151
|
Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis 2006; 65:1414-21. [PMID: 16439443 PMCID: PMC1798346 DOI: 10.1136/ard.2005.045971] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND The primary feature of osteoarthritis is cartilage loss. In addition, osteophytes can frequently be observed. Transforming growth factor-beta (TGFbeta) has been suggested to be associated with protection against cartilage damage and new cartilage formation as seen in osteophytes. OBJECTIVE To study TGFbeta and TGFbeta signalling in experimental osteoarthritis to gain insight into the role of TGFbeta in cartilage degradation and osteophyte formation during osteoarthritis progression. METHODS Histological sections of murine knee joints were stained immunohistochemically for TGFbeta3 and phosphorylated SMAD-2 (SMAD-2P). Expression patterns were studied in two murine osteoarthritis models, representing spontaneous (STR/ort model) and instability-associated osteoarthritis (collagenase-induced instability model). RESULTS TGFbeta3 and SMAD-2P staining was increasingly reduced in cartilage during osteoarthritis progression in both models. Severely damaged cartilage was negative for TGFbeta3. In contrast, bone morphogenetic protein-2 (BMP-2) expression was increased. In chondrocyte clusters, preceding osteophyte formation, TGFbeta3 and SMAD-2P were strongly expressed. In early osteophytes, TGFbeta3 was found in the outer fibrous layer, in the peripheral chondroblasts and in the core. Late osteophytes expressed TGFbeta3 only in the fibrous layer. SMAD-2P was found throughout the osteophyte at all stages. In the late-stage osteophytes, BMP-2 was strongly expressed. CONCLUSION Data show that lack of TGFbeta3 is associated with cartilage damage, suggesting loss of the protective effect of TGFbeta3 during osteoarthritis progression. Additionally, our results indicate that TGFbeta3 is involved in early osteophyte development, whereas BMP might be involved in late osteophyte development.
Collapse
Affiliation(s)
- E N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
152
|
Fu P, Liu F, Su S, Wang W, Huang XR, Entman ML, Schwartz RJ, Wei L, Lan HY. Signaling mechanism of renal fibrosis in unilateral ureteral obstructive kidney disease in ROCK1 knockout mice. J Am Soc Nephrol 2006; 17:3105-14. [PMID: 17005937 DOI: 10.1681/asn.2005121366] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown that blockade of Rho kinase with pharmacologic inhibitors inhibits renal fibrosis. This study examined the role of Rho kinase in renal fibrosis in the unilateral ureteral obstruction (UUO) model in mice that do not express the ROCK1 gene, a critical downstream mediator of Rho GTPase. Unexpected, real-time PCR, Western blot, and immunohistochemistry demonstrated that, compared with the wild-type mice, mice with ROCK1 knockout (KO) were not protected against renal fibrosis at both the early (day 5) and late (day 10) UUO, as determined by histology and expression of both mRNA and protein levels of alpha-smooth muscle actin, collagen types I and III, and fibronectin within the diseased kidney. Then the mechanisms of loss of protective effect on renal fibrosis in ROCK1 KO mice were investigated. It is interesting that mice that lacked ROCK1 did not have altered expression of ROCK2 but significantly increased TGF-beta expression and Smad2/3 activation (phosphorylation and nuclear translocation) in the diseased kidney at day 5, which remained high at day 10 of UUO. Similarly, primary cultures of kidney fibroblasts that were obtained from both ROCK1 wild-type and KO mice showed that deletion of ROCK1 did not prevent TGF-beta-induced activation of Smad2/3 and collagen I expression. This also was observed in the presence of Rho kinase inhibitor Y-27632. Taken together, results from this study suggest that Rho/Rho kinase may not be a necessary or a central pathway for renal fibrosis in the UUO model. The interplay between the Rho/Rho kinase pathway and the Smad signaling pathway may be a key mechanism by which loss of ROCK1 does not prevent renal fibrosis in the UUO model.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine-Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
The possibility that proteinuria may accelerate kidney disease progression to end-stage renal failure has received support from the results of increasing numbers of experimental and clinical studies. Evidence indicating that this process occurs through multiple pathways, including induction of tubular chemokine expression and complement activation that lead to inflammatory cell infiltration in the interstitium and sustained fibrogenesis, is reviewed. Macrophages are prominent in the interstitial inflammatory infiltrate. This cell type mediates progression of renal injury to the extent that macrophage numbers in renal biopsy predict renal survival in patients with chronic renal disease. Chemoattractants and adhesive molecules for inflammatory cells are upregulated by excess ultrafiltered protein load of proximal tubular cells via activation of NF-kappaB-dependent and NF-kappaB-independent pathways. This mechanism is a potential target for therapeutic approaches, as shown by beneficial effects of manipulations with inhibitory molecules of NF-kappaB activation or of chemokine receptors in experimental studies. Targeting complement synthesis or activation in proximal tubule might offer novel therapeutic opportunities. Finally, proximal tubular cell receptors for uptake of plasma proteins that are under investigation may provide activation signals on excess tubular protein handling.
Collapse
Affiliation(s)
- Mauro Abbate
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | |
Collapse
|
154
|
Kassimatis TI, Giannopoulou I, Koumoundourou D, Theodorakopoulou E, Varakis I, Nakopoulou L. Immunohistochemical evaluation of phosphorylated SMAD2/SMAD3 and the co-activator P300 in human glomerulonephritis: correlation with renal injury. J Cell Mol Med 2006. [DOI: 10.1111/j.1582-4934.2006.tb00443.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
155
|
Wahab NA, Mason RM. A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. NEPHRON. EXPERIMENTAL NEPHROLOGY 2006; 104:e129-34. [PMID: 16902316 DOI: 10.1159/000094963] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the adult kidney, the cellular phenotypes are maintained by a strict balance of growth factors. Epithelial-to-mesenchymal transition (EMT) is a program whereby injured epithelial cells that function as ion and fluid transporters become matrix remodelling mesenchymal cells. This process requires either transcriptional repression of genes that maintain the epithelial phenotype and transcriptional activation, or relieved repression of genes needed for functional myofibroblasts. The transcriptional regulators are controlled by several integrated signalling pathways which are triggered by growth factors. Emerging evidence indicates that the growth factors TGFbeta/CTGF and BMP-7/HGF are the main determinants that maintain the two cellular phenotypes. Both TGFbeta and BMP-7 counteract the activity of each other by cross-inducing their respective inhibitory Smads. Both growth factors may also induce the expression of other factors that can change the cellular environment and enhance their function. Chronic kidney diseases (regardless of the aetiology of the disease) are associated with increased TGFbeta and CTGF expression levels which, in turn, have an inverse effect on the activity level of BMP-7 and HGF, leading to an EMT of injured tubular epithelial cells and a progression of the disease. A detailed understanding of the complex interrelationship between these growth factors may lead to the development of novel drugs.
Collapse
Affiliation(s)
- Nadia A Wahab
- Renal Section, Division of Medicine, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
156
|
Liu FY, Li XZ. The roles of Arkadia in renal tubular epithelial to mesenchymal transition. Med Hypotheses 2006; 67:1205-7. [PMID: 16797872 DOI: 10.1016/j.mehy.2006.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 11/28/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) can regulate the stability of proteins, which is regarded as an important mechanism in controlling various biological processes. In the pathway, E3 ubiquitin ligases play critical roles in the recognition of target proteins and degradation by 26S proteasomes. Arkadia is one of the E3 ubiquitin ligases, and recent research has shown that Arkadia amplifies TGF-beta signalling through degradation of Smad7. The cellular level of Smad7 plays an important role in the regulation of Smad-mediated TGF-beta signalling during progression of organ fibrosis. Studies indicate that the level of Smad7 protein expression is decreased in progression of tubulointerstitial fibrosis. Moreover, growing evidence suggests renal tubular epithelial to mesenchymal transition (EMT) plays a key role in renal tubulointerstitial fibrosis and transforming growth factor-beta(1) (TGF-beta(1)) is the most potent inducer that is capable of initiating and completing the entire EMT course. Therefore, the activation of Smad signalling induced by TGF-beta(1) plays a key role in the mechanism of renal tubular EMT, and in this process, Arkadia may has an important influence on the mechanism above mentioned through degradation of Smad7.
Collapse
Affiliation(s)
- Fu-You Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Middle Ren-Min Road No. 86, Changsha, Hunan 410011, China
| | | |
Collapse
|
157
|
Padda R, Wamsley-Davis A, Gustin MC, Ross R, Yu C, Sheikh-Hamad D. MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells. Am J Physiol Renal Physiol 2006; 291:F874-81. [PMID: 16684924 DOI: 10.1152/ajprenal.00377.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about which upstream protein kinases mediate activation of p38 by hypertonicity in mammals. The MKKKs, MEKK3 and MEKK4, are upstream regulators of p38 in many cells. To investigate these signaling proteins as potential activators of p38 in the hypertonicity response, we generated stably transfected MDCK cells that express activated versions of MEKK3 or MEKK4, utilized RNA interference to deplete MEKK3, and employed pharmacological inhibition of p38 kinase. MEKK3-transfected cells demonstrated increased betaine transporter (BGT1) mRNA levels and upregulated tonicity enhancer (TonE)-driven luciferase activity under isotonic (basal) and hypertonic conditions compared with empty vector-transfected controls; small-interference RNA-mediated depletion of MEKK3 downregulated the activity of p38 kinase and decreased the expression of BGT1 mRNA. p38 Kinase inhibition abolished the effects of MEKK3 activation on BGT1 induction. In contrast, the response to hypertonicity in MEKK4-kA-transfected cells was similar to that observed in empty vector-transfected controls. Our data are consistent with the existence of an input from MEKK3 -->--> p38 kinase -->--> TonE.
Collapse
Affiliation(s)
- Ranjit Padda
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
158
|
Yano Y, Yoshida M, Hoshino S, Inoue K, Kida H, Yanagita M, Takimoto T, Hirata H, Kijima T, Kumagai T, Osaki T, Tachibana I, Kawase I. Anti-fibrotic effects of theophylline on lung fibroblasts. Biochem Biophys Res Commun 2006; 341:684-90. [PMID: 16430859 DOI: 10.1016/j.bbrc.2006.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 01/06/2006] [Indexed: 11/29/2022]
Abstract
Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-beta-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-beta-induced alpha-SMA protein. A cAMP analog also inhibited TGF-beta-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-beta-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway.
Collapse
Affiliation(s)
- Yukihiro Yano
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, Masuoka N, Yamada M, Kira S, Makino H. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 2006; 68:1018-31. [PMID: 16105032 DOI: 10.1111/j.1523-1755.2005.00494.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Catalase is one of the important antioxidant enzymes regulating the levels of intracellular hydrogen peroxide and hydroxyl radical. The effect of catalase deficiency on progressive renal fibrosis has not been fully elucidated. METHODS Homozygous acatalasemic mutant mice (C3H/AnLCs(b)Cs(b)) and control wild-type mice (C3H/AnLCs(a)Cs(a)) were subjected to 5/6 nephrectomy. The functional and morphological alterations of the remnant kidneys, including tubulointerstitial fibrosis, epithelial to mesenchymal transition (EMT), peroxidation, antioxidant enzyme activity, and gene expression of EMT-related molecules were compared between the two groups at 6, 12, and 18 weeks after 5/6 nephrectomy. RESULTS The 5/6 nephrectomy resulted in albuminuria, decreased renal function, and tubulointerstitial fibrosis with accumulation of type I and type IV collagens in the remnant kidneys of both mouse groups. However, the degree of these changes was significantly higher in acatalasemic mice after 5/6 nephrectomy as compared with wild-type mice until week 18. EMT, a crucial phenotypic alteration of tubular epithelial cells, was observed in acatalasemic mice by electron microscopy and was associated with upregulation of EMT-related alpha-smooth muscle actin (alpha-SMA), transforming growth factor-beta1 (TGF-beta1), connective tissue growth factor (CTGF), and fibroblast specific protein-1 (FSP-1) gene expression. Significant increases in the tubulointerstitial deposition of lipid peroxidation products, including 4-hydroxy-2-nonenal and urinary excretion of 8-hydroxy-2'- deoxyguanosine were observed in the acatalasemic mice after 5/6 nephrectomy as compared with the wild-type mice. Glomerular sclerosis developed after tubulointerstitial injury in acatalasemic mice. The level of catalase activity remained low in the remnant kidneys of acatalasemic mice until week 18 without compensatory up-regulation of glutathione peroxidase or superoxide dismutase (SOD) activity. Finally, supplementation of a SOD mimetic tempol did not prevent peroxidation and tubulointerstitial fibrosis in the acatalasemic remnant kidneys. CONCLUSION These findings indicate that acatalasemia exacerbates renal oxidant tissue injury and sensitizes remnant kidneys to EMT and progressive renal fibrosis. This study suggests a central role for catalase in the defense against oxidant-mediated renal fibrosis.
Collapse
Affiliation(s)
- Mizuho Kobayashi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J, Hoogen FVD, Herrick A, Mayes MD, Veale D, Haas J, Ledbetter S, Korn JH, Black CM, Seibold JR. Recombinant human anti–transforming growth factor β1 antibody therapy in systemic sclerosis: A multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. ACTA ACUST UNITED AC 2006; 56:323-33. [PMID: 17195236 DOI: 10.1002/art.22289] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate CAT-192, a recombinant human antibody that neutralizes transforming growth factor beta1 (TGFbeta1), in the treatment of early-stage diffuse cutaneous systemic sclerosis (dcSSc). METHODS Patients with SSc duration of <18 months were randomly assigned to the placebo group or to 1 of 3 CAT-192 treatment groups: 10 mg/kg, 5 mg/kg, 0.5 mg/kg. Infusions were given on day 0 and weeks 6, 12, and 18. The primary objective of this study was to evaluate the safety, tolerability, and pharmacokinetics of CAT-192. Secondary outcomes included the modified Rodnan skin thickness score (MRSS), the Scleroderma Health Assessment Questionnaire, assessment of organ-based disease, serum levels of soluble interleukin-2 receptor, collagen propeptides (N propeptide of type I [PINP] and type III collagen), and tissue levels of messenger RNA for procollagens I and III and for TGFbeta1 and TGFbeta2. RESULTS Forty-five patients were enrolled. There was significant morbidity and mortality, including 1 death in the group receiving 0.5 mg/kg of CAT-192 and 3 deaths in the group receiving 5 mg/kg of CAT-192. There were more adverse events and more serious adverse events in patients receiving CAT-192 than in those receiving placebo, although these events were not more frequent in the high-dose treatment group. The MRSS improved in all groups during the study, but there was no evidence of a treatment effect for CAT-192. Improvement in the MRSS correlated with the disease duration (r = -0.54, P = 0.0008). Changes in the PINP level from baseline correlated with changes in the MRSS (r = 0.37, P = 0.027). CONCLUSION We report the first evaluation of a systemically administered and repeatedly dosed anti-TGFbeta1 drug. In this pilot study, CAT-192, in doses up to 10 mg/kg, showed no evidence of efficacy. The utility of clinical and biochemical outcome measures and the feasibility of multicenter trials of early dcSSc were confirmed.
Collapse
|
161
|
Hullett DA, Laeseke PF, Malin G, Nessel R, Sollinger HW, Becker BN. Prevention of chronic allograft nephropathy with vitamin D. Transpl Int 2005; 18:1175-86. [PMID: 16162105 DOI: 10.1111/j.1432-2277.2005.00187.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic allograft nephropathy (CAN) is the leading cause of late allograft loss in kidney transplantation. Interstitial fibrosis and glomerulosclerosis are characteristic of CAN. Transforming growth factor beta-1 (TGFbeta-1) is associated with both of these histologic findings in the transplant setting. Recent studies have suggested that vitamin D signaling pathways may interact with and regulate TGFbeta-1 mediated events. We examined the efficacy of 1,25-dihydroxyvitamin D(3), the active metabolite of vitamin D [1,25-(OH)(2)D(3)], the active metabolite of vitamin D, as monotherapy to prolong allograft survival and preserve renal function in a rat model of CAN, the Fisher 344 to Lewis model. Recipients went without treatment or were treated with cyclosporine A (CSA; 10 days) or 1,25(OH)(2)D(3) (1000, 500 or 250 ng/kg/day). Grafts were harvested at the time of rejection or at 24 weeks post-transplant. A portion of the graft was processed for histology and immunohistochemistry and a second portion was analyzed for protein expression by western blotting. Not only did 1,25-(OH)(2)D(3) treatment significantly prolong graft survival, but it also prevented histological changes associated with CAN. 1,25-(OH)(2)D(3) treatment significantly decreased Smad 2 expression. This TGFbeta signaling molecule is likely involved in fibrosis. Moreover, 1,25-(OH)(2)D(3) treatment increased Smad 7 expression, an important feedback molecule in the TGFbeta-1 signaling pathway. This suggests that 1,25-(OH)(2)D(3) interacts with TGFbeta-1 in limiting histological injury in this model of CAN. Furthermore, 1,25-(OH)(2)D(3), treatment increased expression of matrix metalloproteinase 2 (MMP-2), thus directly affecting levels of another important matrix molecule. Taken together our data suggests that 1,25-(OH)(2)D(3) mitigates CAN in this model by altering TGFbeta-1 and matrix-regulating molecules.
Collapse
Affiliation(s)
- Debra A Hullett
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Ruiz-Ortega M, Rupérez M, Esteban V, Rodríguez-Vita J, Sánchez-López E, Carvajal G, Egido J. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 2005; 21:16-20. [PMID: 16280370 DOI: 10.1093/ndt/gfi265] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin II (AngII) participates in the pathogenesis of renal diseases, through the regulation of two key processes inflammation and fibrosis. AT1 and AT2 are the main receptors of AngII. AT1 mediates most of the actions of AngII. This receptor regulates the expression of profibrotic factors, such as connective tissue growth factor (CTGF). The Smad signalling pathway and the Rho/Rho kinase system are two novel mechanisms involved in AngII-induced matrix regulation recently described. The role of AT2 receptors in renal pathophysiological processes is not fully elucidated. Experimental data suggest that AT2 receptors through activation of nuclear factor-kappaB participate in renal inflammatory cell recruitment. Studies in animal models of kidney injury have shown that the combined blockade of both AT1 and AT2 receptors, as well as the inhibition of the NF-kappaB pathway are necessary to stop the inflammatory process fully. On the whole, these data highlight the complex signalling systems activated by AngII and suggest novel potential targets to block fibrosis and inflammation in renal diseases.
Collapse
Affiliation(s)
- Marta Ruiz-Ortega
- Vascular and Renal Research Laboratory, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
163
|
Yamate J, Kuribayashi M, Kuwamura M, Kotani T, Ogihara K. Differential immunoexpressions of cytoskeletons in renal epithelial and interstitial cells in rat and canine fibrotic kidneys, and in kidney-related cell lines under fibrogenic stimuli. ACTA ACUST UNITED AC 2005; 57:135-47. [PMID: 16325524 DOI: 10.1016/j.etp.2005.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Myofibroblasts play an important role in chronic renal interstitial fibrosis. However, the origin and developmental mechanisms remain to be elucidated. The myofibroblasts may express various cytoskeletons during the development. Immunoexpressions of vimentin, desmin and alpha-smooth muscle actin (alpha-SMA) were analyzed using experimentally (cisplatin and unilateral ureteral obstruction) induced rat and spontaneous canine fibrotic kidneys or kidney-related cell lines incubated with transforming growth factor-beta1 (TGF-beta1), platelet-derived growth factor-BB (PDGF-BB) or their combination at various concentrations. In rat fibrotic kidneys, both renal epithelia and interstitial cells showed positive reactions to alpha-SMA and vimentin, supporting epithelial-mesenchymal transition (EMT) theory; however, renal epithelia did not react to desmin, though interstitial cells were reactive. Renal epithelia in canine fibrotic kidneys did not show a positive reaction to alpha-SMA, whereas interstitial cells reacted strongly to alpha-SMA; conversely, renal epithelia reacted strongly to desmin, but interstitial cells did not; vimentin expression was infrequently seen in renal epithelia and interstitial cells of canine kidneys. Exposure of TGF-beta1 to porcine renal epithelial cells (LLC-PK1), rat renal interstitial cells (NRK-49F), and rat immature mesenchymal cells (MT-9) dose-dependently increased selectively alpha-SMA-positive cell numbers. Moreover, PDGF-BB exhibited an additive effect on TGF-beta1-induced alpha-SMA expression in these cell lines when simultaneously added. alpha-SMA was the most plastic cytoskeleton under fibrogenic stimuli. This study shows that there are interspecies differences in cytoskeletal immunoexpressions of renal epithelia or interstitial cells between rat and canine fibrotic kidneys, and that the derivation of renal myofibroblasts may be heterogeneous, such as renal epithelia, interstitial cells or immature mesenchymal cells.
Collapse
Affiliation(s)
- Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuencho 1-1, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | |
Collapse
|
164
|
McMillan SJ, Xanthou G, Lloyd CM. Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clin Exp Allergy 2005; 35:388-96. [PMID: 15784120 PMCID: PMC4558957 DOI: 10.1111/j.1365-2222.02193.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Airway inflammation and remodelling are important pathophysiologic features of chronic asthma. Although current steroid use demonstrates anti-inflammatory activity, there are limited effects on the structural changes in the lung tissue. OBJECTIVE We have used a mouse model of prolonged allergen challenge that exhibits many of the salient features of airway remodelling in order to investigate the anti-remodelling effects of Budesonide. METHODS Treatment was administered therapeutically, with dosing starting after the onset of established eosinophilic airway inflammation and hyper-reactivity. RESULTS Budesonide administration reduced airway hyper-reactivity and leukocyte infiltration in association with a decrease in production of the Th2 mediators, IL-4, IL-13 and eotaxin-1. A reduction in peribronchiolar collagen deposition and mucus production was observed. Moreover, our data show for the first time that, Budesonide treatment regulated active transforming growth factor (TGF)-beta signalling with a reduction in the expression of pSmad 2 and the concomitant up-regulation of Smad 7 in lung tissue sections. CONCLUSIONS Therefore, we have determined that administration of Budesonide modulates the progression of airway remodelling following prolonged allergen challenge via regulation of inflammation and active TGF-beta signalling.
Collapse
Affiliation(s)
- S J McMillan
- Leukocyte Biology Section, Division of Biomedical Sciences, Faculty of Medicine Imperial College, London SW7 2AZ, UK
| | | | | |
Collapse
|
165
|
Huang H, Ma C, Yang M, Tang C, Wang H. Adrenomedullin impairs the profibrotic effects of transforming growth factor-beta1 through recruiting Smad6 protein in human renal tubular cells. Cell Physiol Biochem 2005; 15:117-24. [PMID: 15665522 DOI: 10.1159/000083644] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2004] [Indexed: 12/15/2022] Open
Abstract
Adrenomedullin (AM) was originally identified as a vasodilator peptide, and has recently been shown to be an antiproliferative factor in renal mesangial cells, suggesting that adrenomedullin may impair the progression of glomerulosclerosis. This study was to investigate the effect of adrenomedullin on transforming growth factor-beta1 (TGF-beta1)-stimulated cell growth, synthesis of extracellular matrix (ECM) components and the related molecular mechanism in a human tubular epithelial cell line HK-2. TGF-beta1 inhibited cell proliferation induced by fetal bovine serum, but neither AM itself affectted cell proliferation, nor did AM influence TGF-beta1-caused cell growth arrest. However, AM beginning at 10(-8) M alleviated the action of TGF-beta1-stimulated cellular collagen synthesis and secretion of fibronectin into cell culture supernatant. Activation of Smad proteins is known to be the key signaling pathway of the profibrotic effect of TGF-beta1, AM at 10(-8) M exerted no effect on TGF-beta1-induced Smad2 phosphorylation, but prevented the suppression of the inhibitory Smad6 protein by TGF-beta1 and restored Smad2-Samd6 complex formation. Our results suggest that AM can attenuate TGF-beta1-mediated renal tubulointerstitial ECM turnover via an antagonistic mechanism of inhibitory Smad in TGF-beta1-elicited signaling.
Collapse
Affiliation(s)
- Haichang Huang
- Division of Nephrology, Peking University First Hospital and Institute of Nephrology, China
| | | | | | | | | |
Collapse
|
166
|
Abstract
Extensive studies have demonstrated that transforming growth factor-beta (TGF-beta) plays an important role in the progression of renal diseases. TGF-beta exerts its biological functions mainly through its downstream signalling molecules, Smad2 and Smad3. It is now clear that Smad3 is critical for TGF-beta's pro-fibrotic effect, whereas the functions of Smad2 in fibrosis in response to TGF-beta still need to be determined. Our recent studies have demonstrated that Smad signalling is also a critical pathway for renal fibrosis induced by other pro-fibrotic factors, such as angiotensin II and advanced glycation end products (AGE). These pro-fibrotic factors can activate Smads directly and independently of TGF-beta. They can also cause renal fibrosis via the ERK/p38 MAP kinase-Smad signalling cross-talk pathway. In contrast, blockade of Smad2/3 activation by overexpression of an inhibitory Smad7 prevents collagen matrix production induced by TGF-beta, angiotensin II, high glucose and AGE and attenuates renal fibrosis in various animal models including rat obstructive kidney, remnant kidney and diabetic kidney diseases. Results from these studies indicate that Smad signalling is a key and final common pathway of renal fibrosis. In addition, TGF-beta has anti-inflammatory and immune-regulatory properties. Our most recent studies demonstrated that TGF-beta transgenic mice are protected against renal inflammation in mouse obstructive and diabetic models. Upregulation of renal Smad7, thereby blocking NF.kappaB activation via induction of IkappaBalpha, is a central mechanism by which TGF-beta inhibits renal inflammation. In conclusion, TGF-beta signals through Smad2/3 to mediate renal fibrosis, whereas induction of Smad7 inhibits renal fibrosis and inflammation. Thus, targeting Smad signalling by overexpression of Smad7 may have great therapeutic potential for kidney diseases.
Collapse
Affiliation(s)
- Wansheng Wang
- Department of Medicine-Nephrology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
167
|
Ng YY, Hou CC, Wang W, Huang XR, Lan HY. Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int 2005:S83-91. [PMID: 15752249 DOI: 10.1111/j.1523-1755.2005.09421.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) in renal fibrosis has been well studied, but little attention has been paid to the potential role of TGF-beta in the resolution of renal inflammation. We hypothesize that TGF-beta exerts its anti-inflammation properties by stimulating its negative signaling pathway involving Smad7. METHODS A rat remnant kidney model was treated with a doxycycline-regulated Smad7 gene or control empty vector using an ultrasound-microbubble (Optison)-mediated system. Smad7 transgene expression within the kidney was tightly controlled by the addition of doxycycline in the daily drinking water. All animals were euthanized at week 4 for examination of inflammatory responses. RESULTS Real-time polymerase chain reaction (PCR) and immunohistochemistry revealed that gene transfer of Smad7 resulted in a substantial inhibition of interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) expression (all P < 0.01 vs. control). This was associated with the attenuation of histology damage, proteinuria, serum creatinine, and an increase in creatinine clearance (all P < 0.05). In addition, overexpression of Smad7 significantly inhibited renal inflammation, including ICAM-1, iNOS, and accumulation of macrophages and T cells in both glomeruli and tubulointerstitium. Furthermore, gene transfer of Smad7 also substantially blocked nuclear factor kappa B (NFkappaB) activation in the rat remnant kidney (P < 0.01). CONCLUSION TGF-beta/Smad7 signaling plays a critical role in the resolution of renal inflammation in rat remnant kidney model. Inhibition of NFkappaB activation is a key mechanism by which Smad7 suppresses renal inflammation, which suggests a crosstalk pathway between NFkappaB and Smad7. The ability of Smad7 to inhibit renal inflammation indicates that ultrasound-microbubble-mediated Smad7 gene therapy may represents a new therapeutic strategy for glomerulonephritis.
Collapse
Affiliation(s)
- Yee-Yung Ng
- Section of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
168
|
Rodríguez-Vita J, Sánchez-López E, Esteban V, Rupérez M, Egido J, Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 2005; 111:2509-17. [PMID: 15883213 DOI: 10.1161/01.cir.0000165133.84978.e2] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) participates in vascular fibrosis. Transforming growth factor-beta (TGF-beta) is considered the most important fibrotic factor, and Smad proteins are essential components of the TGF-beta signaling system. Our aim was to investigate whether Ang II activates the Smad pathway in vascular cells and its potential role in fibrosis, evaluating connective tissue growth factor (CTGF) and extracellular matrix (ECM) proteins. METHODS AND RESULTS Systemic infusion of Ang II into Wistar rats increased aortic Smad2, phosphorylated-Smad2, and Smad4 expression, associated with CTGF upregulation. In growth-arrested vascular smooth muscle cells, Ang II treatment for 20 minutes caused Smad2 phosphorylation, nuclear translocation of phosphorylated-Smad2 and Smad4, and increased Smad DNA-binding activity. Ang II also caused Smad overexpression and Smad-dependent gene transcription. The AT1 antagonist losartan diminished Ang II-induced Smad activation. The blockade of endogenous TGF-beta did not modify the activation of Smad caused by Ang II. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 diminished Ang II-induced Smad2 phosphorylation. These data show that Ang II activates the Smad pathway via AT1 receptors and MAPK activation independently of TGF-beta. Transient transfection with Smad7, which interferes with receptor-mediated activation of Smad2, diminished Ang II-induced CTGF promoter activation, gene and protein expression, and fibronectin and type-1 procollagen overexpression, showing that Smad activation is involved in Ang II-induced fibrosis. CONCLUSIONS Our results show that Ang II activates the Smad signaling system in vascular cells in vivo and in vitro. Smad proteins are involved in Ang II-induced CTGF and ECM overexpression independently of TGF-beta. This novel finding suggests that Smad activation could be involved in the profibrogenic effects of Ang II in vascular diseases.
Collapse
Affiliation(s)
- Juan Rodríguez-Vita
- Vascular and Renal Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
169
|
Wahab NA, Weston BS, Mason RM. Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res 2005; 307:305-14. [PMID: 15950619 DOI: 10.1016/j.yexcr.2005.03.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGFbeta) drives fibrosis in diseases such as diabetic nephropathy (DN). Connective tissue growth factor (CTGF; CCN2) has also been implicated in this, but the molecular mechanism is unknown. We show that CTGF enhances the TGFbeta/Smad signaling pathway by transcriptional suppression of Smad 7 following rapid and sustained induction of the transcription factor TIEG-1. Smad 7 is a known antagonist of TGFbeta signaling and TIEG-1 is a known repressor of Smad 7 transcription. CTGF enhanced TGFbeta-induced phosphorylation and nuclear translocation of Smad 2 and Smad 3 in mesangial cells. Antisense oligonucleotides directed against TIEG-1 prevented CTGF-induced downregulation of Smad 7. CTGF enhanced TGFbeta-stimulated transcription of the SBE4-Luc reporter gene and this was markedly reduced by TIEG-1 antisense oligonucleotides. Expression of the TGFbeta-responsive genes PAI-1 and Col III over 48 h was maximally stimulated by TGFbeta+CTGF compared to TGFbeta alone, while CTGF alone had no significant effect. TGFbeta-stimulated expression of these genes was markedly reduced by both CTGF and TIEG-1 antisense oligonucleotides, consistent with the endogenous induction of CTGF by TGFbeta. We propose that under pathological conditions, where CTGF expression is elevated, CTGF blocks the negative feedback loop provided by Smad 7, allowing continued activation of the TGFbeta signaling pathway.
Collapse
Affiliation(s)
- Nadia Abdel Wahab
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
170
|
Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. THE JOURNAL OF IMMUNOLOGY 2005; 174:2990-9. [PMID: 15728512 DOI: 10.4049/jimmunol.174.5.2990] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nonpathogenic enteric bacterial species initiate and perpetuate experimental colitis in IL-10 gene-deficient mice (IL-10(-/-)). Bacteria-specific effects on the epithelium are difficult to dissect due to the complex nature of the gut microflora. We showed that IL-10(-/-) mice compared with wild-type mice fail to inhibit proinflammatory gene expression in native intestinal epithelial cells (IEC) after the colonization with colitogenic Gram-positive Enterococcus faecalis. Interestingly, proinflammatory gene expression was transient after 1 wk of E. faecalis monoassociation in IEC from wild-type mice, but persisted after 14 wk of bacterial colonization in IL-10(-/-) mice. Accordingly, wild-type IEC expressed phosphorylated NF-kappaB subunit RelA (p65) and phosphorylated Smad2 only at day 7 after bacterial colonization, whereas E. faecalis-monoassociated IL-10(-/-) mice triggered persistent RelA, but no Smad2 phosphorylation in IEC at days 3, 7, 14, and 28. Consistent with the induction of TLR2-mediated RelA phosphorylation and proinflammatory gene expression in E. faecalis-stimulated cell lines, TLR2 protein expression was absent after day 7 from E. faecalis-monoassociated wild-type mice, but persisted in IL-10(-/-) IEC. Of note, TGF-beta1-activated Smad signaling was associated with the loss of TLR2 protein expression and the inhibition of NF-kappaB-dependent gene expression in IEC lines. In conclusion, E. faecalis-monoassociated IL-10(-/-), but not wild-type mice lack protective TGF-beta/Smad signaling and fail to inhibit TLR2-mediated proinflammatory gene expression in the intestinal epithelium, suggesting a critical role for IL-10 and TGF-beta in maintaining normal epithelial cell homeostasis in the interplay with commensal enteric bacteria.
Collapse
Affiliation(s)
- Pedro A Ruiz
- Centre for Nutrition and Food Research, Immunobiology of Nutrition, Technical University of Munich, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
171
|
Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D, Lan HY. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:761-71. [PMID: 15743788 PMCID: PMC1602350 DOI: 10.1016/s0002-9440(10)62297-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor (TGF)-beta1 has been shown to play a critical role in hypertensive nephropathy. We hypothesized that blocking TGF-beta1 signaling could attenuate renal fibrosis in a rat model of remnant kidney disease. Groups of six rats were subjected to 5/6 nephrectomy and received renal arterial injection of a doxycycline-regulated Smad7 gene or control empty vector using an ultrasound-microbubble-mediated system. Smad7 transgene expression within the kidney was tightly controlled by the addition of doxycycline in the daily drinking water. All animals were euthanized at week 4 for renal functional and histological examination. Hypertension of equivalent magnitude (190 to 200 mmHg) developed in both Smad7- and empty vector-treated rats. However, treatment with Smad7 substantially inhibited Smad2/3 activation and prevented progressive renal injury by inhibiting the rise of 24-hour proteinuria (P < 0.001) and serum creatinine (P < 0.001), preserving creatinine clearance (P < 0.05), and attenuating renal fibrosis and vascular sclerosis such as collagen I and III expression (P < 0.01) and myofibroblast accumulation (P < 0.001). In conclusion, TGF-beta/Smad signaling plays a critical role in renal fibrosis in a rat remnant kidney model. The ability of Smad7 to block Smad2/3 activation and attenuate renal and vascular sclerosis demonstrates that ultrasound-mediated Smad7 gene therapy may be a useful therapeutic strategy for the prevention of renal fibrosis in association with hypertension.
Collapse
Affiliation(s)
- Chun-Cheng Hou
- Department of Medicine, Municipal Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
172
|
Sauvant C, Holzinger H, Gekle M. Proximal tubular toxicity of ochratoxin A is amplified by simultaneous inhibition of the extracellular signal-regulated kinases 1/2. J Pharmacol Exp Ther 2005; 313:234-41. [PMID: 15626719 DOI: 10.1124/jpet.104.079475] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin involved in the development of chronic nephropathies and a known carcinogen. As we have shown previously, OTA activates mitogen-activated protein kinases [extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-jun amino-terminal kinase (JNK), and extracellular-regulated protein kinase 38 (p38)] in proximal tubular cells (opossum kidney and normal rat kidney epithelial). ERK1/2, JNK, or p38 are thought to mediate opposite action on apoptosis, fibrosis, and inflammation. As we have already shown, OTA activates the latter processes. Here, we investigated the effect of OTA in the absence or presence of the ERK1/2 inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4bis(2-aminophenylthio)-butadiene] to test whether OTA then will exert increased toxicity. In the presence of ERK1/2 inhibition, OTA decreased cell number and protein to a significantly larger extent compared with OTA alone. The same was true for epithelial tightness, apoptosis (caspase-3 activity), and necrosis (lactate dehydrogenase release). Furthermore, simultaneous inhibition of ERK1/2 amplified the effect of OTA on markers of inflammation (nuclear factor of the kappa-enhancer in B cells activity), fibrosis (collagen secretion), and epithelial mesenchymal transition (alpha smooth muscle actin). OTA induces phenomena typical for chronic interstitial nephropathy and activates ERK1/2, JNK, and p38 in proximal tubular cells. Inhibition of ERK1/2 aggravates the effects of OTA or even induces toxicity at normally nontoxic concentrations. This is highly likely due to activation of JNK and p38. Our data indicate a new mechanistic explanation for the toxic actions induced by OTA, and they are notable with respect to a possible coexposition of the kidney to OTA and naturally occurring ERK1/2 inhibitors. Finally, our data give rise to an attractive hypothesis on the coincidence of increased OTA exposition and urinary tract tumors in humans.
Collapse
Affiliation(s)
- C Sauvant
- Physiologisches Institut der Universitüt Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
173
|
Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, Wang XJ, Lan HY. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 2005; 16:1371-83. [PMID: 15788474 DOI: 10.1681/asn.2004121070] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
TGF-beta has been shown to play a critical role in anti-inflammation; however, the signaling mechanisms of TGF-beta in anti-inflammatory response remains largely unclear. This study reported that mice that overexpress latent TGF-beta1 on skin are protected against renal inflammation in a model of obstructive kidney disease and investigated the signaling mechanism of TGF-beta1 in inhibition of renal inflammation in vivo and in vitro. Seven days after urinary obstruction, wild-type mice developed severe renal inflammation, including massive T cell and macrophage infiltration and marked upregulation of IL-1beta, TNF-alpha, and intercellular adhesion molecule-1 (all P < 0.001). Surprising, renal inflammation was prevented in transgenic mice. This was associated with an increase in latent TGF-beta1 in circulation (a 10-fold increase) and renal tissues (a 2.5-fold increase). Further studies showed that inhibition of renal inflammation in TGF-beta1 transgenic mice was also associated with a marked upregulation of renal Smad7 and IkappaBalpha and a suppression of NF-kappaB activation in the diseased kidney (all P < 0.01). These in vivo findings suggested the importance of TGF-beta-NF-kappaB cross-talk signaling pathway in regulating renal inflammation. This was tested in vitro in a doxycycline-regulated Smad7-expressing renal tubular cell line. Overexpression of Smad7 was able to upregulate IkappaBalpha directly in a time- and dose-dependent manner, thereby inhibiting NF-kappaB activation and NF-kappaB-driven inflammatory response. In conclusion, latent TGF-beta may have protective roles in renal inflammation. Smad7-mediated inhibition of NF-kappaB activation via the induction of IkBalpha may be the central mechanism by which latent TGF-beta prevents renal inflammation.
Collapse
Affiliation(s)
- Wansheng Wang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Alkek N520, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB. Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. J Am Soc Nephrol 2005; 16:667-75. [PMID: 15677311 DOI: 10.1681/asn.2004050425] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study examined the role of ROS in TGF-beta1-induced MAPK activation and EMT in rat proximal tubular epithelial cells. Growth-arrested and synchronized NRK-52E cells were stimulated with TGF-beta1 (0.2 to 20 ng/ml) or H(2)O(2) (1 to 500 microM) in the presence or absence of antioxidants (N-acetylcysteine or catalase), inhibitors of NADPH oxidase (diphenyleneiodonium and apocynin), mitochondrial electron transfer chain subunit I (rotenone), and MAPK (PD 98059, an MEK [MAP kinase/ERK kinase] inhibitor, or p38 MAPK inhibitor) for up to 96 h. TGF-beta1 increased dichlorofluorescein-sensitive cellular ROS, phosphorylated Smad 2, p38 MAPK, extracellular signal-regulated kinases (ERK)1/2, alpha-smooth muscle actin (alpha-SMA) expression, and fibronectin secretion and decreased E-cadherin expression. Antioxidants effectively inhibited TGF-beta1-induced cellular ROS, phosphorylation of Smad 2, p38 MAPK, and ERK, and EMT. H(2)O(2) reproduced all of the effects of TGF-beta1 with the exception of Smad 2 phosphorylation. Chemical inhibition of ERK but not p38 MAPK inhibited TGF-beta1-induced Smad 2 phosphorylation, and both MAPK inhibitors inhibited TGF-beta1- and H(2)O(2)-induced EMT. Diphenyleneiodonium, apocynin, and rotenone also significantly inhibited TGF-beta1-induced ROS. Thus, this data suggest that ROS play an important role in TGF-beta1-induced EMT primarily through activation of MAPK and subsequently through ERK-directed activation of Smad pathway in proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Dong Young Rhyu
- Ewha Womans University College of Pharmacy, 11-1 Daehyun-dong, Sedaimun-gu, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
175
|
Sauvant C, Holzinger H, Gekle M. The Nephrotoxin Ochratoxin A Induces Key Parameters of Chronic Interstitial Nephropathy in Renal Proximal Tubular Cells. Cell Physiol Biochem 2005; 15:125-34. [PMID: 15665523 DOI: 10.1159/000083660] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 01/06/2023] Open
Abstract
Ochratoxin A (OTA) is a nephrotoxic and cancerogenic mycotoxin. There is epidemiological evidence that OTA exposition leads to cortical interstitial nephropathies in humans. However, virtually no data are available investigating the effect of OTA on renal cortical cells with respect to induction of nephropathy. Thus, we investigated whether OTA is able to induce changes of cellular properties potentially leading to interstitial nephropathy, using proximal tubular cell lines (OK, NRK-52E). OTA decreased cell number and cell protein time and dose dependently. Accordingly we investigated the effect of 100 nM or 1000 nM OTA. The decline of cell number after OTA exposure is due to necrosis and apoptosis, as measured by LDH release or DNA ladder formation and caspase-3 activation, respectively. OTA incubation of proximal tubular cells also resulted in a loss of epithelial tightness as determined by diffusion of FITC labeled inulin. Inflammation, fibrosis and epithelial-to-mesenchymal transition are described in chronic interstitial renal disease. Therefore, we also investigated the effect of OTA on NFkappaB activity, collagen secretion and generation of alpha smooth muscle actin. OTA alone was sufficient to induce the latter parameters in proximal tubular cells. Finally, OTA is a nephrotoxcic substance and elevated activity of mitogen activated protein kinases (MAPK) is described in nephropathies. As we investigated the effect of OTA on activity of ERK, JNK and p38 by ELISA, we found that OTA activates the MAPK measured dose dependently. In summary, OTA induced phenomena typical for chronic interstitial nephropathy, like loss of cells and epithelial tightness, necrosis and apoptosis as well as markers of inflammation, fibrosis and epithelial-to-mesenchymal transition in proximal tubular cells. Thus, we could show for the first time that OTA is able to induce key parameters of nephropathy in proximal tubular cells in culture. Moreover OTA interacts with MAPK and thus may exert its specific toxic actions.
Collapse
|
176
|
Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, Kapus A. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:1955-67. [PMID: 15579439 PMCID: PMC1618715 DOI: 10.1016/s0002-9440(10)63247-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Injury of the tubular epithelium and TGF-beta1-induced conversion of epithelial cells to alpha-smooth muscle actin (SMA)-expressing myofibroblasts are key features of kidney fibrosis. Since injury damages intercellular junctions and promotes fibrosis, we hypothesized that cell contacts are critical regulators of TGF-beta 1-triggered epithelial-to-mesenchymal transition (EMT). Here we show that TGF-beta 1 was unable to induce EMT in intact confluent monolayers, but three different models of injury-induced loss of epithelial integrity (subconfluence, wounding, and contact disassembly by Ca(2+)-removal) restored its EMT-inducing effect. This manifested in loss of E-cadherin, increased fibronectin production and SMA expression. TGF-beta 1 or contact disassembly alone only modestly stimulated the SMA promoter in confluent layers, but together exhibited strong synergy. Since beta-catenin is a component of intact adherens junctions, but when liberated from destabilized contacts may act as a transcriptional co-activator, we investigated its role in TGF-beta 1-provoked EMT. Contact disassembly alone induced degradation of E-cadherin and beta-catenin, but TGF-beta1 selectively rescued beta-catenin and stimulated the beta-catenin-driven reporter TopFLASH. Moreover, chelation of free beta-catenin with the N-cadherin cytoplasmic tail suppressed the TGF-beta1 plus contact disassembly-induced SMA promoter activation and protein expression. These results suggest a beta-catenin-dependent two-hit mechanism in which both an initial epithelial injury and TGF-beta 1 are required for EMT.
Collapse
Affiliation(s)
- András Masszi
- Department of Surgery, University Health Network and University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
PURPOSE OF REVIEW Tubulointerstitial fibrosis is the final common pathway to end-stage renal disease. Understanding the mechanisms of tubulointerstitial fibrosis is essential in establishing novel therapeutic strategies for the prevention or arrest of progressive kidney diseases. The present review focuses on a newly proposed mechanism of tubulointerstitial fibrosis, one that emphasizes the roles of epithelial-mesenchymal transition and cellular activation. RECENT FINDINGS Among the cells that accumulate in the renal interstitium, fibroblasts are the principal effectors mediating tubulointerstitial fibrosis. By contrast, the phagocytosis of extracellular matrix and apoptotic cells by macrophages may actually exert a beneficial effect. Interstitial fibroblasts are more heterogeneous than expected, and during renal fibrosis new fibroblasts are derived mainly through epithelial-mesenchymal transition. The intracellular signaling pathways leading to initiation of epithelial-mesenchymal transition remain largely unknown, though recent studies have identified beta-catenin and Smad3 activation of lymphoid enhancer factor, integrin-linked kinase, and small GTPases and mitogen-activated protein kinases as key components. Transforming growth factor-beta is believed to be a critical fibrogenic factor, but recent studies have also focused on transforming growth factor-beta independent pathways as mechanisms of tubulointerstitial fibrosis. As the mechanisms underlying tubulointerstitial fibrosis leading to epithelial-mesenchymal transition have been identified, so have cytokines that efficiently antagonize renal fibrosis, particularly bone morphogenic protein-7 and hepatocyte growth factor. SUMMARY In combination with traditional angiotensin converting enzyme inhibitors, newly identified cytokines may eventually form the basis for new therapeutic strategies aimed at inhibiting the progression of renal disease.
Collapse
Affiliation(s)
- Masayuki Iwano
- First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | |
Collapse
|
178
|
Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, Chen Y, Zhu HJ, Kang DH, Schreiner GF, Lan HY, Johnson RJ. TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int 2004; 66:605-13. [PMID: 15253713 DOI: 10.1111/j.1523-1755.2004.00780.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Angiogenesis has a key role in numerous disease processes. One of the most important angiogenic factors is vascular endothelial growth factor (VEGF-A), whereas thrombospondin-1 (TSP-1) is a major antiangiogenic factor. Recent studies have shown that VEGF-A as well as TSP-1 is regulated by transforming growth factor-beta1 (TGF-beta1), but the mechanism remains unclear. METHODS We examined the role of TGF-beta1 and its signaling pathways in mediating expression of these two molecules. Rat proximal tubular cells (NRK52E) were stimulated with TGF-beta1 to induce VEGF-A and TSP-1 synthesis. To clarify roles of receptor-activated Smads (R-Smads), we blocked Smad signaling using overexpression of the inhibitory Smad, Smad7, and by using fibroblasts from wild-type or knockout mice. To confirm the antiantigenic role of Smads, soluble Flt-1 regulation in response to TGF-beta1 was also examined. In addition, the effect of conditioned media from NRK52E and Smad knockout cells was examined on endothelial cell proliferation. RESULTS Induction of VEGF-A and TSP-1 by TGF-beta1 in NRK52E cells was associated with activation of pathway-restricted R-Smads (Smad2 and 3) and blocking these Smads by overexpression of Smad7 blocked their induction. By using of Smad knockout cells, Smad3 was shown to have a key role in the stimulation of VEGF-A expression whereas Smad2 was critical for TSP-1 expression. Consistent with the hypothesis that Smad2 has an antiangiogenic function, we also demonstrated that Smad2, but not Smad3, mediated the expression of VEGF-A antagonist, soluble VEGF-A receptor sFlt-1, in response to TGF-beta1. Conditioned media from NRK52E, which was stimulated by TGF-beta1 for 24 hours, did not induce endothelial cell proliferation. However, conditioned media from Smad2 knockout induced endothelial cell proliferation, whereas endothelial cell proliferation was inhibited by Smad3 knockout-derived conditioned media. CONCLUSION R-Smads have distinct roles in mediating the expression of pro- and antiangiogenic growth factors in response to TGF-beta1.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Division of Nephrology-Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA. Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens 2004; 13:417-22. [PMID: 15199292 DOI: 10.1097/01.mnh.0000133974.24935.fe] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW When last reviewed, bone morphogenetic protein 7 was presented as a potential new renal therapeutic agent, with multiple efficacies in chronic kidney disease. The object of this review is to describe progress from many sources since then in support or denial of the hypothesis. RECENT FINDINGS Bone morphogenetic protein 7 has been shown to be an effective defence in several forms of chronic kidney disease in animal models, and its mechanisms of action have begun to be elucidated. Bone morphogenetic protein 7 inhibits tubular epithelial cell de-differentiation, mesenchymal transformation and apoptosis stimulated by various renal injuries. Bone morphogenetic protein 7 preserves glomerular integrity and inhibits injury-mediated mesangial matrix accumulation. In renal osteodystrophy, bone morphogenetic protein 7 affects osteoblast morphology and number, eliminates peritrabecular fibrosis, decreases bone resorption, and increases bone formation in secondary hyperparathyroidism. Bone morphogenetic protein 7 restores normal rates of bone formation in the adynamic bone disorder. Bone morphogenetic protein 7 is broadly efficacious in renal osteodystrophy, and importantly increases the skeletal deposition of ingested phosphorus and calcium, improving ion homeostasis in chronic kidney disease. Bone morphogenetic protein 7 was shown to prevent vascular calcification in a model of chronic kidney disease associated with the restoration of osteocalcin expression to normal tissue-restricted sites. SUMMARY Bone morphogenetic protein 7 may be a powerful new therapeutic agent for chronic kidney disease, with the novel attribute of not only treating the kidney disease itself, but also directly inhibiting some of the most important complications of the disease state.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
180
|
Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T, Kurokawa K, Fujita T, Ingelfinger JR, Nangaku M. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 2004; 65:871-80. [PMID: 14871406 DOI: 10.1111/j.1523-1755.2004.00461.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Tubulointerstitial fibrosis leads to progressive kidney disease and, ultimately, may result in end-stage renal disease (ESRD). Myofibroblasts, which express alpha-smooth muscle actin (alpha-SMA) in their cytoplasm, regulate renal fibrogenesis. Recent studies suggest that certain interstitial myofibroblasts derive from renal tubular cells that have undergone epithelial-mesenchymal transformation (EMT) (transdifferentiation). However, the role(s) of hypoxia, which is involved in progressive kidney disease, on tubular EMT remains unclear. METHODS Immortalized rat proximal tubular cells (IRPTC) were cultured in normobaric hypoxia (1% O2) for 3, 6, or 15 days, with match control in normoxic conditions. alpha-SMA, vimentin, and desmin chosen as markers of EMT were measured by immunocytochemistry and immunoblots collagen I production and cell motility were chosen as functional assays. Various concentrations of cobaltous chloride (CoCl2) were used as hypoxic mimickers. In vivo studies were carried out in a chronic ischemic kidney model. RESULTS Immunohistochemical studies revealed increased expression of alpha-SMA. Striking morphologic changes were detected after 6 days of hypoxia for alpha-SMA-positive fibroblast-like cells (SMA + fib) and after 15 days for alpha-SMA-positive myofibroblast-like cells (SMA + myo). Immunoblots confirmed these findings. Collagen I production increased in a time-dependent manner parallel to alpha-SMA expression. Cell motility assays demonstrated that transformed cells had higher migratory capacity than normal tubular cells. Cobaltous salt also induced alpha-SMA and collagen I synthesis. Chronic ischemic kidney revealed in vivo tubular EMT at day 7. CONCLUSION Hypoxia can induce tubular EMT. This process may play an important role in progression of kidney disease.
Collapse
Affiliation(s)
- Krissanapong Manotham
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Fan H, Harrell JR, Dipp S, Saifudeen Z, El-Dahr SS. A novel pathological role of p53 in kidney development revealed by gene-environment interactions. Am J Physiol Renal Physiol 2004; 288:F98-107. [PMID: 15383401 DOI: 10.1152/ajprenal.00246.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene-environment interactions are implicated in congenital human disorders. Accordingly, there is a pressing need to develop animal models of human disease, which are the product of defined gene-environment interactions. Previously, our laboratory demonstrated that gestational salt stress of bradykinin B(2) receptor (B(2)R)-null mice induces renal dysgenesis and early death of the offspring. In contrast, salt-stressed B(2)R +/+ or +/- littermates have normal development. The present study investigates the mechanisms underlying the susceptibility of B(2)R-null mice to renal dysgenesis. Proteomic and conventional Western blot screens identified E-cadherin among the differentially repressed proteins in B(2)R-/- kidneys, whereas the checkpoint kinase Chk1 and its substrate P-Ser(20) p53 were induced. We tested the hypothesis that p53 mediates repression of E-cadherin gene expression and is causally linked to the renal dysgenesis. Genetic crosses between B(2)R -/- and p53+/- mice revealed that germline reduction of p53 gene dosage rescues B(2)R-/- mice from renal dysgenesis and restores kidney E-cadherin gene expression. Furthermore, gamma-irradiation induces repression of E-cadherin gene expression in p53+/+ but not -/- cells. In transient transfection assays, p53 repressed human E-cadherin promoter-driven reporter activity, whereas a mutant p53, which cannot bind DNA, did not. Functional promoter analysis indicated the presence of a p53-responsive element in exon 1, which partially mediates p53-induced repression. Chromatin immunoprecipitation assays revealed that p53 inhibits histone acetylation of the E-cadherin promoter. Treatment with a histone deacetylase inhibitor reversed both p53-mediated promoter repression and deacetylation. In conclusion, this study demonstrates that gene-environment interactions cooperate to induce congenital defects through p53 activation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Pediatrics, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
182
|
Lai KN, Tang SCW, Guh JY, Chuang TD, Lam MF, Chan LYY, Tsang AWL, Leung JCK. Polymeric IgA1 from patients with IgA nephropathy upregulates transforming growth factor-beta synthesis and signal transduction in human mesangial cells via the renin-angiotensin system. J Am Soc Nephrol 2004; 14:3127-37. [PMID: 14638911 DOI: 10.1097/01.asn.0000095639.56212.bf] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effects of polymeric IgA1 (pIgA1) and monomeric IgA1 (mIgA1) from patients with IgA nephropathy (IgAN) on the renin-angiotensin system (RAS) and TGF-beta synthesis were examined in cultured human mesangial cells (HMC). Both pIgA1 and mIgA1 induced renin gene expression in HMC, in a dose-dependent manner. Similar findings were observed for TGF-beta gene and protein expression. The values measured in HMC incubated with pIgA1 were significantly higher than those in HMC incubated with equivalent amounts of mIgA1. When similar experiments were performed with the addition of either captopril or losartan, there was a significant increase in the renin gene expression by HMC, whereas the synthesis of TGF-beta was markedly reduced. The TGF-beta signal transduction pathways in HMC were studied by measuring the receptor-regulated Smad proteins (Smad 2 and 3) and common-partner Smad proteins (Smad 4). pIgA1 from patients with IgAN upregulated Smad activity in HMC, and the activity observed in HMC that had been preincubated with pIgA1 was readily suppressed with optimal concentrations of captopril or losartan. The effects of pIgA1 on the RAS were further examined in HMC incubated with IgA isolated from 30 patients with IgAN, 30 healthy subjects, and disease control subjects with other diseases. pIgA1 induction of angiotensin II or TGF-beta synthesis in HMC was significantly greater with preparations from patients with IgAN, compared with healthy or disease control subjects. The findings support a pathogenetic role of pIgA1 in IgAN through upregulation of the RAS and TGF-beta, leading to chronic renal failure with renal fibrosis.
Collapse
Affiliation(s)
- Kar Neng Lai
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Guh JY, Chuang TD, Chen HC, Hung WC, Lai YH, Shin SJ, Chuang LY. Beta-hydroxybutyrate-induced growth inhibition and collagen production in HK-2 cells are dependent on TGF-beta and Smad3. Kidney Int 2004; 64:2041-51. [PMID: 14633126 DOI: 10.1046/j.1523-1755.2003.00330.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ketonuria is common in diabetes. The major form of ketone body is beta-hydroxybutyrate (beta-HB), which is metabolized by the proximal tubule. Transforming growth factor beta (TGF-beta) and tubulopathy are important in diabetic nephropathy. Thus, the role of TGF-beta and the downstream Smad3 in beta-HB-induced effects in the human proximal tubule (HK-2 cell) was studied. METHODS Effects of beta-HB (0.1 to 10 mmol/L) on HK-2 cells were determined for: proliferation, cell cycle distribution, collagen production, tubular transdifferentiation [expression of alpha-smooth muscle actin (alpha-SMA) protein], TGF-beta, Smad2/3, p21WAF1, and p27kip1. RESULTS Beta-HB (0.1 to 10 mmol/L) dose dependently decreased proliferation, arrested the cells in G0/G1 phase of the cell cycle, and increased p21WAF1/p27kip1 protein expression at 48 hours (without affecting p21WAF1/p27kip1 mRNA and transcription). beta-HB (1 mmol/L) increased p21WAF1/p27kip1 protein half-lives. Beta-HB (1 mmol/L) increased TGF-beta transcription at 24 hours and TGF-beta1 mRNA/bioactivity at 48 hours. Beta-HB (1 mmol/L) increased nuclear Smad2/3 protein expression and increased collagen production (without affecting tubular transdifferentiation), which were reversed by Smad7, dominant-negative Smad3, and N-acetylcysteine. Dominant-negative Smad3 reversed beta-HB-induced TGF-beta transcription at 24 hours, and reversed TGF-beta1 bioactivity at 48 hours. Dominant-negative Smad3 reversed beta-HB-induced p21WAF1/p27kip1 protein expression at 48 hours. Finally, N-acetylcysteine, TGF-beta antibody, Smad7, and dominant-negative Smad3 reversed beta-HB (1 mmol/L)-induced growth inhibition at 48 hours. CONCLUSION Beta-HB activated Smad 2/3 by oxidative stress. TGF-beta and Smad3 mediate beta-HB-induced cell cycle-dependent growth inhibition while Smad3 mediate beta-HB-induced collagen production and p21WAF1/p27kip1 protein expression in HK-2 cells. Moreover, beta-HB increased p21WAF1/p27kip1 protein expression by increasing p21WAF1/p27kip1 protein stability.
Collapse
Affiliation(s)
- Jinn-Yuh Guh
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The progression of renal scarring and the associated loss of function remains one of the main challenges in nephrology. Until recently, the glomerular and tubulointerstitial scarring processes were thought to involve primarily interactions between infiltrating inflammatory cells and resident renal cells culminating in loss of renal cells and their replacement by extracellular collagenous matrix (ECM). This review focuses on new aspects of renal response to injury and remodeling. Emphasis is on the plasticity of renal cells with the capacity of both glomerular and tubular cells to assume a range of phenotypes during the remodeling process. Both glomerular and tubular epithelial cells regress to primitive/embryonic mesenchymal phenotype in response to injury. This reverse embryogenesis is a key step in renal healing and scarring. In addition to the plasticity of intrinsic renal cells, it is becoming apparent that renal remodeling in health and disease involves the migration of progenitor hematopoietic stem cells into the kidneys. These cells assume various glomerular and tubular epithelial phenotype. They are also involved in the evolution of lesions toward healing or scarring. A better understanding of some of these key events in renal remodeling and their mediators may open the way to new interventions based on their manipulations and aimed at favoring renal healing and preventing scarring.
Collapse
Affiliation(s)
- A Meguid El-Nahas
- Sheffield Kidney Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
185
|
Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, Lan HY. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1389-97. [PMID: 15039226 PMCID: PMC1615341 DOI: 10.1016/s0002-9440(10)63225-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced glycation end products (AGEs) have been shown to play a role in tubular epithelial-myofibroblast transdifferentiation (TEMT) in diabetic nephropathy, but the intracellular signaling pathway remains unknown. We report here that AGEs signal through the receptor for AGEs (RAGE) to induce TEMT, as determined by de novo expression of a mesenchymal marker (alpha-smooth muscle actin, alpha-SMA) and loss of epithelial marker (E-cadherin), directly through the MEK1-ERK1/2 MAP kinase pathway, which is TGF-beta independent. This is supported by the following findings: AGEs induced de novo alpha-SMA mRNA expression as early as 2 hours followed by a loss of E-cadherin before TGF-beta mRNA expression at 24 hours and occurred in the absence of TGF-beta and AGE-induced activation of ERK1/2 MAP kinase at 15 minutes and TEMT at 24 hours were completely blocked by a neutralizing RAGE antibody, a soluble RAGE receptor, an ERK1/2 MAP kinase inhibitor (PD98059), and DN-MEK1, but not by a neutralizing TGF-beta antibody. Thus, this study demonstrates that AGEs activate the RAGE-ERK1/2 MAP kinase pathway to mediate the early TEMT process. The findings from this study suggest that targeting the RAGE or the ERK MAP kinase pathway may provide new therapeutic strategies for diabetic nephropathy and shed new light on the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jin H Li
- Departments of Medicine-Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Popović Hadzija M, Hrasćan R, Bosnar MH, Zeljko Z, Hadzija M, Cadez J, Pavelić K, Kapitanović S. Infrequent alteration of the DPC4 tumor suppressor gene in renal cell carcinoma. ACTA ACUST UNITED AC 2004; 32:229-35. [PMID: 15107966 DOI: 10.1007/s00240-004-0410-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 02/24/2004] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the alterations in the DPC4 tumor suppressor gene in renal cell carcinoma (RCC). The study included 32 tumor specimens from Croatian patients with a diagnosis of RCC. Loss of heterozygosity (LOH) was investigated using three specific oligonucleotide primers for the three DPC4 polymorphic markers. Our investigation of mutations in the DPC4 gene was focused on exons 2, 8, 10 and 11. These exons belong to the mad homology domains 1 (exon 2) and 2 (exons 8-11). The presence of previously documented mutation in exons 2 (codon 100), 8 (codon 358), 10 (codon 412), and 11 (codon 493) was investigated by restriction fragment length polymorphism (RFLP) analysis, as a first screening method. Finally, the study was extended to search for any other type of mutation in the four selected exons by single strand conformation polymorphism (SSCP) assay. To increase heterozygosity, all 32 tumor specimens were tested with primers for three polymorphic markers. A total of 30 (94%) were heterozygous (informative). LOH at any of these markers was only revealed in four (13%) of the 30 informative samples. No tumor samples were positive for mutation in the four investigated exons analyzed by RFLP. In addition, no samples showed other types of mutation in denaturing conditions. Genetic alterations were shown only in a minority of patients, probably because mutation analysis of the DPC4 gene has only been partially covered by our work. It seems that exon 2 (belonging to the MH1 domain) and exons 8, 10, 11 (belonging to the MH2 domain) are not altered in RCC. This investigation must be extended on other exons of DPC4 for a better understanding a role of this gene in renal cell carcinoma.
Collapse
|
187
|
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2004; 112:1486-94. [PMID: 14617750 PMCID: PMC259132 DOI: 10.1172/jci19270] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tubulointerstitial fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. Transforming growth factor-beta (TGF-beta) is reportedly upregulated in response to injurious stimuli such as unilateral ureteral obstruction (UUO), causing renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. We now show that mice lacking Smad3 (Smad3ex8/ex8), a key signaling intermediate downstream of the TGF-beta receptors, are protected against tubulointerstitial fibrosis following UUO as evidenced by blocking of EMT and abrogation of monocyte influx and collagen accumulation. Culture of primary renal tubular epithelial cells from wild-type or Smad3-null mice confirms that the Smad3 pathway is essential for TGF-beta1-induced EMT and autoinduction of TGF-beta1. Moreover, mechanical stretch of the cultured epithelial cells, mimicking renal tubular distention due to accumulation of urine after UUO, induces EMT following Smad3-mediated upregulation of TGF-beta1. Exogenous bone marrow monocytes accelerate EMT of the cultured epithelial cells and renal tubules in the obstructed kidney after UUO dependent on Smad3 signaling. Together the data demonstrate that the Smad3 pathway is central to the pathogenesis of interstitial fibrosis and suggest that inhibitors of this pathway may have clinical application in the treatment of obstructive nephropathy.
Collapse
Affiliation(s)
- Misako Sato
- Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | |
Collapse
|
188
|
Li JH, Huang XR, Zhu HJ, Oldfield M, Cooper M, Truong LD, Johnson RJ, Lan HY. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J 2004; 18:176-8. [PMID: 12709399 DOI: 10.1096/fj.02-1117fje] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While it is thought that advanced glycation end products (AGEs) act by stimulating transforming growth factor (TGF)-beta to mediate diabetic injury, we report that AGEs can activate TGF-beta signaling, Smads, and mediate diabetic scarring directly and independently of TGF-beta. AGEs activate Smad2/3 in renal and vascular cells at 5 min, peaking over 15-30 min before TGF-beta synthesis at 24 h and occurs in TGF-beta receptor I and II mutant cells. This is mediated by RAGE and ERK/p38 mitogen-activated protein kinases (MAPKs). In addition, AGEs also activate Smads at 24 h via the classic TGF-beta-dependent pathway. A substantial inhibition of AGE-induced Smad activation and collagen synthesis by ERK/p38 MAPK inhibitors, but not by TGF-beta blockade, suggests that the MAPK-Smad signaling crosstalk pathway is a key mechanism in diabetic scarring. Prevention of AGE-induced Smad activation and collagen synthesis by overexpression of Smad7 indicates that Smad signaling may play a critical role in diabetic complications. This is further supported by the findings that activation of Smad2/3 in human diabetic nephropathy and vasculopathy is associated with local deposition of AGEs and up-regulation of RAGE. Thus, AGEs act by activating Smad signaling to mediate diabetic complications via both TGF-beta-dependent and -independent pathways, shedding new light on the pathogenesis of diabetic organ injury.
Collapse
Affiliation(s)
- Jin H Li
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003. [DOI: 10.1172/jci200319270] [Citation(s) in RCA: 608] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
190
|
Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM, Sheppard D, Fogo AB. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1261-73. [PMID: 14507636 PMCID: PMC1868298 DOI: 10.1016/s0002-9440(10)63486-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) and the renin-angiotensin-aldosterone system are key mediators in kidney fibrosis. Integrin alphavbeta6, a heterodimeric matrix receptor expressed in epithelia, binds and activates latent TGF-beta1. We used beta6 integrin-null mice (beta6(-/-)) to determine the role of local TGF-beta1 activation in renal fibrosis in the unilateral ureteral obstruction (UUO) model. Obstructed kidneys from beta6(-/-) mice showed less injury than obstructed kidneys from wild-type (WT) mice, associated with lower collagen I, collagen III, plasminogen activator inhibitor (PAI-1), and TGF-beta1 mRNA levels and lower collagen content. Infusion with either angiotensin II (Ang II) or aldosterone (Aldo) or combination in beta6(-/-) UUO mice significantly increased collagen contents to levels comparable to those in identically treated WT. Active TGF-beta protein expression in beta6(-/-) mice was less in UUO kidneys with or without Ang II infusion compared to matched WT mice. Activated Smad 2 levels in beta6(-/-) obstructed kidneys were lower than in WT UUO mice, and did not increase when fibrosis was induced in beta6(-/-) UUO mice by Ang II infusion. Anti-TGF-beta antibody only partially decreased this Ang II-stimulated fibrosis in beta6(-/-) UUO kidneys. In situ hybridization and immunostaining showed low expression of PAI-1 mRNA and protein in tubular epithelium in beta6(-/-) UUO kidneys, with increased PAI-1 expression in response to Ang II, Aldo, or both. Our results indicate that interruption of alphavbeta6-mediated activation of TGF-beta1 can protect against tubulointerstitial fibrosis. Further, the robust induction of tubulointerstitial fibrosis without increase in activated Smad 2 levels in obstructed beta6(-/-) mice by Ang II suggests the existence of a TGF-beta1-independent pathway of induction of fibrosis through angiotensin.
Collapse
Affiliation(s)
- Li-Jun Ma
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Mezzano SA, Aros CA, Droguett A, Burgos ME, Ardiles LG, Flores CA, Carpio D, Vío CP, Ruiz-Ortega M, Egido J. Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S39-45. [PMID: 12969126 DOI: 10.1046/j.1523-1755.64.s86.8.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The molecular mechanisms of renal injury and fibrosis in proteinuric nephropathies are not completely elucidated but the renin-angiotensin system (RAS) is involved. Idiopathic membranous nephropathy (MN), a proteinuric disease, may progress to renal failure. Our aim was to investigate the localization of RAS components in MN and their correlation with profibrotic parameters and renal injury. METHODS Renal biopsies from 20 patients with MN (11 with progressive disease) were studied for the expression of RAS components [angiotensin-converting enzyme (ACE) and angiotensin II (Ang II)] by immunohistochemistry. Transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF)-BB were studied by by in situ hybridization, and myofibroblast transdifferentiation by alpha-smooth muscle actin (alpha-SMA) staining. RESULTS ACE immunostaining was elevated in tubular cells and appeared in interstitial cells colocalized in alpha-actin-positive cells in progressive disease. Elevated levels of Ang II were observed in tubules and infiltrating interstitial cells. TGF-beta and PDGF mRNAs were up-regulated mainly in cortical tubular epithelial cells in progressive disease (P < 0.01) and correlated with the myofibroblast transdifferentiation (r = 0.8, P < 0.01 for TGF-beta; r = 0.6, P < 0.01 for PDGF). Moreover, in serial sections of progressive cases, the ACE and Ang II over-expression was associated with the tubular expression of these pro-fibrogenic factors, and with the interstitial infiltration and myofibroblast activation. CONCLUSION Intrarenal RAS is selectively activated in progressive MN. De novo expression of ACE at sites of tubulointerstitial injury suggests that the in situ Ang II generation could participate in tubular TGF-beta up-regulation, epithelial-myofibroblast transdifferentiation, and disease progression. These results suggest a novel role of Ang II in human tubulointerstitial injury.
Collapse
Affiliation(s)
- Sergio A Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003; 112:503-16. [PMID: 12925691 PMCID: PMC171389 DOI: 10.1172/jci17913] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubular EMT induced by TGF-beta1. TGF-beta1 induced ILK expression in renal tubular epithelial cells in a time- and dose-dependent manner, which was dependent on intracellular Smad signaling. Forced expression of ILK in human kidney proximal tubular epithelial cells suppressed E-cadherin expression and induced fibronectin expression and its extracellular assembly. ILK also induced MMP-2 expression and promoted cell migration and invasion in Matrigel. Conversely, ectopic expression of a dominant-negative, kinase-dead form of ILK largely abrogated TGF-beta1-initiated tubular cell phenotypic conversion. In vivo, ILK was markedly induced in renal tubular epithelia in mouse models of chronic renal diseases, and such induction was spatially and temporally correlated with tubular EMT. Moreover, inhibition of ILK expression by HGF was associated with blockade of tubular EMT and attenuation of renal fibrosis. These findings suggest that ILK is a critical mediator for tubular EMT and likely plays a crucial role in the pathogenesis of chronic renal fibrosis.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
193
|
Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003; 112:503-516. [PMID: 12925691 DOI: 10.1172/jci200317913] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubular EMT induced by TGF-beta1. TGF-beta1 induced ILK expression in renal tubular epithelial cells in a time- and dose-dependent manner, which was dependent on intracellular Smad signaling. Forced expression of ILK in human kidney proximal tubular epithelial cells suppressed E-cadherin expression and induced fibronectin expression and its extracellular assembly. ILK also induced MMP-2 expression and promoted cell migration and invasion in Matrigel. Conversely, ectopic expression of a dominant-negative, kinase-dead form of ILK largely abrogated TGF-beta1-initiated tubular cell phenotypic conversion. In vivo, ILK was markedly induced in renal tubular epithelia in mouse models of chronic renal diseases, and such induction was spatially and temporally correlated with tubular EMT. Moreover, inhibition of ILK expression by HGF was associated with blockade of tubular EMT and attenuation of renal fibrosis. These findings suggest that ILK is a critical mediator for tubular EMT and likely plays a crucial role in the pathogenesis of chronic renal fibrosis.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
194
|
Abstract
Excessive deposition of extracellular matrix (ECM) in the kidney is the hallmark of diabetic nephropathy. Although the amount of ECM deposited in the kidney depends on the balance between the synthesis and degradation of ECM, the role of ECM degradation in matrix remodeling has been less well appreciated. High glucose, advanced glycation end products, angiotensin II, and TGF-beta1 all increase intracellular reactive oxygen species (ROS) in renal cells and contribute to the development and progression of diabetic renal injury. The role of ROS in increased ECM synthesis has been well documented. ROS may also play a critical role in decreased ECM degradation by mediating high glucose- and TGF-beta1-induced inhibition of the proteolytic system, plasmin, and matrix metalloproteinases in the glomeruli. A recent observation suggests that ROS play an important role in tubulointerstitial fibrosis by mediating TGF-beta1-induced epithelial-mesenchymal transition (EMT). Accelerated ECM degradation is required to disrupt tubular basement membrane and complete EMT. ROS thus seem to be involved in both decreased and increased ECM degradation. It is not clear how cells determine when and where to increase or decrease ECM degradation in response to ROS. Precise definition of ROS-activated signaling pathways leading to ECM remodeling in the kidney will provide new strategies to prevent or treat diabetic renal injury.
Collapse
Affiliation(s)
- Hunjoo Ha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea.
| | | |
Collapse
|
195
|
Yang J, Dai C, Liu Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:621-632. [PMID: 12875981 PMCID: PMC1868195 DOI: 10.1016/s0002-9440(10)63689-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2003] [Indexed: 02/07/2023]
Abstract
Interstitial myofibroblasts are alpha-smooth muscle actin-positive cells that play a crucial role in the accumulation of excess extracellular matrix during renal interstitial fibrogenesis. Despite their importance in the pathogenesis of renal fibrosis, relatively little is known about the regulators and the mechanism controlling the activation of renal interstitial myofibroblasts in disease conditions. Here, we show that hepatocyte growth factor (HGF) acts as a potent inhibitor of the transforming growth factor (TGF)-beta1-mediated myofibroblastic activation from normal rat renal interstitial fibroblasts (NRK-49F). Simultaneous incubation of HGF abolished TGF-beta1-induced de novo alpha-smooth muscle actin expression, F-actin reorganization, and interstitial collagen I overproduction in a dose-dependent manner. To decipher the mechanism underlying HGF antagonizing TGF-beta1's action, we examined the effects of HGF on TGF-beta1-mediated Smad signaling. HGF neither inhibited Smad-2/3 phosphorylation and their association with Smad-4 induced by TGF-beta1, nor significantly affected inhibitory Smad-6 and -7 expression and cellular abundance of Smad transcriptional co-repressors in NRK-49F cells. However, pretreatment with HGF markedly attenuated activated Smad-2/3 nuclear translocation and accumulation. This action of HGF was apparently dependent on HGF-mediated extracellular signal-regulated kinase-1 and -2 (Erk-1/2) phosphorylation and activation. Inhibition of Erk-1/2 activation by Mek kinase inhibitor PD98059 restored TGF-beta1-mediated Smad-2/3 nuclear accumulation and myofibroblast activation. In vivo, HGF selectively blocked Smad-2/3 nuclear accumulation in renal interstitial cells in the fibrotic kidneys induced by unilateral ureteral obstruction. Therefore, HGF suppresses TGF-beta1-mediated renal interstitial myofibroblastic activation; and this action of HGF is likely related to a mitogen-activated protein kinase-dependent blockade of Smad nuclear translocation.
Collapse
Affiliation(s)
- Junwei Yang
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
196
|
Eikmans M, Baelde JJ, de Heer E, Bruijn JA. ECM homeostasis in renal diseases: a genomic approach. J Pathol 2003; 200:526-36. [PMID: 12845620 DOI: 10.1002/path.1417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic renal disease is in general histologically accompanied by a vast amount of scar tissue, ie glomerulosclerosis and interstitial fibrosis. Scarring results from excessive accumulation of extracellular matrix (ECM) components, a process driven by a plethora of cytokines and growth factors. Studies in experimental renal disease which target these regulators using gene therapy limit or prevent the development of scarring. This review focuses specifically on the role of transforming growth factor-beta, platelet-derived growth factor, connective tissue growth factor, hepatocyte growth factor, and epidermal growth factor. The results obtained in animal models hold promise for molecular intervention strategies in human renal disease. Microarray technology allows large-scale gene expression profiling in kidney tissue to identify common molecular pathways in a step towards discovery of new drug targets. Molecular techniques are expected to be used for diagnostic and prognostic purposes in nephrological practice to supplement renal biopsy. Several studies already show that molecular techniques might be of use in routine diagnostic practice. Improvement of diagnosis and prediction of outcome in renal patients might lead to more efficient and earlier therapeutic intervention.
Collapse
Affiliation(s)
- M Eikmans
- Department of Pathology, Leiden University Medical Center, Building 1, LI-Q, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
197
|
Abstract
Maintenance of epithelial tissues needs the stroma. When the epithelium changes, the stroma inevitably follows. In cancer, changes in the stroma drive invasion and metastasis, the hallmarks of malignancy. Stromal changes at the invasion front include the appearance of myofibroblasts, cells sharing characteristics with fibroblasts and smooth muscle cells. The main precursors of myofibroblasts are fibroblasts. The transdifferentiation of fibroblasts into myofibroblasts is modulated by cancer cell-derived cytokines, such as transforming growth factor-beta (TGF-beta). TGF-beta causes cancer progression through paracrine and autocrine effects. Paracrine effects of TGF-beta implicate stimulation of angiogenesis, escape from immunosurveillance and recruitment of myofibroblasts. Autocrine effects of TGF-beta in cancer cells with a functional TGF-beta receptor complex may be caused by a convergence between TGF-beta signalling and beta-catenin or activating Ras mutations. Experimental and clinical observations indicate that myofibroblasts produce pro-invasive signals. Such signals may also be implicated in cancer pain. N-Cadherin and its soluble form act as invasion-promoters. N-Cadherin is expressed in invasive cancer cells and in host cells such as myofibroblasts, neurons, smooth muscle cells, and endothelial cells. N-Cadherin-dependent heterotypic contacts may promote matrix invasion, perineural invasion, muscular invasion, and transendothelial migration; the extracellular, the juxtamembrane and the beta-catenin binding domain of N-cadherin are implicated in positive invasion signalling pathways. A better understanding of stromal contributions to cancer progression will likely increase our awareness of the importance of the combinatorial signals that support and promote growth, dedifferentiation, invasion, and ectopic survival and eventually result in the identification of new therapeutics targeting the stroma.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
198
|
Li JH, Huang XR, Zhu HJ, Johnson R, Lan HY. Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney Int 2003; 63:2010-9. [PMID: 12753288 DOI: 10.1046/j.1523-1755.2003.00016.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hyperglycemia has been shown to play an important role in diabetic renal and vascular complications. Some studies show that high glucose may mediate diabetic complications by stimulating extracellular matrix (ECM) production. We hypothesize that this may be mediated by activating transforming growth factor-beta (TGF-beta)/Smads signaling. METHODS Renal and vascular cells were cultured under high glucose conditions in the presence or absence of a neutralizing TGF-beta antibody and examined for activation of Smad signaling and collagen production. The regulating role of Smad signaling in high glucose-induced collagen synthesis was determined by inducing overexpression of the inhibitory Smad7 in a stable Smad7-expressing tubular cell line. RESULTS Activation of Smad signaling, as evidenced by Smad2 and Smad3 nuclear translocation and phosphorylation, was found in renal and vascular cells at 24 hours after high glucose stimulation (up to 55% increased). This was associated with de novo synthesis of collagen I at day 3 by all cell types. High glucose-induced activation of Smad signaling and collagen synthesis were TGF-beta-dependent since these were associated with a significant increase in TGF-beta production at 24 hours (P < 0.01) and were blocked by a neutralizing TGF-beta antibody. Importantly, overexpression of Smad7 resulted in marked inhibition of high glucose-induced Smad2 and Smad3 activation and type I collagen synthesis, suggesting that Smad signaling is a key pathway in high glucose-mediated renal and vascular scarring. CONCLUSION High glucose acts by activating the TGF-beta dependent Smad signaling pathway to stimulate collagen synthesis by renal and vascular cells. Smad signaling plays a critical role in regulating high-glucose-mediated diabetic renal and vascular complications.
Collapse
Affiliation(s)
- Jin H Li
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
199
|
Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003; 14:1535-48. [PMID: 12761254 DOI: 10.1097/01.asn.0000067632.04658.b8] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
TGF-beta is a key mediator in renal fibrosis. Kidney-targeted gene therapy with anti-TGF-beta strategies is expected to have therapeutic potential, but this has been hampered by concerns over the safety and practicability of viral vectors and the inefficiency of nonviral transfection techniques. The present study explored the potential role of TGF-beta/Smad signaling in renal fibrosis in vivo and developed a safe and effective gene therapy to specifically block TGF-beta signaling and renal fibrosis in a rat unilateral ureteral obstruction (UUO) model by transferring a doxycycline-regulated Smad7 gene or control empty vectors using an ultrasound-microbubble (Optison)-mediated system. The Smad7 transgene expression was tightly controlled by addition of doxycycline in the daily drinking water. Groups of six rats were sacrificed at day 7, and the transfection rate, Smad7 transgene expression, and tubulointerstitial fibrosis including alpha-smooth muscle actin and collagen matrix mRNA and protein expression were determined. Compared with the non-ultrasound treatment, the combination of ultrasound with Optison largely increased the transfection rate of FITC-ODN and Smad7 transgene expression up to a 1000-fold, and this was found in all kidney tissues. Compared with normal rats, Smad7 expression within the UUO kidney was significantly reduced, and this was associated with up to a sixfold increase in Smad2 and Smad3 activation and severe tubulointerstitial fibrosis. In contrast, treatment with inducible Smad7 resulted in a fivefold increase in Smad7 expression with complete inhibition of Smad2 and Smad3 activation and tubulointerstitial fibrosis in terms of tubulointerstitial myofibroblast accumulation (85% downward arrow ) and collagen I and III mRNA and protein expression (60 to 70% downward arrow ). In conclusion, the ultrasound-mediated inducible Smad7 gene transfer is a safe, effective, and controllable gene therapy. TGF-beta-mediated renal fibrosis is regulated positively by Smad2/3, but negatively by Smad7. Target blockade of TGF-beta/Smad signaling by expression of Smad7 may provide a new therapeutic potential for renal fibrosis.
Collapse
Affiliation(s)
- Hui Y Lan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Nakagawa T, Kang DH, Ohashi R, Suga SI, Herrera-Acosta J, Rodriguez-Iturbe B, Johnson RJ. Tubulointerstitial disease: role of ischemia and microvascular disease. Curr Opin Nephrol Hypertens 2003; 12:233-41. [PMID: 12698060 DOI: 10.1097/00041552-200305000-00003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Tubulointerstitial injury is characteristic of aging-associated renal injury and progressive renal disease. Salt-sensitive hypertension is also associated with tubulointerstitial inflammation, especially when accompanied by microvascular disease. Here we summarize recent studies on the pathogenesis and consequences of tubulointerstitial disease, emphasizing the role of ischemia and the microvasculature. RECENT FINDINGS Tubulointerstitial injury occurs via several mechanisms of which one of the most important is chronic ischemia. Recent studies suggest that chronic vasoconstriction may contribute to the renal injury associated with angiotensin II, catecholamines, nitric oxide inhibition, hypokalemia, hyperuricemia, and cyclosporine nephropathy. Salt-sensitivity may result as a consequence of the tubulointerstitial inflammatory response to these conditions, and this appears to be perpetuated by the development of preglomerular vascular disease. With progression of tubulointerstitial disease there is also a loss of peritubular capillaries, and stimulating microvascular growth with angiogenic factors can stabilize renal function in these models. SUMMARY Ischemia secondary to vasoconstriction or to structural changes of the renal vasculature may have important consequences both in terms of mediating salt-sensitive hypertension and renal progression. Angiogenic factors may have potential benefit in preventing or treating these conditions.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Division of Nephrology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|