151
|
Yate L, Coy LE, Gregurec D, Aperador W, Moya SE, Wang G. Nb-C nanocomposite films with enhanced biocompatibility and mechanical properties for hard-tissue implant applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6351-6358. [PMID: 25738650 DOI: 10.1021/acsami.5b01193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the key challenges in engineering of orthopedic implants is to "bioactivate" their surface by using different surface techniques and materials. Carbon, especially amorphous (a-C) and diamond-like carbon down (DLC) films have attracted much attention in biomedical fields due to their biocompatibility and low coefficient of friction. However, they are unsuitable for uses as a "bioactivity enhancer" of orthopedic implants due to their bioinertness. In this work, we use the nonreactive magnetron sputtering technique to produce a-C films including the biocompatible niobium (Nb) element to alter the surface chemistry and nanotopography of the a-C films with the purpose of bioactivating the a-C film coated implants. Results show that the nanocomposite films (Nb-C) formed by the addition of Nb into the a-C films not only have improved corrosion resistance, but also possess enhanced mechanical properties (nanohardness, Young's modulus and superelastic recovery). Preosteoblasts (MC3T3-E1) cultured on the Nb-C films have enhanced adhesion and upregulated alkaline phosphatase (ALP) activity, compared to those cultured on the a-C film and TiO2 films used as a control, which are thought to be ascribed to the combined effects of the changes in surface chemistry and the refinement of the nanotopography caused by the addition of Nb.
Collapse
Affiliation(s)
- Luis Yate
- †Surface Analysis and Fabrication Platform, CIC biomaGUNE, Paseo Miramón 182, 20009 Donostia-San Sebastian, Spain
| | - L Emerson Coy
- §NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Danijela Gregurec
- ‡Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 Donostia-San Sebastian, Spain
| | - Willian Aperador
- ∥School of Engineering, Universidad Militar Nueva Granada, Carrera 11 #101-80, 49300 Bogotá, Colombia
| | - Sergio E Moya
- ‡Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 Donostia-San Sebastian, Spain
| | - Guocheng Wang
- ‡Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 Donostia-San Sebastian, Spain
| |
Collapse
|
152
|
Luo B, Yuan S, Foo SEM, Wong MTC, Lim TC, Tan NS, Choong C. From flab to fab: transforming surgical waste into an effective bioactive coating material. Adv Healthc Mater 2015; 4:613-20. [PMID: 25424903 DOI: 10.1002/adhm.201400514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/07/2014] [Indexed: 12/31/2022]
Abstract
Cellular events are regulated by the interaction between integrin receptors in the cell membrane and the extracellular matrix (ECM). Hence, ECM, as a material, can potentially play an instructive role in cell-material interactions. Currently, adipose tissue in the form of lipoaspirate is often discarded. Here, it is demonstrated how our chemical-free decellularization method could be used to obtain ECM from human lipoaspirate waste material. These investigations show that the main biological components are retained in the lipoaspirate-derived ECM (LpECM) material and that this LpECM material could subsequently be used as a coating material to confer bioactivity to an otherwise inert biodegradable material (i.e., polycaprolactone). Overall, lipoaspirate material, a complex blend of endogenous proteins, is effectively used a bioactive coating material. This work is an important stepping-stone towards the development of biohybrid scaffolds that contain cellular benefits without requiring the use of additional biologics based on commonly discarded lipoaspirate material.
Collapse
Affiliation(s)
- Baiwen Luo
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Shaojun Yuan
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Selin Ee Min Foo
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Avenue 638557 Singapore
| | - Marcus Thien Chong Wong
- Plastic, Reconstructive and Aesthetic Surgery Section; Tan Tock Seng, Hospital; 11, Jalan Tan Tock Seng 308433 Singapore
| | - Thiam Chye Lim
- Division of Plastic; Reconstructive and Aesthetic Surgery; National University Hospital; 5, Lower Kent Ridge Road 119074 Singapore
| | - Nguan Soon Tan
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Avenue 638557 Singapore
- Institute of Cell and Molecular Biology; Agency for Science Technology and Research; 61, Biopolis Drive, Proteos Building 138673 Singapore
| | - Cleo Choong
- Division of Materials Technology; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
153
|
Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine (Lond) 2015; 10:849-71. [DOI: 10.2217/nnm.14.222] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell–material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Collapse
Affiliation(s)
- Hala S Dhowre
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Sunil Rajput
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Noah A Russell
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
| | - Mischa Zelzer
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
- Interface & Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
154
|
Villasante A, Vunjak-Novakovic G. Tissue-engineered models of human tumors for cancer research. Expert Opin Drug Discov 2015; 10:257-68. [PMID: 25662589 DOI: 10.1517/17460441.2015.1009442] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. AREAS COVERED In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. EXPERT OPINION While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Columbia University, Department of Biomedical Engineering , New York, NY 10032 , USA
| | | |
Collapse
|
155
|
Eichhorn M, Stannard C, Anselme K, Rühe J. Nucleus deformation of SaOs-2 cells on rhombic µ-pillars. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:108. [PMID: 25665842 DOI: 10.1007/s10856-015-5427-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
It has been previously shown that osteosarcoma (SaOs-2) cells respond to micropillared surfaces consisting of poly-L-lactic acid with strong deformation of the cell body and nucleus. Until now, cell nucleus deformation of SaOs-2 cells was only studied by exposing them to square shaped micropillars in an isotropic pattern. Here we report on experiments of the cell nucleus response of such cells to rhombic structures of different topographies generated from a rubbery polymer, namely poly(n-butyacrylate). It is observed that cells orientate themselves perpendicular to the long axis of the rhombi. While their spreading on the surface is not influenced by the opening angle of the structures, rhombic structures with sharper angles induce stronger deformation of the cells and accordingly more elongated nuclei.
Collapse
Affiliation(s)
- Melanie Eichhorn
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
156
|
Biomechanics: Principles. Bioengineering (Basel) 2015. [DOI: 10.1007/978-3-319-10798-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
157
|
Dong Y, Qin Y, Dubaa M, Killion J, Gao Y, Zhao T, Zhou D, Duscher D, Geever L, Gurtner GC, Wang W. A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA. Polym Chem 2015; 6:6182-6192. [DOI: 10.1039/c5py00678c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A novel injectable hydrogel for stem cell delivery was prepared from multifunctional hyperbranched polyPEGDA and thiolated hyaluronic acid.
Collapse
Affiliation(s)
- Yixiao Dong
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | - Yue Qin
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | - Marie Dubaa
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | - John Killion
- Applied Polymer Technology
- Athlone Institute of Technology
- Athlone
- Ireland
| | - Yongsheng Gao
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | - Tianyu Zhao
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | - Dezhong Zhou
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| | | | - Luke Geever
- Applied Polymer Technology
- Athlone Institute of Technology
- Athlone
- Ireland
| | | | - Wenxin Wang
- The Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin
- Ireland
| |
Collapse
|
158
|
Xu M, Zhang X, Meng S, Dai X, Han B, Deng X. Enhanced Critical Size Defect Repair in Rabbit Mandible by Electrospun Gelatin/ β‐TCP Composite Nanofibrous Membranes. JOURNAL OF NANOMATERIALS 2015; 2015. [DOI: 10.1155/2015/396916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/15/2014] [Indexed: 10/05/2024]
Abstract
The design and fabrication of biodegradable barrier membranes with satisfactory structure and composition remain a considerable challenge for periodontal tissue regeneration. We have developed a biomimetic nanofibrous membrane made from a composite of gelatin and β‐tricalcium phosphate (β‐TCP). We previously confirmed the in vitro biological performance of the membrane material, but the efficacy of the membranes in promoting bone repair in situ has not yet been examined. Gelatin/β‐TCP composite nanofibers were fabricated by incorporation of 20 wt.% β‐TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite membranes presented a nonwoven structure with an interconnected porous network and had a rough surface due to the β‐TCP nanoparticles, which were distributed widely and uniformly throughout the gelatin‐fiber matrix. The repair efficacy of rabbit mandible defects implanted with bone substitute (Bio‐Oss) and covered with the gelatin/β‐TCP composite nanofibrous membrane was evaluated in comparison with pure gelatin nanofibrous membrane. Gross observation, histological examination, and immunohistochemical analysis showed that new bone formation and defect closure were significantly enhanced by the composite membranes compared to the pure gelatin ones. From these results, we conclude that nanofibrous gelatin/β‐TCP composite membranes could serve as effective barrier membranes for guided tissue regeneration.
Collapse
|
159
|
Uskoković V, Desai TA. Nanoparticulate drug delivery platforms for advancing bone infection therapies. Expert Opin Drug Deliv 2014; 11:1899-912. [PMID: 25109804 PMCID: PMC4393954 DOI: 10.1517/17425247.2014.944860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. AREAS COVERED Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. EXPERT OPINION Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment.
Collapse
Affiliation(s)
- Vuk Uskoković
- University of Illinois, Department of Bioengineering, Advanced Materials and Bionanotechnology Laboratory, Chicago, IL 60607-7052, USA
| | - Tejal A Desai
- University of California, Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158-2330, USA
| |
Collapse
|
160
|
Harink B, Le Gac S, Barata D, van Blitterswijk C, Habibovic P. Microfluidic platform with four orthogonal and overlapping gradients for soluble compound screening in regenerative medicine research. Electrophoresis 2014; 36:475-84. [DOI: 10.1002/elps.201400286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - Séverine Le Gac
- BIOS, The Lab-on-a-Chip Group; MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - David Barata
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| |
Collapse
|
161
|
Memic A, Khademhosseini A. Finding the winning combination. Combinatorial screening of three dimensional niches to guide stem cell osteogenesis. Organogenesis 2014; 10:299-302. [PMID: 25482315 DOI: 10.4161/org.29646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ability to predict and guide stem cell differentiation remains a major challenge in regenerative medicine. Numerous dynamic microenvironmental cues often provide synergistic or combinatorial signals that influence the fate of stem cells, and ultimately drive functional tissue formation. This interplay between microenvironmental cues within tissues is under intense investigation. Our goal was to better understand this interplay within the framework of a systematic 3D platform that would enable high-throughput screening (HTS) of factors that contribute to stem cell fate decisions. It is important that such platforms provide valid biomimetic microenvironments, which can be translated to macroscale constructs. Specifically, we reported on a technique for screening of combinatorial 3D niches to guide the osteogenic differentiation of human mesenchymal stem cells (hMSCs). This platform offers a rapid, cost-effective and multiplexed approach for a variety of tissue engineering applications.
Collapse
Key Words
- 2D, two dimensional
- 3D, three dimensional
- ALP, alkaline phosphatase
- BMP, bone morphogenic proteins
- ECM, extracellular matrix
- FN, fibronectin
- GE, methacrylated gelatin
- HTS, high-throughput screening
- LN, laminin
- OCN, osteocalcin
- biomaterials
- biomimetics
- hMSCs, human mesenchymal stem cells
- high-throughput screening
- stem cell differentiation
- tissue engineering
Collapse
Affiliation(s)
- Adnan Memic
- a Center of Nanotechnology ; King Abdulaziz University ; Jeddah , Saudi Arabia
| | | |
Collapse
|
162
|
Romanazzo S, Forte G, Morishima K, Taniguchi A. IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomater Sci 2014. [PMID: 26222290 DOI: 10.1039/c4bm00315b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, the extracellular microenvironment has been shown to be critical for the correct differentiation of stem cells to specific tissues. Many factors, including physical (e.g. biomaterial stiffness and topography) and biological (as growth factors, cytokines and chemokines) components, cooperate to create an ideal microenvironment for muscle stem cells, with many of these factors having been widely investigated. We previously demonstrated that the use of non-proliferating muscle-specific and unrelated cells as feeder layers for skeletal muscle progenitor cell differentiation resulted in significant differences in the ability to form myotubes, suggesting the importance of biological factors in myogenic differentiation. In this study, we investigated the biological factors involved in this process, analyzing the expression profile of 84 genes coding for cytokines and chemokines. We successfully identified a novel role for the cytokine IL-12 in the myogenic differentiation of C2C12 mouse skeletal muscle cells. Experiments involving the overexpression or silencing of the IL-12 gene in C2C12 showed that IL-12 enhanced the myogenic differentiation process. Moreover, when IL-12 was overexpressed in non-biologically related feeder cells, the new co-culture system was able to improve myogenic differentiation of C2C12 seeded on top. Although IL-12 is known to be a cytokine involved in inflammatory responses, it also appears to be involved in the myogenic differentiation process, acting as a positive regulator of this mechanism. This fact is expected to prove to be important for the development of functional biomaterials.
Collapse
Affiliation(s)
- Sara Romanazzo
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | | | | | | |
Collapse
|
163
|
Seelbach RJ, Fransen P, Peroglio M, Pulido D, Lopez-Chicon P, Duttenhoefer F, Sauerbier S, Freiman T, Niemeyer P, Semino C, Albericio F, Alini M, Royo M, Mata A, Eglin D. Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels. Acta Biomater 2014; 10:4340-50. [PMID: 24993802 DOI: 10.1016/j.actbio.2014.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
The controlled presentation of biofunctionality is of key importance for hydrogel applications in cell-based regenerative medicine. Here, a versatile approach was demonstrated to present clustered binding epitopes in an injectable, thermoresponsive hydrogel. Well-defined multivalent dendrimers bearing four integrin binding sequences and an azido moiety were covalently grafted to propargylamine-derived hyaluronic acid (Hyal-pa) using copper-catalyzed alkyne-azide cycloaddition (CuAAC), and then combined with pN-modified hyaluronan (Hyal-pN). The dendrimers were prepared by synthesizing a bifunctional diethylenetriamine pentaacetic acid core with azido and NHBoc oligo(ethylene glycol) aminoethyl branches, then further conjugated with solid-phase synthesized RGDS and DGRS peptides. Azido terminated pN was synthesized by reversible addition-fragmentation chain transfer polymerization and reacted to Hyal-pa via CuAAC. Nuclear magnetic resonance (NMR), high performance liquid chromatography, size exclusion chromatography and mass spectroscopy proved that the dendrimers had well-defined size and were disubstituted. NMR and atomic absorption analysis confirmed the hyaluronan was affixed with dendrimers or pN. Rheological measurements demonstrated that dendrimers do not influence the elastic or viscous moduli of thermoresponsive hyaluronan compositions at a relevant biological concentration. Finally, human mesenchymal stromal cells were encapsulated in the biomaterial and cultured for 21days, demonstrating the faculty of this dendrimer-modified hydrogel as a molecular toolbox for tailoring the biofunctionality of thermoresponsive hyaluronan carriers for biomedical applications.
Collapse
Affiliation(s)
- Ryan J Seelbach
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Peter Fransen
- Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Daniel Pulido
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Combinatorial Chemistry Unit, Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | | | | | | - Thomas Freiman
- Universitätsklinikum Goethe Universität, Schleusenweg 2-16, D-60538 Frankfurt am Main, Germany
| | - Philipp Niemeyer
- Universitätsklinik Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Carlos Semino
- Institute de Quimica de Sarría, Via Augusta 390, 08017 Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Miriam Royo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Combinatorial Chemistry Unit, Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Alvaro Mata
- Queen Mary, University of London, Mile End Road, E1 4NS London, UK
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland.
| |
Collapse
|
164
|
Drzewiecki K, Parmar AS, Gaudet ID, Branch JR, Pike DH, Nanda V, Shreiber DI. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11204-11. [PMID: 25208340 PMCID: PMC4172302 DOI: 10.1021/la502418s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In this study, type-I collagen is modified to introduce methacrylate groups on the free amines of the lysine residues to create collagen methacrylamide (CMA). CMA retains the properties of collagen such as self-assembly, biodegradability, and natural bioactivity but is also photoactive and can be rapidly cross-linked or functionalized with acrylated molecules when irradiated with ultraviolet light in the presence of a photoinitiator. CMA also demonstrates unique temperature-dependent behavior. For natural type-I collagen, the overall structure of the fiber network remains largely static over time scales of a few hours upon heating and cooling at temperatures below its denaturation point. CMA, however, is rapidly thermoreversible and will oscillate between a liquid macromer suspension and a semisolid fibrillar hydrogel when the temperature is modulated between 10 and 37 °C. Using a series of mechanical, scattering, and spectroscopic methods, we demonstrate that structural reversibility is manifest across multiple scales from the protein topology of the triple helix up through the rheological properties of the CMA hydrogel. Electron microscopy imaging of CMA after various stages of heating and cooling shows that the canonical collagen-like D-periodic banding ultrastructure of the fibers is preserved. A rapidly thermoreversible collagen-based hydrogel is expected to have wide utility in tissue engineering and drug delivery applications as a biofunctional, biocompatible material. Thermal reversibility also makes CMA a powerful model for studying the complex process of hierarchical collagen self-assembly.
Collapse
Affiliation(s)
- Kathryn
E. Drzewiecki
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Avanish S. Parmar
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ian D. Gaudet
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jonathan R. Branch
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Douglas H. Pike
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Vikas Nanda
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - David I. Shreiber
- Department
of Biomedical Engineering and Center for Advanced Biotechnology
and Medicine, Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- E-mail:
| |
Collapse
|
165
|
Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2014; 2:1640-1651. [PMID: 32481945 DOI: 10.1039/c4bm00262h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammalian cell behavior is strongly influenced by physical and chemical cues originating from the extracellular matrix (ECM). In vivo, ECM signals are displayed in a spatiotemporally complex fashion, often composed as gradients and in concentration profiles that change in time. Most in vitro models to study the role of ECM signals in regulating cell behavior are limited in capturing this microenvironmental complexity, as they are static and homogeneous. In order to achieve a dynamic control of the physical properties of a hydrogel network, we here designed a chemical scheme to control poly(ethylene glycol) (PEG) hydrogel stiffness in space, time and intensity. Specifically, we combined caging chemistry and Michael-type addition to enable the light-triggered local control of hydrogel crosslinking density. Thiol moieties of one of the reactive PEG macromers undergoing crosslinking were equipped with caging groups to prevent their susceptibility to the counter-reactive vinyl sulfone groups on the termini of the complementary PEG macromers. Thus, the crosslinking density of the hydrogel network could be tuned by uncaging with light which directly translated into differential patterns of hydrogel stiffness. Using this approach, user-defined stiffness patterns in a range of soft tissue microenvironments (i.e. between 3-8 kPa) were obtained and shown to influence the migratory behavior of primary human mesenchymal stem cells (hMSC). Stiffness gradients in the higher range (5.5-8 kPa) were able to elicit durotaxis towards the more densely crosslinked regions, whereas those in the lower range (3-5.5 kPa) showed no significant directional preference in hMSC migration. Our patterning tool should be useful for the manipulation of cell fate in various other contexts.
Collapse
Affiliation(s)
- Katarzyna A Mosiewicz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
166
|
Wang G, Qiu J, Zheng L, Ren N, Li J, Liu H, Miao J. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan–HAp scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1813-27. [DOI: 10.1080/09205063.2014.951244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
167
|
Arany PR, Huang GX, Gadish O, Feliz J, Weaver JC, Kim J, Yuen WW, Mooney DJ. Multi-lineage MSC differentiation via engineered morphogen fields. J Dent Res 2014; 93:1250-7. [PMID: 25143513 DOI: 10.1177/0022034514542272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tissue loss due to oral diseases requires the healing and regeneration of tissues of multiple lineages. While stem cells are native to oral tissues, a current major limitation to regeneration is the ability to direct their lineage-specific differentiation. This work utilizes polymeric scaffold systems with spatiotemporally controlled morphogen cues to develop precise morphogen fields to direct mesenchymal stem cell differentiation. First, a simple three-layer scaffold design was developed that presented two spatially segregated, lineage-specific cues (Dentinogenic TGF-β1 and Osteogenic BMP4). However, this system resulted in diffuse morphogen fields, as assessed by the in vitro imaging of cell-signaling pathways triggered by the morphogens. Mathematical modeling was then exploited, in combination with incorporation of specific inhibitors (neutralizing antibodies or a small molecule kinase inhibitor) into each morphogen in an opposing spatial pattern as the respective morphogen, to design a five-layer scaffold that was predicted to yield distinct, spatially segregated zones of morphogen signaling. To validate this system, undifferentiated MSCs were uniformly seeded in these scaffold systems, and distinct mineralized tissue differentiation were noted within these morphogen zones. Finally, to demonstrate temporal control over morphogen signaling, latent TGF-β1 was incorporated into one region of a concentric scaffold design, and laser treatment was used to activate the morphogen on-demand and to induce dentin differentiation solely within that specific spatial zone. This study demonstrates a significant advance in scaffold design to generate precise morphogen fields that can be used to develop in situ models to explore tissue differentiation and may ultimately be useful in engineering multi-lineage tissues in clinical dentistry.
Collapse
Affiliation(s)
- P R Arany
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - G X Huang
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - O Gadish
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - J Feliz
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - J C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - J Kim
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - W W Yuen
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - D J Mooney
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| |
Collapse
|
168
|
Xu Y, Patnaik S, Guo X, Li Z, Lo W, Butler R, Claude A, Liu Z, Zhang G, Liao J, Anderson PM, Guan J. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater 2014; 10:3449-62. [PMID: 24769114 DOI: 10.1016/j.actbio.2014.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells.
Collapse
|
169
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
170
|
Abstract
One in 10 Americans suffers from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the transplantation option is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein, we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need.
Collapse
Affiliation(s)
- Maria Lucia L Madariaga
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
171
|
Pagliari S, Tirella A, Ahluwalia A, Duim S, Goumans MJ, Aoyagi T, Forte G. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Front Physiol 2014; 5:210. [PMID: 24917827 PMCID: PMC4042082 DOI: 10.3389/fphys.2014.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.
Collapse
Affiliation(s)
- Stefania Pagliari
- Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba, Japan ; International Clinical Research Center, Integrated Center of Cellular Therapy and Regenerative Medicine, St. Anne's University Hospital Brno, Czech Republic
| | - Annalisa Tirella
- Interdepartmental Research Center "E. Piaggio", University of Pisa Italy ; Institute of Clinical Physiology, National Research Council (CNR) Pisa, Italy
| | - Arti Ahluwalia
- Interdepartmental Research Center "E. Piaggio", University of Pisa Italy ; Institute of Clinical Physiology, National Research Council (CNR) Pisa, Italy
| | - Sjoerd Duim
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-Josè Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba, Japan
| | - Giancarlo Forte
- Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba, Japan ; International Clinical Research Center, Integrated Center of Cellular Therapy and Regenerative Medicine, St. Anne's University Hospital Brno, Czech Republic
| |
Collapse
|
172
|
Klar AS, Güven S, Biedermann T, Luginbühl J, Böttcher-Haberzeth S, Meuli-Simmen C, Meuli M, Martin I, Scherberich A, Reichmann E. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 2014; 35:5065-78. [DOI: 10.1016/j.biomaterials.2014.02.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 01/04/2023]
|
173
|
Cimetta E, Vunjak-Novakovic G. Microscale technologies for regulating human stem cell differentiation. Exp Biol Med (Maywood) 2014; 239:1255-63. [PMID: 24737735 DOI: 10.1177/1535370214530369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During development and regeneration, tissues emerge from coordinated sequences of stem cell renewal, specialization, and assembly that are orchestrated by cascades of regulatory factors. This complex in vivo milieu, while necessary to fully recapitulate biology and to properly engineer progenitor cells, is difficult to replicate in vitro. We are just starting to fully realize the importance of the entire context of cell microenvironment-the other cells, three-dimensional matrix, molecular and physical signals. Bioengineered environments that combine tissue-specific transport and signaling are critical to study cellular responses at biologically relevant scales and in settings predictive of human condition. We therefore developed microbioreactors that couple the application of fast dynamic changes in environmental signals with versatile, high-throughput operation and imaging capability. Our base device is a microfluidic platform with an array of microwells containing cells or tissue constructs that are exposed to stable concentration gradients. Mathematical modeling of flow and mass transport can predict the shape of these gradients and the kinetic changes in local concentrations. A single platform, the size of a microscope slide, contains up to 120 biological samples. As an example of application, we describe studies of cell fate specification and mesodermal lineage commitment in human embryonic stem cells and induced pluripotent stem cells. The embryoid bodies formed from these cells were subjected to single and multiple concentration gradients of Wnt3a, Activin A, bone morphogenic protein 4 (BMP4), and their inhibitors, and the gene expression profiles were correlated to the concentration gradients of morphogens to identify the exact conditions for mesodermal differentiation.
Collapse
Affiliation(s)
- Elisa Cimetta
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
174
|
Hsiao C, Tomai M, Glynn J, Palecek SP. Effects of 3D microwell culture on initial fate specification in human embryonic stem cells. AIChE J 2014; 60:1225-1235. [PMID: 25505348 DOI: 10.1002/aic.14351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several studies have demonstrated that 3D culture systems influence human embryonic stem cell (hESC) phenotypes and fate choices. However, the effect that these microenvironmental changes have on signaling pathways governing hESC behaviors is not well understood. Here, we have used a 3D microwell array to investigate differences in activation of developmental pathways between 2D and 3D cultures of both undifferentiated hESCs and hESCs undergoing initial differentiation in embryoid bodies (EBs). We observed increased induction into mesoderm and endoderm and differences in expression of genes from multiple signaling pathways that regulate development, including Wnt/β-catenin, TGF-β superfamily, Notch and FGF during EB-mediated differentiation, in 3D microwells as compared with the 2D substrates. In undifferentiated hESCs, we also observed differences in epithelial-mesenchymal transition phenotypes and the TGFβ/BMP pathway between cultures in 3D and 2D. These results illustrate that 3D culture influences multiple pathways that may regulate the differentiation trajectories of hESCs.
Collapse
Affiliation(s)
- Cheston Hsiao
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Matthew Tomai
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Jeremy Glynn
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Sean P. Palecek
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| |
Collapse
|
175
|
Han LH, Tong X, Yang F. Photo-crosslinkable PEG-based microribbons for forming 3D macroporous scaffolds with decoupled niche properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1757-1762. [PMID: 24347028 DOI: 10.1002/adma.201304805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Indexed: 06/03/2023]
Abstract
PEG-based microribbons are designed and fabricated as building blocks for constructing a 3D cell niche with independently tunable biochemical, mechanical, and topographical cues. This platform supports direct cell encapsulation, allows spatial patterning of biochemical cues, and may provide a valuable tool for facilitating the analyses of how interactive niche signaling regulates cell fate in three dimensions.
Collapse
Affiliation(s)
- Li-Hsin Han
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | | | | |
Collapse
|
176
|
Yajima Y, Yamada M, Yamada E, Iwase M, Seki M. Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers. BIOMICROFLUIDICS 2014; 8:024115. [PMID: 24803964 PMCID: PMC4000388 DOI: 10.1063/1.4871936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 05/13/2023]
Abstract
We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering.
Collapse
Affiliation(s)
- Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Emi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masaki Iwase
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
177
|
Lü D, Luo C, Zhang C, Li Z, Long M. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 2014; 35:3945-55. [PMID: 24529627 DOI: 10.1016/j.biomaterials.2014.01.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
The maintenance of stem cell pluripotency or stemness is crucial to embryonic development and differentiation. The mechanical or physical microenvironment of stem cells, which includes extracellular matrix stiffness and topography, regulates cell morphology and stemness. Although a growing body of evidence has shown the importance of these factors in stem cell differentiation, the impact of these biophysical or biomechanical regulators remains insufficiently characterized. In the present study, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities and three topographies to systematically test the morphology, proliferation, and stemness of mESCs. The independent or combined impact of the two factors on specific cell functions was analyzed. Cells are able to grow effectively on both polystyrene and polyacrylamide substrates in the absence of feeder cells. Substrate stiffness is predominant in preserving stemness by enhancing Oct-4 and Nanog expression on a soft polyacrylamide substrate. Topography is also a critical factor for manipulating stemness via the formation of a relatively flattened colony on a groove or pillar substrate and a spheroid colony on a hexagonal substrate. Although topography is less effective on soft substrates, it plays a role in retaining cell stemness on stiff, hexagonal or pillar-shaped substrates. mESCs also form, in a timely manner, a 3D structure on groove or hexagonal substrates. These results further the understanding of stem cell morphology and stemness in a microenvironment that mimics physiological conditions.
Collapse
Affiliation(s)
- Dongyuan Lü
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhua Luo
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Zhang
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan Li
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mian Long
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
178
|
Hamidi S, Letourneur D, Aid-Launais R, Di Stefano A, Vainchenker W, Norol F, Le Visage C. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas. Tissue Eng Part A 2014; 20:1285-94. [PMID: 24354596 DOI: 10.1089/ten.tea.2013.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.
Collapse
Affiliation(s)
- Sofiane Hamidi
- 1 INSERM, UMR 1009, Institut Gustave Roussy , Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
There is significant interest within the tissue engineering and pharmaceutical industries to create 3D microphysiological systems of human organ function. The interest stems from a growing concern that animal models and simple 2D culture systems cannot replicate essential features of human physiology that are critical to predict drug response, or simply to develop new therapeutic strategies to repair or replace damaged organs. Central to human organ function is a microcirculation that not only enhances the rate of nutrient and waste transport by convection, but also provides essential additional physiological functions that can be specific to each organ. This review highlights progress in the creation of in vitro functional microvessel networks, and emphasizes organ-specific functional and structural characteristics that should be considered in the future mimicry of four organ systems that are of primary interest: lung, brain, liver, and muscle (skeletal and cardiac).
Collapse
|
180
|
Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. J Clin Med 2014; 3:39-87. [PMID: 26237251 PMCID: PMC4449663 DOI: 10.3390/jcm3010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/28/2013] [Accepted: 11/16/2013] [Indexed: 12/25/2022] Open
Abstract
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.
Collapse
Affiliation(s)
- Patrick Babczyk
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Clelia Conzendorf
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Jens Klose
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Margit Schulze
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Kathrin Harre
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Edda Tobiasch
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| |
Collapse
|
181
|
Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A 2014; 111:990-5. [PMID: 24395775 DOI: 10.1073/pnas.1321717111] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.
Collapse
|
182
|
Kennedy R, Ul Hassan W, Tochwin A, Zhao T, Dong Y, Wang Q, Tai H, Wang W. In situ formed hybrid hydrogels from PEG based multifunctional hyperbranched copolymers: a RAFT approach. Polym Chem 2014. [DOI: 10.1039/c3py01513k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
183
|
Greenwood-Goodwin M, Teasley ES, Heilshorn SC. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater Sci 2014; 2:1627-1639. [PMID: 25309741 DOI: 10.1039/c4bm00142g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Engineered biomimetic microenvironments from hydrogels are an emerging strategy to achieve lineage-specific differentiation in vitro. In addition to recapitulating critical matrix cues found in the native three-dimensional (3D) niche, the hydrogel can also be designed to deliver soluble factors that are present within the native inductive microenvironment. We demonstrate a versatile materials approach for the dual-stage delivery of multiple soluble factors within a 3D hydrogel to induce adipogenesis. We use a Mixing-Induced Two-Component Hydrogel (MITCH) embedded with alginate microgels to deliver two pro-adipogenic soluble factors, fibroblast growth factor 1 (FGF-1) and bone morphogenetic protein 4 (BMP-4) with two distinct delivery profiles. We show that dual-stage delivery of FGF-1 and BMP-4 to human adipose-derived stromal cells (hADSCs) significantly increases lipid accumulation compared with the simultaneous delivery of both growth factors together. Furthermore, dual-stage growth factor delivery within a 3D hydrogel resulted in substantially more lipid accumulation compared to identical delivery profiles in 2D cultures. Gene expression analysis shows upregulation of key adipogenic markers indicative of brown-like adipocytes. These data suggest that dual-stage release of FGF-1 and BMP-4 within 3D microenvironments can promote the in vitro development of mature adipocytes.
Collapse
Affiliation(s)
| | - Eric S Teasley
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Sarah C Heilshorn
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States ; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
184
|
Gnanasegaran N, Govindasamy V, Musa S, Kasim NHA. Different isolation methods alter the gene expression profiling of adipose derived stem cells. Int J Med Sci 2014; 11:391-403. [PMID: 24669199 PMCID: PMC3964446 DOI: 10.7150/ijms.7697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/20/2014] [Indexed: 12/22/2022] Open
Abstract
Human adipose stem cells (ASCs) has been in the limelight since its discovery as a suitable source of mesenchymal stem cells (MSCs) in regenerative medicine. Currently, two major techniques are used to isolate ASCs, namely liposuction and tissue biopsy. These two methods are relatively risk-free but the question as to which method could give a more efficient output remains unclear. Thus, this study was carried out to compare and contrast the output generated in regards to growth kinetics, differentiation capabilities in vitro, and gene expression profiling. It was found that ASCs from both isolation methods were comparable in terms of growth kinetics and tri-lineage differentiation. Furthermore, ASCs from both populations were reported as CD44(+), CD73(+), CD90(+), CD166(+), CD34(-), CD45(-) and HLA-DR(-). However, in regards to gene expression, a group of overlapping genes as well as distinct genes were observed. Distinct gene expressions indicated that ASCs (liposuction) has endoderm lineage propensity whereas ASCs (biopsy) has a tendency towards mesoderm/ectoderm lineage. This information suggests involvement in different functional activity in accordance to isolation method. In conclusion, future studies to better understand these gene functions should be carried out in order to contribute in the applicability of each respective cells in regenerative therapy.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- 2. Hygieia Innovation Sdn. Bhd, Lot 1G-2G, Lanai Complex No.2, Persiaran Seri Perdana, Persint 10, Federal Territory of Putrajaya, Malaysia
| | - Sabri Musa
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia ; 3. Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1. Regenerative Dentistry Research Group (ReDReG), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia ; 4. Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
185
|
Abstract
The consequence of numerous neurological disorders is the significant loss of neural cells, which further results in multilevel dysfunction or severe functional deficits. The extracellular matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand, is a major constituent of the inhibitory scar, which results from traumatic injuries of the central nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mimetics are very promising therapeutic interventions. Numerous synthetic and natural materials have proven effective both in vitro and in vivo. The closer a material's physicochemical and molecular properties are to the original extracellular matrix, the more promising its effectiveness may be. Relevant factors that need to be taken into account when designing such materials for neural repair relate to receptor-mediated cell-matrix interactions, which are dependent on chemical and mechanical sensing. This chapter outlines important characteristics of natural and synthetic ECM materials (scaffolds) and provides an overview of recent advances in design and application of ECM materials for neural regeneration, both in therapeutic applications and in basic biological research.
Collapse
Affiliation(s)
- Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Ayse Tekinay
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
186
|
|
187
|
Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 2013; 3:3462. [PMID: 24322507 PMCID: PMC3857570 DOI: 10.1038/srep03462] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
An attractive option for tissue engineering is to use of multicellular spheroids as microtissues, particularly with stem cell spheroids. Conventional approaches of fabricating spheroids suffer from low throughput and polydispersity in size, and fail to supplement cues from extracellular matrix (ECM) for enhanced differentiation. In this study, we report the application of microfluidics-generated water-in-oil-in-water (w/o/w) double-emulsion (DE) droplets as pico-liter sized bioreactor for rapid cell assembly and well-controlled microenvironment for spheroid culture. Cells aggregated to form size-controllable (30–80 μm) spheroids in DE droplets within 150 min and could be retrieved via a droplet-releasing agent. Moreover, precursor hydrogel solution can be adopted as the inner phase to produce spheroid-encapsulated microgels after spheroid formation. As an example, the encapsulation of human mesenchymal stem cells (hMSC) spheroids in alginate and alginate-arginine-glycine-aspartic acid (-RGD) microgel was demonstrated, with enhanced osteogenic differentiation further exhibited in the latter case.
Collapse
Affiliation(s)
- Hon Fai Chan
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
188
|
Beck JN, Singh A, Rothenberg AR, Elisseeff JH, Ewald AJ. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials 2013; 34:9486-95. [PMID: 24044993 PMCID: PMC3832184 DOI: 10.1016/j.biomaterials.2013.08.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Metastasis begins with the escape, or dissemination, of cancer cells from the primary tumor. We recently demonstrated that tumors preferentially disseminate into collagen I and not into basement membrane protein gels (Matrigel). In this study, we used synthetic polymer systems to define material properties that could induce dissemination into Matrigel. We first specifically varied rigidity by varying the crosslinking density of poly(ethylene glycol) (PEG) networks within Matrigel scaffolds. Increased microenvironmental rigidity limited epithelial growth but did not promote dissemination. We next incorporated adhesive signals into the PEG network using peptide-conjugated cyclodextrin (α-CDYRGDS) rings. The α-CDYRGDS rings threaded along the PEG polymers, enabling independent control of matrix mechanics, adhesive peptide composition, and adhesive density. Adhesive PEG networks induced dissemination of normal and malignant mammary epithelial cells at intermediate values of adhesion and rigidity. Our data reveal that microenvironmental signals can induce dissemination of normal and malignant epithelial cells without requiring the fibrillar structure of collagen I or containing collagen I-specific adhesion sequences. Finally, the nanobiomaterials and assays developed in this study are generally useful both in 3D culture of primary mammalian tissues and in the systematic evaluation of the specific role of mechanical and adhesive inputs on 3D tumor growth, invasion, and dissemination.
Collapse
Affiliation(s)
- Jennifer N. Beck
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anirudha Singh
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashley R. Rothenberg
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Andrew J. Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
189
|
Jeon O, Alt DS, Linderman SW, Alsberg E. Biochemical and physical signal gradients in hydrogels to control stem cell behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6366-72. [PMID: 23983019 PMCID: PMC3863582 DOI: 10.1002/adma.201302364] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/11/2013] [Indexed: 05/19/2023]
Abstract
Three-dimensional (3D) gradients of biochemical and physical signals in macroscale degradable hydrogels are engineered that can regulate photoencapsulated human mesenchymal stem cell (hMSC) behavior. This simple, cytocompatible, and versatile gradient system may be a valuable tool for researchers in biomaterials science to control stem cell fate in 3D and guide tissue regeneration.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
| | - Daniel S. Alt
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
| | | | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106 (USA)
- Department of Orthopaedic Surgery, Case Western Reserve University Cleveland, OH 44106 (USA)
| |
Collapse
|
190
|
Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 2013; 8:e81362. [PMID: 24278427 PMCID: PMC3836961 DOI: 10.1371/journal.pone.0081362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023] Open
Abstract
Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have been found critical to normal tissue development. On the single cell level, however, our current understanding of stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any additional chondrogenesis transcription factors (TGF-β1 and dexamethasone). A systematic study on the role of movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically amplified when exogenous chondrogenic factors and movement were combined.
Collapse
Affiliation(s)
- Roland Fuhrer
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Nora Hild
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | | - Inge K. Herrmann
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert N. Grass
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
191
|
Petrelli A, Marconi E, Salerno M, De Pietri Tonelli D, Berdondini L, Dante S. Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. LAB ON A CHIP 2013; 13:4419-4429. [PMID: 24064674 DOI: 10.1039/c3lc50564b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability of neurons to extend projections and to form physical connections among them (i.e., "connect-ability") is altered in several neuropathologies. The quantification of these alterations is an important read-out to investigate pathogenic mechanisms and for research and development of neuropharmacological therapies, however current morphological analysis methods are very time-intensive. Here, we present and characterize a novel on-chip approach that we propose as a rapid assay. Our approach is based on the definition on a neuronal cell culture substrate of discrete patterns of adhesion protein spots (poly-d-lysine, 23 ± 5 μm in diameter) characterized by controlled inter-spot separations of increasing distance (from 40 μm to 100 μm), locally adsorbed in an adhesion-repulsive agarose layer. Under these conditions, the connect-ability of wild type primary neurons from rodents is shown to be strictly dependent on the inter-spot distance, and can be rapidly documented by simple optical read-outs. Moreover, we applied our approach to identify connect-ability defects in neurons from a mouse model of 22q11.2 deletion syndrome/DiGeorge syndrome, by comparative trials with wild type preparations. The presented results demonstrate the sensitivity and reliability of this novel on-chip-based connect-ability approach and validate the use of this method for the rapid assessment of neuronal connect-ability defects in neuropathologies.
Collapse
Affiliation(s)
- Alessia Petrelli
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex.
Collapse
|
193
|
Liu M, Liu N, Zang R, Li Y, Yang ST. Engineering stem cell niches in bioreactors. World J Stem Cells 2013; 5:124-35. [PMID: 24179601 PMCID: PMC3812517 DOI: 10.4252/wjsc.v5.i4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/05/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as "niches", to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering.
Collapse
Affiliation(s)
- Meimei Liu
- Meimei Liu, Ning Liu, Ru Zang, Shang-Tian Yang, William G Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|
194
|
Vunjak-Novakovic G. Biomimetic Platforms for Tissue Engineering. Isr J Chem 2013. [DOI: 10.1002/ijch.201300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
195
|
Cimetta E, Godier-Furnémont A, Vunjak-Novakovic G. Bioengineering heart tissue for in vitro testing. Curr Opin Biotechnol 2013; 24:926-32. [PMID: 23932513 PMCID: PMC3783612 DOI: 10.1016/j.copbio.2013.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
A classical paradigm of tissue engineering is to grow tissues for implantation by using human stem cells in conjunction with biomaterial scaffolds (templates for tissue formation) and bioreactors (culture systems providing environmental control). A reverse paradigm is now emerging through microphysiological platforms for preclinical testing of drugs and modeling of disease that contain large numbers of very small human tissues. We discuss the biomimetic approach as a common underlying principle and some of the specifics related to the design and utilization of platforms with heart micro-tissues for high-throughput screening in vitro.
Collapse
Affiliation(s)
- Elisa Cimetta
- Columbia University, Department of Biomedical Engineering, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | | | | |
Collapse
|
196
|
Dunn DA, Hodge AJ, Lipke EA. Biomimetic materials design for cardiac tissue regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:15-39. [DOI: 10.1002/wnan.1241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023]
Affiliation(s)
- David A. Dunn
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | | |
Collapse
|
197
|
Nampe D, Tsutsui H. Engineered micromechanical cues affecting human pluripotent stem cell regulations and fate. ACTA ACUST UNITED AC 2013; 18:482-93. [PMID: 24062363 DOI: 10.1177/2211068213503156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The survival, growth, self-renewal, and differentiation of human pluripotent stem cells (hPSCs) are influenced by their microenvironment, or so-called "niche," consisting of particular chemical and physical cues. Previous studies on mesenchymal stem cells and other stem cells have collectively uncovered the importance of physical cues and have begun to shed light on how stem cells sense and process such cues. In an attempt to support similar progress in mechanobiology of hPSCs, we review mechanosensory machinery, which plays an important role in cell-extracellular matrix interactions, cell-cell interactions, and subsequent intracellular responses. In addition, we review recent studies on the mechanobiology of hPSCs, in which engineered micromechanical environments were used to investigate effects of specific physical cues. Identifying key physical cues and understanding their mechanism will ultimately help in harnessing the full potential of hPSCs for clinical applications.
Collapse
Affiliation(s)
- Daniel Nampe
- 1Department of Bioengineering, University of California, Riverside, CA, USA
| | | |
Collapse
|
198
|
Sreejit P, Verma RS. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev Rep 2013; 9:158-71. [PMID: 23319217 DOI: 10.1007/s12015-013-9427-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for therapeutic applications including engineering cardiac tissue structures for post ischemic cardiac tissue regeneration continues.
Collapse
Affiliation(s)
- P Sreejit
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, TN, India
| | | |
Collapse
|
199
|
Enhancing stem cell survival in vivo for tissue repair. Biotechnol Adv 2013; 31:736-43. [DOI: 10.1016/j.biotechadv.2012.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
|
200
|
Activation of the ERK1/2 signaling pathway during the osteogenic differentiation of mesenchymal stem cells cultured on substrates modified with various chemical groups. BIOMED RESEARCH INTERNATIONAL 2013; 2013:361906. [PMID: 24069599 PMCID: PMC3771309 DOI: 10.1155/2013/361906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering.
Collapse
|