are evaluating the efficacy and safety of these agents in ACS patients, with potential implications for optimizing ACS management. Challenges associated with translating preclinical findings into clinical practice, including patient heterogeneity and trial design considerations, are also discussed. Overall, the exploration of emerging therapeutic targets offers promising avenues for advancing ACS treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Efstratios Karagiannidis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| |
Collapse
|
199
|
Ishizaka A, Koga M, Mizutani T, Suzuki Y, Matano T, Yotsuyanagi H. Sustained gut dysbiosis and intestinal inflammation show correlation with weight gain in person with chronic HIV infection on antiretroviral therapy. BMC Microbiol 2024; 24:274. [PMID: 39044127 PMCID: PMC11267850 DOI: 10.1186/s12866-024-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Person with human immunodeficiency virus type-1 (PWH) are prone to chronic inflammation due to residual viral production, even with antiretroviral therapy (ART), which increases the risk of age-related diseases. There is also limited information on changes in the intestinal environment of PWH during ART. In this longitudinal study, we investigated changes in the gut microbiota, persistence of chronic inflammation, interactions between the gut environment and inflammation, and metabolic changes in PWH using long-term ART. RESULTS We analyzed changes in clinical parameters and gut microbiota in 46 PWH over a mean period of 4 years to understand the influence of gut dysbiosis on inflammation. Overall, changes in the gut microbiota included a decrease in some bacteria, mainly involved in short-chain fatty acid (SCFA) production, and an increase in certain opportunistic bacteria. Throughout the study period, an increase in bacterial-specific metabolic activity was observed in the intestinal environment. Continued decline in certain bacteria belonging to the Clostridia class and metabolic changes in gut bacteria involved in glucose metabolism. Additionally, patients with a low abundance of Parabacteroides exhibited low bacterial alpha diversity and a significant increase in body mass index (BMI) during the study period. Monocyte chemoattractant protein 1, a marker of macrophage activation in the plasma, continued to increase from baseline (first stool collection timepoint) to follow-up (second stool collection timepoint), demonstrating a mild correlation with BMI. Elevated BMI was mild to moderately correlated with elevated levels of plasma interleukin 16 and chemokine ligand 13, both of which may play a role in intestinal inflammation and bacterial translocation within the gut microbiota. The rate of BMI increase correlated with the rate of decrease in certain SCFA-producing bacteria, such as Anaerostipes and Coprococcus 3. CONCLUSION Our data suggest that despite effective ART, PWH with chronic inflammation exhibit persistent dysbiosis associated with gut inflammation, resulting in a transition to an intestinal environment with metabolic consequences. Moreover, the loss of certain bacteria such as Parabacteroides in PWH correlates with weight gain and may contribute to the development of metabolic diseases.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, Chiba, Kashiwa-shi, 277-0882, Japan.
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, Chiba, Kashiwa-shi, 277-0882, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of AIDS Vaccine Development, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
200
|
Lu MJ, Zhang JQ, Nie ZY, Yan TH, Cao YB, Zhang LC, Li L. Monocyte/macrophage-mediated venous thrombus resolution. Front Immunol 2024; 15:1429523. [PMID: 39100675 PMCID: PMC11297357 DOI: 10.3389/fimmu.2024.1429523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou-Yu Nie
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|