151
|
Shokraii F, Moharrami M, Motamed N, Shahhoseini M, Totonchi M, Ezzatizadeh V, Firouzi J, Khosravani P, Ebrahimi M. Histone Modification Marks Strongly Regulate CDH1 Promoter in Prostospheres as A Model of Prostate Cancer Stem Like Cells. CELL JOURNAL 2019; 21:124-134. [PMID: 30825285 PMCID: PMC6397603 DOI: 10.22074/cellj.2019.5702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cadherin-1 (CDH1) plays an important role in the metastasis, while expression of this protein is under control of epigenetic changes on its gene promoter. Therefore we evaluated both DNA methylation (DNAmet) and histone modification marks of CDH1 in prostate cancer stem like cells (PCSLCs). MATERIALS AND METHODS In this experimental study, we isolated PCSLCs using cell surface marker and prostaspheroid formation, respectively. The cells isolated from both methods were characterized and then the levels of H3K4me2, H3K27me3, H3K9me2/3 and H3K9ac as well as DNAmet were assessed in CDH1 promoter of the isolated cells. RESULTS The CD44+ CD49hi cells were not validated as PCSLCs. However, prostaspheres overexpressed stemness related genes and had higher ability of invasion potential, associated with reduction in CDH1 expression. Epigenetic status analysis showed that CDH1 promoter was hypo-methylated. Histone modifications of H3K9ac and H3K4me3 were significantly reduced, in parallel with an increased level of H3K27me3. CONCLUSION Our results suggest that slight decrease of DNAmet of the CpG island in CDH1 promoter does not significantly contribute to the change of CDH1 expression. Therefore, histone modifications are responsible in repressing CDH1 in PCSLCs.
Collapse
Affiliation(s)
- Fatemeh Shokraii
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moharrami
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nasrin Motamed
- School of Biology, College of Science, University of Tehran, Tehran, Iran. Electronic Adress:
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Medical Genetics, Royesh Medical Laboratory Centre, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
152
|
Civera M, Vasile F, Potenza D, Colombo C, Parente S, Vettraino C, Prosdocimi T, Parisini E, Belvisi L. Exploring E-cadherin-peptidomimetics interaction using NMR and computational studies. PLoS Comput Biol 2019; 15:e1007041. [PMID: 31158220 PMCID: PMC6564044 DOI: 10.1371/journal.pcbi.1007041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023] Open
Abstract
Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues. Classical cadherins are the main adhesive proteins at the intercellular junctions and play an essential role in tissue morphogenesis and homeostasis. A large number of studies have shown that cadherin aberrant expression and/or dysregulation often correlate with pathological processes, such as tumor development and progression. Notwithstanding the emerging role played by cadherins in a number of solid tumors, the rational design of small inhibitors targeting these proteins is still in its infancy, likely due to the challenges posed by the development of small drug-like molecules that modulate protein-protein interactions and to the structural complexity of the various cadherin dimerization interfaces that constantly form and disappear as the protein moves along its highly dynamic and reversible homo-dimerization trajectory. In this work, we study the interaction of two small molecules with the extracellular portion of human E-cadherin using a combination of spectroscopic and computational techniques. The availability of molecules interfering in the cadherin homophilic interactions could provide a useful tool for the investigation of cadherin function in tumors, and potentially pave the way to the development of novel alternative diagnostic and therapeutic interventions in cadherin-expressing solid tumors.
Collapse
Affiliation(s)
- Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (MC); (FV)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Prosdocimi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
- Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
153
|
Song Y, Ye M, Zhou J, Wang ZW, Zhu X. Restoring E-cadherin Expression by Natural Compounds for Anticancer Therapies in Genital and Urinary Cancers. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:130-138. [PMID: 31194121 PMCID: PMC6551504 DOI: 10.1016/j.omto.2019.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
E-cadherin plays a pivotal role in cancer progression, including the epithelial-mesenchymal transition (EMT) process and tumor metastasis. Loss of E-cadherin contributes to enhanced invasion and metastasis in human cancers. Therefore, restoring E-cadherin could be a potential approach for cancer therapy. Multiple natural compounds have been shown to possess anti-tumor activities through the regulation of key molecules in signaling pathways, including E-cadherin. In this review, we describe the numerous compounds that restore the expression of E-cadherin in genital and urinary malignancies. We further discuss the potential anti-tumor molecular mechanisms of these agents as the activators of E-cadherin in genital and urinary cancers. Although these compounds exhibit their potential to inhibit the development and progression of cancers, there are several challenges to developing them as therapeutic drugs for cancer patients. Poor bioavailability in vivo is the main disadvantage of these compounds. Modification of compound structures has produced actual improvements in bioavailability. Nanoparticle-based delivery systems could be useful to deliver the agents to targeted organs. These compounds could be new promising therapeutic agents for the treatment of human genital and urinary cancers. Further investigations are required to determine the safety and side effects of natural compounds using animal models prior to clinical trials.
Collapse
Affiliation(s)
- Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junhan Zhou
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
154
|
Peng B, Ortega J, Gu L, Chang Z, Li GM. Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway. J Biol Chem 2019; 294:7037-7045. [PMID: 30858175 PMCID: PMC6497965 DOI: 10.1074/jbc.ra119.007897] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) and its posttranslational modifications regulate DNA metabolic reactions, including DNA replication and repair, at replication forks. PCNA phosphorylation at Tyr-211 (PCNA-Y211p) inhibits DNA mismatch repair and induces misincorporation during DNA synthesis. Here, we describe an unexpected role of PCNA-Y211p in cancer promotion and development. Cells expressing phosphorylation-mimicking PCNA, PCNA-Y211D, show elevated hallmarks specific to the epithelial-mesenchymal transition (EMT), including the up-regulation of the EMT-promoting factor Snail and the down-regulation of EMT-inhibitory factors E-cadherin and GSK3β. The PCNA-Y211D-expressing cells also exhibited active cell migration and underwent G2/M arrest. Interestingly, all of these EMT-associated activities required the activation of ATM and Akt kinases, as inactivating these protein kinases by gene knockdown or inhibitors blocked EMT-associated signaling and cell migration. We concluded that PCNA phosphorylation promotes cancer progression via the ATM/Akt/GSK3β/Snail signaling pathway. In conclusion, this study identifies a novel PCNA function and reveals the molecular basis of phosphorylated PCNA-mediated cancer development and progression.
Collapse
Affiliation(s)
- Bo Peng
- From the Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China 100084 and
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhijie Chang
- From the Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China 100084 and
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
155
|
Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun 2019; 10:1909. [PMID: 31015417 PMCID: PMC6478918 DOI: 10.1038/s41467-019-09780-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. β-catenin is widely thought to be a major oncogene in HCC based on the frequency of mutations associated with aberrant Wnt signaling in HCC patients. Challenging this model, our data reveal that β-catenin nuclear accumulation is restricted to the late stage of the disease. Until then, β-catenin is primarily located at the plasma membrane in complex with multiple cadherin family members where it drives tumor cell survival by enhancing the signaling of growth factor receptors such as EGFR. Therefore, our study reveals the evolving nature of β-catenin in HCC to establish it as a compound tumor promoter during the progression of the disease. Aberrant Wnt/b-catenin signaling is thought to be a major driver of hepatocellular carcinoma. Here, the authors show that β-Catenin is predominantly integrated within the AJ complex during the early stages of this cancer and enhance EGFR signaling to promote tumour survival.
Collapse
|
156
|
Tsaur I, Hüsch T, Jüngel E, Schneider F, Schneider M, Haferkamp A, Thomas C, Lieb V, Wach S, Taubert H, Chun FKH, Blaheta RA. sE-cadherin is upregulated in serum of patients with renal cell carcinoma and promotes tumor cell dissemination in vitro. Urol Oncol 2019; 37:355.e1-355.e9. [PMID: 31005422 DOI: 10.1016/j.urolonc.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Cadherin family proteins are involved in the tumorigenesis of several malignancies. However, their significance in renal cell carcinoma (RCC) has not been extensively investigated. The current study investigates the potential of several cadherins to perform as biomarkers for tumor detection and exert functional RCC activity. METHODS Pre- and postoperative concentrations of sE-cadherin, cadherin-6, N-cadherin, cadherin-11, cadherin-17, and cadherin-5 were measured in serum of patients undergoing surgery for RCC and correlated to clinical and histopathological parameters. Control serum was obtained from healthy volunteers. A498 and Caki-1 cells were incubated with sE-cadherin and assessed for cell growth, adhesion, and chemotaxis. RESULTS sE-cadherin was significantly upregulated in RCC patients, as compared to controls, and discriminated them with striking accuracy (area under the curve value 0.83). Serum levels remained stable several days after surgery. Treating A498 and Caki-1 cancer cells with various concentrations of sE-cadherin attenuated cell growth and adhesion, while chemotaxis was augmented. CONCLUSIONS sE-cadherin is overexpressed in serum of RCC patients and provides a functional cellular switch from sessility to aggressive dissemination. While sE-cadherin is not tumor-specific and thus inappropriate for population-based screening, further studies are warranted to investigate its role in monitoring RCC and employing it as a therapeutic target.
Collapse
Affiliation(s)
- Igor Tsaur
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany; University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| | - Tanja Hüsch
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany; University Hospital Frankfurt, Department of Urology, Frankfurt, Germany.
| | - Eva Jüngel
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | | | - Meike Schneider
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Axel Haferkamp
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Christian Thomas
- University Medical Center Mainz, Department of Urology and Pediatric Urology, Mainz, Germany
| | - Verena Lieb
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Sven Wach
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Helge Taubert
- University Hospital Erlangen, Department of Urology and Pediatric Urology, Erlangen, Germany
| | - Felix K-H Chun
- University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| | - Roman A Blaheta
- University Hospital Frankfurt, Department of Urology, Frankfurt, Germany
| |
Collapse
|
157
|
Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144:245-256. [PMID: 31005617 DOI: 10.1016/j.phrs.2019.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Collapse
|
158
|
Xu ZJ, Ma JC, Zhou JD, Wen XM, Yao DM, Zhang W, Ji RB, Wu DH, Tang LJ, Deng ZQ, Qian J, Lin J. Reduced protocadherin17 expression in leukemia stem cells: the clinical and biological effect in acute myeloid leukemia. J Transl Med 2019; 17:102. [PMID: 30922328 PMCID: PMC6440111 DOI: 10.1186/s12967-019-1851-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Leukemia stem cell (LSC)-enriched genes have been shown to be highly prognostic in acute myeloid leukemia (AML). However, the prognostic value of tumor suppressor genes (TSGs) that are repressed early in LSC remains largely unknown. Methods We compared the public available expression/methylation profiling data of LSCs with that of hematopoietic stem cells (HSCs), in order to identify potential tumor suppressor genes in LSC. The prognostic relevance of PCDH17 was analyzed on a cohort of 173 AML patients from The Cancer Genome Atlas (TCGA), and further validated in three independent cohorts (n = 339). Results We identified protocadherin17 (PCDH17) and demonstrated that it was significantly down-regulated and hypermethylated in LSCs compared with HSCs. Our analyses of primary AML patient samples also confirmed these deregulations. Clinically, low PCDH17 expression was associated with female sex (P = 0.01), higher WBC (P < 0.0001), higher percentages of blasts in bone marrow (BM) and peripheral blood (PB) (P = 0.04 and < 0.001, respectively), presence of FLT3-internal tandem duplications (P = 0.002), mutated NPM1 (P = 0.02), and wild-type TP53 (P = 0.005). Moreover, low PCDH17 expression predicted worse overall survival (OS) in four independent cohorts as well as in the molecularly defined subgroups of AML patients. In multivariable analyses, low PCDH17 expression retained independent prognostic value for OS. Biologically, PCDH17 expression-associated gene signatures were characterized by deregulations of EMT- and Wnt pathway-related genes. Conclusions PCDH17 gene was silenced by DNA methylation in AML. Low PCDH17 expression is associated with distinct clinical and biological features and improves risk stratification in patients with AML. Electronic supplementary material The online version of this article (10.1186/s12967-019-1851-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Department of Clinical Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, People's Republic of China
| | - Wei Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Run-Bi Ji
- Department of Clinical Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, 215300, Jiangsu, People's Republic of China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
159
|
Li L, Yu S, Wu Q, Dou N, Li Y, Gao Y. KLF4-Mediated CDH3 Upregulation Suppresses Human Hepatoma Cell Growth and Migration via GSK-3β Signaling. Int J Biol Sci 2019; 15:953-961. [PMID: 31182916 PMCID: PMC6535787 DOI: 10.7150/ijbs.30857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
P-cadherin (CDH3), a classical cell adhesion molecule involved in tissue integrity and cell localization, has been implicated in many types of cancer. However, little is known about its function and regulatory mechanism in hepatocellular carcinoma (HCC). Here we report that CDH3 was positively regulated by kr¨uppel-like transcription factor 4 (KLF4), which is a crucial tumor suppressor gene in HCC, at mRNA level in HCC cell lines. Luciferase reporter assay and chromatin immunoprecipitation assay indicated that KLF4 directly bound to CDH3 promoter and transcriptionally activated CDH3 expression. Consistently, CDH3 expression was closely related with KLF4 expression in patients' samples and both proteins exhibited a downregulated expression pattern in cancer samples. Functionally, enforced CDH3 expression suppressed and silenced CDH3 expression promoted HCC cell growth and migration in vitro. Mechanistically, we observed that GSK-3β was regulated by CDH3 and may function as a possible downstream effector of CDH3. Knockdown of GSK-3β showed a similar phenotype with CDH3 silencing. Taken together, these findings establish the KLF4/CDH3/GSK-3β axis as an important regulatory mechanism in HCC development.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
160
|
Jia J, Zhang X, Zhan D, Li J, Li Z, Li H, Qian J. LncRNA H19 interacted with miR-130a-3p and miR-17-5p to modify radio-resistance and chemo-sensitivity of cardiac carcinoma cells. Cancer Med 2019; 8:1604-1618. [PMID: 30843379 PMCID: PMC6488143 DOI: 10.1002/cam4.1860] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
The current investigation explored the synthetic contribution of lncRNA H19, miR-130a-3p, and miR-17-5p to radio-resistance and chemo-sensitivity of cardiac cancer cells. Totally 284 human cardiac cancer tissues were gathered, and they have been pathologically diagnosed. The cardiac cancer cells were isolated with utilization of the mechanic method. Moreover, cisplatin, adriamycin, mitomycin, and 5-fluorouracil were designated as the chemotherapies, and single-dose X-rays were managed as the radiotherapy for cardiac cancer cells. We also performed luciferase reporter gene assay to verify the targeted relationship between H19 and miR-130a-3p, as well as between H19 and miR-17-5p. Finally, mice models were established to examine the functions of H19, miR-130a-3p, and miR-17-5p on the development of cardiac cancer. The study results indicated that H19, miR-130a-3p, and miR-17-5p expressions within cardiac cancer tissues were significantly beyond those within adjacent nontumor tissues (P < 0.05), and H19 expression was positively correlated with both miR-130a-3p (rs = 0.43) and miR-17-5p (rs = 0.49) expressions. The half maximal inhibitory concentrations (IC50) of cisplatin, adriamycin, mitomycin, and 5-fluorouracil for cardiac cancer cells were, respectively, determined as 2.01 μg/mL, 8.35 μg/mL, 24.44 μg/mL, and 166.42 μg/mL. The overexpressed H19, miR-130a-3p, and miR-17-5p appeared to improve the survival rate and viability of cardiac cancer cells that were exposed to chemotherapies and X-rays (all P < 0.05). It was also drawn from luciferase reporter gene assay that H19 could directly target miR-130a-3p and miR-17-5p, thereby modifying the sensitivity of cardiac cancer cells to drugs and X-rays (P < 0.05). Finally, the mice models also produced larger tumor size and higher tumor weight, when H19, miR-130a-3p, or miR-17-5p expressions were up-regulated within them (P < 0.05). In conclusion, H19 could act on miR-130a-3p or miR-17-5p to alter the radio- and chemo-sensitivities of cardiac cancer cells, helping to improve the radio-/chemotherapies for cardiac cancer.
Collapse
Affiliation(s)
- Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | | - Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixiang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongbo Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jun Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
161
|
New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol 2019; 15:e1006701. [PMID: 30835723 PMCID: PMC6420023 DOI: 10.1371/journal.pcbi.1006701] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/15/2019] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
The advent of Next-Generation Sequencing (NGS) technologies has opened new perspectives in deciphering the genetic mechanisms underlying complex diseases. Nowadays, the amount of genomic data is massive and substantial efforts and new tools are required to unveil the information hidden in the data. The Genomic Data Commons (GDC) Data Portal is a platform that contains different genomic studies including the ones from The Cancer Genome Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiatives, accounting for more than 40 tumor types originating from nearly 30000 patients. Such platforms, although very attractive, must make sure the stored data are easily accessible and adequately harmonized. Moreover, they have the primary focus on the data storage in a unique place, and they do not provide a comprehensive toolkit for analyses and interpretation of the data. To fulfill this urgent need, comprehensive but easily accessible computational methods for integrative analyses of genomic data that do not renounce a robust statistical and theoretical framework are required. In this context, the R/Bioconductor package TCGAbiolinks was developed, offering a variety of bioinformatics functionalities. Here we introduce new features and enhancements of TCGAbiolinks in terms of i) more accurate and flexible pipelines for differential expression analyses, ii) different methods for tumor purity estimation and filtering, iii) integration of normal samples from other platforms iv) support for other genomics datasets, exemplified here by the TARGET data. Evidence has shown that accounting for tumor purity is essential in the study of tumorigenesis, as these factors promote confounding behavior regarding differential expression analysis. With this in mind, we implemented these filtering procedures in TCGAbiolinks. Moreover, a limitation of some of the TCGA datasets is the unavailability or paucity of corresponding normal samples. We thus integrated into TCGAbiolinks the possibility to use normal samples from the Genotype-Tissue Expression (GTEx) project, which is another large-scale repository cataloging gene expression from healthy individuals. The new functionalities are available in the TCGAbiolinks version 2.8 and higher released in Bioconductor version 3.7. The advent of Next-Generation Sequencing (NGS) technologies has been generating a massive amount of data which require continuous efforts in developing and maintain computational tool for data analyses. The Genomic Data Commons (GDC) Data Portal is a platform that contains different cancer genomic studies. Such platforms have often the primary focus on the data storage and they do not provide a comprehensive toolkit for analyses. To fulfil this urgent need, comprehensive but accessible computational protocols that do not renounce a robust statistical framework are thus required. In this context, we here present the new functions of the R/Bioconductor package TCGAbiolinks to improve the discovery of differentially expressed genes in cancer and tumor (sub)types, include the estimate of tumor purity and tumor infiltrations, use normal samples from other platforms and support more broadly other genomics datasets.
Collapse
|
162
|
Gurung PMS, Barnett AR, Wilson JS, Hudson J, Ward DG, Messing EM, Bryan RT. Prognostic DNA Methylation Biomarkers in High-risk Non-muscle-invasive Bladder Cancer: A Systematic Review to Identify Loci for Prospective Validation. Eur Urol Focus 2019; 6:683-697. [PMID: 30803927 DOI: 10.1016/j.euf.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT High-risk non-muscle-invasive bladder cancer (HR-NMIBC) represents over 30% of all incident urothelial bladder cancers (BCs); patients are at risk of progression, and 20-30% will die from BC within 5 yr. Current guidelines recommend induction and maintenance of intravesical bacillus Calmette-Guérin (BCG) or upfront radical cystectomy for highest-risk disease, treatments with markedly different morbidity, mortality, and patient burden. There are no validated biomarkers to facilitate such treatment decisions. Alterations in DNA methylation are commonplace in BC; hence, measurable changes in DNA methylation represent an opportunity for the discovery of such biomarkers. OBJECTIVE To systematically assess the evidence regarding DNA methylation markers as prognosticators for HR-NMIBC. EVIDENCE ACQUISITION Standard systematic review methods were employed with searches undertaken in MEDLINE, EMBASE, and PubMed up to January 2019. Studies that included patients with HR-NMIBC and investigated the utility of DNA methylation biomarkers as prognostic tools were included. EVIDENCE SYNTHESIS Of 63 prognostic biomarker studies identified, 21 met the protocol-driven inclusion criteria and were directly relevant to HR-NMIBC patient outcomes: tumour recurrence (TR), tumour progression (TP), disease-specific survival (DSS), and overall survival (OS). These studies described 140 methylation markers; of these, the most promising were cadherin-13 (CDH13; hazard ratios [HRs]: 5.1 for TR, 6.6 for TP, 3.8-8.0 for OS), protocadherins (PCDHs; HRs: 4.7 for TR, 2.5 for TP, 3.0-4.8 for OS), Runt domain transcription factor 3 (RUNX3; HR: 5.1 for TP), Homeobox 9 (HOXA9; HR: 1.9 for TR), Islet-1 (ISL1; HRs: 1.7 for TR, 3.3 for TP), and PAX6 (HR: 2.2 for TR). CONCLUSIONS This systematic review identifies a number of potentially useful prognostic methylation markers for HR-NMIBC. These loci (CDH13, PCDHs, RUNX3, HOXA9, ISL1, and PAX6) should be validated in prospective studies in order to translate benefit to patients. PATIENT SUMMARY Early bladder cancer represents a more complex spectrum of disease than can be assessed by conventional methods Emerging studies on molecular markers will improve our understanding of this disease, and may enable more precise and personalised treatment.
Collapse
Affiliation(s)
- Pratik M S Gurung
- University of Rochester Medical Center, Rochester, New York, NY, USA
| | - Abigail R Barnett
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jayne S Wilson
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Douglas G Ward
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Edward M Messing
- University of Rochester Medical Center, Rochester, New York, NY, USA
| | - Richard T Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
163
|
Alibardi L. Immunohistochemical localization of a proto‐cadherin fat tumour‐suppressor homolog in the regenerating tail of lizard suggests a role in apical growth control. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
164
|
Gloushankova NA, Zhitnyak IY, Rubtsova SN. Role of Epithelial-Mesenchymal Transition in Tumor Progression. BIOCHEMISTRY (MOSCOW) 2019; 83:1469-1476. [DOI: 10.1134/s0006297918120052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
165
|
Zheng X, Chen Y, Bai M, Liu Y, Xu B, Sun R, Zeng H. The antimetastatic effect and underlying mechanisms of thioredoxin reductase inhibitor ethaselen. Free Radic Biol Med 2019; 131:7-17. [PMID: 30496814 DOI: 10.1016/j.freeradbiomed.2018.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Treating cancer metastasis is of vital importance to prolong patients' survival. Thioredoxin reductase (TrxR) is overexpressed in many cancer types and has been recognized as an anti-cancer target. The organoselenium compound ethaselen (BBSKE) has been proved to be a TrxR inhibitor and inhibit various types of tumor growth. However, whether BBSKE could inhibit tumor metastasis remains unclear. In this study, we aim to explore the antimetastatic effect of BBSKE and underlying mechanisms. BBSKE was found to dose-dependently suppress migration and invasion of MCF-7 and LoVo cells in vitro. The underlying mechanisms may include inhibition of TrxR activity, elevation of reactive oxygen species (ROS), decrease of EGFR activation and HER2 expression. Besides, the epithelial to mesenchymal transition process and expression of CD44, MMP-9, VEGFR2 and PD-L1 were also abrogated. Decreased migration and invasion, lower expression levels of EGFR, HER2, N-cadherin, CD44, MMP-9, VEGFR2 and PD-L1 were also observed in TrxR1-knockdown MCF-7 and LoVo cells. In the mouse breast cancer 4T1 model, BBSKE not only inhibited progression of primary tumor, but also suppressed formation of metastatic lung nodules and liver micro-metastases, indicating that BBSKE could effectively abolish tumor metastasis. In conclusion, our findings show that BBSKE is able to inhibit migration and invasion of cancer cells in vitro and in vivo, and may be used to prevent and treat metastasis.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Yifan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Man Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Yuxi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Binyuan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Ruoxuan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
166
|
Mrkvicova A, Chmelarova M, Peterova E, Havelek R, Baranova I, Kazimirova P, Rudolf E, Rezacova M. The effect of sodium butyrate and cisplatin on expression of EMT markers. PLoS One 2019; 14:e0210889. [PMID: 30653577 PMCID: PMC6336326 DOI: 10.1371/journal.pone.0210889] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Histone modifications play a key role in the epigenetic regulation of gene transcription in cancer cells. Histone acetylations are regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are increased in ovarian carcinomas and they are involved in carcinogenesis and resistance to chemotherapeutic agents. In our study we investigated anticancer effect of HDAC inhibitor sodium butyrate (NaBu) on cisplatin-sensitive and cisplatin-resistant ovarian cell lines A2780 and A2780cis. A2780 and A2780cis were treated with NaBu alone or in combination with cisplatin (CP). NaBu inhibited the growth of both cell lines and enhanced cytotoxic effect of CP. Exposure to NaBu for 24 h induced cell cycle arrest. The expressions of EMT-related genes and proteins were further investigated by qPCR and western blot analysis. Loss of E-cadherin has been shown to be crucial in ovarian cancer development. We found that NaBu dramatically induce expression of E-cadherin gene (CDH1) and protein levels in A2780 and A2780cis. We investigated correlation between transcription and methylation of CDH1gene. Methylation level analysis in 32 CpG sites in CDH1 gene (promoter/exon1 regions) was performed using bisulfite NGS (Next Generation Sequencing). We found that cisplatin-resistant cell line A2780cis cells differ from their cisplatin-sensitive counterparts in the CDH1 methylation. Methylation in A2780cis cells is elevated compared to A2780. However, NaBu-induced expression of CDH1 was not accompanied by CDH1 demethylation. NaBu treatment induced changes in expression of EMT-related genes and proteins. Interestingly E-cadherin zinc finger transcriptional repressor SNAIL1 was upregulated in both cell lines. Mesenchymal marker vimentin was downregulated. Matrix metalloproteases (MMPs) are necessary for pericellular proteolysis and facilitate migration and invasion of tumour cells. NaBu induced mRNA expression of MMPs, mild changes in activities of gelatinases MMP2 and MMP9 were detected. Our data demonstrate that NaBu sensitizes cisplatin-resistant ovarian cancer cells, re-established E-cadherin expression, but it was not able to reverse the EMT phenotype completely.
Collapse
Affiliation(s)
- Alena Mrkvicova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Institute for Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- * E-mail:
| | - Marcela Chmelarova
- Institute for Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Peterova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Second Department of Internal Medicine – Gastroenterology, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ivana Baranova
- Institute for Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Kazimirova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Emil Rudolf
- Department of Biology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
167
|
Wu X, Yao X, Cao Q, Wu Z, Wang Z, Liu F, Shen L. Clinicopathological and prognostic significance of CDH1 hypermethylation in hepatocellular carcinoma: a meta-analysis. Cancer Manag Res 2019; 11:857-864. [PMID: 30697077 PMCID: PMC6340500 DOI: 10.2147/cmar.s179710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The patients with hepatocellular carcinoma (HCC) have poor prognosis due to being diagnosed at late stage or recurrence following surgery. It’s critical to identify effective biomarkers that can improve overall diagnosis and treatment of HCC. Methods We performed a meta-analysis of all relative studies reporting the clinicopathological significance of CDH1 hypermethylation in HCC by using Review Manager 5.2. A comprehensive literature search was performed in EMBASE, PubMed, Web of Science and Google Scholar databases. Kaplan Meier Plotter online database was used for the determination of correlation between CDH1 mRNA expression and overall survival in patients with HCC. Odds Ratios (OR) with 95% corresponding confidence intervals (CIs) were calculated. A total of 12 relevant studies were included in the meta-analysis with 981 patients. Results The positive rate of CDH1 hypermethylation was significantly higher in HCC than in normal liver tissue; and the pooled OR was 4.34 with 95% CI 2.50–7.56, P<0.00001. CDH1 promoter in HCC was more frequently hypermethylated compared to the group of chronic liver disease (CLD); OR was 4.83 with 95% CI 2.67–8.72, P<0.00001. However, the rate of CDH1 promoter hypermethylation was not correlated with different grades as well as stages. High CDH1 mRNA expression was significantly correlated to better overall survival in all 231 HCC patients compared to 133 HCC patients with low level CDH1 mRNA expression; HR was 0.6 with 95% CI 0.42–0.85, P=0.0034. Conclusion In summary, CDH1 promoter hypermethylation is a risk factor and promising biomarker for HCC carcinogenesis and diagnosis, as well as a predictor of poor prognosis.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinhong Cao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhaojing Wang
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Fukun Liu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lizong Shen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,
| |
Collapse
|
168
|
Bustos-Carpinteyro AR, Oliveira C, Sousa A, Oliveira P, Pinheiro H, Carvalho J, Magaña-Torres MT, Flores-Miramontes MG, Aguilar-Lemarroy A, Jave-Suárez LF, Peregrina-Sandoval J, Cruz-Ramos JA, Sánchez-López JY. CDH1 somatic alterations in Mexican patients with diffuse and mixed sporadic gastric cancer. BMC Cancer 2019; 19:69. [PMID: 30642281 PMCID: PMC6332846 DOI: 10.1186/s12885-019-5294-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diffuse gastric cancer (DGC) is associated with the reduction or absence of the expression of the cell adhesion protein E-cadherin (encoded by the CDH1 gene). Molecular characteristics are less well described for mixed gastric cancer (MGC). The main somatic alterations that have been described in the CDH1 gene are mutations, loss of heterozygosity (LOH) and promoter methylation. The aim was to analyze CDH1 somatic alterations in Mexican patients with diffuse and mixed gastric cancer. METHODS We searched for mutations in the CDH1 gene in tumor DNA from DGC (n = 13) and MGC (n = 7) patients by next generation sequencing (NGS). Validation of findings was performed using Sanger sequencing. LOH was analyzed using dinucleotide repeat markers surrounding the CDH1 gene, and methylation was investigated by DNA bisulfite conversion and sequencing. E-cadherin protein deficiency was analyzed by immunohistochemistry. RESULTS Seventeen point variants were identified by NGS, 13 of them were validated by Sanger sequencing. Only 1/13 had not been previously reported (c.-137C > A), and 12/13 were already reported as polymorphisms. Two DGC cases presented LOH at the locus 16q22.1 (13.3%). CDH1 promoter methylation was positive in (7/11) 63.6% and (4/6) 66.6% of the cases with DGC and MGC, respectively. E-cadherin protein deficiency was observed in 58.3% of DGC cases while 100% in MGC cases. CONCLUSIONS While no pathogenic somatic mutations were found that could explain the diffuse histology of gastric cancer in DGC and MGC, methylation was the most common somatic inactivation event of the CDH1 gene, and LOH was rare. The previously unreported c.-137C > A variant modify the CDH1 gene expression since it alters the binding sites for transcription factors.
Collapse
Affiliation(s)
- Andrea Rebeca Bustos-Carpinteyro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México.,Doctorado en Genética Humana, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Carla Oliveira
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Abel Sousa
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - Patricia Oliveira
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - Hugo Pinheiro
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal.,Department of Internal Medicine, Centro Hospitalar Tâmega e Sousa Avenida do Hospital Padre Américo, N° 210 4564-007, Guilhufe - Penafiel, Portugal
| | - Joana Carvalho
- Expression Regulation in Cancer, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S; University of Porto, Porto, Portugal
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México
| | - María Guadalupe Flores-Miramontes
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular. Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, CP 45510, Nextipac, Jalisco, México
| | | | - Josefina Yoaly Sánchez-López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada N. 800, Col. Independencia, C. P. 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
169
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
170
|
Personalized prediction of genes with tumor-causing somatic mutations based on multi-modal deep Boltzmann machine. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.02.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
171
|
Baust JM, Rabin Y, Polascik TJ, Santucci KL, Snyder KK, Van Buskirk RG, Baust JG. Defeating Cancers' Adaptive Defensive Strategies Using Thermal Therapies: Examining Cancer's Therapeutic Resistance, Ablative, and Computational Modeling Strategies as a means for Improving Therapeutic Outcome. Technol Cancer Res Treat 2018; 17:1533033818762207. [PMID: 29566612 PMCID: PMC5871056 DOI: 10.1177/1533033818762207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education. METHODS Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment. RESULTS The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed. CONCLUSION This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.
Collapse
Affiliation(s)
- John M Baust
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Yoed Rabin
- 3 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas J Polascik
- 4 Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Santucci
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Kristi K Snyder
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Robert G Van Buskirk
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - John G Baust
- 2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
172
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
173
|
Zhao J, Yang T, Ji J, Li C, Li Z, Li L. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomed Pharmacother 2018; 107:957-966. [PMID: 30257408 DOI: 10.1016/j.biopha.2018.08.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023] Open
Abstract
Garcinol, a polyisoprenylated benzophenone, has been demonstrated to exert anti-cancer effects in various tumor cells. However, the effect of garcinol on cervical cancer (CC) cell progression and the related molecular mechanism remains poorly understood. Accumulating evidence has verified that downregualtion of T-cadherin is closely associated with tumorigenesis, suggesting that T-cadherin might be a potential therapeutic target for cancer treatment. In the present study, Hela and SiHa cells were treated with different concentrations of garcinol (0, 5, 10, and 25 u M), and T-cadherin siRNA was synthesized and transfected into Hela and SiHa cells combined with garcinol (25 u M) treatment. We found that garcinol dose-dependently suppressed cell viability, colony formation, invasion, migration, cell cycle progression, and promoted cell apoptosis in CC cell lines, as well as inhibited tumor growth in xenograft model. Importantly, our results showed that garcinol treatment increased the expression of T-cadherin both in vitro and in vivo, and knockdown of T-cahderin partially reversed garcinol-induced inhibition of CC development via activating P13 K/AKT signaling pathway in CC cell lines. Thus, these findings demonstrated the tumor suppressive function of garcinol on CC progression, and emphasized that the T-cadherin/P13 K/AKT was a potential mechanism involved in the antumor effects of garcinol.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jing Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Chen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zhen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Long Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China.
| |
Collapse
|
174
|
Øystese KAB, Berg JP, Normann KR, Zucknick M, Casar-Borota O, Bollerslev J. The role of E and N-cadherin in the postoperative course of gonadotroph pituitary tumours. Endocrine 2018; 62:351-360. [PMID: 30051197 DOI: 10.1007/s12020-018-1679-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
PURPOSE Gonadotroph tumours are the most abundant of the clinically silent pituitary tumours. There is a lack of reliable prognostic markers predicting their clinical course. Our aim was to determine the level of E-cadherin and N-cadherin in a cohort of clinically silent gonadotroph pituitary tumours, and compare them to the rate of reintervention. METHODS Tumour tissue from primary surgery was retrospectively investigated and compared with clinical data. Immunohistochemical (N = 105) and real time-qPCR (N = 85) analyses for the levels of N-cadherin and the extra- and intracellular domains of E-cadherin were performed. The immunoreactive scores (IRS) and mRNA relative quantity were compared to the rate of reintervention. RESULTS The tumours presented a high IRS for N-cadherin (Median 12 (IQR 12-12)) and almost no immunoreactivity for the extracellular domain of E-cadherin (Median 0 (IQR 0-0)). The membranous staining for the intracellular domain of E-cadherin varied (Median 6 (IQR 4-6). Reduced membranous expression of the intracellular domain of E-cadherin was associated with nuclear presence of the same domain. Nuclear staining for the intracellular domain of E-cadherin was associated with a lower rate of reintervention (p = 0.01). CONCLUSION We found that silent gonadotroph tumours presented high IRS for N-cadherin and low IRS for the extracellular domain of E-cadherin. A substantial proportion of the tumours presented nuclear staining for the intracellular domain of E-cadherin, accompanied by a reduced membranous expression of the intracellular domain of E-cadherin. Absence of nuclear staining for the intracellular domain of E-cadherin served as an independent predictor of reintervention.
Collapse
Affiliation(s)
- Kristin Astrid Berland Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Research Institute for Internal Medicine (IMF), OUS Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway.
| | - Jens Petter Berg
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424, Oslo, Norway
| | - Kjersti Ringvoll Normann
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute for Internal Medicine (IMF), OUS Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
- Department of Pathology, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
175
|
Roseweir AK, Kong CY, Park JH, Bennett L, Powell AGMT, Quinn J, van Wyk HC, Horgan PG, McMillan DC, Edwards J, Roxburgh CS. A novel tumor-based epithelial-to-mesenchymal transition score that associates with prognosis and metastasis in patients with Stage II/III colorectal cancer. Int J Cancer 2018; 144:150-159. [PMID: 29992570 DOI: 10.1002/ijc.31739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
It is increasingly appreciated that host factors within the tumor center and microenvironment play a key role in dictating colorectal cancer (CRC) outcomes. As a result, the metastatic process has now been defined as a result of epithelial-mesenchymal transition (EMT). Establishment of the role of EMT within the tumor center and its effect on the tumor microenvironment would be beneficial for prognosis and therapeutic intervention in CRC. The present study assessed five immunohistochemical EMT markers within the tumor center on a 185 Stage II/III CRC patient tissue microarray. In 185 patients with CRC, cytoplasmic snail (HR 1.94 95% confidence interval [CI] 1.15-3.29, p = 0.012) and a novel combined EMT score (HR 3.86 95% CI 2.17-6.86, p < 0.001) were associated with decreased cancer-specific survival. The combined EMT score was also associated with increased tumor budding (p = 0.046), and systemic inflammation (p = 0.007), as well as decreased memory T-cells within the stroma (p = 0.030) and at the invasive margin (p = 0.035). Furthermore, the combined EMT score was associated with cancer-specific survival independent of TNM-stage (HR 4.12 95% CI 2.30-7.39, p < 0.001). In conclusion, a novel combined EMT score stratifies patient's survival in Stage II/III CRC and associates with key factors of tumor metastasis. Therefore, the combined EMT score could be used to identify patients at risk of micrometastases and who may benefit from standard adjuvant therapy, potentially in combination with EMT blockade.
Collapse
Affiliation(s)
- A K Roseweir
- School of Medicine, University of Glasgow, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - C Y Kong
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - J H Park
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay Bennett
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - A G M T Powell
- Department of Genetics and Cancer, University of Cardiff, Cardiff, United Kingdom
| | - J Quinn
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - H C van Wyk
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - P G Horgan
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - D C McMillan
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - C S Roxburgh
- School of Medicine, University of Glasgow, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
176
|
Importance of Cadherins Methylation in Ovarian Cancer: a Next Generation Sequencing Approach. Pathol Oncol Res 2018; 25:1457-1465. [DOI: 10.1007/s12253-018-0500-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
|
177
|
Scarano WR, Pinho CF, Pissinatti L, Gonçalves BF, Mendes LO, Campos SG. Cell junctions in the prostate: an overview about the effects of Endocrine Disrupting Chemicals (EDCS) in different experimental models. Reprod Toxicol 2018; 81:147-154. [DOI: 10.1016/j.reprotox.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
178
|
Phattarataratip E, Kositkittiwanit N, Kajornkiatkul P, Yeunyong P, Ratanapitak R. P120 catenin expression and its correlation with E-cadherin in salivary gland neoplasms. J Oral Biol Craniofac Res 2018; 9:57-62. [PMID: 30258767 DOI: 10.1016/j.jobcr.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023] Open
Abstract
Objectives Altered P120 catenin expression has been associated with E-cadherin loss and poor prognosis in several cancers. The objectives of this study were to examine the P120 catenin expression in salivary gland neoplasms in correlation with E-cadherin and assess the relationships between their expression levels and pathologic characteristics. Methods Fifty-two cases of salivary gland neoplasms, i.e. 25 mucoepidermoid carcinomas (MEC), 13 adenoid cystic carcinomas (ACC), 12 pleomorphic adenomas (PA) and 2 polymorphous adenocarcinomas (PAC) were included. The expression of P120 catenin and E-cadherin was investigated immunohistochemically. Results Both P120 catenin and E-cadherin were overexpressed in salivary gland neoplasms, compared to normal tissue. P120 catenin was primarily detected on the membrane of neoplastic cells in most cases. A significant correlation between levels of expression of both proteins was noted in MECs. In ACCs and PA, ductal cells showed positive immunoreactivity, whereas myoepithelial cells variably expressed both proteins. Increased P120 catenin expression was significantly associated with the solid subtype of ACCs. Conclusions The cadherin-catenin complex is preserved in the heterogenous tumor cell population in salivary gland neoplasms. Overexpression of P120 catenin may be involved in the progression to solid ACCs.
Collapse
Affiliation(s)
- Ekarat Phattarataratip
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nicha Kositkittiwanit
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pruch Kajornkiatkul
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pataraporn Yeunyong
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ratanatip Ratanapitak
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
179
|
Collord G, Tarpey P, Kurbatova N, Martincorena I, Moran S, Castro M, Nagy T, Bignell G, Maura F, Young MD, Berna J, Tubio JMC, McMurran CE, Young AMH, Sanders M, Noorani I, Price SJ, Watts C, Leipnitz E, Kirsch M, Schackert G, Pearson D, Devadass A, Ram Z, Collins VP, Allinson K, Jenkinson MD, Zakaria R, Syed K, Hanemann CO, Dunn J, McDermott MW, Kirollos RW, Vassiliou GS, Esteller M, Behjati S, Brazma A, Santarius T, McDermott U. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep 2018; 8:13537. [PMID: 30202034 PMCID: PMC6131140 DOI: 10.1038/s41598-018-31659-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Anaplastic meningioma is a rare and aggressive brain tumor characterised by intractable recurrences and dismal outcomes. Here, we present an integrated analysis of the whole genome, transcriptome and methylation profiles of primary and recurrent anaplastic meningioma. A key finding was the delineation of distinct molecular subgroups that were associated with diametrically opposed survival outcomes. Relative to lower grade meningiomas, anaplastic tumors harbored frequent driver mutations in SWI/SNF complex genes, which were confined to the poor prognosis subgroup. Aggressive disease was further characterised by transcriptional evidence of increased PRC2 activity, stemness and epithelial-to-mesenchymal transition. Our analyses discern biologically distinct variants of anaplastic meningioma with prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Grace Collord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Patrick Tarpey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manuel Castro
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Tibor Nagy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Graham Bignell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Francesco Maura
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jorge Berna
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jose M C Tubio
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Chris E McMurran
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Adam M H Young
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mathijs Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Imran Noorani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Colin Watts
- Department of Neurosurgery, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elke Leipnitz
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Matthias Kirsch
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Danita Pearson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Abel Devadass
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Zvi Ram
- Department of Neurosurgery, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - V Peter Collins
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Khaja Syed
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Michael W McDermott
- Department of Neurosurgery, UCSF Medical Center, San Francisco, CA, 94143-0112, USA
| | - Ramez W Kirollos
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Thomas Santarius
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK.
- AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
180
|
Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathog 2018; 14:e1007276. [PMID: 30188954 PMCID: PMC6143273 DOI: 10.1371/journal.ppat.1007276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/18/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC.
Collapse
|
181
|
Chen X, Pei Z, Peng H, Zheng Z. Exploring the molecular mechanism associated with breast cancer bone metastasis using bioinformatic analysis and microarray genetic interaction network. Medicine (Baltimore) 2018; 97:e12032. [PMID: 30212931 PMCID: PMC6156059 DOI: 10.1097/md.0000000000012032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone metastases are common in advanced breast cancer patients and frequently leading to skeletal-related morbidity and deterioration in the quality of life. Although chemotherapy and hormone therapy are able to control the symptoms caused by bone destruction, the underlying molecular mechanisms for the affinity of breast cancer cells towards skeletal bones are still not completely understood. METHODS In this study, bioinformatic analysis was performed on patients' microarray gene expression data to explore the molecular mechanism associated with breast cancer bone metastasis. Microarray gene expression profile regarding patients with breast cancer and disseminated tumor cells was downloaded from Gene Expression Omnibus (GEO) database (NCBI, NIH). Raw data were normalized and differently expressed genes were identified by using Significance Analysis of Microarrays (SAM) methods. Protein interaction networks were expanded using String. Moreover, molecular functions, biological processes and signaling pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS We identified 66 differentially expressed genes. After submitting the set of genes to String, genetic interaction network was expanded, which consisted of 110 nodes and 869 edges. Pathway enrichment analysis suggested that adhesion kinase, ECM-receptor interaction, calcium signaling, Wnt pathways, and PI3K/AKT signaling pathway are highly associated with breast cancer bone metastasis. CONCLUSION In this study, we established a microarray genetic interaction network associated with breast cancer bone metastasis. This information provides some potential molecular therapeutic targets for breast cancer initiation and progression.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Zhe Pei
- Duke University Medical School, Durham, NC
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi, China
| | - Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
182
|
Ansari S, Gantuya B, Tuan VP, Yamaoka Y. Diffuse Gastric Cancer: A Summary of Analogous Contributing Factors for Its Molecular Pathogenicity. Int J Mol Sci 2018; 19:2424. [PMID: 30115886 PMCID: PMC6121269 DOI: 10.3390/ijms19082424] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths and ranks as the fifth most common cancer worldwide. Incidence and mortality differ depending on the geographical region and gastric cancer ranks first in East Asian countries. Although genetic factors, gastric environment, and Helicobacter pylori infection have been associated with the pathogenicity and development of intestinal-type gastric cancer that follows the Correa's cascade, the pathogenicity of diffuse-type gastric cancer remains mostly unknown and undefined. However, genetic abnormalities in the cell adherence factors, such as E-cadherin and cellular activities that cause impaired cell integrity and physiology, have been documented as contributing factors. In recent years, H. pylori infection has been also associated with the development of diffuse-type gastric cancer. Therefore, in this report, we discuss the host factors as well as the bacterial factors that have been reported as associated factors contributing to the development of diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
| | - Boldbaatar Gantuya
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Internal Medicine, Gastroenterology unit, Mongolian National University of Medical Sciences, Ulaanbaatar-14210, Mongolia.
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
183
|
Piccoli M, D'Angelo E, Crotti S, Sensi F, Urbani L, Maghin E, Burns A, De Coppi P, Fassan M, Rugge M, Rizzolio F, Giordano A, Pilati P, Mammano E, Pucciarelli S, Agostini M. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J Cell Physiol 2018; 233:5937-5948. [PMID: 29244195 DOI: 10.1002/jcp.26403] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell lines, animal models and clinical research. Here, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D-bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural and secreted proteins. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy tissue, caused by direct effect of DEFA3. We demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.
Collapse
Affiliation(s)
- Martina Piccoli
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Edoardo D'Angelo
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Sara Crotti
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Francesca Sensi
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Luca Urbani
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Edoardo Maghin
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Alan Burns
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Tumor Registry, Padua, Italy
| | - Flavio Rizzolio
- Department of Translational Research, Pathology Unit, IRCCS-National Cancer Institute, Aviano, Italy
- Department of Molecular Sciences and Nanosystems at Ca' Foscari University, Venice, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | | | | | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marco Agostini
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
184
|
Guo S, Liang X, Guo M, Zhang X, Li Z. Migration inhibition of water stress proteins from Nostoc commune Vauch. via activation of autophagy in DLD-1 cells. Int J Biol Macromol 2018; 119:669-676. [PMID: 30071226 DOI: 10.1016/j.ijbiomac.2018.07.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022]
Abstract
Water stress proteins (WSP1) from Nostoc commune Vauch. had been proven to selectively induce colon cancer cells apoptosis. In this study, the effect of WSP1 on migration of human colon cancer cells was investigated. It showed that WSP1 inhibited DLD-1 cell migration, but with an insignificant effect on normal human colon epithelial cells. The data further indicated that WSP1 activated autophagy through down regulation of PI3K/AKT/mTOR pathway. Meanwhile, β‑catenin was degraded by autophagy, which then restrained epithelial-mesenchymal transition (EMT) of DLD-1 cell and its migration was subsequently suppressed significantly. The same changes occurred in xenografted nude mice according to the obtained immunohistochemical results. Consistently, the application of autophagy inhibitor largely reversed the inhibited migration by WSP1 treatment. Taken together, WSP1 could suppress migration of DLD-1 cells by autophagy inhibited EMT. The results suggested that WSP1 possessed the potential as a selective therapeutic agent against metastatic colon cancer.
Collapse
Affiliation(s)
- Songjia Guo
- Shanxi Provincial People's Hospital, Center for Precision Medicine, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xinxin Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Min Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
185
|
Nakagawa H, Hayata Y, Yamada T, Kawamura S, Suzuki N, Koike K. Peribiliary Glands as the Cellular Origin of Biliary Tract Cancer. Int J Mol Sci 2018; 19:ijms19061745. [PMID: 29895797 PMCID: PMC6032423 DOI: 10.3390/ijms19061745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The identification of the cellular origin of cancer is important for our understanding of the mechanisms regulating carcinogenesis, thus the cellular origin of cholangiocarcinoma (CCA) is a current topic of interest. Although CCA has been considered to originate from biliary epithelial cells, recent studies have suggested that multiple cell types can develop into CCA. With regard to the hilar and extrahepatic bile ducts, peribiliary glands (PBGs), a potential stem cell niche of biliary epithelial cells, have attracted attention as the cellular origin of biliary tract cancer. Recent histopathological and experimental studies have suggested that some kinds of inflammation-induced CCA and intraductal papillary neoplasms of the bile duct are more likely to originate from PBGs. During inflammation-mediated cholangiocarcinogenesis, the biliary epithelial injury-induced regenerative response by PBGs is considered a key process. Thus, in this review, we discuss recent advances in our understanding of cholangiocarcinogenesis from the viewpoint of inflammation and the cellular origin of CCA, especially focusing on PBGs.
Collapse
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tomoharu Yamada
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Nobumi Suzuki
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
186
|
Sun H, Zhou H, Zhang Y, Chen J, Han X, Huang D, Ren X, Jia Y, Fan Q, Tian W, Zhao Y. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9:2275-2283. [PMID: 30026822 PMCID: PMC6036714 DOI: 10.7150/jca.24797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/31/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Aberrant DNA methylation, especially tumor suppressor gene hypermethylation, is a well-recognized biomarker of initial tumorogenesis stages. FAT4 and SOX11 are putative tumor suppressor genes and can be down-regulated by hypermethylation in various cancers tissues. However, in peripheral blood leukocytes, the association between these two genes methylation status, as well as the effects of gene-environment interactions, and gastric cancer (GC) risk remain unclear. Methods: A hospital-based case-control study including 375 cases and 394 controls was conducted. Peripheral blood leukocytes DNA methylation status were detected by methylation-sensitive high-resolution melting (MS-HRM) assay. Logistic regression was adopted to analyze the relationship of FAT4 and SOX11 methylation with GC susceptibility. Results: Positive methylation (Pm) and total positive methylation (Tpm) of FAT4 were significantly increased the risk of GC (OR = 2.204, 95% CI: 1.168-4.159, P = 0.015; OR = 1.583, 95% CI: 1.031-2.430, P = 0.036, respectively). Compared with controls, cases exhibited higher SOX11 Pm frequencies with OR of 2.530 (95% CI: 1.289-4.969, P = 0.007). Nonetheless, no statistically significant association between SOX11 Tpm and GC risk was observed. Additionally, interactions between FAT4 Tpm and increased consumption of freshwater fish (≥1 times/week) displayed an antagonistic effect on GC (OR = 0.328, 95% CI: 0.142-0.762, P = 0.009), and high salt intake interacted with SOX11 Tpm also showed statistically significant (OR = 0.490, 95% CI: 0.242-0.995, P = 0.048). Conclusions:FAT4 aberrant methylation in peripheral blood leukocytes and gene-environment interactions were associated with the risk of GC, while SOX11 was controversial and needed to be more investigated.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yan Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin 150081, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
187
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
188
|
Rajendran BK, Deng CX. Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget 2018; 8:50252-50272. [PMID: 28477017 PMCID: PMC5564847 DOI: 10.18632/oncotarget.17225] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Barani Kumar Rajendran
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
189
|
Maturi V, Enroth S, Heldin CH, Moustakas A. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. J Cell Physiol 2018; 233:7113-7127. [PMID: 29744893 PMCID: PMC6055758 DOI: 10.1002/jcp.26634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT.
Collapse
Affiliation(s)
- Varun Maturi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
190
|
Chiarella SE, Rabin EE, Ostilla LA, Flozak AS, Gottardi CJ. αT-catenin: A developmentally dispensable, disease-linked member of the α-catenin family. Tissue Barriers 2018; 6:e1463896. [PMID: 29746206 PMCID: PMC6179130 DOI: 10.1080/21688370.2018.1463896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
α-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms transcribed from three distinct genes. While most of α-catenin research has focused on the developmentally essential founding member, αE-catenin, this review discusses recent studies on αT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to cardiac, allergic and neurological diseases.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Erik E. Rabin
- Department of Medicine
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Lorena A. Ostilla
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Annette S. Flozak
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Cara J. Gottardi
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
191
|
Aref-Eshghi E, Schenkel LC, Ainsworth P, Lin H, Rodenhiser DI, Cutz JC, Sadikovic B. Genomic DNA Methylation-Derived Algorithm Enables Accurate Detection of Malignant Prostate Tissues. Front Oncol 2018; 8:100. [PMID: 29740534 PMCID: PMC5925605 DOI: 10.3389/fonc.2018.00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 01/27/2023] Open
Abstract
Introduction The current methodology involving diagnosis of prostate cancer (PCa) relies on the pathology examination of prostate needle biopsies, a method with high false negative rates partly due to temporospatial, molecular, and morphological heterogeneity of prostate adenocarcinoma. It is postulated that molecular markers have a potential to assign diagnosis to a considerable portion of undetected prostate tumors. This study examines the genome-wide DNA methylation changes in PCa in search of genomic markers for the development of a diagnostic algorithm for PCa screening. Methods Archival PCa and normal tissues were assessed using genomic DNA methylation arrays. Differentially methylated sites and regions (DMRs) were used for functional assessment, gene-set enrichment and protein interaction analyses, and examination of transcription factor-binding patterns. Raw signal intensity data were used for identification of recurrent copy number variations (CNVs). Non-redundant fully differentiating cytosine-phosphate-guanine sites (CpGs), which did not overlap CNV segments, were used in an L1 regularized logistic regression model (LASSO) to train a classification algorithm. Validation of this algorithm was performed using a large external cohort of benign and tumor prostate arrays. Results Approximately 6,000 probes and 600 genomic regions showed significant DNA methylation changes, primarily involving hypermethylation. Gene-set enrichment and protein interaction analyses found an overrepresentation of genes related to cell communications, neurogenesis, and proliferation. Motif enrichment analysis demonstrated enrichment of tumor suppressor-binding sites nearby DMRs. Several of these regions were also found to contain copy number amplifications. Using four non-redundant fully differentiating CpGs, we trained a classification model with 100% accuracy in discriminating tumors from benign samples. Validation of this algorithm using an external cohort of 234 tumors and 92 benign samples yielded 96% sensitivity and 98% specificity. The model was found to be highly sensitive to detect metastatic lesions in bone, lymph node, and soft tissue, while being specific enough to differentiate the benign hyperplasia of prostate from tumor. Conclusion A considerable component of PCa DNA methylation profile represent driver events potentially established/maintained by disruption of tumor suppressor activity. As few as four CpGs from this profile can be used for screening of PCa.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| | - David I Rodenhiser
- Department of Pediatrics, Western University and Children's Health Research Institute, London, ON, Canada.,Department of Biochemistry, Western University and Children's Health Research Institute, London, ON, Canada.,Department of Oncology, Western University and Children's Health Research Institute, London, ON, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Laboratory Medicine, McMaster University, Hamilton, ON, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences, London, ON, Canada
| |
Collapse
|
192
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
193
|
Dou Y, Lei JQ, Guo SL, Zhao D, Yue HM, Yu Q. The CNPY2 enhances epithelial-mesenchymal transition via activating the AKT/GSK3β pathway in non-small cell lung cancer. Cell Biol Int 2018; 42:959-964. [PMID: 29569784 DOI: 10.1002/cbin.10961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/17/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Yu Dou
- Department of Radiology; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
- The First Clinical Medical College of Lanzhou University; Lanzhou; Gansu P.R. China
| | - Jun-Qiang Lei
- Department of Radiology; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
| | - Shun-Lin Guo
- Department of Radiology; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
| | - Da Zhao
- Department of Medical Oncology; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
| | - Hong-Mei Yue
- Department of Respiratory Medicine; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
| | - Qin Yu
- The First Clinical Medical College of Lanzhou University; Lanzhou; Gansu P.R. China
- Department of Respiratory Medicine; The First Hospital of Lanzhou University; Lanzhou Gansu P.R. China
| |
Collapse
|
194
|
Vornhagen J, Armistead B, Santana-Ufret V, Gendrin C, Merillat S, Coleman M, Quach P, Boldenow E, Alishetti V, Leonhard-Melief C, Ngo LY, Whidbey C, Doran KS, Curtis C, Waldorf KMA, Nance E, Rajagopal L. Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection. J Clin Invest 2018; 128:1985-1999. [PMID: 29629904 DOI: 10.1172/jci97043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and β-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Global Health, University of Washington, Seattle, Washington, USA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Blair Armistead
- Department of Global Health, University of Washington, Seattle, Washington, USA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Verónica Santana-Ufret
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Claire Gendrin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Erica Boldenow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Varchita Alishetti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Lisa Y Ngo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Christopher Whidbey
- Department of Global Health, University of Washington, Seattle, Washington, USA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kelly S Doran
- Department of Microbiology and Immunology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA.,Department of Obstetrics and Gynecology, and.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.,Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | | | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, Washington, USA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
195
|
Gordevičius J, Kriščiūnas A, Groot DE, Yip SM, Susic M, Kwan A, Kustra R, Joshua AM, Chi KN, Petronis A, Oh G. Cell-Free DNA Modification Dynamics in Abiraterone Acetate-Treated Prostate Cancer Patients. Clin Cancer Res 2018; 24:3317-3324. [PMID: 29615462 DOI: 10.1158/1078-0432.ccr-18-0101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Primary resistance to abiraterone acetate (AA), a key medication for the treatment of metastatic castration-resistant prostate cancer, occurs in 20% to 40% of patients. We aim to identify predictive biomarkers for AA-treatment response and understand the mechanisms related to treatment resistance.Experimental Design: We used the Infinium Human Methylation 450K BeadChip to monitor modification profiles of cell-free circulating DNA (cfDNA) in 108 plasma samples collected from 33 AA-treated patients.Results: Thirty cytosines showed significant modification differences (FDR Q < 0.05) between AA-sensitive and AA-resistant patients during the treatment, of which 21 cytosines were differentially modified prior to treatment. In addition, AA-sensitive patients, but not AA-resistant patients, lost interindividual variation of cfDNA modification shortly after starting AA treatment, but such variation returned to initial levels in the later phases of treatment.Conclusions: Our findings provide a list of potential biomarkers for predicting AA-treatment response, highlight the prognostic value of using cytosine modification variance as biomarkers, and shed new insights into the mechanisms of prostate cancer relapse in AA-sensitive patients. Clin Cancer Res; 24(14); 3317-24. ©2018 AACR.
Collapse
Affiliation(s)
- Juozas Gordevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algimantas Kriščiūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Groot
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Steven M Yip
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Miki Susic
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andrew Kwan
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rafal Kustra
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Kinghorn Cancer Center, St. Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Art Petronis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania. .,The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
196
|
Williams JS, Hsu JY, Rossi CC, Artinger KB. Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration. Dev Biol 2018; 444 Suppl 1:S274-S286. [PMID: 29604249 DOI: 10.1016/j.ydbio.2018.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/13/2023]
Abstract
Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway.
Collapse
Affiliation(s)
- Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica Y Hsu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
197
|
Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr) 2018; 41:123-140. [PMID: 29568985 DOI: 10.1007/s13402-018-0376-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common type of cancer in women and the second cause of cancer-related mortality world-wide. The majority of BC-related deaths is due to metastasis. Bone, lung, brain and liver are the primary target sites of BC metastasis. The clinical implications and mechanisms underlying bone metastasis have been reviewed before. Given the fact that BC lung metastasis (BCLM) usually produces symptoms only after the lungs have been vastly occupied with metastatic tumor masses, it is of paramount importance for diagnostic and prognostic, as well as therapeutic purposes to comprehend the molecular and cellular mechanisms underlying BCLM. Here, we review current insights into the organ-specificity of BC metastasis, including the role of cancer stem cells in triggering BC spread, the traveling of tumor cells in the blood stream and their migration across endothelial barriers, their adaptation to the lung microenvironment and the initiation of metastatic colonization within the lung. CONCLUSIONS Detailed understanding of the mechanisms underlying BCLM will shed a new light on the identification of novel molecular targets to impede daunting pulmonary metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shahryari
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
198
|
Chen Q, Cai J, Jiang C. CDH2 expression is of prognostic significance in glioma and predicts the efficacy of temozolomide therapy in patients with glioblastoma. Oncol Lett 2018; 15:7415-7422. [PMID: 29731893 DOI: 10.3892/ol.2018.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Glioma is the most common and malignant primary brain cancer in adults. Radical surgical excision accompanied by radiotherapy and chemotherapy is the prevailing standard therapy for patients with glioblastoma (GBM). Cadherin 2 (CDH2) encodes the N-cadherin protein, a classical cadherin and a member of the cadherin superfamily, which sustains the integrity of the cell and is involved in several cell signal transduction pathways. In the present study, the association between CDH2 expression and clinical features was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Rembrandt datasets and The Cancer Genome Atlas datasets (TCGA). Medical statistical methods, including Kaplan-Meier analysis and Cox regression model were used. The expression of CDH2 was identified to be strongly associated with glioma World Health Organization grade in the CGGA and Rembrandt datasets. Patients with low CDH2 expression had an improved prognosis and benefited from temozolomide therapy. In conclusion, these findings revealed that CDH2 may serve as a prognostic and predictive molecular biomarker for the grading and treatment of glioma.
Collapse
Affiliation(s)
- Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China.,Glioma Cooperative Group, Beijing 100050, P.R. China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China.,Glioma Cooperative Group, Beijing 100050, P.R. China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China.,Glioma Cooperative Group, Beijing 100050, P.R. China
| |
Collapse
|
199
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
200
|
Magnani E, Macchi F, Mancini M, Lomazzi V, Cogliati S, Pistore C, Mandruzzato M, Dock-Bregeon AC, Bonapace IM. UHRF1 regulates CDH1 via promoter associated non-coding RNAs in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:258-270. [PMID: 29466696 DOI: 10.1016/j.bbagrm.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
Abstract
Non-coding RNAs (ncRNAs) transcribed from the promoter and the downstream region can affect the expression of the corresponding coding genes. It has been shown that sense-directed ncRNAs arising from the promoter region of the E-cadherin gene (CDH1) mediate its repression. Here, we show that an antisense-directed ncRNA (paRCDH1-AS) transcribed from the CDH1 promoter is necessary for its expression. paRCDH1-AS acts as a hooking scaffold by recruiting the epigenetic regulators, UHRF1, DNMT3A, SUV39H1 and SUZ12, involved in CDH1 repression. The binding of epigenetic regulators to paCRDH1-AS, indeed, prevents their localization to the chromatin on CDH1 promoter. Moreover, paRCDH1-AS silencing induces CDH1 repression and a switch of the epigenetic profile on the promoter towards a more closed chromatin. Using bioinformatic and experimental approaches we defined that the promoter of the paRCDH1-AS is shared with the E-cadherin gene, showing a bidirectional promoter activity. We found that UHRF1 controls both CDH1 and paRCDH1-AS by directly binding this bidirectional promoter region. Our study provides evidences, for the first time, that UHRF1 recruitment can be affected by promoter-associated non-coding RNAs, opening new perspective regarding the role of UHRF1 in these complex regulatory networks.
Collapse
Affiliation(s)
- Elena Magnani
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Filippo Macchi
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Vanessa Lomazzi
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Sara Cogliati
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy; IGBMC, BP10142, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christian Pistore
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Martina Mandruzzato
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | | | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio, VA, Italy.
| |
Collapse
|