151
|
Wiegand S, Sobol M, Schnepp-Pesch LK, Yan G, Iqbal S, Vollmers J, Müller JA, Kaster AK. Taxonomic Re-Classification and Expansion of the Phylum Chloroflexota Based on over 5000 Genomes and Metagenome-Assembled Genomes. Microorganisms 2023; 11:2612. [PMID: 37894270 PMCID: PMC10608941 DOI: 10.3390/microorganisms11102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The phylum Chloroflexota (formerly Chloroflexi) encompasses metabolically diverse bacteria that often have high prevalence in terrestrial and aquatic habitats, some even with biotechnological application. However, there is substantial disagreement in public databases which lineage should be considered a member of the phylum and at what taxonomic level. Here, we addressed these issues through extensive phylogenomic analyses. The analyses were based on a collection of >5000 Chloroflexota genomes and metagenome-assembled genomes (MAGs) from public databases, novel environmental sites, as well as newly generated MAGs from publicly available sequence reads via an improved binning approach incorporating covariance information. Based on calculated relative evolutionary divergence, we propose that Candidatus Dormibacterota should be listed as a class (i.e., Ca. Dormibacteria) within Chloroflexota together with the classes Anaerolineae, Chloroflexia, Dehalococcoidia, Ktedonobacteria, Ca. Limnocylindria, Thermomicrobia, and two other classes containing only uncultured members. All other Chloroflexota lineages previously listed at the class rank appear to be rather orders or families in the Anaerolineae and Dehalococcoidia, which contain the vast majority of genomes and exhibited the strongest phylogenetic radiation within the phylum. Furthermore, the study suggests that a common ecophysiological capability of members of the phylum is to successfully cope with low energy fluxes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; (S.W.); (M.S.); (L.K.S.-P.); (G.Y.); (S.I.); (J.V.); (J.A.M.)
| |
Collapse
|
152
|
Khomyakova MA, Merkel AY, Slobodkin AI, Sorokin DY. Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen.nov. within the family Methanotrichaceae. Front Microbiol 2023; 14:1233691. [PMID: 37886072 PMCID: PMC10598746 DOI: 10.3389/fmicb.2023.1233691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Highly purified cultures of alkaliphilic aceticlastic methanogens were collected for the first time using methanogenic enrichments with acetate from a soda lake and a terrestrial mud volcano. The cells of two strains were non-motile rods forming filaments. The mud volcano strain M04Ac was alkalitolerant, with the pH range for growth from 7.5 to 10.0 (optimum at 9.0), while the soda lake strain Mx was an obligate alkaliphile growing in the pH range 7.7-10.2 (optimum 9.3-9.5) in the presence of optimally 0.2-0.3 M total Na+. Genomes of both strains encoded all enzymes required for aceticlastic methanogenesis and different mechanisms of (halo)alkaline adaptations, including ectoine biosynthesis, which is the first evidence for the formation of this osmoprotectant in archaea. According to 16S rRNA gene phylogeny, the strains possessed 98.3-98.9% sequence identity and belonged to the obligately aceticlastic genus Methanothrix with M. harundinaceae as the most closely related species. However, a more advanced phylogenomic reconstruction based on 122 conserved single-copy archaeal protein-coding marker genes clearly indicated a polyphyletic origin of the species included in the genus Methanothrix. We propose to reclassify Methanothrix harrundinacea (type strain 8AcT) into a new genus, Methanocrinis gen. nov., with the type species Methanocrinis harrundinaceus comb. nov. We also propose under SeqCode the complete genome sequences of strain MxTs (GCA_029167045.1) and strain M04AcTs (GCA_029167205.1) as nomenclatural types of Methanocrinis natronophilus sp. nov. and Methanocrinis alkalitolerans sp. nov., respectively, which represent other species of the novel genus. This work demonstrates that the low energy aceticlastic methanogenesis may function at extreme conditions present in (halo)alkaline habitats.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
153
|
Yusuf LH, Saldívar Lemus Y, Thorpe P, Macías Garcia C, Ritchie MG. Genomic Signatures Associated with Transitions to Viviparity in Cyprinodontiformes. Mol Biol Evol 2023; 40:msad208. [PMID: 37789509 PMCID: PMC10568250 DOI: 10.1093/molbev/msad208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The transition from oviparity to viviparity has occurred independently over 150 times across vertebrates, presenting one of the most compelling cases of phenotypic convergence. However, whether the repeated, independent evolution of viviparity is driven by redeployment of similar genetic mechanisms and whether these leave a common signature in genomic divergence remains largely unknown. Although recent investigations into the evolution of viviparity have demonstrated striking similarity among the genes and molecular pathways involved across disparate vertebrate groups, quantitative tests for genome-wide convergent have provided ambivalent answers. Here, we investigate the potential role of molecular convergence during independent transitions to viviparity across an order of ray-finned freshwater fish (Cyprinodontiformes). We assembled de novo genomes and utilized publicly available genomes of viviparous and oviparous species to test for molecular convergence across both coding and noncoding regions. We found no evidence for an excess of molecular convergence in amino acid substitutions and in rates of sequence divergence, implying independent genetic changes are associated with these transitions. However, both statistical power and biological confounds could constrain our ability to detect significant correlated evolution. We therefore identified candidate genes with potential signatures of molecular convergence in viviparous Cyprinodontiformes lineages. Motif enrichment and gene ontology analyses suggest transcriptional changes associated with early morphogenesis, brain development, and immunity occurred alongside the evolution of viviparity. Overall, however, our findings indicate that independent transitions to viviparity in these fish are not strongly associated with an excess of molecular convergence, but a few genes show convincing evidence of convergent evolution.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
- School of Medicine, University of North Haugh, St Andrews KY16 9TF, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
154
|
Asif M, Li-Qun Z, Zeng Q, Atiq M, Ahmad K, Tariq A, Al-Ansari N, Blom J, Fenske L, Alodaini HA, Hatamleh AA. Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism. Comput Struct Biotechnol J 2023; 21:4647-4662. [PMID: 37841331 PMCID: PMC10568305 DOI: 10.1016/j.csbj.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhang Li-Qun
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingchao Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khalil Ahmad
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Aqil Tariq
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State, University, MS 39762-9690, USA
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany
| | - Linda Fenske
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
155
|
Zhang W, Li H, Li Q, Wang Z, Zeng W, Yin H, Qi K, Zou Y, Hu J, Huang B, Gu P, Qiao X, Zhang S. Genome-wide identification, comparative analysis and functional roles in flavonoid biosynthesis of cytochrome P450 superfamily in pear (Pyrus spp.). BMC Genom Data 2023; 24:58. [PMID: 37789271 PMCID: PMC10548706 DOI: 10.1186/s12863-023-01159-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The cytochrome P450 (CYP) superfamily is the largest enzyme metabolism family in plants identified to date, and it is involved in many biological processes, including secondary metabolite biosynthesis, hormone metabolism and stress resistance. However, the P450 gene superfamily has not been well studied in pear (Pyrus spp.). RESULTS Here, the comprehensive identification and a comparative analysis of P450 superfamily members were conducted in cultivated and wild pear genomes. In total, 338, 299 and 419 P450 genes were identified in Chinese white pear, European pear and the wild pear, respectively. Based on the phylogenetic analyses, pear P450 genes were divided into ten clans, comprising 48 families. The motif and gene structure analyses further supported this classification. The expansion of the pear P450 gene family was attributed to whole-genome and single-gene duplication events. Several P450 gene clusters were detected, which have resulted from tandem and proximal duplications. Purifying selection was the major force imposed on the long-term evolution of P450 genes. Gene dosage balance, subfunctionalization and neofunctionalization jointly drove the retention and functional diversification of P450 gene pairs. Based on the association analysis between transcriptome expression profiles and flavonoid content during fruit development, three candidate genes were identified as being closely associated with the flavonoid biosynthesis, and the expression of one gene was further verified using qRT-PCR and its function was validated through transient transformation in pear fruit. CONCLUSIONS The study results provide insights into the evolution and biological functions of P450 genes in pear.
Collapse
Affiliation(s)
- Wei Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxiang Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qionghou Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zewen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Zeng
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zou
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baisha Huang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Gu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
156
|
Choi D, Hahn Y. Quantitative Analysis of RNA Polymerase Slippages for Production of P3N-PIPO Trans-frame Fusion Proteins in Potyvirids. J Microbiol 2023; 61:917-927. [PMID: 37843796 DOI: 10.1007/s12275-023-00083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Potyvirids, members of the family Potyviridae, produce the P3N-PIPO protein, which is crucial for the cell-to-cell transport of viral genomic RNAs. The production of P3N-PIPO requires an adenine (A) insertion caused by RNA polymerase slippage at a conserved GAAAAAA (GA6) sequence preceding the PIPO open reading frame. Presently, the slippage rate of RNA polymerase has been estimated in only a few potyvirids, ranging from 0.8 to 2.1%. In this study, we analyzed publicly available plant RNA-seq data and identified 19 genome contigs from 13 distinct potyvirids. We further investigated the RNA polymerase slippage rates at the GA6 motif. Our analysis revealed that the frequency of the A insertion variant ranges from 0.53 to 4.07% in 11 potyviruses (genus Potyvirus). For the two macluraviruses (genus Macluravirus), the frequency of the A insertion variant was found to be 0.72% and 10.96% respectively. Notably, the estimated RNA polymerase slippage rates for 12 out of the 13 investigated potyvirids were reported for the first time in this study. Our findings underscore the value of plant RNA-seq data for quantitative analysis of potyvirid genome variants, specifically at the GA6 slippage site, and contribute to a more comprehensive understanding of the RNA polymerase slippage phenomenon in potyvirids.
Collapse
Affiliation(s)
- Dongjin Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
157
|
Liu Z, Fu Y, Wang H, Zhang Y, Han J, Wang Y, Shen S, Li C, Jiang M, Yang X, Song X. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. HORTICULTURE RESEARCH 2023; 10:uhad187. [PMID: 37899953 PMCID: PMC10611556 DOI: 10.1093/hr/uhad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023]
Abstract
'Vanilla' (XQC, brassica variety chinensis) is an important vegetable crop in the Brassica family, named for its strong volatile fragrance. In this study, we report the high-quality chromosome-level genome sequence of XQC. The assembled genome length was determined as 466.11 Mb, with an N50 scaffold of 46.20 Mb. A total of 59.50% repetitive sequences were detected in the XQC genome, including 47 570 genes. Among all examined Brassicaceae species, XQC had the closest relationship with B. rapa QGC ('QingGengCai') and B. rapa Pakchoi. Two whole-genome duplication (WGD) events and one recent whole-genome triplication (WGT) event occurred in the XQC genome in addition to an ancient WGT event. The recent WGT was observed to occur during 21.59-24.40 Mya (after evolution rate corrections). Our findings indicate that XQC experienced gene losses and chromosome rearrangements during the genome evolution of XQC. The results of the integrated genomic and transcriptomic analyses revealed critical genes involved in the terpenoid biosynthesis pathway and terpene synthase (TPS) family genes. In summary, we determined a chromosome-level genome of B. rapa XQC and identified the key candidate genes involved in volatile fragrance synthesis. This work can act as a basis for the comparative and functional genomic analysis and molecular breeding of B. rapa in the future.
Collapse
Affiliation(s)
- Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Huan Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Jianjun Han
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yingying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mingmin Jiang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xuemei Yang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
158
|
Eilers T, Dillen J, Ahannach S, Vander Donck L, Van de Vliet N, Wittouck S, Lebeer S. Lactobacillus isalae sp. nov., isolated from the female reproductive tract. Int J Syst Evol Microbiol 2023; 73. [PMID: 37823792 DOI: 10.1099/ijsem.0.006038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
A novel strain of the genus Lactobacillus, named AMBV1719T, was isolated from the vagina of a healthy participant in our large-scale citizen science project on the female microbiome, named Isala. Phylogenetic analysis showed that the 16S rRNA gene of AMBV1719T is most similar to that of Lactobacillus taiwanensis with a sequence similarity of 99.873 %. However, a genome-wide comparison using average nucleotide identity (ANI) revealed that isolate AMBV1719T showed the highest ANI with Lactobacillus paragasseri JCM 5343T, with a value of only 88.17 %. This low ANI value with the most closely related strains known to date indicated that AMBV1719T represents a distinct species. This strain has a limited ability to degrade carbon sources compared to Lactobacillus gasseri, indicating its adaptation to the host. Its genome has a length of 2.12 Mb with a G+C content of 34.8 mol%. We thus propose the name Lactobacillus isalae sp. nov. for this novel species, with AMBV1719T (=LMG 32886T=CECT 30756T) as the type strain.
Collapse
Affiliation(s)
- Tom Eilers
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Jelle Dillen
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Leonore Vander Donck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nele Van de Vliet
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
159
|
Zhang Z, Lu C, Mo B, Bai K, Ge XY, Deng L, Peng Y. Prediction of mammalian virus cross-species transmission based on host proteins. Microbiol Spectr 2023; 11:e0536822. [PMID: 37754753 PMCID: PMC10581197 DOI: 10.1128/spectrum.05368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Most emerging viruses are spilled over from mammals. Understanding the mechanism of virus cross-species transmission and identifying zoonotic viruses before their emergence are critical for the prevention and control of newly emerging viruses. This study systematically investigated the host proteins associated with the cross-species transmission of mammalian viruses based on 1,271 pairs of virus-mammal interactions including 382 viruses from 33 viral families and 73 mammal species from 11 orders. Numerous host proteins were found to contribute to the cross-species transmission of mammalian viruses. Host proteins potentially contributing to virus cross-species transmission are specific to viral families, and few overlaps of such host proteins are observed in different viral families. Based on these host proteins, the random-forest (RF) models were built to predict the cross-species transmission potential of mammalian viruses. Moderate performance was obtained when using all viruses together. However, when modeling by viral family, the performance of the RF models varied much among viral families. In 13 viral families such as Flaviviridae, Retroviridae, and Poxviridae, the AUC of the RF model was greater than 0.8. Finally, the contribution of virus receptors to cross-species transmission was evaluated, and the virus receptor was found to have a minor effect in predicting the cross-species transmission of mammalian viruses. The study deepens our understanding of the mechanism of virus cross-species transmission and provides a framework for predicting the cross-species transmission of mammalian viruses. IMPORTANCE Emerging viruses pose serious threats to humans. Understanding the mechanism of virus cross-species transmission and identifying zoonotic viruses before their emergence are critical for the prevention and control of emerging viruses. This study systematically identified host factors associated with cross-species transmission of mammalian viruses and further built machine-learning models for predicting cross-species transmission of the viruses based on host factors including virus receptors. The study not only deepens our understanding of the mechanism of virus cross-species transmission but also provides a framework for predicting the cross-species transmission of mammalian viruses based on host factors.
Collapse
Affiliation(s)
- Zheng Zhang
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, China
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis & Decision-making, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Congyu Lu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, China
| | - Bocheng Mo
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis & Decision-making, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Kehan Bai
- Hunan Juyoubiotech Co., Ltd, Changsha, Hunan, China
| | - Xing-Yi Ge
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, China
| | - Li Deng
- Department of Internal Medicine-Neurology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
160
|
Girard C, Vincent WF, Culley AI. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area. ISME COMMUNICATIONS 2023; 3:105. [PMID: 37752298 PMCID: PMC10522646 DOI: 10.1038/s43705-023-00313-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Arctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches. Surface glacier-ice was dominated by Cyanobacteria, while the perennially ice-capped, well-mixed water column of Thores Lake had a unique assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota. Species richness increased downstream, but glacier microbes were little detected in the lake, suggesting strong taxonomic sorting. Ongoing climate change and the retreat of Thores Glacier would lead to complete drainage and loss of the lake microbial ecosystem, indicating the extreme vulnerability of diverse cryohabitats and unique microbiomes in the Last Ice coastal margin.
Collapse
Affiliation(s)
- Catherine Girard
- Département de biochimie, de microbiologie et de bio-informatique & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Québec, QC, Canada.
- Groupe de recherche interuniversitaire en limnologie et en écologie aquatique (GRIL), Montréal, QC, Canada.
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC, Canada.
| | - Warwick F Vincent
- Centre d'études nordiques (CEN), Québec, QC, Canada
- Département de biologie & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Département de biochimie, de microbiologie et de bio-informatique & Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
161
|
Daodu OB, Shaibu JO, Aderounmu EA, Jolaoso TO, Oluwayelu DO, Akanbi OB, Olorunshola ID, Aiyedun JO, Oludairo OO, Audu RA, Daodu OC. Seromolecular surveillance of rabbit haemorrhagic disease virus in Nigeria. Trop Anim Health Prod 2023; 55:327. [PMID: 37749427 DOI: 10.1007/s11250-023-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Following the first 2020 rabbit haemorrhagic disease virus (RHDV) outbreak in Nigeria which caused massive mortalities in several rabbitries, there was a need to know the spread and strains circulating in the affected states. Over 100 rabbitries still existing post-RHDV outbreak in Ogun and Kwara States were investigated. A commercial enzyme-linked immunosorbent assay kit was used to screen for RHDV immunoglobulin G in 192 rabbit sera, while RHDV VP60 gene was amplified in RNA extracted from these sera and tissues (liver and/or spleen harvested from 37 carcasses necrotized) by reverse transcription-polymerase chain reaction (RT-PCR). Sequences obtained from the amplicons were subjected to phylogenetic analysis. The results revealed a seroprevalence of 82.3% (158/192). RHDV VP60 gene was detected in 15/17 (88.2%) and 2/20 (10.0%) carcasses from Ogun and Kwara States, respectively, while none of the sera was positive. Sequences of the two positive amplicons selected (one from each states) shared 98.95% nucleotide identity and belonged to RHDV 2/GI.2 strain. Also, nBLAST of these sequences revealed 98.43-99.55% homology with the prototype Nigerian RHDV strain RHDV/NGR/ILN/001 (MT996357.1). Furthermore, these strains clustered with this prototype and a German RHDV strain (LR899166.1). Pathologic lesions affecting the respiratory, cardiovascular, renal, lymphatic, and digestive systems were observed in necropsied carcasses. This study indicated that RHDV 2/GI.2 strain was the cause of 2020 RHD outbreak in Nigeria. Thus, while continuous public sensitization about RHD especially among rabbit farmers in Nigeria is important, efforts aimed at design and implementation of RHD vaccination policy, preferably using indigenous seed, should be expedited.
Collapse
Affiliation(s)
- Oluwafemi Babatunde Daodu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - Joseph Ojonugwa Shaibu
- Center for Human Virology and Genomics, Nigerian Institute for Medical Research, Yaba, Lagos State, Nigeria
| | | | - Taiwo Oluwole Jolaoso
- Ogun State Ministry of Agriculture and Rural Development, Ogun State, Abeokuta, Nigeria
| | - Daniel Oladimeji Oluwayelu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olatunde Babatunde Akanbi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Isaac Dayo Olorunshola
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Julius Olaniyi Aiyedun
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Oladapo Oyedeji Oludairo
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Rosemary Ajuma Audu
- Center for Human Virology and Genomics, Nigerian Institute for Medical Research, Yaba, Lagos State, Nigeria
| | - Oluwakemi Christiana Daodu
- Department of Wildlife and Ecotourism, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
162
|
Walter KS, Altamirano J, Huang C, Carrington YJ, Zhou F, Andrews JR, Maldonado Y. Rapid emergence and transmission of virulence-associated mutations in the oral poliovirus vaccine following vaccination campaigns. NPJ Vaccines 2023; 8:137. [PMID: 37749086 PMCID: PMC10520055 DOI: 10.1038/s41541-023-00740-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
There is an increasing burden of circulating vaccine-derived polioviruses (cVDPVs) due to the continued use of oral poliovirus vaccine (OPV). However, the informativeness of routine OPV VP1 sequencing for the early identification of viruses carrying virulence-associated reversion mutations has not been directly evaluated in a controlled setting. We prospectively collected 15,331 stool samples to track OPV shedding from children receiving OPV and their contacts for ten weeks following an immunization campaign in Veracruz State, Mexico and sequenced VP1 genes from 358 samples. We found that OPV was genetically unstable and evolves at an approximately clocklike rate that varies across serotypes and by vaccination status. Overall, 61% (11/18) of OPV-1, 71% (34/48) OPV-2, and 96% (54/56) OPV-3 samples with available data had evidence of a reversion at the key 5' UTR attenuating position and 28% (13/47) of OPV-1, 12% (14/117) OPV-2, and 91% (157/173) OPV-3 of Sabin-like viruses had ≥1 known reversion mutations in the VP1 gene. Our results are consistent with previous work documenting rapid reversion to virulence of OPV and underscores the need for intensive surveillance following OPV use.
Collapse
Affiliation(s)
- Katharine S Walter
- Division of Epidemiology, University of Utah, Salt Lake City, UT, 84105, USA.
| | - Jonathan Altamirano
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - ChunHong Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan J Carrington
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yvonne Maldonado
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
163
|
Zhou Y, Zhang X, Tang X, Zhou Y, Ding Y, Liu H. Chromosome-Level Genome Assembly of Protosalanx chinensis and Response to Air Exposure Stress. BIOLOGY 2023; 12:1266. [PMID: 37759664 PMCID: PMC10525151 DOI: 10.3390/biology12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Protosalanx chinensis is a suitable particular species for genetic studies on nearly scaleless skin, transparency and high sensitivity to hypoxia stress. Here, we generated a high-quality chromosome-level de novo assembly of P. chinensis. The final de novo assembly yielded 379.47 Mb with 28 pseudo-chromosomes and a scaffold N50 length of 14.52 Mb. In total, 21,074 protein-coding genes were predicted. P. chinensis, Esox lucius and Hypomesus transpacificus had formed a clade, which diverged about 115.5 million years ago. In the air exposure stress experiment, we found that some genes play an essential role during P. chinensis hypoxia, such as bhlh, Cry1, Clock, Arntl and Rorb in the circadian rhythm pathway. These genomic data offer a crucial foundation for P. chinensis ecology and adaptation studies, as well as a deeper understanding of the response to air exposure stress.
Collapse
Affiliation(s)
- Yanfeng Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xizhao Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Xuemei Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yifan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yuting Ding
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
164
|
Hao J, Wang X, Shi Y, Li L, Chu J, Li J, Lin W, Yu T, Hou D. Integrated omic profiling of the medicinal mushroom Inonotus obliquus under submerged conditions. BMC Genomics 2023; 24:554. [PMID: 37726686 PMCID: PMC10507853 DOI: 10.1186/s12864-023-09656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. RESULTS This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. CONCLUSION This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xiaoli Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Lingjun Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 261053, China
| | - Jinxin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Junjie Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Weiping Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Tao Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Dianhai Hou
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
165
|
Castañeda-Rico S, Parker LD, Sánchez E, Rivas-Trasvina S, Hawkins MTR, Edwards CW, Maldonado JE. Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine-peromyscine phylogeny. Zookeys 2023; 1179:157-168. [PMID: 37731536 PMCID: PMC10507443 DOI: 10.3897/zookeys.1179.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The Crested-tailed deer mouse, Habromyslophurus, is one of seven arboreal species within the genus Habromys. Species of this genus are monotypic, relatively rare, and occur in low densities. Their geographical distribution is highly fragmented due to being restricted to montane cloud forest in Mesoamerica and they are of conservation concern. All Habromys species are endemic to Mexico, except H.lophurus, which is also distributed in Guatemala and El Salvador. In this study, we obtained and characterized the first mitogenome and several thousand nuclear ultraconserved elements (UCEs) of H.lophurus to determine its phylogenetic position within neotomine-peromyscine mice. Its mitogenome sequence (16,509 bp) is only the second complete mitogenome obtained for this poorly known genus. We also obtained the first nuclear genomic data for H.lophurus, including 3,654 UCE loci, as well as a partial mitogenome of H.simulatus (6,349 bp), and 2,186 UCE for the outgroup Holochilussciureus. Phylogenetic analyses that included our newly generated genomic data coupled with previously published data from other neotomine-peromyscine mice confirm the placement of H.lophurus, H.simulatus, and H.ixtlani within a highly supported clade. The Habromys clade was nested within a clade that also contains members of the genus Peromyscus and provides further support for the hypothesis of the paraphyly of Peromyscus. These genomic resources will contribute to future phylogenomic studies that aim to further elucidate the evolutionary history of this rare and critically endangered genus of rodents.
Collapse
Affiliation(s)
- Susette Castañeda-Rico
- Smithsonian-Mason School of Conservation, Front Royal, VA, USASmithsonian-Mason School of ConservationFront RoyalUnited States of America
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USACenter for Conservation Genomics, Smithsonian National Zoo and Conservation Biology InstituteWashingtonUnited States of America
- Department of Biology, George Mason University, Fairfax, VA, USAGeorge Mason UniversityFairfaxUnited States of America
| | - Lillian D. Parker
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USACenter for Conservation Genomics, Smithsonian National Zoo and Conservation Biology InstituteWashingtonUnited States of America
- Department of Anthropology, University of Oklahoma, Norman, OK, USAUniversity of OklahomaNormanUnited States of America
| | - Evelyn Sánchez
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USACenter for Conservation Genomics, Smithsonian National Zoo and Conservation Biology InstituteWashingtonUnited States of America
| | - Sheccid Rivas-Trasvina
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USACenter for Conservation Genomics, Smithsonian National Zoo and Conservation Biology InstituteWashingtonUnited States of America
| | - Melissa T. R. Hawkins
- Department of Vertebrate Zoology, Division of Mammals, National Museum of Natural History, Washington DC, USADepartment of Vertebrate Zoology, Division of Mammals, National Museum of Natural HistoryWashingtonUnited States of America
| | - Cody W. Edwards
- Smithsonian-Mason School of Conservation, Front Royal, VA, USASmithsonian-Mason School of ConservationFront RoyalUnited States of America
- Department of Biology, George Mason University, Fairfax, VA, USAGeorge Mason UniversityFairfaxUnited States of America
| | - Jesús E. Maldonado
- Smithsonian-Mason School of Conservation, Front Royal, VA, USASmithsonian-Mason School of ConservationFront RoyalUnited States of America
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USACenter for Conservation Genomics, Smithsonian National Zoo and Conservation Biology InstituteWashingtonUnited States of America
- Department of Biology, George Mason University, Fairfax, VA, USAGeorge Mason UniversityFairfaxUnited States of America
| |
Collapse
|
166
|
Ankhanbaatar U, Auer A, Ulziibat G, Settypalli TBK, Gombo-Ochir D, Basan G, Takemura T, Tseren-Ochir EO, Ouled Ahmed H, Meki IK, Datta S, Soumare B, Metlin A, Cattoli G, Lamien CE. Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe. Pathogens 2023; 12:1143. [PMID: 37764951 PMCID: PMC10536492 DOI: 10.3390/pathogens12091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia.
Collapse
Affiliation(s)
- Ulaankhuu Ankhanbaatar
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17029, Mongolia
| | - Agathe Auer
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Gerelmaa Ulziibat
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Tirumala B. K. Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Delgerzul Gombo-Ochir
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Ganzorig Basan
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Taichiro Takemura
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | | | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Sneha Datta
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Baba Soumare
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Charles E. Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| |
Collapse
|
167
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
168
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Fernanda Mora M, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. Microb Genom 2023; 9:001100. [PMID: 37665209 PMCID: PMC10569736 DOI: 10.1099/mgen.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Present address: Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| |
Collapse
|
169
|
Wu T, Mao H, Hai D, Cheng J, Fu Y, Lin Y, Jiang D, Xie J. Molecular characterization of a novel fungal alphaflexivirus reveals potential inter-species horizontal gene transfer. Virus Res 2023; 334:199151. [PMID: 37302657 PMCID: PMC10410596 DOI: 10.1016/j.virusres.2023.199151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic fungus that harbors diverse mycoviruses. A novel positive-sense single-stranded RNA virus, Sclerotinia sclerotiorum alphaflexivirus 2 (SsAFV2), was isolated from the hypovirulent strain 32-9 of S. sclerotiorum, and its complete genome was determined. The SsAFV2 genome contains 7,162 nucleotides (nt), excluding the poly (A) structure, and is composed of four open reading frames (ORF1-4). ORF1 encodes a polyprotein that contains three conserved domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). The ORF3 putative encodes coat proteins (CP), with ORF2 and ORF4 encoding hypothetical proteins of unknown functions. Phylogenetic analysis revealed that SsAFV2 clustered with Botrytis virus X (BVX) based on multiple alignments of helicase, RdRp, and CP, but the methyltransferase of SsAFV2 was most closely related to Sclerotinia sclerotiorum alphaflexivirus 1, suggesting that SsAFV2 is a new member of the Botrexvirus genus within the Alphaflexiviridae family, and also revealed the occurrence of potential inter-species horizontal gene transfer events within the Botrexvirus genus during the evolutionary process. Our results contribute to the current knowledge regarding the evolution and divergence of Botrexviruses.
Collapse
Affiliation(s)
- Tun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huilun Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
170
|
Jiang L, Xiao M, Liao QQ, Zheng L, Li C, Liu Y, Yang B, Ren A, Jiang C, Feng XH. High-sensitivity profiling of SARS-CoV-2 noncoding region-host protein interactome reveals the potential regulatory role of negative-sense viral RNA. mSystems 2023; 8:e0013523. [PMID: 37314180 PMCID: PMC10469612 DOI: 10.1128/msystems.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023] Open
Abstract
A deep understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions is crucial to developing effective therapeutics and addressing the threat of emerging coronaviruses. The role of noncoding regions of viral RNA (ncrRNAs) has yet to be systematically scrutinized. We developed a method using MS2 affinity purification coupled with liquid chromatography-mass spectrometry and designed a diverse set of bait ncrRNAs to systematically map the interactome of SARS-CoV-2 ncrRNA in Calu-3, Huh7, and HEK293T cells. Integration of the results defined the core ncrRNA-host protein interactomes among cell lines. The 5' UTR interactome is enriched with proteins in the small nuclear ribonucleoproteins family and is a target for the regulation of viral replication and transcription. The 3' UTR interactome is enriched with proteins involved in the stress granules and heterogeneous nuclear ribonucleoproteins family. Intriguingly, compared with the positive-sense ncrRNAs, the negative-sense ncrRNAs, especially the negative-sense of 3' UTR, interacted with a large array of host proteins across all cell lines. These proteins are involved in the regulation of the viral production process, host cell apoptosis, and immune response. Taken together, our study depicts the comprehensive landscape of the SARS-CoV-2 ncrRNA-host protein interactome and unveils the potential regulatory role of the negative-sense ncrRNAs, providing a new perspective on virus-host interactions and the design of future therapeutics. Given the highly conserved nature of UTRs in positive-strand viruses, the regulatory role of negative-sense ncrRNAs should not be exclusive to SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic affecting millions of lives. During replication and transcription, noncoding regions of the viral RNA (ncrRNAs) may play an important role in the virus-host interactions. Understanding which and how these ncrRNAs interact with host proteins is crucial for understanding the mechanism of SARS-CoV-2 pathogenesis. We developed the MS2 affinity purification coupled with liquid chromatography-mass spectrometry method and designed a diverse set of ncrRNAs to identify the SARS-CoV-2 ncrRNA interactome comprehensively in different cell lines and found that the 5' UTR binds to proteins involved in U1 small nuclear ribonucleoprotein, while the 3' UTR interacts with proteins involved in stress granules and the heterogeneous nuclear ribonucleoprotein family. Interestingly, negative-sense ncrRNAs showed interactions with a large number of diverse host proteins, indicating a crucial role in infection. The results demonstrate that ncrRNAs could serve diverse regulatory functions.
Collapse
Affiliation(s)
- Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mu Xiao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing-Qing Liao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luqian Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunyan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuemei Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
171
|
Liang YN, Li H, Huang XY, Bin YJ, Zhen YM, Qin XM. The complete chloroplast genome and phylogenomic analysis of Camellia sinensis var. sinensis cultivar 'Liupao', a landrace from Guangxi, China. Mitochondrial DNA B Resour 2023; 8:921-926. [PMID: 37645477 PMCID: PMC10461518 DOI: 10.1080/23802359.2023.2250072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Liupao tea is one of the well-known Chinese tea brands and a famous local specialty in Wuzhou, Guangxi, China. However, the genetic background and phylogenetic relationship of the native resource plants of Liupao tea need study, especially at the genomic level. In this study, we reported the complete chloroplast (cp) genome sequence of Camellia sinensis var. sinensis cultivar 'Liupao' (LP, Liupao tea population) and inferred its phylogenetic relationship to other tea plant variants or cultivars. The cp genome had a total length of 157,097 bp and the overall GC content was 37.3%. The cp genome contained one LSC region (86,641 bp) and one SSC region (18,276 bp), which were separated by two IR regions (26,090 bp, respectively). Moreover, the cp genomes were composed of 130 genes, including 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The phylogenetic analysis showed that LP was closely related to C. sinensis var. pabilimba cv. 'Lingyunbaihao'. This study will provide useful information for further investigating the genetic background, evolution, and breeding of LP as well as other tea cultivars and varieties.
Collapse
Affiliation(s)
- Yan-Ni Liang
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Hong Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xi-Yang Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yue-Jing Bin
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Yu-Mei Zhen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
172
|
Wang Y, Pang B, Wang Z, Tian X, Xu X, Chong X, Liang H, Ma W, Kou Z, Wen H. Genomic diversity and evolution analysis of severe fever with thrombocytopenia syndrome in East Asia from 2010 to 2022. Front Microbiol 2023; 14:1233693. [PMID: 37670982 PMCID: PMC10476882 DOI: 10.3389/fmicb.2023.1233693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Background Conducting an up-to-date analysis on the genomic diversity and evolution patterns of severe fever with thrombocytopenia syndrome virus (SFTSV) is crucial for elucidating the underlying mechanisms of its emergency and pathogenicity, as well as assessing the extent of its threat to public health. Methods Complete genome sequences of SFTSV were obtained from GenBank until December 19, 2022. A thorough phylogenetic analysis was conducted using comprehensive bioinformatics methods to estimate the genomic diversity and evolution. Results The phylogenetic classification of SFTSV strains yielded seven lineages (A-G) for each genome segment. SFTSV displayed notable variations in evolutionary patterns among different regions and segments, without a linear accumulation of nucleotide substitutions within segments and regions. The comprehensive analysis revealed 54 recombination events and 17 reassortment strains, including the first discovery of recombination events involving sea-crossing and species-crossing. Selection analysis identified three positive sites (2, 671, 1353) in RNA-dependent RNA polymerase, three positive sites (22, 298, 404) in glycoprotein, and two positive sites (9, 289) in nonstructural protein. No positive selection sites were found in nucleoprotein. Conclusion Our study unveiled the existence of multiple evolutionary forces influencing SFTSV, contributing to its increasing genetic diversity, which had the potential to modify its antigenicity and pathogenicity. Furthermore, our study highlights the importance of tracking the spread of SFTSV across regions and species.
Collapse
Affiliation(s)
- Yao Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Pang
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, China
| | - Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Tian
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, China
| | - Xiaoying Xu
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowen Chong
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Liang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengqiang Kou
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
173
|
Olofintila OE, Noel ZA. Soybean and Cotton Spermosphere Soil Microbiome Shows Dominance of Soilborne Copiotrophs. Microbiol Spectr 2023; 11:e0037723. [PMID: 37260391 PMCID: PMC10434258 DOI: 10.1128/spectrum.00377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023] Open
Abstract
The spermosphere is the transient, immediate zone of soil around imbibing and germinating seeds. It represents a habitat where there is contact between seed-associated microbes and soil microbes, but it is studied less than other plant habitats. Previous studies on spermosphere microbiology were primarily culture based or did not sample the spermosphere soil as initially defined in space and time. Thus, the objectives of this study were to develop an efficient strategy to collect spermosphere soils around imbibing soybean and cotton in nonsterile soil and investigate changes in microbial communities. The method employed sufficiently collected spermosphere soil as initially defined in space by constraining the soil sampled with a cork borer and confining the soil to a 12-well microtiter plate. Spermosphere prokaryote composition changed over time and depended on the crop within 6 h after seeds were sown. By 12 to 18 h, crops had unique microbial communities in spermosphere soils. Prokaryote evenness dropped following seed imbibition, with the proliferation of copiotrophic soil bacteria. Due to their long history of plant growth promotion, prokaryote operational taxonomic units (OTUs) in Bacillus, Paenibacillus, Burkholderia, Massilia, Azospirillum, and Pseudomonas were notable organisms enriched. Fungi and prokaryotes were hub taxa in cotton and soybean spermosphere networks. Additionally, the enriched taxa were not hubs in networks, suggesting that other taxa besides those enriched may be important for spermosphere communities. Overall, this study advances knowledge in the assembly of the plant microbiome early in a plant's life, which may have plant health implications in more mature plant growth stages. IMPORTANCE The central hypothesis of this research was that plant species and seed exudate release would alter the assembly of microbes in the spermosphere soil. Our research investigated the response of microbes to the initial burst of nutrients into the spermosphere soil, filling knowledge gaps from previous studies that pregerminated seeds under sterile conditions. We identified several copiotrophic bacterial lineages with a long history of plant growth promotion proliferating in response to the initial exudate release. With a comparative network approach, we show that these copiotrophic bacteria are not central to networks, demonstrating that other microbes (including fungi) may be important for community structure. This study improves knowledge on microbial dynamics in the understudied spermosphere and helps inform solutions for biologically or ecologically motivated solutions to spermosphere pathogens.
Collapse
Affiliation(s)
| | - Zachary A. Noel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
174
|
Oladipupo SO, Laidoudi Y, Beckmann JF, Hu XP, Appel AG. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1307-1316. [PMID: 37247378 DOI: 10.1093/jee/toad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
175
|
Nishiguchi M, Futamura N, Endo M, Mikami M, Toki S, Katahata SI, Ohmiya Y, Konagaya KI, Nanasato Y, Taniguchi T, Maruyama TE. CRISPR/Cas9-mediated disruption of CjACOS5 confers no-pollen formation on sugi trees (Cryptomeria japonica D. Don). Sci Rep 2023; 13:11779. [PMID: 37479866 PMCID: PMC10361980 DOI: 10.1038/s41598-023-38339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Sugi (Cryptomeria japonica D. Don) is an economically important coniferous tree in Japan. However, abundant sugi pollen grains are dispersed and transported by the wind each spring and cause a severe pollen allergy syndrome (Japanese cedar pollinosis). The use of pollen-free sugi that cannot produce pollen has been thought as a countermeasure to Japanese cedar pollinosis. The sugi CjACOS5 gene is an ortholog of Arabidopsis ACOS5 and rice OsACOS12, which encode an acyl-CoA synthetase that is involved in the synthesis of sporopollenin in pollen walls. To generate pollen-free sugi, we mutated CjACOS5 using the CRISPR/Cas9 system. As a result of sugi transformation mediated by Agrobacterium tumefaciens harboring the CjACOS5-targeted CRISPR/Cas9 vector, 1 bp-deleted homo biallelic mutant lines were obtained. Chimeric mutant lines harboring both mutant and wild-type CjACOS5 genes were also generated. The homo biallelic mutant lines had no-pollen in male strobili, whereas chimeric mutant lines had male strobili with or without pollen grains. Our results suggest that CjACOS5 is essential for the production of pollen in sugi and that its disruption is useful for the generation of pollen-free sugi. In addition to conventional transgenic technology, genome editing technology, including CRISPR/Cas9, can confer new traits on sugi.
Collapse
Affiliation(s)
- Mitsuru Nishiguchi
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Masafumi Mikami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Shin-Ichiro Katahata
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Yasunori Ohmiya
- Extension and International Cooperation Department, Forest Tree Breeding Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Ken-Ichi Konagaya
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Tsuyoshi Emilio Maruyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
176
|
Fan Z, Wang LY, Xiao L, Tan B, Luo B, Ren TY, Liu N, Zhang ZS, Bai M. Lampshade web spider Ectatosticta davidi chromosome-level genome assembly provides evidence for its phylogenetic position. Commun Biol 2023; 6:748. [PMID: 37463957 PMCID: PMC10354039 DOI: 10.1038/s42003-023-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
The spider of Ectatosticta davidi, belonging to the lamp-shade web spider family, Hypochilidae, which is closely related to Hypochilidae and Filistatidae and recovered as sister of the rest Araneomorphs spiders. Here we show the final assembled genome of E. davidi with 2.16 Gb in 15 chromosomes. Then we confirm the evolutionary position of Hypochilidae. Moreover, we find that the GMC gene family exhibit high conservation throughout the evolution of true spiders. We also find that the MaSp genes of E. davidi may represent an early stage of MaSp and MiSp genes in other true spiders, while CrSp shares a common origin with AgSp and PySp but differ from MaSp. Altogether, this study contributes to addressing the limited availability of genomic sequences from Hypochilidae spiders, and provides a valuable resource for investigating the genomic evolution of spiders.
Collapse
Affiliation(s)
- Zheng Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Lu-Yu Wang
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Lin Xiao
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Bing Tan
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Bin Luo
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Tian-Yu Ren
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Ning Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zhi-Sheng Zhang
- School of Life Sciences, Southwest University, 400700, Chongqing, China.
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, 150040, Harbin, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
177
|
Liu HN, Pei MS, Ampomah-Dwamena C, He GQ, Wei TL, Shi QF, Yu YH, Guo DL. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species. Funct Integr Genomics 2023; 23:218. [PMID: 37393305 DOI: 10.1007/s10142-023-01128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | | | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Qiao-Fang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
178
|
Kasimov V, White RT, Foxwell J, Jenkins C, Gedye K, Pannekoek Y, Jelocnik M. Whole-genome sequencing of Chlamydia psittaci from Australasian avian hosts: A genomics approach to a pathogen that still ruffles feathers. Microb Genom 2023; 9:mgen001072. [PMID: 37486739 PMCID: PMC10438822 DOI: 10.1099/mgen.0.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Chlamydia psittaci is a globally distributed veterinary pathogen with zoonotic potential. Although C. psittaci infections have been reported in various hosts, isolation and culture of Chlamydia is challenging, hampering efforts to produce contemporary global C. psittaci genomes. This is particularly evident in the lack of avian C. psittaci genomes from Australia and New Zealand. In this study, we used culture-independent probe-based whole-genome sequencing to expand the global C. psittaci genome catalogue. Here, we provide new C. psittaci genomes from two pigeons, six psittacines, and novel hosts such as the Australian bustard (Ardeotis australis) and sooty shearwater (Ardenna grisea) from Australia and New Zealand. We also evaluated C. psittaci genetic diversity using multilocus sequence typing (MLST) and major outer membrane protein (ompA) genotyping on additional C. psittaci-positive samples from various captive avian hosts and field isolates from Australasia. We showed that the first C. psittaci genomes sequenced from New Zealand parrots and pigeons belong to the clonal sequence type (ST)24 and diverse 'pigeon-type' ST27 clade, respectively. Australian parrot-derived strains also clustered in the ST24 group, whereas the novel ST332 strain from the Australian bustard clustered in a genetically diverse clade of strains from a fulmar, parrot, and livestock. MLST and ompA genotyping revealed ST24/ompA genotype A in wild and captive parrots and a sooty shearwater, whilst 'pigeon-types' (ST27/35 and ompA genotypes B/E) were found in pigeons and other atypical hosts, such as captive parrots, a little blue penguin/Kororā (Eudyptula minor) and a zebra finch (Taeniopygia guttata castanotis) from Australia and New Zealand. This study provides new insights into the global phylogenomic diversity of C. psittaci and further demonstrates the multi-host generalist capacity of this pathogen.
Collapse
Affiliation(s)
- Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| | - Rhys T. White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia
- The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Kristene Gedye
- Massey University, School of Veterinary Science, Palmerston North 4442, New Zealand
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, Netherlands
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| |
Collapse
|
179
|
Wang H, Wu Y, He Y, Li G, Ma L, Li S, Huang J, Yang G. High-quality chromosome-level de novo assembly of the Trifolium repens. BMC Genomics 2023; 24:326. [PMID: 37312068 DOI: 10.1186/s12864-023-09437-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND White clover (Trifolium repens L.), an excellent perennial legume forage, is an allotetraploid native to southeastern Europe and southern Asia. It has high nutritional, ecological, genetic breeding, and medicinal values and exhibits excellent resistance to cold, drought, trample, and weed infestation. Thus, white clover is widely planted in Europe, America, and China; however, the lack of reference genome limits its breeding and cultivation. This study generated a white clover de novo genome assembly at the chromosomal level and annotated its components. RESULTS The PacBio third-generation Hi-Fi assembly and sequencing methods generated a 1096 Mb genome size of T. repens, with contigs of N50 = 14 Mb, scaffolds of N50 = 65 Mb, and BUSCO value of 98.5%. The newly assembled genome has better continuity and integrity than the previously reported white clover reference genome; thus provides important resources for the molecular breeding and evolution of white clover and other forage. Additionally, we annotated 90,128 high-confidence gene models from the genome. White clover was closely related to Trifolium pratense and Trifolium medium but distantly related to Glycine max, Vigna radiata, Medicago truncatula, and Cicer arietinum. The expansion, contraction, and GO functional enrichment analysis of the gene families showed that T. repens gene families were associated with biological processes, molecular function, cellular components, and environmental resistance, which explained its excellent agronomic traits. CONCLUSIONS This study reports a high-quality de novo assembly of white clover genome obtained at the chromosomal level using PacBio Hi-Fi sequencing, a third-generation sequencing. The generated high-quality genome assembly of white clover provides a key basis for accelerating the research and molecular breeding of this important forage crop. The genome is also valuable for future studies on legume forage biology, evolution, and genome-wide mapping of quantitative trait loci associated with the relevant agronomic traits.
Collapse
Affiliation(s)
- Hongjie Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yongqiang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yong He
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Guoyu Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lichao Ma
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Shuo Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | | | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China.
| |
Collapse
|
180
|
Yu Q, Tong X, Zuo L, Tao X, Xu Z, Li X, Liu H, Guan W, Liu D, Liu H, Huang F, Jia L. Genomic Surveillance of SARS-CoV-2 Variants That Emerged in South and Southeast Asia during Early 2022. Viruses 2023; 15:1355. [PMID: 37376654 DOI: 10.3390/v15061355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The continuously emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made the global coronavirus disease 2019 (COVID-19) pandemic unpredictable. Since the beginning of the pandemic, densely populated South and Southeast Asia have suffered great losses due to multiple COVID-19 surges because of vaccine and other medical resource shortages. Therefore, it is crucial to closely monitor the SARS-CoV-2 epidemic and to understand the evolutionary and transmission characteristics of SARS-CoV-2 in these regions. Here, we document the evolution of epidemic strains in the Philippines, Pakistan, and Malaysia from late 2021 to early 2022. Our results confirmed the circulation of at least five SARS-CoV-2 genotypes in these countries in January 2022, when Omicron BA.2, with a detection rate of 69.11%, replaced Delta B.1.617 as the dominant strain. Single-nucleotide polymorphism analysis indicated the distinct evolutionary directions of the Omicron and Delta isolates, with S, Nsp1, and Nsp6 genes potentially playing a significant role in the host adaptation of the Omicron strain. These findings are able to provide insights for predicting the evolutionary direction of SARS-CoV-2 in terms of variant competition, developing multi-part vaccines, and to support the evaluation and adjustment of current surveillance, prevention, and control strategies in South and Southeast Asia.
Collapse
Affiliation(s)
- Qiong Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Xi Tong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Li Zuo
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | - Xinyu Tao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| | | | | | - Haizhou Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wuxiang Guan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Di Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Haibin Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Lijia Jia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100045, China
| |
Collapse
|
181
|
Elbadry MA, Efstathion CA, Qualls WA, Tagliamonte MS, Alam MM, Khan MSR, Ryan SJ, Xue RD, Charrel RN, Bangonan L, Salemi M, Ayhan N, Lednicky JA, Morris JG. Diversity and Genetic Reassortment of Keystone Virus in Mosquito Populations in Florida. Am J Trop Med Hyg 2023; 108:1256-1263. [PMID: 37127267 PMCID: PMC10540117 DOI: 10.4269/ajtmh.22-0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/10/2023] [Indexed: 05/03/2023] Open
Abstract
Keystone orthobunyavirus (KEYV), a member of the genus Orthobunyavirus, was first isolated in 1964 from mosquitoes in Keystone, Florida. Although data on human infections are limited, the virus has been linked to a fever/rash syndrome and, possibly, encephalitis, with early studies suggesting that 20% of persons in the Tampa, Florida, region had antibodies to KEYV. To assess the distribution and diversity of KEYV in other regions of Florida, we collected > 6,000 mosquitoes from 43 sampling sites in St. Johns County between June 2019 and April 2020. Mosquitoes were separated into pools by species and collection date and site. All pools with Aedes spp. (293 pools, 2,171 mosquitoes) were screened with a real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay that identifies KEYV and other closely related virus species of what was previously designated as the California encephalitis serogroup. In 2020, screening for KEYV was expanded to include 211 pools of Culex mosquitoes from sites where KEYV-positive Aedes spp. had been identified. rRT-PCR-positive samples were inoculated into cell cultures, and five KEYV isolates from Aedes atlanticus pools were isolated and sequenced. Analyses of the KEYV large genome segment sequences revealed two distinct KEYV clades, whereas analyses of the medium and small genome segments uncovered past reassortment events. Our data documented the ongoing seasonal circulation of multiple KEYV clades within Ae. atlanticus mosquito populations along the east coast of Florida, highlighting the need for further studies of the impact of this virus on human health.
Collapse
Affiliation(s)
- Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | | | | | - Massimiliano S. Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Md. Mahbubul Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Md. Siddiqur Rahman Khan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Sadie J. Ryan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Geography, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | - Rui-de Xue
- Anastasia Mosquito Control District, St. Augustine, Florida
| | - Remi N. Charrel
- Unité des Virus Emergents, Aix Marseille University, INSERM U1207, Marseille, France
| | - Lea Bangonan
- Anastasia Mosquito Control District, St. Augustine, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Nazli Ayhan
- Unité des Virus Emergents, Aix Marseille University, INSERM U1207, Marseille, France
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
182
|
Zhang W, Lin L, Ding Y, Zhang F, Zhang J. Comparative Mitogenomics of Jumping Spiders with First Complete Mitochondrial Genomes of Euophryini (Araneae: Salticidae). INSECTS 2023; 14:517. [PMID: 37367333 DOI: 10.3390/insects14060517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Salticidae is the most species-rich family of spiders with diverse morphology, ecology and behavior. However, the characteristics of the mitogenomes within this group are poorly understood with relatively few well-characterized complete mitochondrial genomes. In this study, we provide completely annotated mitogenomes for Corythalia opima and Parabathippus shelfordi, which represent the first complete mitogenomes of the tribe Euophryini of Salticidae. The features and characteristics of the mitochondrial genomes are elucidated for Salticidae by thoroughly comparing the known well-characterized mitogenomes. The gene rearrangement between trnL2 and trnN was found in two jumping spider species, Corythalia opima and Heliophanus lineiventris Simon, 1868. Additionally, the rearrangement of nad1 to between trnE and trnF found in Asemonea sichuanensis Song & Chai, 1992 is the first protein-coding gene rearrangement in Salticidae, which may have an important phylogenetic implication for the family. Tandem repeats of various copy numbers and lengths were discovered in three jumping spider species. The codon usage analyses showed that the evolution of codon usage bias in salticid mitogenomes was affected by both selection and mutational pressure, but selection may have played a more important role. The phylogenetic analyses provided insight into the taxonomy of Colopsus longipalpis (Żabka, 1985). The data presented in this study will improve our understanding of the evolution of mitochondrial genomes within Salticidae.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Long Lin
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhui Ding
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
183
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
184
|
Bestehorn-Willmann M, Girl P, Greiner F, Mackenstedt U, Dobler G, Lang D. Increased Vaccination Diversity Leads to Higher and Less-Variable Neutralization of TBE Viruses of the European Subtype. Vaccines (Basel) 2023; 11:1044. [PMID: 37376433 DOI: 10.3390/vaccines11061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe-Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.
Collapse
Affiliation(s)
- Malena Bestehorn-Willmann
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Franziska Greiner
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ute Mackenstedt
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gerhard Dobler
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|
185
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Mao Y, Rautiainen M, Koren S, Nurk S, Porubsky D, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542849. [PMID: 37398417 PMCID: PMC10312506 DOI: 10.1101/2023.05.30.542849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.8% of centromeric sequence, on average, cannot be reliably aligned with current methods due to the emergence of new α-satellite higher-order repeat (HOR) structures and two to threefold differences in the length of the centromeres. The extent to which this occurs differs depending on the chromosome and haplotype. Comparing the two sets of complete human centromeres, we find that eight harbor distinctly different α-satellite HOR array structures and four contain novel α-satellite HOR variants in high abundance. DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by at least 500 kbp-a property not readily associated with novel α-satellite HORs. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan, and macaque genomes. Comparative analyses reveal nearly complete turnover of α-satellite HORs, but with idiosyncratic changes in structure characteristic to each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the p- and q-arms of human chromosomes and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison N. Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian K. Lucas
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
186
|
Fu H, Shan C, Kang F, Yu L, Li Z, Yin Y. CRISPR-GRANT: a cross-platform graphical analysis tool for high-throughput CRISPR-based genome editing evaluation. BMC Bioinformatics 2023; 24:219. [PMID: 37254060 DOI: 10.1186/s12859-023-05333-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUD CRISPR/Cas is an efficient genome editing system that has been widely used for functional genetic studies and exhibits high potential in biomedical translational applications. Indel analysis has thus become one of the most common practices in the lab to evaluate DNA editing events generated by CRISPR/Cas. Several indel analysis tools have been reported, however, it is often required that users have certain bioinformatics training and basic command-line processing capability. RESULTS Here, we developed CRISPR-GRANT, a stand-alone graphical CRISPR indel analysis tool, which could be easily installed for multi-platforms, including Linux, Windows, and macOS. CRISPR-GRANT offered a straightforward GUI by simple click-and-run for genome editing analysis of single or pooled amplicons and one-step analysis for whole-genome sequencing without the need of data pre-processing, making it ideal for novice lab scientists. Moreover, it also exhibited shorter run-time compared with tools currently available. CONCLUSION Therefore, CRISPR-GRANT is a valuable addition to the current CRISPR toolkits that significantly lower the barrier for wet-lab researchers to conduct indel analysis from large NGS datasets. CRISPR-GRANT binaries are freely available for Linux (above Ubuntu 16.04), macOS (above High Sierra 10.13) and Windows (above Windows 7) at https://github.com/fuhuancheng/CRISPR-GRANT . CRISPR-GRANT source code is licensed under the GPLv3 license and free to download and use.
Collapse
Affiliation(s)
- Huancheng Fu
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ce Shan
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fanchen Kang
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ling Yu
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhonghan Li
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yike Yin
- Center for Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
187
|
Qiu L, Dong J, Li X, Parey SH, Tan K, Orr M, Majeed A, Zhang X, Luo S, Zhou X, Zhu C, Ji T, Niu Q, Liu S, Zhou X. Defining honeybee subspecies in an evolutionary context warrants strategized conservation. Zool Res 2023; 44:483-493. [PMID: 36994538 PMCID: PMC10236295 DOI: 10.24272/j.issn.2095-8137.2022.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.
Collapse
Affiliation(s)
- Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Sajad H Parey
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 650000, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aquib Majeed
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Ji
- Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
188
|
Khomyakova MA, Merkel AY, Segliuk VS, Slobodkin AI. Desulfatitalea alkaliphila sp. nov., an alkalipilic sulfate- and arsenate- reducing bacterium isolated from a terrestrial mud volcano. Extremophiles 2023; 27:12. [PMID: 37178152 DOI: 10.1007/s00792-023-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
A novel alkaliphilic sulfate-reducing bacterium, strain M08butT, was isolated from a salsa lake of terrestrial mud volcano (Taman Peninsula, Russia). Cells were rod-shaped, motile and Gram-stain-negative. The temperature range for growth was 15-42 °C (optimum at 30 °C). The pH range for growth was 7.0-11.0, with an optimum at pH 8.5-9.0 Strain M08butT used sulfate, thiosulfate, sulfite, dimethyl sulfoxide and arsenate as electron acceptors. Acetate, formate, butyrate, fumarate, succinate, glycerol and pyruvate were utilized as electron donors with sulfate. Fermentative growth was observed with fumarate, pyruvate, crotonate. Strain M08butT grew chemolithoautotrophically with H2 and CO2. The G + C content of the genomic DNA was 60.1%. The fatty acid profile of strain M08butT was characterized by the presence of anteiso-C15:0 as the major component (68.8%). The closest phylogenetic relative of strain M08butT was Desulfatitalea tepidiphila (the order Desulfobacterales) with 96.3% 16S rRNA gene sequence similarity. Based on the phenotypic, genotypic and phylogenetic characteristics of the isolate, strain M08butT is considered to represent a novel species of the genus Desulfatitalea, with proposed name Desulfatitalea alkaliphila sp. nov. The type strain of Desulfatitalea alkaliphila is M08butT (= KCTC 25382T = VKM B-3560T = DSM 113909T = JCM 39202T = UQM 41473T).
Collapse
Affiliation(s)
- M A Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia.
| | - A Yu Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| | - V S Segliuk
- Gubkin University, Leninskiy Prospect, 65/1, 119991, Moscow, Russia
| | - A I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| |
Collapse
|
189
|
Dahmer KJ, Palma-Cuero M, Ciuoderis K, Patiño C, Roitman S, Li Z, Sinha A, Hite JL, Bellido Cuellar O, Hernandez-Ortiz JP, Osorio JE, Christensen BM, Carlow CKS, Zamanian M. Molecular surveillance detects high prevalence of the neglected parasite Mansonella ozzardi in the Colombian Amazon. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.10.23289806. [PMID: 37215049 PMCID: PMC10197819 DOI: 10.1101/2023.05.10.23289806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mansonellosis is an undermapped insect-transmitted disease caused by filarial nematodes that are estimated to infect hundreds of millions of people globally. Despite their prevalence, there are many outstanding questions regarding the general biology and health impacts of the responsible parasites. Historical reports suggest that the Colombian Amazon is endemic for mansonellosis and may serve as an ideal location to pursue these questions in the backdrop of other endemic and emerging pathogens. We deployed molecular and classical diagnostic approaches to survey Mansonella prevalence among adults belonging to indigenous communities along the Amazon River and its tributaries near Leticia, Colombia. Deployment of a loop-mediated isothermal amplification (LAMP) assay on blood samples revealed an infection prevalence of ∼40% for Mansonella ozzardi . This assay identified significantly more infections than blood smear microscopy or LAMP assays performed using plasma, likely reflecting greater sensitivity and the ability to detect low microfilaremias or occult infections. Mansonella infection rates increased with age and were higher among males compared to females. Genomic analysis confirmed the presence of M. ozzardi that clusters closely with strains sequenced in neighboring countries. We successfully cryopreserved and revitalized M. ozzardi microfilariae, advancing the prospects of rearing infective larvae in controlled settings. These data suggest an underestimation of true mansonellosis prevalence, and we expect that these methods will help facilitate the study of mansonellosis in endemic and laboratory settings.
Collapse
Affiliation(s)
- KJ Dahmer
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - M Palma-Cuero
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - K Ciuoderis
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - C Patiño
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - S Roitman
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - Z Li
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - A Sinha
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - JL Hite
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | | | - JP Hernandez-Ortiz
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
- Universidad Nacional de Colombia - UW-GHI One Health Colombia, Medellín, Colombia
| | - JE Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - BM Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| | - CKS Carlow
- New England Biolabs, 240 County Road, Ipswich, MA USA
| | - M Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Global Health Institute One Health Colombia, Madison, WI USA
| |
Collapse
|
190
|
Chen Q, Chen L, Teixeira da Silva JA, Yu X. The plastome reveals new insights into the evolutionary and domestication history of peonies in East Asia. BMC PLANT BIOLOGY 2023; 23:243. [PMID: 37150831 PMCID: PMC10165817 DOI: 10.1186/s12870-023-04246-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUD Paeonia holds considerable value in medicinal, ornamental horticultural, and edible oil industries, but the incomplete state of phylogenetic research in this genus poses a challenge to the effective conservation and development of wild germplasm, and also impedes the practical utilization of existing cultivars. Due to its uniparental inheritance and lack of recombination, the plastome (i.e., plastid genome), which is a valuable molecular marker for phylogenetic analyses, is characterized by an appropriate rate of nucleotide evolution. METHODS In this study, 10 newly assembled data and available reported data were combined to perform a comparative genomics and phylogenetics analysis of 63 plastomes of 16 Paeonia species, primarily from East Asia, which is the origin and diversity center of Paeonia. RESULTS Ranging between 152,153 and 154,405 bp, most plastomes displayed a conserved structure and relatively low nucleotide diversity, except for six plastomes, which showed obvious IR construction or expansion. A total of 111 genes were annotated in the Paeonia plastomes. Four genes (rpl22, rps3, rps19 and ycf1) showed different copy numbers among accessions while five genes (rpl36, petN, psbI, rpl33 and psbJ) showed strong codon usage biases (ENC < 35). Additional selection analysis revealed that no genes were under positive selection during the domestication of tree peony cultivars whereas four core photosynthesis-related genes (petA, psaA, psaB and rbcL) were under positive selection in herbaceous peony cultivars. This discovery might contribute to the wide adaption of these cultivars. Two types of molecular markers (SSR and SNP) were generated from the 63 plastomes. Even though SSR was more diverse than SNP, it had a weaker ability to delimit Paeonia species than SNP. The reconstruction of a phylogenetic backbone of Paeonia in East Asia revealed significant genetic divergence within the P. ostii groups. Evidence also indicated that the majority of P. suffruticosa cultivars had a maternal origin, from P. ostii. The results of this research also suggest that P. delavayi var. lutea, which likely resulted from hybridization with P. ludlowii, should be classified as a lineage within the broader P. delavayi group. CONCLUSIONS Overall, this study's research findings suggest that the Paeonia plastome is highly informative for phylogenetic and comparative genomic analyses, and could be useful in future research related to taxonomy, evolution, and domestication.
Collapse
Affiliation(s)
- Qihang Chen
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Le Chen
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China.
- National Engineering Research Center for Floriculture, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
191
|
Morfopoulou S, Buddle S, Torres Montaguth OE, Atkinson L, Guerra-Assunção JA, Moradi Marjaneh M, Zennezini Chiozzi R, Storey N, Campos L, Hutchinson JC, Counsell JR, Pollara G, Roy S, Venturini C, Antinao Diaz JF, Siam A, Tappouni LJ, Asgarian Z, Ng J, Hanlon KS, Lennon A, McArdle A, Czap A, Rosenheim J, Andrade C, Anderson G, Lee JCD, Williams R, Williams CA, Tutill H, Bayzid N, Martin Bernal LM, Macpherson H, Montgomery KA, Moore C, Templeton K, Neill C, Holden M, Gunson R, Shepherd SJ, Shah P, Cooray S, Voice M, Steele M, Fink C, Whittaker TE, Santilli G, Gissen P, Kaufer BB, Reich J, Andreani J, Simmonds P, Alrabiah DK, Castellano S, Chikowore P, Odam M, Rampling T, Houlihan C, Hoschler K, Talts T, Celma C, Gonzalez S, Gallagher E, Simmons R, Watson C, Mandal S, Zambon M, Chand M, Hatcher J, De S, Baillie K, Semple MG, Martin J, Ushiro-Lumb I, Noursadeghi M, Deheragoda M, Hadzic N, Grammatikopoulos T, Brown R, Kelgeri C, Thalassinos K, Waddington SN, Jacques TS, Thomson E, Levin M, Brown JR, Breuer J. Genomic investigations of unexplained acute hepatitis in children. Nature 2023; 617:564-573. [PMID: 36996872 PMCID: PMC10170458 DOI: 10.1038/s41586-023-06003-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Collapse
Affiliation(s)
- Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Oscar Enrique Torres Montaguth
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Laura Atkinson
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - José Afonso Guerra-Assunção
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mahdi Moradi Marjaneh
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Riccardo Zennezini Chiozzi
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Nathaniel Storey
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis Campos
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Ciaran Hutchinson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John R Counsell
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, UK
| | - Sunando Roy
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Juan F Antinao Diaz
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Ala'a Siam
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Luke J Tappouni
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Zeinab Asgarian
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Killian S Hanlon
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander Lennon
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew McArdle
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Agata Czap
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Catarina Andrade
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jack C D Lee
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rachel Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charlotte A Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Helena Tutill
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nadua Bayzid
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luz Marina Martin Bernal
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie-Ann Montgomery
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Moore
- Wales Specialist Virology Centre, Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | - Kate Templeton
- Department of Medical Microbiology, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Claire Neill
- Public Health Agency Northern Ireland, Belfast, UK
| | - Matt Holden
- School of Medicine, University of St. Andrews, St. Andrews, UK
- Public Health Scotland, Edinburgh, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Priyen Shah
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Samantha Cooray
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Marie Voice
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Michael Steele
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Colin Fink
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Thomas E Whittaker
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giorgia Santilli
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Jana Reich
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Julien Andreani
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre Hospitalier Universitaire (CHU) Grenoble-Alpes, Grenoble, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dimah K Alrabiah
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- University College London Genomics, University College London, London, UK
| | | | - Miranda Odam
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Tommy Rampling
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catherine Houlihan
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Department of Clinical Virology, University College London Hospitals, London, UK
| | | | | | | | | | | | | | | | | | | | | | - James Hatcher
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Surjo De
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Malcolm Gracie Semple
- Pandemic Institute, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Joanne Martin
- Centre for Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | | | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | | | | | | | - Rachel Brown
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Chayarani Kelgeri
- Liver Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Konstantinos Thalassinos
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
- Medical Research Council Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Thomas S Jacques
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Emma Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Michael Levin
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
192
|
Cui X, Fan K, Liang X, Gong W, Chen W, He B, Chen X, Wang H, Wang X, Zhang P, Lu X, Chen R, Lin K, Liu J, Zhai J, Liu DX, Shan F, Li Y, Chen RA, Meng H, Li X, Mi S, Jiang J, Zhou N, Chen Z, Zou JJ, Ge D, Yang Q, He K, Chen T, Wu YJ, Lu H, Irwin DM, Shen X, Hu Y, Lu X, Ding C, Guan Y, Tu C, Shen Y. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun 2023; 14:2488. [PMID: 37120646 PMCID: PMC10148632 DOI: 10.1038/s41467-023-38202-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Collapse
Affiliation(s)
- Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rujian Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yuqi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Huifang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianfeng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Zujin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, 510000, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanjia Hu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 201106, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou, 515041, China.
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
193
|
Sun X, Liu W, Peng Y, Meng L, Zhang J, Pan Y, Wang D, Zhu J, Wang C, Yan C. Genome-wide analyses of Glutathione S-transferase gene family and expression profiling under deltamethrin exposure in non-biting midge Propsilocerus akamusi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101081. [PMID: 37150092 DOI: 10.1016/j.cbd.2023.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Glutathione S-transferases (GSTs) are major enzymes in detoxification phase II, and have been functioned in resistance to various insecticides or oxidative stress. Herein, we selected the non-biting midge, Propsilocerus akamusi, widespread in Asian aquatic ecosystems, to uncover the gene location, structure, and phylogenetics relationship of GSTs at genome scale first time. Thirty-three cytosolic and four microsomal GST genes were identified and located on the four chromosomes. The cytosolic GSTs involved in the eight subclasses and five GST genes were unclassified. The expansion of GST genes in P. akamusi experienced duplication events on the delta, theta, xi, iota, and unclassified subclasses. The RNA-Seq analyses and RT-qPCR validation showed that the expression of PaGSTt2 gene is significantly elevated, with deltamethrin concentration increasing. The tertiary structure of PaGSTt2 enzyme was reconstructed, which was different from the other theta gene in the active site. In addition, the GST genes of six chironomids were first described based on the assembled genomes to explore the difference of those in the adaptation to kinds of environments. The GST frame for P. akmusi and its expression profiles provide valuable resources to understand their role in insecticide resistance of this species, as well as those of other biting midges.
Collapse
Affiliation(s)
- Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Yuanyuan Peng
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lingfei Meng
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Junyu Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Yahan Pan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Deyu Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Junhao Zhu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Chengyan Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
194
|
Xian Q, Wang S, Liu Y, Kan S, Zhang W. Structure-Based GC Investigation Sheds New Light on ITS2 Evolution in Corydalis Species. Int J Mol Sci 2023; 24:ijms24097716. [PMID: 37175423 PMCID: PMC10178233 DOI: 10.3390/ijms24097716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Guanine and cytosine (GC) content is a fundamental component of genetic diversity and essential for phylogenetic analyses. However, the GC content of the ribosomal internal transcribed spacer 2 (ITS2) remains unknown, despite the fact that ITS2 is a widely used phylogenetic marker. Here, the ITS2 was high-throughput sequenced from 29 Corydalis species, and their GC contents were comparatively investigated in the context of ITS2's characteristic secondary structure and concerted evolution. Our results showed that the GC contents of ITS2 were 131% higher than those of their adjacent 5.8S regions, suggesting that ITS2 underwent GC-biased evolution. These GCs were distributed in a heterogeneous manner in the ITS2 secondary structure, with the paired regions being 130% larger than the unpaired regions, indicating that GC is chosen for thermodynamic stability. In addition, species with homogeneous ITS2 sequences were always GC-rich, supporting GC-biased gene conversion (gBGC), which occurred with ITS2's concerted evolution. The RNA substitution model inferred also showed a GC preference among base pair transformations, which again supports gBGC. Overall, structurally based GC investigation reveals that ITS2 evolves under structural stability and gBGC selection, significantly increasing its GC content.
Collapse
Affiliation(s)
- Qing Xian
- Marine College, Shandong University, Weihai 264209, China
| | - Suyin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
195
|
Nesaraj J, Grinberg A, Laven R, Biggs P. Genomic epidemiology of bovine mastitis-causing Staphylococcus aureus in New Zealand. Vet Microbiol 2023; 282:109750. [PMID: 37099864 DOI: 10.1016/j.vetmic.2023.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
We analysed the genomes of 188 bovine-mastitis-causing S. aureus isolates obtained over a 17-year period from more than 65 dairy farms across New Zealand. The analysis revealed a unique pattern of dominance over the entire period of study, of clonal complex 1, sequence type 1 (CC1/ST1), which accounted for ∼75% of the isolates. CC1/ST1 was also the commonest lineage infecting humans in New Zealand in the same period, but most bovine CC1/ST1 analysed in this study carried the genes coding for the bovine-adaptive bicomponent leucocidin lukF and lukM and lacked the corresponding human-adaptive lukF-PV and lukS-PV genes. Typical ruminant-associated lineages, such as ST97, ST151 and CC133 were also observed. Cluster analyses of the core and accessory genomes revealed genomic segregations according to the CCs, but lack of segregation based on the geographical location or collection year, suggesting a stable population in space and time. To our knowledge, this is the first identification of genomic markers of host adaptation to cattle in S. aureus CC1/ST1, a lineage commonly associated with humans, worldwide. The temporal clonal stability observed would enable the development of a S. aureus vaccine for New Zealand cattle, which is unlikely to undergo substantial reduction of efficacy due to clonal drifts or shifts.
Collapse
Affiliation(s)
- Jabin Nesaraj
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Alex Grinberg
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand.
| | - Richard Laven
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Patrick Biggs
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
196
|
Wolf M, Zapf K, Gupta DK, Hiller M, Árnason Ú, Janke A. The genome of the pygmy right whale illuminates the evolution of rorquals. BMC Biol 2023; 21:79. [PMID: 37041515 PMCID: PMC10091562 DOI: 10.1186/s12915-023-01579-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Konstantin Zapf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Deepak Kumar Gupta
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| | - Michael Hiller
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-Von-Laue-Str. 9, Frankfurt Am Main, Germany
| | - Úlfur Árnason
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital in Lund, Lund, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| |
Collapse
|
197
|
Sinha A, Li Z, Poole CB, Morgan RD, Ettwiller L, Lima NF, Ferreira MU, Fombad FF, Wanji S, Carlow CKS. Genomes of the human filarial parasites Mansonella perstans and Mansonella ozzardi. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The filarial parasites Mansonella ozzardi and Mansonella perstans, causative agents of mansonellosis, infect hundreds of millions of people worldwide, yet remain among the most understudied of the human filarial pathogens. M. ozzardi is highly prevalent in Latin American countries and Caribbean Islands, while M. perstans is predominantly found in sub-Saharan Africa as well as in a few areas in South America. In addition to the differences in their geographical distribution, the two parasites are transmitted by different insect vectors, as well as exhibit differences in their responses to commonly used anthelminthic drugs. The lack of genome information has hindered investigations into the biology and evolution of Mansonella parasites and understanding the molecular basis of the clinical differences between species. In the current study, high quality genomes of two independent clinical isolates of M. perstans from Cameroon and two M. ozzardi isolates one from Brazil and one from Venezuela are reported. The genomes are approximately 76 Mb in size, encode about 10,000 genes each, and are largely complete based on BUSCO scores of about 90%, similar to other completed filarial genomes. These sequences represent the first genomes from Mansonella parasites and enabled a comparative genomic analysis of the similarities and differences between Mansonella and other filarial parasites. Horizontal DNA transfers (HDT) from mitochondria (nuMTs) as well as transfers from genomes of endosymbiotic Wolbachia bacteria (nuWTs) to the host nuclear genome were identified and analyzed. Sequence comparisons and phylogenetic analysis of known targets of anti-filarial drugs diethylcarbamazine (DEC), ivermectin and mebendazole revealed that all known target genes were present in both species, except for the DEC target encoded by gon-2 gene, which is fragmented in genome assemblies from both M. ozzardi isolates. These new reference genome sequences will provide a valuable resource for further studies on biology, symbiosis, evolution and drug discovery.
Collapse
|
198
|
Lu Y, Rice E, Du K, Kneitz S, Naville M, Dechaud C, Volff JN, Boswell M, Boswell W, Hillier L, Tomlinson C, Milin K, Walter RB, Schartl M, Warren WC. High resolution genomes of multiple Xiphophorus species provide new insights into microevolution, hybrid incompatibility, and epistasis. Genome Res 2023; 33:557-571. [PMID: 37147111 PMCID: PMC10234306 DOI: 10.1101/gr.277434.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA;
| | - Edward Rice
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon, France
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Kremitzki Milin
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Ronald B Walter
- Department of Life Sciences, Texas A&M University, Corpus Christi, Texas 78412, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, Missouri 65201, USA
| |
Collapse
|
199
|
Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography. Mol Phylogenet Evol 2023; 181:107727. [PMID: 36754338 DOI: 10.1016/j.ympev.2023.107727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.
Collapse
|
200
|
Schwartz SL, Rangel LT, Payette JG, Fournier GP. A Proterozoic microbial origin of extant cyanide-hydrolyzing enzyme diversity. Front Microbiol 2023; 14:1130310. [PMID: 37065136 PMCID: PMC10098168 DOI: 10.3389/fmicb.2023.1130310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
In addition to its role as a toxic environmental contaminant, cyanide has been hypothesized to play a key role in prebiotic chemistry and early biogeochemical evolution. While cyanide-hydrolyzing enzymes have been studied and engineered for bioremediation, the extant diversity of these enzymes remains underexplored. Additionally, the age and evolution of microbial cyanide metabolisms is poorly constrained. Here we provide comprehensive phylogenetic and molecular clock analyses of the distribution and evolution of the Class I nitrilases, thiocyanate hydrolases, and nitrile hydratases. Molecular clock analyses indicate that bacterial cyanide-reducing nitrilases were present by the Paleo- to Mesoproterozoic, and were subsequently horizontally transferred into eukaryotes. These results present a broad diversity of microbial enzymes that could be optimized for cyanide bioremediation.
Collapse
Affiliation(s)
- Sarah L. Schwartz
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Sarah L. Schwartz,
| | - L. Thiberio Rangel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jack G. Payette
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|