151
|
Younis N, Mahasneh A. Probiotics and the envisaged role in treating human infertility. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2020. [DOI: 10.1186/s43043-020-00039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Considerable attention is being directed nowadays towards using probiotics as an alternative therapy in treating several human diseases including gastrointestinal tract diseases especially colorectal cancers, cardiovascular diseases, hyperlipidemia, and blood pressure cases. However, infertility as affected by the microbiome and the probable role of probiotics in alleviating infertility problems did not receive the deserved attention, especially in IVF patients with male or female factors.
Main body
In this review, we tried to draw the attention of researchers in the medical settings to the importance of the forthcoming role of probiotics use in elucidating the role of the microbiome in infertile patients. The hope is to attain the best performance of both male and female reproductive systems and to shed some light on infertility problems.
Conclusion
More in vivo experiments are still needed to address many aspects of probiotics like proper administration, exact functional strains, required dose, application method, duration of treatment, and combination with antibiotics before considering probiotics as an alternative treatment.
Collapse
|
152
|
Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau ASY, Lee BK, Azlan A, Choi SB, Azzam G, Liong MT. The molecular mechanisms of probiotic strains in improving ageing bone and muscle of d-galactose-induced ageing rats. J Appl Microbiol 2020; 130:1307-1322. [PMID: 32638482 DOI: 10.1111/jam.14776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system. METHODS AND RESULTS The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P < 0·05). Strain L. fermentum DR9 demonstrated improved expression of SOD in bone and muscle compared to the aged rats (P < 0·05). In the evaluation of myogenesis-related genes, L. paracasei OFS 0291 and L. fermentum DR9 increased the mRNA expression of IGF-1; L. helveticus OFS 1515 and L. fermentum DR9 reduced the expression of MyoD, in contrast to the aged controls (P < 0·05). Protective effects of L. fermentum DR9 on ageing muscle were believed to be contributed by increased AMPK-α2 expression. Among the osteoclastogenesis genes studied, TNF-α expression was highly elevated in tibia of aged rats, while all three probiotics strains ameliorated the expression. Lactobacillus fermentum DR9 also reduced the expression of IL-6 and TRAP in tibia when compared to the aged rats (P < 0·05). All probiotics treatment resulted in declined proinflammatory cytokines IL-1β in muscle and bone. CONCLUSIONS Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.
Collapse
Affiliation(s)
- Y-Y Hor
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - C-H Ooi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - L-C Lew
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - M H Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - A S-Y Lau
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - B-K Lee
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - A Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - S-B Choi
- School of Data Sciences, Perdana University, Selangor, Malaysia
| | - G Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - M-T Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
153
|
Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front Microbiol 2020; 11:575072. [PMID: 33013813 PMCID: PMC7507897 DOI: 10.3389/fmicb.2020.575072] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many intestinal bacteria are believed to be involved in various inflammatory and immune processes that influence tumor etiology because of their metabolic properties and their ability to alter the microbiota homeostasis. Although many functions of the microbiota are still unclear, there is compelling experimental evidence showing that the intestinal microbiota is able to modulate carcinogenesis and the response to anticancer therapies, both in the intestinal tract and other body sites. Among the wide variety of gut-colonizing microorganisms, various species belonging to the Bifidobacterium genus are believed to elicit beneficial effects on human physiology and on the host-immune system. Recent findings, based on preclinical mouse models and on human clinical trials, have demonstrated the impact of gut commensals including bifidobacteria on the efficacy of tumor-targeting immunotherapy. Although the underlying molecular mechanisms remain obscure, bifidobacteria and other microorganisms have become a promising aid to immunotherapeutic procedures that are currently applied to treat cancer. The present review focuses on strategies to recruit the microbiome in order to enhance anticancer responses and develop therapies aimed at fighting the onset and progression of malignancies.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- Alimentary Pharmabotic Centre (APC) Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
154
|
Abstract
Coronavirus disease 2019 (COVID-19) has become pandemic very rapidly at the beginning of 2020. In the rush to possible therapeutic options, probiotics administration has been proposed mainly based on indirect observation. Some evidence of COVID-19 effects on intestinal microbiota dysbiosis has been shown and probiotics have been considered for their efficacy in the management of respiratory tract viral infections. These observations could be reinforced by the more and more evident existence of a lung-gut axis, suggesting the modulation of gut microbiota among the approaches to the COVID-19 prevention and treatment. As different possible roles of probiotics in this extremely severe illness have been contemplated, the aim of this work is to collect all the currently available information related to this topic, providing a starting point for future studies focussing on it.
Collapse
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
155
|
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
156
|
An J, Cho J. Potential immune-modulatory effects of wheat phytase on the performance of a mouse macrophage cell line, Raw 264.7, exposed to long-chain inorganic polyphosphate. Anim Biosci 2020; 34:463-470. [PMID: 32777888 PMCID: PMC7961190 DOI: 10.5713/ajas.20.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objective This experiment was conducted to find out the immunological effects of wheat phytase when long-chain inorganic polyphosphate (polyP) treated with wheat phytase was added to a macrophage cell line, Raw 264.7, when compared to intact long-chain polyP. Methods Nitric oxide (NO) production of Raw 264.7 cells exposed to P700, a long-chain polyP with an average of 1,150 phosphate residues, treated with or without wheat phytase, was measured by Griess method. Phagocytosis assay of P700 treated with or without phytase in Raw 264.7 cells was investigated using neutral red uptake. The secretion of tumor necrosis factor α (TNF-α) by Raw 264.7 cells with wheat phytase-treated P700 compared to intact P700 was observed by using Mouse TNF-α enzyme-linked immunosorbent assay kit. Results P700 treated with wheat phytase effectively increased NO production of Raw 264.7 cells by 172% when compared with intact P700 at 12 h exposure. At 5 mM of P700 concentration, wheat phytase promoted NO production of macrophages most strongly. P700, treated with wheat phytase, stimulated phagocytosis in macrophages at 12 h exposure by about 1.7-fold compared to intact P700. In addition, P700 treated with wheat phytase effectively increased in vitro phagocytic activity of Raw 264.7 cells at a concentration above 5 mM when compared to intact P700. P700 dephosphorylated by wheat phytase increased the release of TNF-α from Raw 264.7 cells by 143% over that from intact P700 after 6 h exposure. At the concentration of 50 μM P700, wheat phytase increased the secretion of cytokine, TNF-α, by 124% over that from intact P700. Conclusion In animal husbandry, wheat phytase can mitigate the long-chain polyP causing damage by improving the immune capabilities of macrophages in the host. Thus, wheat phytase has potential as an immunological modulator and future feed additive for regulating immune responses caused by inflammation induced by long-chain polyP from bacterial infection.
Collapse
Affiliation(s)
- Jeongmin An
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
157
|
The microbiota of Kalathaki and Melichloro Greek artisanal cheeses comprises functional lactic acid bacteria. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
158
|
Kaur A, Chopra K, Kaur IP, Rishi P. Salmonella Strain Specificity Determines Post-typhoid Central Nervous System Complications: Intervention by Lactiplantibacillus plantarum at Gut-Brain Axis. Front Microbiol 2020; 11:1568. [PMID: 32793135 PMCID: PMC7393228 DOI: 10.3389/fmicb.2020.01568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological complications occurring due to Salmonella infection in some typhoid patients remain a relatively unexplored serious complication. This study firstly aimed to explore whether disseminative ability of Salmonella from gut to brain is strain specific or not and on the basis of bacterial load, histopathology, and behavioral changes, it was observed that Salmonella enterica serovar Typhimurium NCTC 74 did not cause brain infection in murine model in contrast to Salmonella Typhimurium SL1344. Simultaneously, alarming escalation in antimicrobial resistance, making the existing antibiotics treatment inefficacious, prompted us to evaluate other bio-compatible strategies as a potential treatment option. In this context, the role of gut microbiota in influencing behavior, brain neurochemistry, and physiology by modulating key molecules associated with gut-brain axis has captured the interest of the scientific community. Followed by in vitro screening of potential probiotic strains for beneficial attributes, efficacy of the selected strain was systematically evaluated at various levels of gut-brain axis against Salmonella induced brain infection. Analysis of behavioral (depression, anxiety, and locomotor), neurochemical [gamma amino butyric acid and acetylcholinesterase (AChE)], neuropathological (brain and intestinal histology; bacterial burden), and immunohistochemical studies (tight junction proteins expression) revealed its role in preventing serious manifestations and proving its potential as "psychobiotic." To the best of our knowledge, this is the first report elaborating strain specificity of Salmonella in causing post-typhoidal neurological manifestations and simultaneous use of probiotic in managing the same by influencing the pathophysiology at gut-brain axis.
Collapse
Affiliation(s)
- Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
159
|
Angulo M, Reyes-Becerril M, Medina-Córdova N, Tovar-Ramírez D, Angulo C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 2020; 104:7689-7699. [PMID: 32686006 DOI: 10.1007/s00253-020-10780-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Debaryomyces hansenii comes of age as a new potential probiotic for terrestrial and aquatic animals. Probiotic properties, including inmunostimulatory effects, gut microbiota modulation, enhanced cell proliferation and differentiation, and digestive function improvements have been related to the oral delivery of D. hansenii. Its functional compounds, such as cell wall components and polyamines, have been identified and implicated in its immunomodulatory activity. In addition, in vitro studies using immune cells have shown standpoints on the possible recognition, regulation, and effector immune mechanisms stimulated by this yeast. This review describes historic, cutting-edge research findings, implications, and perspectives on the use of D. hansenii as a promising probiotic for animals. KEY POINTS: • Debaryomyces hansenii has probiotic effects in terrestrial and aquatic animals. • Nutritional effects could be associated to probiotic D. hansenii strains. • β-D-Glucan and polyamines from D. hansenii are associated to probiotic properties. • Adoption by the industry is expected in the next years.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Noe Medina-Córdova
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Todos Santos, Agricultura s/n entre México y Durango, Emiliano Zapata, La Paz, B.C.S., C.P: 23070, Mexico
| | - Dariel Tovar-Ramírez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico.
| |
Collapse
|
160
|
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14:367-382. [PMID: 32334392 PMCID: PMC7161532 DOI: 10.1016/j.dsx.2020.04.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Balanced nutrition which can help in maintaining immunity is essential for prevention and management of viral infections. While data regarding nutrition in coronavirus infection (COVID-19) are not available, in this review, we aimed to evaluate evidence from previous clinical trials that studied nutrition-based interventions for viral diseases (with special emphasis on respiratory infections), and summarise our observations. METHODS A systematic search strategy was employed using keywords to search the literature in 3 key medical databases: PubMed®, Web of Science® and SciVerse Scopus®. Studies were considered eligible if they were controlled trials in humans, measuring immunological parameters, on viral and respiratory infections. Clinical trials on vitamins, minerals, nutraceuticals and probiotics were included. RESULTS A total of 640 records were identified initially and 22 studies were included from other sources. After excluding duplicates and articles that did not meet the inclusion criteria, 43 studies were obtained (vitamins: 13; minerals: 8; nutraceuticals: 18 and probiotics: 4). Among vitamins, A and D showed a potential benefit, especially in deficient populations. Among trace elements, selenium and zinc have also shown favourable immune-modulatory effects in viral respiratory infections. Several nutraceuticals and probiotics may also have some role in enhancing immune functions. Micronutrients may be beneficial in nutritionally depleted elderly population. CONCLUSIONS We summaries possible benefits of some vitamins, trace elements, nutraceuticals and probiotics in viral infections. Nutrition principles based on these data could be useful in possible prevention and management of COVID-19.
Collapse
Affiliation(s)
- Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka; School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Piumika Sooriyaarachchi
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 4, Thessaloniki, Greece
| | - Chandima Jeewandara
- National Center for Primary Care and Allergy Research, University of Sri Jayewardenepura, Sri Lanka
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
161
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
162
|
|
163
|
Kaur A, Goggolidou P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. JOURNAL OF INFLAMMATION-LONDON 2020; 17:15. [PMID: 32336953 PMCID: PMC7175540 DOI: 10.1186/s12950-020-00246-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.
Collapse
Affiliation(s)
- Amandip Kaur
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| | - Paraskevi Goggolidou
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| |
Collapse
|
164
|
Pradhan B, Guha D, Naik AK, Banerjee A, Tambat S, Chawla S, Senapati S, Aich P. Probiotics L. acidophilus and B. clausii Modulate Gut Microbiota in Th1- and Th2-Biased Mice to Ameliorate Salmonella Typhimurium-Induced Diarrhea. Probiotics Antimicrob Proteins 2020; 11:887-904. [PMID: 29909486 DOI: 10.1007/s12602-018-9436-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut microbiota play important role in maintaining health. Probiotics are believed to augment it further. We aimed at comparing effects of probiotics, Lactobacillus acidophilus (LA) and Bacillus clausii (BC) (a) on the gut microbiota abundance and diversity and (b) their contributions to control intestinal dysbiosis and inflammation in Th1- and Th2-biased mice following Salmonella infection. We report how could gut microbiota and the differential immune bias (Th1 or Th2) of the host regulate host responses when challenged with Salmonella typhimurium in the presence and absence of either of the probiotics. LA was found to be effective in ameliorating the microbial dysbiosis and inflammation caused by Salmonella infection, in Th1 (C57BL/6) and Th2 (BALB/c)-biased mouse. BC was able to ameliorate Salmonella-induced dysbiosis and inflammation in Th2 but not in Th1-biased mouse. These results may support probiotics LA as a treatment option in the case of Salmonella infection.
Collapse
Affiliation(s)
- Biswaranjan Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Dipanjan Guha
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India
| | - Aman Kumar Naik
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India
| | - Arka Banerjee
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India
- Biozentrum der Universität Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland
| | - Subodh Tambat
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, East of NGEF Layout, Kasturi Nagar, Bengaluru, Karnataka, 560043, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India
| | - Shantibhusan Senapati
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Jatni, Khurdha, Odisha, 752050, India.
| |
Collapse
|
165
|
Mojgani N, Shahali Y, Dadar M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef Microbes 2020; 11:213-226. [PMID: 32216470 DOI: 10.3920/bm2019.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination is one of the most important prevention tools providing protection against infectious diseases especially in children below the age of five. According to estimates, more than 5 million lives are saved annually by the implementation of six standard vaccines, including diphtheria, hepatitis B, Haemophilus influenza type b, polio, tetanus and yellow fever. Despite these efforts, we are faced with challenges in developing countries where increasing population and increasing disease burden and difficulties in vaccine coverage and delivery cause significant morbidity and mortality. Additionally, the high cost of these vaccines is also one of the causes for inappropriate and inadequate vaccinations in these regions. Thus, developing cost-effective vaccine strategies that could provide a stronger immune response with reduced vaccination schedules and maximum coverage is of critical importance. In last decade, different approaches have been investigated; among which live bacterial vaccines have been the focus of attention. In this regard, probiotic lactic acid bacteria have been extensively studied as safe and effective vaccine candidates. These microorganisms represent the largest group of probiotic bacteria in the intestine and are generally recognised as safe (GRAS) bacteria. They have also attracted attention due to their immunomodulatory actions and their effective role as novel vaccine adjuvants. A significant property of these bacteria is their ability to mimic natural infections, while intrinsically possessing mucosal adjuvant properties. Additionally, as live bacterial vaccines are administered orally or nasally, they have higher acceptance and better safety, but also avoid the risk of contamination due to needles and syringes. In this review, we emphasise the role of probiotic Lactobacillus strains as putative oral vaccine carriers and novel vaccine adjuvants.
Collapse
Affiliation(s)
- N Mojgani
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - Y Shahali
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - M Dadar
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
166
|
Quigley EM. Nutraceuticals as modulators of gut microbiota: Role in therapy. Br J Pharmacol 2020; 177:1351-1362. [PMID: 31659751 PMCID: PMC7056471 DOI: 10.1111/bph.14902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
As our knowledge of the various roles of the gut microbiota in the maintenance of homeostasis grows and as we learn how a disrupted microbiota may contribute to disease, therapeutic strategies that target our microbial fellow-travellers become ever more attractive. Most appealing are those interventions that seek to modify or supplement our diet through the addition of nutraceuticals. We now know that our diet, whether in the short or long term, is a major modifier of microbiota composition and function. Of the various nutraceuticals, two categories, prebiotics and probiotics, have received the greatest attention in basic research and product development. While our understanding of the impacts of prebiotics and probiotics on the indigenous microbiota and host biology have been described in great detail in vitro and in animal models, the clinical literature leaves much to be desired. While many claims have been made, few are supported by high quality clinical trials. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Eamonn M.M. Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and HepatologyHouston Methodist HospitalHoustonTexas
| |
Collapse
|
167
|
Cassani L, Gomez-Zavaglia A, Simal-Gandara J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Res Int 2020; 129:108852. [DOI: 10.1016/j.foodres.2019.108852] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
|
168
|
Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020; 8:microorganisms8020281. [PMID: 32092964 PMCID: PMC7074841 DOI: 10.3390/microorganisms8020281] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
An eight-week feeding trial was conducted to evaluate the effects of different dietary probiotic supplements in juvenile whiteleg shrimp, Litopenaeus vannamei. A basal control diet without probiotics (CON), and five other diets by supplementing Bacillus subtilis at 107 CFU/g diet (BS7), B. subtilis (BS8), Pediococcus pentosaceus (PP8), and Lactococcus lactis (LL8) at 108 CFU/g diet, and oxytetracycline (OTC) at 4 g/kg diet were used. Whiteleg shrimp with initial body weights of 1.41 ± 0.05 g (mean ± SD) were fed with these diets. Growth of shrimp fed BS8 and LL8 diets was significantly higher than those of shrimp fed the CON diet (p < 0.05). Superoxide dismutase activity in shrimp fed PP8 and LL8 diets was significantly higher than that of shrimp fed the CON diet (p < 0.05). Lysozyme activity of shrimp fed probiotics and OTC diets significantly improved compared to those on the CON diet (p < 0.05). The intestinal histology showed healthier guts for shrimp fed the probiotic diets (p < 0.05). Immune-related gene expression in shrimp fed BS8, PP8 and LL8 diets was recorded as significantly higher than that of shrimp fed CON and OTC diets (p < 0.05). Also, results of the challenge test for 7 days and the digestive enzyme activity of shrimp fed BS8, PP8, and LL8 were significantly improved compared to those on the CON diet (p < 0.05). Therefore, these results indicated that L. lactis at 108 CFU/g could be an ideal probiotic for whiteleg shrimp, and also B. subtilis WB60 and P. pentosaceus at 108 CFU/g could improve the growth, immunity, histology, gene expression, digestive enzyme activity, and disease resistance, while replacing antibiotics.
Collapse
|
169
|
Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L. A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 2020; 19:42. [PMID: 32075660 PMCID: PMC7029466 DOI: 10.1186/s12934-020-01308-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. Results Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. Conclusion Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.
Collapse
Affiliation(s)
- Francisco Denis S Santos
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.,Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arianna Mazzoli
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ana Raquel Maia
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Anella Saggese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Rachele Isticato
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Fabio Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Susanna Iossa
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ezio Ricca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.
| | - Loredana Baccigalupi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
170
|
Fermented foods and inflammation: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 35:30-39. [DOI: 10.1016/j.clnesp.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
|
171
|
Kim HW, Ju DB, Kye YC, Ju YJ, Kim CG, Lee IK, Park SM, Choi IS, Cho KK, Lee SH, Kim SC, Jung ID, Han SH, Yun CH. Galectin-9 Induced by Dietary Probiotic Mixture Regulates Immune Balance to Reduce Atopic Dermatitis Symptoms in Mice. Front Immunol 2020; 10:3063. [PMID: 32038618 PMCID: PMC6987441 DOI: 10.3389/fimmu.2019.03063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Probiotics can be an effective treatment for atopic dermatitis (AD), while their mechanism of action is still unclear. Here, we induced AD in mice with 2,4-dinitrochlorobenzene and administrated YK4, a probiotic mixture consisting of Lactobacillus acidophilus CBT LA1, L. plantarum CBT LP3, Bifidobacterium breve CBT BR3, and B. lactis CBT BL3. Then, we have validated the underlying mechanism for the alleviation of AD by YK4 from the intestinal and systematic immunological perspectives. Administration of YK4 in AD mice alleviated the symptoms of AD by suppressing the expression of skin thymic stromal lymphopoietin and serum immunoglobulin E eliciting excessive T-helper (Th) 2 cell-mediated responses. YK4 inhibited Th2 cell population through induce the proportion of Th1 cells in spleen and Treg cells in Peyer's patches and mesenteric lymph node (mLN). CD103+ dendritic cells (DCs) in mLN and the spleen were significantly increased in AD mice administered with YK4 when compared to AD mice. Furthermore, galectin-9 was significantly increased in the gut of AD mice administered with YK4. In vitro experiments were performed using bone marrow-derived DCs (BMDC) and CD4+ T cells to confirm the immune mechanisms of YK4 and galectin-9. The expression of CD44, a receptor of galectin-9, together with programmed death-ligand 1 was significantly upregulated in BMDCs following treatment with YK4. IL-10 and IL-12 were upregulated when BMDCs were treated with YK4. Cytokines together with co-receptors from DCs play a major role in the differentiation and activation of CD4+ T cells. Proliferation of Tregs and Th1 cell activation were enhanced when CD4+T cells were co-cultured with YK4-treated BMDCs. Galectin-9 appeared to contribute at least partially to the proliferation of Tregs. The results further suggested that DCs treated with YK4 induced the differentiation of naïve T cells toward Th1 and Tregs. At the same time, YK4 alleviated AD symptoms by inhibiting Th2 response. Thus, the present study suggested a potential role of YK4 as an effective immunomodulatory agent in AD patients.
Collapse
Affiliation(s)
- Han Wool Kim
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Do Bin Ju
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - In Kyu Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - In Soon Choi
- Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Kwang Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Seung Ho Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sung Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, South Korea
| | - In Duk Jung
- Laboratory of Dendritic Cell Differentiation and Regulation, Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute and Brain Korea 21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science Technology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
172
|
The Probiotic BB12 Induces MicroRNAs Involved in Antigen Processing and Presentation in Porcine Monocyte-Derived Dendritic Cells. Int J Mol Sci 2020; 21:ijms21030687. [PMID: 31972983 PMCID: PMC7037397 DOI: 10.3390/ijms21030687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) mediate the regulation of gene expression. Several reports indicate that probiotics induce miRNA-mediated immunomodulation at different levels, such as cytokine production and the up-regulation of several markers related to antigen presentation in antigen-presenting cells. The objective of this work was to identify target genes of miRNAs that are involved in the processing and presentation of antigens in monocyte-derived dendritic cells (moDCs) stimulated with the probiotic Bifidobacterium animalis ssp. lactis BB12 (BB12). First, an in silico prediction analysis for a putative miRNA binding site within a given mRNA target was performed using RNAHybrid software with mature sequences of differentially expressed miRNAs retrieved from a Genbank data set that included BB12-stimulated and unstimulated porcine monocytes. From them, 23 genes resulted in targets of 19 miRNAs, highlighting miR-30b-3p, miR-671-5p, and miR-9858-5p, whose targets were costimulatory molecules, and were overexpressed (p < 0.05) in BB12-stimulated moDCs. The analysis of moDCs showed that the percentage of cells expressing SLA-DR+CD80+ decreased significantly (p = 0.0081) in BB12-stimulated moDCs; interleukin (IL)-10 production was unchanged at 6 h but increased after 24 h of culture in the presence of BB12 (p < 0.001). In summary, our results suggest that SLA-DR and CD80 can be down-regulated by miRNAs miR-30b-3p, miR-671-5p, and miR-9858-5p, while miR-671-5p targets IL-10.
Collapse
|
173
|
Kazemi A, Soltani S, Ghorabi S, Nasri F, Babajafari S, Mazloomi SM. Is Probiotic and Synbiotic Supplementation Effective on Immune Cells? A Systematic Review and Meta-analysis of Clinical Trials. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1710748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asma Kazemi
- Nutrition research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sima Ghorabi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasri
- Department immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sivash Babajafari
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
174
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2020. [PMID: 33490124 DOI: 10.3389/2ffvets.2020.570748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
175
|
Adeyemi JA, Harmon DL, Compart DMP, Ogunade IM. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products in the diet of newly weaned beef steers: growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome1. J Anim Sci 2019; 97:4657-4667. [PMID: 31563947 PMCID: PMC6827398 DOI: 10.1093/jas/skz308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of dietary supplementation of a Saccharomyces cerevisiae-based direct-fed microbial (DFM) on the growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome of newly weaned beef steers during a 42 d receiving period. Forty newly weaned Angus crossbred steers (7 d post-weaning; 210 ± 12 kg of BW; 180 ± 17 d of age) from a single source were stratified by BW and randomly assigned to 1 of 2 treatments: basal diet with no additive (CON; n = 20) or a basal diet top-dressed with 19 g of the DFM (PROB; n = 20). Daily DMI and weekly body weights were measured to calculate average daily gain (ADG) and feed efficiency (FE). Expression of 84 immune-related genes was analyzed on blood samples collected on days 21 and 42. Serum biochemical parameters and plasma metabolome were analyzed on days 0, 21, and 42. On day 40, fecal grab samples were collected for pH measurement. Compared with CON, dietary supplementation of PROB increased final body weight (P = 0.01) and ADG (1.42 vs. 1.23 kg; P = 0.04) over the 42 d feeding trial. There was a tendency for improved FE with PROB supplementation (P = 0.10). No treatment effect (P = 0.24) on DMI was observed. Supplementation with PROB increased (P ≤ 0.05) the concentrations of serum calcium, total protein, and albumin. Compared with CON, dietary supplementation with PROB increased (P ≤ 0.05) the expression of some immune-related genes involved in detecting pathogen-associated molecular patterns (such as TLR1, TLR2, and TLR6), T-cell differentiation (such as STAT6, ICAM1, RORC, TBX21, and CXCR3) and others such as TNF and CASP1, on day 21 and/or day 42. Conversely, IL-8 was upregulated (P = 0.01) in beef steers fed CON diet on day 21. Plasma untargeted plasma metabolome analysis revealed an increase (P ≤ 0.05) in the concentration of metabolites, 5-methylcytosine and indoleacrylic acid involved in protecting the animals against inflammation in steers fed PROB diet. There was a tendency for lower fecal pH in steers fed PROB diet (P = 0.08), a possible indication of increased hindgut fermentation. This study demonstrated that supplementation of PROB diet improved the performance, nutritional status, and health of newly weaned beef steers during a 42 d receiving period.
Collapse
Affiliation(s)
- James A Adeyemi
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | | | - Ibukun M Ogunade
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY
| |
Collapse
|
176
|
Amat S, Timsit E, Baines D, Yanke J, Alexander TW. Development of Bacterial Therapeutics against the Bovine Respiratory Pathogen Mannheimia haemolytica. Appl Environ Microbiol 2019; 85:e01359-19. [PMID: 31444198 PMCID: PMC6803296 DOI: 10.1128/aem.01359-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine respiratory disease (BRD) is a major cause of morbidity and mortality in beef cattle. Recent evidence suggests that commensal bacteria of the bovine nasopharynx have an important role in maintaining respiratory health by providing colonization resistance against pathogens. The objective of this study was to screen and select bacterial therapeutic candidates from the nasopharynxes of feedlot cattle to mitigate the BRD pathogen Mannheimia haemolytica In a stepwise approach, bacteria (n = 300) isolated from the nasopharynxes of 100 healthy feedlot cattle were identified and initially screened (n = 178 isolates from 12 different genera) for growth inhibition of M. haemolytica Subsequently, selected isolates were evaluated for the ability to adhere to bovine turbinate (BT) cells (n = 47), compete against M. haemolytica for BT cell adherence (n = 15), and modulate gene expression in BT cells (n = 10). Lactobacillus strains had the strongest inhibition of M. haemolytica, with 88% of the isolates (n =33) having inhibition zones ranging from 17 to 23 mm. Adherence to BT cells ranged from 3.4 to 8.0 log10 CFU per 105 BT cells. All the isolates tested in competition assays reduced M. haemolytica adherence to BT cells (32% to 78%). Among 84 bovine genes evaluated, selected isolates upregulated expression of interleukin 8 (IL-8) and IL-6 (P < 0.05). After ranking isolates for greatest inhibition, adhesion, competition, and immunomodulation properties, 6 Lactobacillus strains from 4 different species were selected as the best candidates for further development as intranasal bacterial therapeutics to mitigate M. haemolytica infection in feedlot cattle.IMPORTANCE Bovine respiratory disease (BRD) is a significant animal health issue impacting the beef industry. Current BRD prevention strategies rely mainly on metaphylactic use of antimicrobials when cattle enter feedlots. However, a recent increase in BRD-associated bacterial pathogens that are resistant to metaphylactic antimicrobials highlights a pressing need for the development of novel mitigation strategies. Based upon previous research showing the importance of respiratory commensal bacteria in protecting against bronchopneumonia, this study aimed to develop bacterial therapeutics that could be used to mitigate the BRD pathogen Mannheimia haemolytica Bacteria isolated from the respiratory tracts of healthy cattle were characterized for their inhibitory, adhesive, and immunomodulatory properties. In total, 6 strains were identified as having the best properties for use as intranasal therapeutics to inhibit M. haemolytica If successful in vivo, these strains offer an alternative to metaphylactic antimicrobial use in feedlot cattle for mitigating BRD.
Collapse
Affiliation(s)
- Samat Amat
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, Alberta, Canada
- Feedlot Health Management Services, Okotoks, Alberta, Canada
| | - Danica Baines
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Jay Yanke
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| |
Collapse
|
177
|
Soares MB, Santos-Junior VA, Tavares Filho ER, Lollo PCB, Morato PN, Amaya-Farfan J, Pereira EPR, Balthazar CF, Cruz AG, Martinez RCR, Sant'Ana AS. The Step of Incorporation of Bacillus coagulans GBI-30 6086 Into "requeijão cremoso" Processed Cheese Does Not Affect Metabolic Homeostasis of Rats. Front Microbiol 2019; 10:2332. [PMID: 31695686 PMCID: PMC6817512 DOI: 10.3389/fmicb.2019.02332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dairy product consumption is a common habit in Brazil. These products present a good matrix for probiotic incorporation. Thus, in this study the feasibility of producing a probiotic “requeijão cremoso” incorporated with Bacillus coagulans GBI-30 6086 in three different steps and its metabolic effect in an animal model for 2 weeks has been evaluated. Wistar adult health rats were randomized into one to five groups (n = 8 for each group): Control (C); “requeijão cremoso” without probiotic (RC); probiotic inoculated in the milk before pasteurization at 65°C/30 min (RPP); “requeijão cremoso” inoculated before the fusion step and consequently exposed to 90°C/5 min (RPF); and “requeijão cremoso” inoculated after fusion step, i.e., once the product temperature reached 50°C (RPAF). At the end of treatment, analysis of molecular markers of proteins of stress and antioxidant system, HSP 25, 60, 70 and 90, SOD and catalase were performed in the animals’ muscles by Western Blot technique. The HSP25, HSP90 and catalase levels of C, RPP, RPF, and RPAF were similar, indicating that the homeostasis remained unchanged. The incorporation of B. coagulans GBI-30 6086 in the “requeijão cremoso” was shown to be stable and the microorganism remained viable in all steps tested. The incorporation of the probiotic strain in the fusion stage facilitated the technological process, since it allowed a better homogenization of the product and did not affect the maintenance of the metabolic homeostasis of rats.
Collapse
Affiliation(s)
- Mariana B Soares
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Valfredo A Santos-Junior
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - E R Tavares Filho
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Pablo C B Lollo
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Priscila N Morato
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Jaime Amaya-Farfan
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Eliene P R Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso F Balthazar
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.,Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, Brazil
| | - Adriano G Cruz
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, Brazil.,Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael C R Martinez
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
178
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
179
|
Jang HR, Park HJ, Kang D, Chung H, Nam MH, Lee Y, Park JH, Lee HY. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp Mol Med 2019; 51:1-14. [PMID: 31409765 PMCID: PMC6802638 DOI: 10.1038/s12276-019-0293-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has been known to contribute up to ~30% of the energy absorption of the host. Although various beneficial mechanisms of probiotics have been suggested for non-alcoholic fatty liver disease (NAFLD), whether and which probiotics impact the host's intestinal energy absorption have not yet been quantitatively studied. Here, we suggest a novel mechanism of probiotics against NAFLD, in which Lactobacillus rhamnosus GG, the most common probiotic, shares intestinal fatty acids and prevents the development of diet-induced hepatic steatosis. By using quantitative methods (radioactive tracers and LC-MS) under both in vitro and in vivo conditions, we found that bacteria and hosts competed for fatty acid absorption in the intestine, resulting in decreased weight gain, body fat mass, and hepatic lipid accumulation without differences in calorie intake and excretion in mice fed the probiotic bacteria.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hyun-Jun Park
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
- Department of Medicine, Gachon University School of Medicine, Incheon, Korea
| | - Dongwon Kang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hayung Chung
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yeonhee Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Korea
| | - Jae-Hak Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
180
|
Anaya-Loyola MA, Enciso-Moreno JA, López-Ramos JE, García-Marín G, Orozco Álvarez MY, Vega-García AM, Mosqueda J, García-Gutiérrez DG, Keller D, Pérez-Ramírez IF. Bacillus coagulans GBI-30, 6068 decreases upper respiratory and gastrointestinal tract symptoms in healthy Mexican scholar-aged children by modulating immune-related proteins. Food Res Int 2019; 125:108567. [PMID: 31554075 DOI: 10.1016/j.foodres.2019.108567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
This randomized, double-blind, parallel and placebo-controlled study aimed to evaluate the effect of Bacillus coagulans GBI-30, 6086® probiotic (GanedenBC30®) against upper respiratory tract infections (URTI) and gastrointestinal tract infections (GITI) in eighty healthy school-aged children (6-8 years old). The participants received daily a sachet containing either GanedenBC30 (1 × 109 colony-forming units) or placebo (maltodextrin) for three months. GanedenBC30 significantly decreased the incidence of URTI symptoms including nasal congestion, bloody nasal mucus, itchy nose, and hoarseness. The duration of the URTI-associated symptoms of hoarseness, headache, red eyes, and fatigue was also decreased. GanedenBC30 supplementation also significantly reduced the incidence rate of flatulence. These beneficial effects were associated with the modulation of serum TNFα, CD163, G-CSF, ICAM-1, IL-6, IL-8, MCP-2, RAGE, uPAR, and PF4. Therefore, probiotic B. coagulans GBI-30, 6086 modulated immune-related proteins in healthy children, decreasing several URTI and GITI symptoms, thus, this functional ingredient may contribute to a healthier lifestyle.
Collapse
Affiliation(s)
- Miriam A Anaya-Loyola
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | | | - Juan E López-Ramos
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas 98000, Mexico
| | | | - María Y Orozco Álvarez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | - Ana M Vega-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
| | | | - D Keller
- Keller Consulting Group, Beachwood, OH, USA
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
| |
Collapse
|
181
|
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129:3018-3028. [PMID: 31305265 DOI: 10.1172/jci128521] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
182
|
Prevalence and Sensitivity of Bacterial Urinary Tract Infection among Adult Diabetic Patients in Misan Province, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
183
|
Dehnavi S, Azad FJ, Hoseini RF, Moazzen N, Tavakkol-Afshari J, Nikpoor AR, Salmani AA, Ahanchian H, Mohammadi M. A significant decrease in the gene expression of interleukin-17 following the administration of synbiotic in patients with allergic rhinitis who underwent immunotherapy: A placebo-controlled clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:51. [PMID: 31333730 PMCID: PMC6611180 DOI: 10.4103/jrms.jrms_543_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Background: Allergic Rhinitis (AR) is the most common allergic disease worldwide. The present study, evaluated effects of synbiotic on gene expression of interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-17 (IL-17), transforming growth factor beta (TGF-β), and forkhead box P3 (FoxP3) in AR patients who received concomitant immunotherapy in a placebo-controlled clinical trial. Materials and Methods: Twenty AR patients were randomized in synbiotic and placebo groups and received cluster immunotherapy for 2 months. RNA was extracted from peripheral PBMCs, then the cDNA synthesized. Subsequently, SYBR Green real-time Reverse transcription polymerase chain reaction technique was employed for studying the expression of mentioned genes. In addition, SNOT-22 and mini-Rhinoconjunctivitis Quality of Life Questionnaire questionnaires were completed by patients. Data were analyzed before and also 2 and 6 months after intervention. Results: Clinical symptoms and quality of life were improved with immunotherapy, but there was no significant difference between the placebo and synbiotic groups. Gene expression of IFN-γ, TGF-β, and FoxP3 was increased whereas the gene expression of IL-4 and IL-10 decreased, but not significant. Interestingly, the gene expression of IL-17 in the synbiotic group was significantly decreased versus placebo after 2 months (P = 0.001) and also at the end of intervention (P = 0.0001) comparing with the time zero. Conclusion: Significant reduction in the IL-17 gene expression following administration of synbiotic versus placebo shows the importance of synbiotic in control of the immunopathogenesis of AR. Further studies with more samples are recommended. In addition, evaluating the effects of synbiotic in patients who do not undergo immunotherapy is suggested to get a better conclusion.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari Azad
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farid Hoseini
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakkol-Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Abbas Salmani
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
184
|
Chambers L, Avery A, Dalrymple J, Farrell L, Gibson G, Harrington J, Rijkers G, Rowland I, Spiro A, Varela‐Moreiras G, Vokes L, Younge L, Whelan K, Stanner S. Translating probiotic science into practice. NUTR BULL 2019. [DOI: 10.1111/nbu.12385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - A. Avery
- University of Nottingham Nottingham UK
| | - J. Dalrymple
- Primary Care Society for Gastroenterology London UK
| | | | | | | | - G. Rijkers
- University College Roosevelt Middelburg The Netherlands
| | | | - A. Spiro
- British Nutrition Foundation London UK
| | | | - L. Vokes
- British Dietetic Association Birmingham UK
| | | | | | | |
Collapse
|
185
|
D'Accolti M, Soffritti I, Mazzacane S, Caselli E. Fighting AMR in the Healthcare Environment: Microbiome-Based Sanitation Approaches and Monitoring Tools. Int J Mol Sci 2019; 20:ijms20071535. [PMID: 30934725 PMCID: PMC6479322 DOI: 10.3390/ijms20071535] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Healthcare-associated infections (HAIs) affect up to 15% of all hospitalized patients, representing a global concern. Major causes include the persistent microbial contamination of hospital environment, and the growing antimicrobial-resistance (AMR) of HAI-associated microbes. The hospital environment represents in fact a reservoir of potential pathogens, continuously spread by healthcare personnel, visiting persons and hospitalized patients. The control of contamination has been so far addressed by the use of chemical-based sanitation procedures, which however have limitations, as testified by the persistence of contamination itself and by the growing AMR of hospital microbes. Here we review the results collected by a microbial-based sanitation system, inspired by the microbiome balance principles, in obtaining more effective control of microbial contamination and AMR. Whatever the sanitation system used, an important aspect of controlling AMR and HAIs relates to the ability to check any variation of a microbial population rapidly and effectively, thus effective monitoring procedures are also described.
Collapse
Affiliation(s)
- Maria D'Accolti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- CIAS Research Centre, Department of Architecture and Medical Science, University of Ferrara, 44121 Ferrara, Italy.
| | - Irene Soffritti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- CIAS Research Centre, Department of Architecture and Medical Science, University of Ferrara, 44121 Ferrara, Italy.
| | - Sante Mazzacane
- CIAS Research Centre, Department of Architecture and Medical Science, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta Caselli
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- CIAS Research Centre, Department of Architecture and Medical Science, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
186
|
Wong CB, Odamaki T, Xiao JZ. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
187
|
Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, Stenvinkel P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019; 11:496. [PMID: 30818761 PMCID: PMC6471287 DOI: 10.3390/nu11030496] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota imbalance is common in patients with chronic kidney disease (CKD) and associates with factors such as increased circulating levels of gut-derived uremic toxins, inflammation, and oxidative stress, which are linked to cardiovascular disease and increased morbimortality. Different nutritional strategies have been proposed to modulate gut microbiota, and could potentially be used to reduce dysbiosis in CKD. Nutrients like proteins, fibers, probiotics, and synbiotics are important determinants of the composition of gut microbiota and specific bioactive compounds such as polyphenols present in nuts, berries. and fruits, and curcumin, may also play a key role in this regard. However, so far, there are few studies on dietary components influencing the gut microbiota in CKD, and it is therefore not possible to conclude which nutrients should be prioritized in the diet of patients with CKD. In this review, we discuss some nutrients, diet patterns and bioactive compounds that may be involved in the modulation of gut microbiota in CKD and provide the background and rationale for studies exploring whether nutritional interventions with these dietary components could be used to alleviate the gut dysbiosis in patients with CKD.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Natália Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Livia Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Marta Esgalhado
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Ludmila Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
188
|
Raabis S, Li W, Cersosimo L. Effects and immune responses of probiotic treatment in ruminants. Vet Immunol Immunopathol 2019; 208:58-66. [PMID: 30712793 PMCID: PMC6526955 DOI: 10.1016/j.vetimm.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Gut microbial colonization and establishment are vital to ruminant health and production. This review article focuses on current knowledge and methods used to understand and manipulate the gut microbial community in ruminant animals, with a special focus on probiotics treatment. This review highlights the most promising of studies in this area, including gut microbial colonization and establishment, effect of gastrointestinal tract microbial community on host mucosal innate immune function, impact of feeding strategies on gut microbial community, current probiotic treatments in ruminants, methods to manipulate the gut microbiota and associated antimicrobial compounds, and models and cell lines used in understanding the host immune response to probiotic treatments. As a lot of work in this area was done in humans and mice, this review article also includes up-to-date knowledge from relevant studies in human and mouse models. This review is a useful resource for scientists working in the areas of ruminant nutrition and health, and to researchers investigating the microbial ecology and its relation to animal health.
Collapse
Affiliation(s)
- Sarah Raabis
- School of Veterinary Medicine, University of Wisconsin-Madison, United States
| | - Wenli Li
- Dairy Forage Research Center, Agricultural Research Service, USDA, 1925 Linden Drive, Madison, WI, 53706, United States.
| | - Laura Cersosimo
- University of Florida, Department of Animal Sciences, Gainesville, FL, United States
| |
Collapse
|
189
|
Darby TM, Owens JA, Saeedi BJ, Luo L, Matthews JD, Robinson BS, Naudin CR, Jones RM. Lactococcus Lactis Subsp. cremoris Is an Efficacious Beneficial Bacterium that Limits Tissue Injury in the Intestine. iScience 2019; 12:356-367. [PMID: 30739017 PMCID: PMC6369221 DOI: 10.1016/j.isci.2019.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
The use of beneficial bacteria to promote health is widely practiced. However, experimental evidence corroborating the efficacy of bacteria promoted with such claims remains limited. We address this gap by identifying a beneficial bacterium that protects against tissue damage and injury-induced inflammation in the gut. We first employed the Drosophila animal model to screen for the capacity of candidate beneficial bacteria to protect the fly gut against injury. From this screen, we identified Lactococcus lactis subsp. cremoris as a bacterium that elicited potent cytoprotective activity. Then, in a murine model, we demonstrated that the same strain confers powerful cytoprotective influences against radiological damage, as well as anti-inflammatory activity in a gut colitis model. In summary, we demonstrate the positive salutary effects of a beneficial bacterium, namely, L. lactis subsp. cremoris on intestinal tissue and propose the use of this strain as a therapeutic to promote intestinal health. Drosophila can be used as an animal model to screen for beneficial bacteria Lactococcus lactis subsp. cremoris elicited potent cytoprotection in the fly gut L. lactis cremoris elicited anti-inflammatory activity in a mouse colitis model L. lactis cremoris activated the cytoprotective Nrf2 pathway in flies and mice
Collapse
Affiliation(s)
- Trevor M Darby
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Joshua A Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Bejan J Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Liping Luo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Crystal R Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA
| | - Rheinallt M Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, 615 Michael Street, Atlanta GA 30322, USA.
| |
Collapse
|
190
|
Probiotics: How Effective Are They in the Fight against Obesity? Nutrients 2019; 11:nu11020258. [PMID: 30678355 PMCID: PMC6412733 DOI: 10.3390/nu11020258] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity has been associated with structural and functional changes in the gut microbiota. The abundance in, and diversity of, certain bacteria may favor energy harvest and metabolic pathways leading to obesity. Therefore, gut microbiota has become a potential target that can be manipulated to obtain optimal health. Probiotics have been shown to influence the composition of the gut microbiota, improve gut integrity, and restore the microbial shifts characteristic of obesity. Based on physical and biochemical parameters, metabolic and inflammatory markers, and alterations in gut microbe diversity, animal studies revealed beneficial results in obese models whereas the results in humans are sparse and inconsistent. Thus, the purpose of this review is to present evidence from animal studies and human clinical trials demonstrating the effects of various probiotic strains and their potential efficacy in improving obesity and associated metabolic dysfunctions. Furthermore, the review discusses current gaps in our understanding of how probiotics modulate gut microflora to protect against obesity. Finally, we propose future studies and methodological approaches that may shed light on the challenges facing the scientific community in deciphering the host–bacteria interaction in obesity.
Collapse
|
191
|
Lewiecki EM, Bilezikian JP, Giangregorio L, Greenspan SL, Khosla S, Kostenuik P, Krohn K, McClung MR, Miller PD, Pacifici R. Proceedings of the 2018 Santa Fe Bone Symposium: Advances in the Management of Osteoporosis. J Clin Densitom 2019; 22:1-19. [PMID: 30366683 DOI: 10.1016/j.jocd.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
The Santa Fe Bone Symposium is an annual meeting devoted to clinical applications of recent advances in skeletal research. The 19th Santa Fe Bone Symposium convened August 3-4, 2018, in Santa Fe, New Mexico, USA. Attendees included physicians of many specialties, fellows in training, advanced practice providers, clinical researchers, and bone density technologists. The format consisted of lectures, case presentations by endocrinology fellows, and panel discussions, with all involving extensive interactive discussions. Topics were diverse, including an evolutionary history of calcium homeostasis, osteoporosis treatment in the very old, optimizing outcomes with orthopedic surgery, microbiome and bone, new strategies for combination and sequential therapy of osteoporosis, exercise as medicine, manifestations of parathyroid hormone excess and deficiency, parathyroid hormone as a therapeutic agent, cell senescence and bone health, and managing patients outside clinical practice guidelines. The National Bone Health Alliance conducted a premeeting on development of fracture liaison services. A workshop was devoted to Bone Health TeleECHO (Bone Health Extension for Community Healthcare Outcomes), a strategy of ongoing medical education for healthcare professions to expand capacity to deliver best practice skeletal healthcare in underserved communities and reduce the osteoporosis treatment gap.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA.
| | - John P Bilezikian
- Columbia University College of Physicians and Surgeons, NYC, NY, USA
| | - Lora Giangregorio
- University of Waterloo and Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | | | | | | | | | - Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA; MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Paul D Miller
- University of Colorado Health Sciences Center, Denver, CO, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
192
|
Kumazawa T, Nishimura A, Asai N, Adachi T. Isolation of immune-regulatory Tetragenococcus halophilus from miso. PLoS One 2018; 13:e0208821. [PMID: 30586377 PMCID: PMC6306251 DOI: 10.1371/journal.pone.0208821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022] Open
Abstract
Tetragenococcus halophilus is a halophilic lactic acid bacterium that exists in the traditional Japanese seasoning miso-a fermented soy paste. Considering the popularity of miso as a component of healthy diet, we attempted to evaluate the immunoregulatory functions of T. halophilus spices isolated from miso. We screened 56 strains that facilitated the upregulation of activation markers such as CD86 and CD69 on B cells and T cells in vitro. Of these, 7 strains (Nos. 1, 3, 13, 15, 19, 30, and 31) were found to preferentially induce the CD86 expression on B cells. Furthermore, DNA microarray analysis revealed that T. halophilus strain No. 1 significantly augmented the gene expressions of CD86, CD70, IL-10, INF-γ, and IL-22 in B cells. We confirmed these results at the protein level by flow cytometry. Mice feeding diet containing 1% T. halophilus No. 1 exhibited significantly greater IgA production in the serum. Furthermore, a diet containing 1% T. halophilus No. 1 augmented ovoalbumin (OVA)-specific IgG titer in mice upon OVA/alum immunization. Thus, we demonstrated that T. halophilus No. 1 is a strong immunomodulatory strain with potential as a probiotic.
Collapse
Affiliation(s)
- Toshihiko Kumazawa
- Ichibiki CO., LTD. Nagoya, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
193
|
Verma R, Lee C, Jeun EJ, Yi J, Kim KS, Ghosh A, Byun S, Lee CG, Kang HJ, Kim GC, Jun CD, Jan G, Suh CH, Jung JY, Sprent J, Rudra D, De Castro C, Molinaro A, Surh CD, Im SH. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3 + regulatory T cells. Sci Immunol 2018; 3:eaat6975. [PMID: 30341145 DOI: 10.1126/sciimmunol.aat6975] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Dysregulation of intestinal microflora is linked to inflammatory disorders associated with compromised immunosuppressive functions of Foxp3+ T regulatory (Treg) cells. Although mucosa-associated commensal microbiota has been implicated in Treg generation, molecular identities of the "effector" components controlling this process remain largely unknown. Here, we have defined Bifidobacterium bifidum as a potent inducer of Foxp3+ Treg cells with diverse T cell receptor specificity to dietary antigens, commensal bacteria, and B. bifidum itself. Cell surface β-glucan/galactan (CSGG) polysaccharides of B. bifidum were identified as key components responsible for Treg induction. CSGG efficiently recapitulated the activity of whole bacteria and acted via regulatory dendritic cells through a partially Toll-like receptor 2-mediated mechanism. Treg cells induced by B. bifidum or purified CSGG display stable and robust suppressive capacity toward experimental colitis. By identifying CSGG as a functional component of Treg-inducing bacteria, our studies highlight the immunomodulatory potential of CSGG and CSGG-producing microbes.
Collapse
Affiliation(s)
- Ravi Verma
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Changhon Lee
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eun-Ji Jeun
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeu Yi
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Ambarnil Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Seohyun Byun
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Hye-Ji Kang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gwenaël Jan
- INRA-Agrocampus Ouest Rennes, UMR 1253 STLO, Rennes, France
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine,164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine,164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, 80055 Portici, Italy
- Department of Chemical Sciences, University of Napoli, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, 80126 Napoli, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
194
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
195
|
Jones RM, Mulle JG, Pacifici R. Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone 2018; 115:59-67. [PMID: 28433758 DOI: 10.1016/j.bone.2017.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, United States
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, United States; Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, United States.
| |
Collapse
|
196
|
Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 2018; 24:1097-1103. [DOI: 10.1038/s41591-018-0145-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
|
197
|
Stedman A, Maluquer de Motes C, Lesellier S, Dalley D, Chambers M, Gutierrez-Merino J. Lactic acid Bacteria isolated from European badgers (Meles meles) reduce the viability and survival of Bacillus Calmette-Guerin (BCG) vaccine and influence the immune response to BCG in a human macrophage model. BMC Microbiol 2018; 18:74. [PMID: 30005620 PMCID: PMC6044090 DOI: 10.1186/s12866-018-1210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/27/2018] [Indexed: 02/08/2023] Open
Abstract
Background Bovine tuberculosis (bTB) caused by Mycobacterium bovis is the most serious endemic disease affecting livestock in the UK. The European badger (Meles meles) is the most important wildlife reservoir of bTB transmission to cattle, making eradication particularly difficult. In this respect, oral vaccination with the attenuated M. bovis vaccine Bacillus Calmette-Guerin (BCG) has been suggested as a wide-scale intervention to reduce bTB infection in badgers. However, experimental studies show variable protection. Among the possibilities for this variation is that the resident gut bacteria may influence the success of oral vaccination in badgers; either through competitive exclusion and/or inhibition, or via effects on the host immune system. In order to explore this possibility, we have tested whether typical gut commensals such as Lactic Acid Bacteria (LAB) have the capacity to impact on the viability and survival rate of BCG and to modulate the immune response to BCG using an in vitro model. Results Twelve LAB isolated from badger faeces displayed inhibitory activity to BCG that was species-dependent. Weissella had a bacteriostatic effect, whereas isolates of enterococci, lactobacilli and pediococci had a more bactericidal activity. Furthermore, BCG-induced activation of the pro-inflammatory transcription factor NF-κB in human THP-1 macrophages was modulated by LAB in a strain-dependent manner. Most pediococci enhanced NF-κB activation but one strain had the opposite effect. Interestingly, isolates of enterococci, lactobacilli and weissella had different effects as immunomodulators of BCG-induced macrophage responses as some had no significant influence on NF-κB activation, but others increased it significantly. Conclusions Our in vitro results show that LAB isolated from badgers exhibit significant inhibitory activity against BCG and influence the immune activation mediated by BCG in a human macrophage assay. These findings suggest that gut commensal bacteria could play a role in influencing the outcome of oral BCG vaccination. Inactivated cells of LAB, or LAB that are bacteriostatic but have a synergistic immunostimulatory effect with BCG, could be potential adjuvants to be used for oral vaccination in badgers. Further work is needed to take into account the complex nature of the gut microbiome, specific immunity of the badger and the in vivo context. Electronic supplementary material The online version of this article (10.1186/s12866-018-1210-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK.,The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Sandrine Lesellier
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Deanna Dalley
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Mark Chambers
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK.,School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK
| | | |
Collapse
|
198
|
Kusajima M, Shima S, Fujita M, Minamisawa K, Che FS, Yamakawa H, Nakashita H. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem 2018; 82:1522-1526. [PMID: 29847205 DOI: 10.1080/09168451.2018.1480350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A bacterial endophyte Azospirillum sp. B510 induces systemic disease resistance in the host without accompanying defense-related gene expression. To elucidate molecular mechanism of this induced systemic resistance (ISR), involvement of ethylene (ET) was examined using OsEIN2-knockdown mutant rice. Rice blast inoculation assay and gene expression analysis indicated that ET signaling is required for endophyte-mediated ISR in rice. ABBREVIATIONS ACC: 1-aminocyclopropane-1-carboxylic acid; EIN2: ethylene-insensitive protein 2; ET: ethylene; ISR: induced systemic resistance; JA: jasmonic acid; RNAi: RNA interference; SA: salicylic acid; SAR: systemic acquired resistance.
Collapse
Affiliation(s)
- Miyuki Kusajima
- a Research Center for Bioresources Development, Faculty of Biotechnology , Fukui Prefectural University , Fukui , Japan.,b Plant-Endophyte Interactions Laboratory , Center for Intellectual Property Strategies , Saitama , Japan
| | - Shuhei Shima
- b Plant-Endophyte Interactions Laboratory , Center for Intellectual Property Strategies , Saitama , Japan
| | - Moeka Fujita
- a Research Center for Bioresources Development, Faculty of Biotechnology , Fukui Prefectural University , Fukui , Japan
| | - Kiwamu Minamisawa
- c Laboratory of Environmental Plant Microbiology, Graduate School of Life Sciences , Tohoku University , Sendai , Japan
| | - Fang-Sik Che
- d Graduate School of Bio-Science , Nagahama Institute of Bio-Science and Technology , Nagahama , Shiga , Japan
| | - Hiromoto Yamakawa
- e Crop Development Division , Central Region Agricultural Research Center, National Agriculture and Food Research Organization , Joetsu , Japan
| | - Hideo Nakashita
- a Research Center for Bioresources Development, Faculty of Biotechnology , Fukui Prefectural University , Fukui , Japan.,b Plant-Endophyte Interactions Laboratory , Center for Intellectual Property Strategies , Saitama , Japan
| |
Collapse
|
199
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the microbiome. The gastrointestinal tract harbors the greatest numbers of these microorganisms, which regulate human nutrition, metabolism, and immune system function. Moreover, the intestinal microbiota contains pro- and anti-inflammatory products that modulate immune responses and may play a role in maintaining gut barrier function. Therefore, the community composition of the microbiota has profound effects on the immune status of the host and impacts the development and/or progression of inflammatory diseases. Accordingly, numerous studies have shown differences in the microbiota of patients with and without a given inflammatory condition. There is now strong evidence that the gut microbiome regulates bone homeostasis in health and disease, and that prebiotic and probiotics protect against bone loss. Herein, the evidence supporting the role of the microbiota and the effects of prebiotic and probiotics will be reviewed.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
200
|
L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches. Sci Rep 2018; 8:1785. [PMID: 29379071 PMCID: PMC5788989 DOI: 10.1038/s41598-018-20243-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics such as L. plantarum WCFS1 can modulate immune responses in healthy subjects but how this occurs is still largely unknown. Immune-sampling in the Peyer Patches has been suggested to be one of the mechanisms. Here we studied the systemic and intestinal immune effects in combination with a trafficking study through the intestine of a well-established immunomodulating probiotic, i.e. L. plantarum WCFS1. We demonstrate that not more than 2–3 bacteria were sampled and in many animals not any bacterium could be found in the PP. Despite this, L. plantarum was associated with a strong increase in infiltration of regulatory CD103+ DCs and generation of regulatory T cells in the spleen. Also, a reduced splenic T helper cell cytokine response was observed after ex vivo restimulation. L. plantarum enhanced Treg cells and attenuated the T helper 2 response in healthy mice. We demonstrate that, in healthy mice, immune sampling is a rare phenomenon and not required for immunomodulation. Also in absence of any sampling immune activation was found illustrating that host-microbe interaction on the Peyer Patches was enough to induce immunomodulation of DCs and T-cells.
Collapse
|