151
|
Ledger SE, Janssen BJ, Karunairetnam S, Wang T, Snowden KC. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2010; 188:803-13. [PMID: 20659299 DOI: 10.1111/j.1469-8137.2010.03394.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes have been demonstrated to play an integral role in the control of branch development in model plants, including Arabidopsis, pea (Pisum sativum), petunia (Petunia hybrida) and rice (Oryza sativa). • Actinidia chinensis is a woody perennial plant grown for commercial production of kiwifruit. CCD7 and CCD8 genes were isolated from A. chinensis and these genes are predominantly expressed in the roots of kiwifruit. AcCCD7 and AcCCD8 were able to complement the corresponding Arabidopsis mutants max3 and max4. The function of AcCCD8 in branch development was determined in transgenic kiwifruit plants containing an RNAi construct for AcCCD8. • Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence. • The CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.
Collapse
Affiliation(s)
- Susan E Ledger
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
152
|
Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Kim JH, Lee HY, Nam HG, Lim PO. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3947-57. [PMID: 20826506 PMCID: PMC2935868 DOI: 10.1093/jxb/erq206] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/06/2010] [Accepted: 06/15/2010] [Indexed: 05/17/2023]
Abstract
Leaf senescence is a developmentally programmed cell death process that constitutes the final step of leaf development and involves the extensive reprogramming of gene expression. Despite the importance of senescence in plants, the underlying regulatory mechanisms are not well understood. This study reports the isolation and functional analysis of RAV1, which encodes a RAV family transcription factor. Expression of RAV1 and its homologues is closely associated with leaf maturation and senescence. RAV1 mRNA increased at a later stage of leaf maturation and reached a maximal level early in senescence, but decreased again during late senescence. This profile indicates that RAV1 could play an important regulatory role in the early events of leaf senescence. Furthermore, constitutive and inducible overexpression of RAV1 caused premature leaf senescence. These data strongly suggest that RAV1 is sufficient to cause leaf senescence and it functions as a positive regulator in this process.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of Biology, Chungnam National University, Daejeon, 305-764, Korea
| | - Jin Hee Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Junyoung Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Jeongsik Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Ung Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - In-Ja Song
- Subtropical Horticulture Researcher Center, Jeju National University, Jeju, 690-756, Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabukdo, 580-185, Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Researcher Center, Jeju National University, Jeju, 690-756, Korea
- Faulty of Biotechnology, Jeju National University, Jeju, 690-756, Korea
| | - Hong Gil Nam
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
- National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Pyung Ok Lim
- Department of Science Education, Jeju National University, 66 Jejudaehakno, Jeju, 690-756, Korea
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
153
|
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 2010; 137:2905-13. [PMID: 20667910 DOI: 10.1242/dev.051987] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strigolactones (SLs), or their derivatives, were recently demonstrated to act as endogenous shoot branching inhibitors, but their biosynthesis and mechanism of action are poorly understood. Here we show that the branching phenotype of mutants in the Arabidopsis P450 family member, MAX1, can be fully rescued by strigolactone addition, suggesting that MAX1 acts in SL synthesis. We demonstrate that SLs modulate polar auxin transport to control branching and that both the synthetic SL GR24 and endogenous SL synthesis significantly reduce the basipetal transport of a second branch-regulating hormone, auxin. Importantly, GR24 inhibits branching only in the presence of auxin in the main stem, and enhances competition between two branches on a common stem. Together, these results support two current hypotheses: that auxin moving down the main stem inhibits branch activity by preventing the establishment of auxin transport out of axillary branches; and that SLs act by dampening auxin transport, thus enhancing competition between branches.
Collapse
|
154
|
Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:179-188. [PMID: 20409006 DOI: 10.1111/j.1365-313x.2010.04233.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WRKY transcription factors play a central role in controlling leaf senescence in Arabidopsis. One important member, WRKY53, is tightly regulated by various mechanisms, and is a convergence node between senescence and pathogen responses. Using WRKY53 in a yeast two-hybrid screen, we isolated the HECT domain E3 ubiquitin ligase UPL5. In contrast to mammals, Arabidopsis contains only seven HECT E3 ubiquitin ligases, whose targets and functions are largely unknown. In yeast cells, UPL5 interacts with WRKY53 via its leucine zipper domain, and this interaction was confirmed in the cytoplasm of plant cells by a bimolecular fluorescence complementation assay. UPL5 was able to use the WRKY53 protein as a substrate for polyubiquitination in an in vitro system, and induction of UPL5 expression by an ethanol-inducible system in upl5 plants led to degradation of the WRKY53 protein. Expression of both genes is regulated antagonistically in response to hydrogen peroxide, jasmonic acid and plant development. Two T-DNA insertion lines (upl5-1 and upl5-2) showed the same senescence phenotype as WRKY53 over-expressers. Over-expression of WRKY53 in the upl5 background enhanced the accelerated senescence phenotype of WRKY53 over-expressers. Therefore, we conclude that UPL5 regulates leaf senescence in Arabidopsis through degradation of WRKY53 and ensures that senescence is executed in the correct time frame.
Collapse
|
155
|
Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. PLANT & CELL PHYSIOLOGY 2010; 51:1136-42. [PMID: 20498118 PMCID: PMC2900821 DOI: 10.1093/pcp/pcq075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/17/2010] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are newly discovered plant hormones that regulate plant growth and development including shoot branching. They also stimulate symbiosis with arbuscular mycorrhizal fungi. Rice has at least three genes that are involved in SL synthesis (D10, D17/HTD1 and D27) and at least two genes that are involved in SL signaling (D3) and SL signaling or downstream metabolism (D14/D88/HTD2). We observed that mesocotyl elongation in darkness was greater in rice mutants defective in these genes than in the wild type. Exogenous application of a synthetic SL analog, GR24, rescued the phenotype of mesocotyl elongation in the SL-deficient mutants, d10-1, d17-1 and d27-1, in a dose-dependent manner, but did not affect mesocotyl lengths of the SL-insensitive mutants, d3-1 and d14-1. No significant differences in cell length were found between the d mutants and the wild type, except for some cells on the lower half of the d3-1 mesocotyl that were shortened. On the other hand, the number of cells in the mesocotyls was 3- to 6-fold greater in the d mutants than in the wild type. Treatment with GR24 reduced the number of cells in the d10-1 mesocotyl to the wild-type level, but did not affect the number of cells in the d3-1 and d14-1 mesocotyls. These findings indicate that SLs negatively regulate cell division, but not cell elongation, in the mesocotyl during germination and growth of rice in darkness.
Collapse
Affiliation(s)
- Zhongyuan Hu
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Haifang Yan
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
- College of Life Science, Northeast Forestry University, Harbin, 150040 PR China
| | - Jinghua Yang
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 PR China
| | | | - Masahiko Maekawa
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Itsuro Takamure
- Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Junko Kyozuka
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Mikio Nakazono
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
- *Corresponding author: E-mail, ; Fax: +81-52-789-4018
| |
Collapse
|
156
|
Waldie T, Hayward A, Beveridge CA. Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture? PLANT MOLECULAR BIOLOGY 2010; 73:27-36. [PMID: 20112050 DOI: 10.1007/s11103-010-9599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 01/07/2010] [Indexed: 05/11/2023]
Abstract
Strigolactones have recently been identified as the long sought-after signal required to inhibit shoot branching (Gomez-Roldan et al. 2008; Umehara et al. 2008; reviewed in Dun et al. 2009). Here we briefly describe the evidence for strigolactone inhibition of shoot branching and, more extensively, the broader context of this action. We address the central question of why strigolactone mutants exhibit a varied branching phenotype across a wide range of experimental conditions. Where knowledge is available, we highlight the role of other hormones in dictating these phenotypes and describe those instances where our knowledge of known plant hormones and their interactions falls considerably short of explaining the phenotypes. This review will focus on bud outgrowth in herbaceous species because knowledge on the role of strigolactones in shoot branching to date barely extends beyond this group of plants.
Collapse
Affiliation(s)
- Tanya Waldie
- School of Biological Sciences and Australian Research Council Centre of Excellence in Integrative Legume Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
157
|
Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Ver Loren van Themaat E, Panstruga R. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. PLANT PHYSIOLOGY 2010; 152:1544-61. [PMID: 20023151 PMCID: PMC2832281 DOI: 10.1104/pp.109.147660] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/14/2009] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ralph Panstruga
- Department of Plant-Microbe Interactions (C.C., P.B., M.H., E.V.L.v.T., R.P.) and Mass Spectrometry Group (A.H.), Max-Planck Institute for Plant Breeding Research, D–50829 Cologne, Germany; and Dipartimento di Biologia Vegetale, Sapienza Università di Roma, 00185 Rome, Italy (F.F., S.F.)
| |
Collapse
|
158
|
Morquecho-Contreras A, Méndez-Bravo A, Pelagio-Flores R, Raya-González J, Ortíz-Castro R, López-Bucio J. Characterization of drr1, an alkamide-resistant mutant of Arabidopsis, reveals an important role for small lipid amides in lateral root development and plant senescence. PLANT PHYSIOLOGY 2010; 152:1659-73. [PMID: 20107026 PMCID: PMC2832232 DOI: 10.1104/pp.109.149989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 01/20/2010] [Indexed: 05/20/2023]
Abstract
Alkamides belong to a class of small lipid signals of wide distribution in plants, which are structurally related to the bacterial quorum-sensing signals N-acyl-l-homoserine lactones. Arabidopsis (Arabidopsis thaliana) seedlings display a number of root developmental responses to alkamides, including primary root growth inhibition and greater formation of lateral roots. To gain insight into the regulatory mechanisms by which these compounds alter plant development, we performed a mutant screen for identifying Arabidopsis mutants that fail to inhibit primary root growth when grown under a high concentration of N-isobutyl decanamide. A recessive N-isobutyl decanamide-resistant mutant (decanamide resistant root [drr1]) was isolated because of its continued primary root growth and reduced lateral root formation in response to this alkamide. Detailed characterization of lateral root primordia development in the wild type and drr1 mutants revealed that DRR1 is required at an early stage of pericycle cell activation to form lateral root primordia in response to both N-isobutyl decanamide and N-decanoyl-l-homoserine lactone, a highly active bacterial quorum-sensing signal. Exogenously supplied auxin similarly inhibited primary root growth and promoted lateral root formation in wild-type and drr1 seedlings, suggesting that alkamides and auxin act by different mechanisms to alter root system architecture. When grown both in vitro and in soil, drr1 mutants showed dramatically increased longevity and reduced hormone- and age-dependent senescence, which were related to reduced lateral root formation when exposed to stimulatory concentrations of jasmonic acid. Taken together, our results provide genetic evidence indicating that alkamides and N-acyl-l-homoserine lactones can be perceived by plants to modulate root architecture and senescence-related processes possibly by interacting with jasmonic acid signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| |
Collapse
|
159
|
Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1419-30. [PMID: 20164142 PMCID: PMC2837260 DOI: 10.1093/jxb/erq010] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/27/2009] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
Auxin regulates a variety of physiological and developmental processes in plants. Although auxin acts as a suppressor of leaf senescence, its exact role in this respect has not been clearly defined, aside from circumstantial evidence. It was found here that ARF2 functions in the auxin-mediated control of Arabidopsis leaf longevity, as discovered by screening EMS mutant pools for a delayed leaf senescence phenotype. Two allelic mutations, ore14-1 and 14-2, caused a highly significant delay in all senescence parameters examined, including chlorophyll content, the photochemical efficiency of photosystem II, membrane ion leakage, and the expression of senescence-associated genes. A delay of senescence symptoms was also observed under various senescence-accelerating conditions, where detached leaves were treated with darkness, phytohormones, or oxidative stress. These results indicate that the gene defined by these mutations might be a key regulatory genetic component controlling functional leaf senescence. Map-based cloning of ORE14 revealed that it encodes ARF2, a member of the auxin response factor (ARF) protein family, which modulates early auxin-induced gene expression in plants. The ore14/arf2 mutation also conferred an increased sensitivity to exogenous auxin in hypocotyl growth inhibition, thereby demonstrating that ARF2 is a repressor of auxin signalling. Therefore, the ore14/arf2 lesion appears to cause reduced repression of auxin signalling with increased auxin sensitivity, leading to delayed senescence. Altogether, our data suggest that ARF2 positively regulates leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Pyung Ok Lim
- Department of Science Education, Jeju National University, 66 Jejudaehakno, Jeju, 690-756, Korea
| | - In Chul Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Junyoung Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Hyo Jung Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Jong Sang Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Hye Ryun Woo
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
- Department of Biology, Chungnam National University, Daejeon, 305-764, Korea
| | - Hong Gil Nam
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
- National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| |
Collapse
|
160
|
Kebrom TH, Brutnell TP, Hays DB, Finlayson SA. Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses. PLANT SIGNALING & BEHAVIOR 2010; 5:317-9. [PMID: 20200487 PMCID: PMC2881289 DOI: 10.4161/psb.5.3.11186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 05/19/2023]
Abstract
Vegetative axillary bud dormancy and outgrowth is regulated by several hormonal and environmental signals. In perennials, the dormancy induced by hormonal and environmental signals has been categorized as eco-, endo- or paradormancy. Over the past several decades para-dormancy has primarily been investigated in eudicot annuals. Recently, we initiated a study using the monoculm phyB mutant (phyB-1) and the freely branching near isogenic wild type (WT) sorghum (Sorghum bicolor) to identify molecular mechanisms and signaling pathways regulating dormancy and out-growth of axillary buds in the grasses. In a paper published in the January 2010 issue of Plant Cell and Environment, we reported the role of branching genes in the inhibition of bud outgrowth by phyB, shade and defoliation signals. Here we present a model that depicts the molecular mechanisms and pathways regulating axillary bud dormancy induced by shade and defoliation signals in the grasses.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
161
|
Evans IM, Rus AM, Belanger EM, Kimoto M, Brusslan JA. Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:1-12. [PMID: 20653883 PMCID: PMC4383266 DOI: 10.1111/j.1438-8677.2009.00206.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::delta-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.
Collapse
Affiliation(s)
- I M Evans
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
162
|
Dal Cin V, Velasco R, Ramina A. Dominance induction of fruitlet shedding in Malus x domestica (L. Borkh): molecular changes associated with polar auxin transport. BMC PLANT BIOLOGY 2009; 9:139. [PMID: 19941659 PMCID: PMC2809502 DOI: 10.1186/1471-2229-9-139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 11/26/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Apple fruitlet abscission is induced by dominance, a process in which hormones such as auxin, cytokinins and strigolactone play a pivotal role. The response to these hormones is controlled by transcription regulators such as Aux/IAA and ARR, whereas auxin transport is controlled by influx and efflux carriers. RESULTS Seven partial clones encoding auxin efflux carriers (MdPIN1_A, MdPIN1_B, MdPIN10_A, MdPIN10_B, MdPIN4, MdPIN7_A and MdPIN7_B), three encoding auxin influx carriers (MdLAX1, MdLAX2 and MdLAX3) and three encoding type A ARR cytokinin response regulators (MdARR3, MdARR4 and MdARR6) were isolated by the use of degenerate primers. The organization of the PIN multigene family in apple is closer to Medicago truncatula than to Arabidopsis thaliana. The genes are differentially expressed in diverse plant organs and at different developmental stages. MdPIN1 and MdPIN7 are largely more expressed than MdPIN10 and MdPIN4. During abscission, the transcription of these genes increased in the cortex whereas in the seed a sharp fall was observed. The expression of these genes was found to be at least partially controlled by ethylene and auxin. CONCLUSION The ethylene burst preceding abscission of fruitlets may be responsible for the decrease in transcript level of MDPIN1, MDARR5 and MDIAA3 in seed. This situation modulates the status of the fruitlet and its fate by hampering the PAT from the seeds down through the abscission zone (AZ) and this brings about the shedding of the fruitlet.
Collapse
Affiliation(s)
- Valeriano Dal Cin
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
- Horticultural Sciences, University of Florida, Gainesville, PO Box 116090, USA
| | - Riccardo Velasco
- Experimental Institute for Agriculture, via Mach 2 San Michele all'Adige, 38010 Trento, Italy
| | - Angelo Ramina
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| |
Collapse
|
163
|
Sano CM, Bohn MO, Paige KN, Jacobs TW. Heritable variation in the inflorescence replacement program of Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1461-1476. [PMID: 19787332 DOI: 10.1007/s00122-009-1148-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/30/2009] [Indexed: 05/28/2023]
Abstract
Owing to their sessile habits and trophic position within global ecosystems, higher plants display a sundry assortment of adaptations to the threat of predation. Unlike animals, nearly all higher plants can replace reproductive structures lost to predators by activating reserved growing points called axillary meristems. As the first step in a program aimed at defining the genetic architecture of the inflorescence replacement program (IRP) of Arabidopsis thaliana, we describe the results of a quantitative germplasm survey of developmental responses to loss of the primary reproductive axis. Eighty-five diverse accessions were grown in a replicated common garden and assessed for six life history traits and four IRP traits, including the number and lengths of axillary inflorescences present on the day that the first among them re-flowered after basal clipping of the primary inflorescence. Significant natural variation and high heritabilities were observed for all measured characters. Pairwise correlations among the 10 focal traits revealed a multi-dimensional phenotypic space sculpted by ontogenic and plastic allometries as well as apparent constraints and outliers of genetic interest. Cluster analysis of the IRP traits sorted the 85 accessions into 5 associations, a topology that establishes the boundaries within which the evolving Arabidopsis genome extends and restricts the species' IRP repertoire to that observable worldwide.
Collapse
Affiliation(s)
- Cecile M Sano
- Department of Plant Biology, University of Illinois, 191 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
164
|
Qin Y, Ye H, Tang N, Xiong L. Systematic identification of X1-homologous genes reveals a family involved in stress responses in rice. PLANT MOLECULAR BIOLOGY 2009; 71:483-96. [PMID: 19701685 DOI: 10.1007/s11103-009-9535-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 08/01/2009] [Indexed: 05/04/2023]
Abstract
X1-homologous genes (XHS) encode plant-specific proteins containing three major domains (XH, XS, zf-XS), but their functions are largely unknown. We report the systematic identification and characterization of XHS genes in the rice genome. Eleven putative XHS protein sequences (OXHS1-11) were identified in the sequenced genome of Oryza sativa japonica cv. Nipponbare, and these sequences, along with other plant XHS homologues, were classified into five subgroups based on phylogenetic analysis. Distinct diversification of the XHS proteins occurred between monocotyledon and dicotyledon plants. The OXHS family has diverse exon-intron structures and organizations of putative domains and motifs. The OXHS proteins showed no transactivation activity, and no interaction between the XH domain and the XS domain in yeast. Four representative OXHS proteins were targeted to cytoplasm, which contradicts the previous speculation that XHS proteins are putative transcription factors. All the OXHS genes are predominantly expressed in floral organs, and some are expressed in a wide range of tissues or organs in indica rice Minghui 63. Nine OXHS genes are responsive to at least one of the abiotic stresses including drought, salt, cold, and abscisic acid treatment. Over-expression of one stress-responsive gene OXHS2 in rice resulted in reduced tolerance to salt and drought stresses. These results suggest that the OXHS family may be functionally diversified and some members of this family may play important roles in regulating stress tolerance in rice.
Collapse
Affiliation(s)
- Yonghua Qin
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | |
Collapse
|
165
|
Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. PLANT PHYSIOLOGY 2009; 150:942-50. [PMID: 19395407 PMCID: PMC2689990 DOI: 10.1104/pp.109.138453] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/21/2009] [Indexed: 05/18/2023]
Abstract
Ascorbic acid (AsA) biosynthesis in plants occurs through a complex, interconnected network with mannose (Man), myoinositol, and galacturonic acid as principal entry points. Regulation within and between pathways in the network is largely uncharacterized. A gene that regulates the Man/l-galactose (l-Gal) AsA pathway, AMR1 (for ascorbic acid mannose pathway regulator 1), was identified in an activation-tagged Arabidopsis (Arabidopsis thaliana) ozone-sensitive mutant that had 60% less leaf AsA than wild-type plants. In contrast, two independent T-DNA knockout lines disrupting AMR1 accumulated 2- to 3-fold greater foliar AsA and were more ozone tolerant than wild-type controls. Real-time reverse transcription-polymerase chain reaction analysis of steady-state transcripts of genes involved in AsA biosynthesis showed that AMR1 negatively affected the expression of GDP-Man pyrophosphorylase, GDP-l-Gal phosphorylase, l-Gal-1-phosphate phosphatase, GDP-Man-3',5'-epimerase, l-Gal dehydrogenase, and l-galactono-1,4-lactone dehydrogenase, early and late enzymes of the Man/l-Gal pathway to AsA. AMR1 expression appears to be developmentally and environmentally controlled. As leaves aged, AMR1 transcripts accumulated with a concomitant decrease in AsA. AMR1 transcripts also decreased with increased light intensity. Thus, AMR1 appears to play an important role in modulating AsA levels in Arabidopsis by regulating the expression of major pathway genes in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Plant Pathology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
166
|
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009; 323:1053-7. [PMID: 19229035 DOI: 10.1126/science.1166386] [Citation(s) in RCA: 480] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.
Collapse
Affiliation(s)
- Jin Hee Kim
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 2008; 6:e230. [PMID: 18816164 PMCID: PMC2553836 DOI: 10.1371/journal.pbio.0060230] [Citation(s) in RCA: 572] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 08/13/2008] [Indexed: 01/09/2023] Open
Abstract
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate. Short, single-stranded RNA molecules called microRNAs (miRNAs) regulate gene expression by negatively controlling both the stability and translation of target messenger RNAs that they recognize through sequence complementarity. In plants, miRNAs mostly regulate other regulators, the DNA-binding transcription factors. We investigated the downstream events regulated by five TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factors that are controlled by the microRNA miR319 in Arabidopsis thaliana. The miR319-regulated TCPs were previously known to be important for limiting the growth of leaves. By applying a combination of genome-wide, biochemical, and genetic studies, we identified new TCP targets that include enzymes responsible for the synthesis of the hormone jasmonic acid. Our analysis of leaf extracts from plants with increased activity of miR319 confirms that altered expression of the biosynthetic genes leads to changed jasmonic acid levels. These plants show also an altered senescence behavior that becomes more normal again when the plants are treated with jasmonate. We propose that the miR319-regulated TCP factors thus coordinate different aspects of leaf development and physiology: growth, which they negatively regulate, and aging, which they positively regulate. A plant microRNA and its targets turn out to regulate both early and late stages of leaf development: early on, they inhibit growth, while later on, they promote the onset of senescence.
Collapse
Affiliation(s)
- Carla Schommer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Javier F Palatnik
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aurore Chételat
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pilar Cubas
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Edward E Farmer
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
168
|
Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. PLANT PHYSIOLOGY 2008; 148:1189-200. [PMID: 18775973 PMCID: PMC2577272 DOI: 10.1104/pp.108.121921] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/24/2008] [Indexed: 05/20/2023]
Abstract
F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteasome pathway. In plants, F-box genes influence a variety of biological processes, such as leaf senescence, branching, self-incompatibility, and responses to biotic and abiotic stresses. The number of F-box genes in Populus (Populus trichocarpa; approximately 320) is less than half that found in Arabidopsis (Arabidopsis thaliana; approximately 660) or Oryza (Oryza sativa; approximately 680), even though the total number of genes in Populus is equivalent to that in Oryza and 1.5 times that in Arabidopsis. We performed comparative genomics analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and Oryza in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure, and gene expression. The set of F-box genes shared by these species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and Oryza. The number of F-box genes in the newly sequenced woody species Vitis (Vitis vinifera; 156) and Carica (Carica papaya; 139) is similar to that in Populus, supporting the hypothesis that the F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. This study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.
Collapse
Affiliation(s)
- Xiaohan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
Strigolactones secreted by plant roots are exploited by parasitic plants as germination triggers, making their synthesis and signaling important targets for crop protection. Meanwhile, genetic analyses have identified several genes required for the synthesis and signaling of an unknown shoot branching inhibitor. Two recent papers unite these two fields, showing that strigolactones control shoot branching.
Collapse
|
170
|
Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP. The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. THE PLANT CELL 2008; 20:2909-25. [PMID: 18978034 PMCID: PMC2590718 DOI: 10.1105/tpc.107.056341] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 10/03/2008] [Accepted: 10/15/2008] [Indexed: 05/18/2023]
Abstract
Leaf senescence in Arabidopsis thaliana is a strict, genetically controlled nutrient recovery program, which typically progresses in an age-dependent manner. Leaves of the Arabidopsis onset of leaf death5 (old5) mutant exhibit early developmental senescence. Here, we show that OLD5 encodes quinolinate synthase (QS), a key enzyme in the de novo synthesis of NAD. The Arabidopsis QS was previously shown to carry a Cys desulfurase domain that stimulates reconstitution of the oxygen-sensitive Fe-S cluster that is required for QS activity. The old5 lesion in this enzyme does not affect QS activity but it decreases its Cys desulfurase activity and thereby the long-term catalytic competence of the enzyme. The old5 mutation causes increased NAD steady state levels that coincide with increased activity of enzymes in the NAD salvage pathway. NAD plays a key role in cellular redox reactions, including those of the tricarboxylic acid cycle. Broad-range metabolite profiling of the old5 mutant revealed that it contains higher levels of tricarboxylic acid cycle intermediates and nitrogen-containing amino acids. The mutant displays a higher respiration rate concomitant with increased expression of oxidative stress markers. We postulate that the alteration in the oxidative state is integrated into the plant developmental program, causing early ageing of the mutant.
Collapse
Affiliation(s)
- Jos H M Schippers
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
171
|
Harmon F, Imaizumi T, Gray WM. CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:568-79. [PMID: 18433436 PMCID: PMC2976475 DOI: 10.1111/j.1365-313x.2008.03527.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY The circadian clock is the endogenous timer that coordinates physiological processes with daily and seasonal environmental changes. In Arabidopsis thaliana, establishment of the circadian period relies on targeted degradation of TIMING OF CAB EXPRESSION 1 (TOC1) by the 26S proteasome. ZEITLUPE (ZTL) is the F-box protein that associates with the SCF (Skp/Cullin/F-box) E3 ubiquitin ligase that is responsible for marking TOC1 for turnover. CULLIN1 (CUL1) is a core component of SCF complexes and is involved in multiple signaling pathways. To assess the contribution of CUL1-containing SCF complexes to signaling within the plant oscillator, circadian rhythms were examined in the recessive, temperature-sensitive CUL1 allele axr6-3. The activity of CUL1 in this mutant declines progressively with increasing ambient temperature, resulting in more severe defects in CUL1-dependent activities at elevated temperature. Examination of circadian rhythms in axr6-3 revealed circadian phenotypes comparable to those observed in ztl null mutants; namely, lengthened circadian period, altered expression of core oscillator genes, and limited degradation of TOC1. In addition, treatment of seedlings with exogenous auxin did not alter TOC1 stability. These results demonstrate that CUL1 is required for TOC1 degradation and further suggest that this protein is the functional cullin for the SCF(ZTL) complex.
Collapse
Affiliation(s)
- Frank Harmon
- United States Department of Agriculture-Agricultural Research Service, Plant Gene Expression Center, Albany, CA 94710, USA.
| | | | | |
Collapse
|
172
|
Alós E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talón M, Cercós M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. PLANT PHYSIOLOGY 2008; 147:1300-15. [PMID: 18467459 PMCID: PMC2442528 DOI: 10.1104/pp.108.119917] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/05/2008] [Indexed: 05/20/2023]
Abstract
A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Vega-Sánchez ME, Zeng L, Chen S, Leung H, Wang GL. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. THE PLANT CELL 2008; 20:1456-69. [PMID: 18586868 PMCID: PMC2483366 DOI: 10.1105/tpc.108.058610] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The rice (Oryza sativa) E3 ligase SPOTTED LEAF11 (SPL11) negatively regulates programmed cell death and disease resistance. We demonstrate here that SPL11 also regulates flowering via interaction with SPIN1 (for SPL11-interacting protein1), a Signal Transduction and Activation of RNA family member. SPIN1 binds RNA and DNA in vitro and interacts with SPL11 in the nucleus. Spl11 mutants have delayed flowering under long-day conditions. Spin1 overexpression causes late flowering independently of daylength; expression analyses of flowering marker genes in these lines suggested that SPIN1 represses flowering by downregulating the flowering promoter gene Heading date3a (Hd3a) via Hd1-dependent mechanisms in short days and by targeting Hd1-independent factors in long days. Both Spin1 and Spl11 are regulated diurnally in opposing phases. SPL11 negatively regulates Spin1 transcript levels, while SPIN1 also affects Spl11 expression. Moreover, we show that coincidence of high accumulation of Spin1 mRNA with the light in the morning and early evening is needed to repress flowering. SPIN1 is monoubiquitinated by SPL11, suggesting that it is not targeted for degradation. Our data are consistent with a model in which SPIN1 acts as a negative regulator of flowering that itself is negatively regulated by SPL11, possibly via ubiquitination.
Collapse
Affiliation(s)
- Miguel E Vega-Sánchez
- Department of Plant Pathology, Plant Molecular Biology and Biotechnology Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
174
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2008; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
175
|
Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:1471-83. [PMID: 17951458 PMCID: PMC2151697 DOI: 10.1104/pp.107.107227] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/08/2007] [Indexed: 05/20/2023]
Abstract
Light is vital for plant growth and development. To respond to ambient light signals, plants are equipped with an array of photoreceptors, including phytochromes that sense red (R)/far-R (FR) regions and cryptochromes and phototropins that respond to the ultraviolet-A/blue (B) region of the light spectrum, respectively. Several positively and negatively acting components in light-signaling pathways have been identified using genetic approaches; however, the pathways are not saturated. Here, we characterize a new mutant named pleiotropic photosignaling (pps), isolated from a genetic screen under continuous R light. pps has longer hypocotyls and slightly smaller cotyledons under continuous R, FR, and B light compared to that of the wild type. pps is also hyposensitive to both R and FR light-induced seed germination. Although photosynthetic marker genes are constitutively expressed in pps in the dark at high levels, the expression of early light-regulated genes is reduced in the pps seedlings compared to wild-type seedlings under R light. PPS encodes MAX2/ORE9 (for MORE AXILLARY BRANCHES2/ORESARA9), an F-box protein involved in inflorescence architecture and senescence. MAX2 is expressed ubiquitously in the seedling stage. However, its expression is restricted to vascular tissues and meristems at adult stages. MAX2 is also localized to the nucleus. As an F-box protein, MAX2 is predicted to be a component of the SCF (for SKP, Cullin, and F-box protein) complex involved in regulated proteolysis. These results suggest that SCF(MAX2) plays critical roles in R, FR, and B light-signaling pathways. In addition, MAX2 might regulate multiple targets at different developmental stages to optimize plant growth and development.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
176
|
Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. ANNALS OF BOTANY 2007; 100:681-97. [PMID: 17513307 PMCID: PMC2749622 DOI: 10.1093/aob/mcm079] [Citation(s) in RCA: 1100] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/15/2007] [Indexed: 05/15/2023]
Abstract
BACKGROUND Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. SCOPE This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. CONCLUSIONS Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones.
Collapse
Affiliation(s)
- C Wasternack
- Department of Natural Product Biotechnology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| |
Collapse
|
177
|
Ananieva K, Ananiev ED, Mishev K, Georgieva K, Malbeck J, Kamínek M, Van Staden J. Methyl jasmonate is a more effective senescence-promoting factor in Cucurbita pepo (zucchini) cotyledons when compared with darkness at the early stage of senescence. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1179-87. [PMID: 16987568 DOI: 10.1016/j.jplph.2006.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/04/2006] [Indexed: 05/11/2023]
Abstract
The effects of short-term darkening and methyl jasmonate (MeJA) on cotyledon senescence were studied 24h after transfer of intact 7-day-old Cucurbita pepo (zucchini) seedlings to darkness or spraying with 100 microM MeJA. The jasmonate inhibitory effect on chlorophyll content and chloroplast transcriptional activity was stronger compared with darkness. Further, MeJA reduced the photosynthetic rate whereas darkness did not affect photosynthesis. Neither stress factor affected the photochemical quantum efficiency of photosystem II (PSII) estimated by the variable fluorescence (F(v))/maximal fluorescence (F(m)) ratio, suggesting the existence of mechanisms protecting the functional activity of PSII at earlier stages of senescence, thus making this parameter more stable compared to others used to quantify senescence. Both stress factors caused a decrease in the content of physiologically active cytokinins, especially trans-zeatin (Z), with the jasmonate effect being much more pronounced when compared to darkness. Our results indicate that MeJA is a more potent inducer of senescence in zucchini cotyledons, at least within the relatively short period of the 24h treatment. This is likely due to its stronger down-regulatory effect on the levels of physiologically active cytokinins.
Collapse
Affiliation(s)
- Kalina Ananieva
- Acad M Popov Institute of Plant Physiology, Acad G Bonchev Str, Bl 21, Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
178
|
Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. ANNALS OF BOTANY 2007; 99:787-822. [PMID: 17220175 PMCID: PMC2802907 DOI: 10.1093/aob/mcl255] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. SCOPE This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. CONCLUSIONS The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses.
Collapse
Affiliation(s)
- Kate Dreher
- Section of Molecular and Cellular Biology, Plant Biology Graduate Group Program, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
179
|
Schwager KM, Calderon-Villalobos LIA, Dohmann EMN, Willige BC, Knierer S, Nill C, Schwechheimer C. Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. THE PLANT CELL 2007; 19:1163-78. [PMID: 17435085 PMCID: PMC1913746 DOI: 10.1105/tpc.105.040675] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein-type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:beta-glucuronidase, a reporter for auxin response, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.
Collapse
Affiliation(s)
- Katja M Schwager
- Department of Developmental Genetics, Centre for Plant Molecular Biology, Tübingen University, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
180
|
Calsa T, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. PLANT MOLECULAR BIOLOGY 2007; 63:745-62. [PMID: 17211512 DOI: 10.1007/s11103-006-9121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/25/2006] [Indexed: 05/07/2023]
Abstract
Sugarcane (Saccharum spp.) is a highly efficient biomass and sugar producing crop. Leaf reactions have been considered as potential rate-limiting step for sucrose accumulation in sugarcane stalks. To characterize the sugarcane leaf transcriptome, field-grown mature leaves from cultivar "SP80-3280" were analyzed using Serial Analysis of Gene Expression (SAGE). From 480 sequenced clones, 9,482 valid tags were extracted, with 5,227 unique sequences, from which 3,659 (70%) matched at least a sugarcane assembled sequence (SAS) with putative function; while 872 tags (16.7%) matched SAS with unknown function; 523 (10%) matched SAS without a putative annotation; and only 173 (3.3%) did not match any sugarcane ESTs. Based on gene ontology (GO), photosystem (PS) I reaction center was identified as the most frequent gene product location, followed by the remaining sites of PS I, PS II and thylakoid complexes. For metabolic processes, photosynthesis light harvesting complexes; carbon fixation; and chlorophyll biosynthesis were the most enriched GO-terms. Considering the alternative photosynthetic C(4) cycles, tag frequencies related to phosphoenolpyruvate carboxykinase (PEPCK) and aspartate aminotransferase compared to those for NADP(+)-malic enzyme (NADP-ME) and NADP-malate dehydrogenase, suggested that PEPCK-type decarboxylation appeared to predominate over NADP-ME in mature leaves, although both may occur, opposite to currently assumed in sugarcane. From the unique tag set, 894 tags (17.1%) were assigned as potentially derived from antisense transcripts, while 73 tags (1.4%) were assigned to more than one SAS, suggesting the occurrence of alternative processing. The occurrence of antisense was validated by quantitative reverse transcription amplification. Sugarcane leaf transcriptome provided new insights for functional studies associated with sucrose synthesis and accumulation.
Collapse
Affiliation(s)
- Tercilio Calsa
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | |
Collapse
|
181
|
Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. PLANT PHYSIOLOGY 2007; 143:697-706. [PMID: 17158589 PMCID: PMC1803742 DOI: 10.1104/pp.106.087957] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/29/2006] [Indexed: 05/12/2023]
Abstract
Control of branch development is a major determinant of architecture in plants. Branching in petunia (Petunia hybrida) is controlled by the DECREASED APICAL DOMINANCE (DAD) genes. Gene functions were investigated by plant grafting, morphology studies, double-mutant characterization, and gene expression analysis. Both dad1-1 and dad3 increased branching mutants can be reverted to a near-wild-type phenotype by grafting to a wild-type or a dad2 mutant root stock, indicating that both genes affect the production of a graft-transmissible substance that controls branching. Expression of the DAD1 gene in the stems of grafted plants, detected by quantitative reverse transcription-polymerase chain reaction correlates with the branching phenotype of the plants. The dad2-1 mutant cannot be reverted by grafting, indicating that this gene acts predominantly in the shoot of the plant. Double-mutant analysis indicates that the DAD2 gene acts in the same pathway as the DAD1 and DAD3 genes because the dad1-1dad2-1 and dad2-1dad3 double mutants are indistinguishable from the dad2-1 mutant. However, the dad1-1dad3 double mutant has an additive phenotype, with decreased height of the plants, delayed flowering, and reduced germination rates compared to the single mutants. This result, together with the observation that the dad1-1 and dad3 mutants cannot be reverted by grafting to each other, suggests that the DAD1 and DAD3 genes act in the same pathway, but not in a simple stepwise fashion.
Collapse
Affiliation(s)
- Joanne L Simons
- HortResearch, Private Bag 92169, Mt. Albert, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
182
|
Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, Estelle M. A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:684-96. [PMID: 17158585 PMCID: PMC1803743 DOI: 10.1104/pp.106.091439] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.
Collapse
Affiliation(s)
- Jennifer Moon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Hopkins M, Taylor C, Liu Z, Ma F, McNamara L, Wang TW, Thompson JE. Regulation and execution of molecular disassembly and catabolism during senescence. THE NEW PHYTOLOGIST 2007; 175:201-214. [PMID: 17587370 DOI: 10.1111/j.1469-8137.2007.02118.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Senescence is a highly orchestrated developmental stage in the life cycle of plants. The onset of senescence is tightly controlled by signaling cascades that initiate changes in gene expression and the synthesis of new proteins. This complement of new proteins includes hydrolytic enzymes capable of executing catabolism of macromolecules, which in turn sets in motion disassembly of membrane molecular matrices, leading to loss of cell function and, ultimately, complete breakdown of cellular ultrastructure. A distinguishing feature of senescence that sets it apart from other types of programmed cell death is the recovery of carbon and nitrogen from the dying tissue and their translocation to growing parts of the plant such as developing seeds. For this to be accomplished, the initiation of senescence and its execution have to be meticulously regulated. For example, the initiation of membrane disassembly has to be intricately linked with the recruitment of nutrients because their ensuing translocation out of the senescing tissue requires functional membranes. Molecular mechanisms underlying this linkage and its integration with the catabolism of macromolecules in senescing tissues are addressed.
Collapse
Affiliation(s)
- Marianne Hopkins
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Catherine Taylor
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Zhongda Liu
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Fengshan Ma
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Linda McNamara
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Tzann-Wei Wang
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - John E Thompson
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| |
Collapse
|
184
|
Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. PLANT PHYSIOLOGY 2006; 142:1014-26. [PMID: 16980559 PMCID: PMC1630745 DOI: 10.1104/pp.106.087676] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 09/04/2006] [Indexed: 05/11/2023]
Abstract
Physiological and genetic studies with the ramosus (rms) mutants in garden pea (Pisum sativum) and more axillary shoots (max) mutants in Arabidopsis (Arabidopsis thaliana) have shown that shoot branching is regulated by a network of long-distance signals. Orthologous genes RMS1 and MAX4 control the synthesis of a novel graft-transmissible branching signal that may be a carotenoid derivative and acts as a branching inhibitor. In this study, we demonstrate further conservation of the branching control system by showing that MAX2 and MAX3 are orthologous to RMS4 and RMS5, respectively. This is consistent with the long-standing hypothesis that branching in pea is regulated by a novel long-distance signal produced by RMS1 and RMS5 and that RMS4 is implicated in the response to this signal. We examine RMS5 expression and show that it is more highly expressed relative to RMS1, but under similar transcriptional regulation as RMS1. Further expression studies support the hypothesis that RMS4 functions in shoot and rootstock and participates in the feedback regulation of RMS1 and RMS5 expression. This feedback involves a second novel long-distance signal that is lacking in rms2 mutants. RMS1 and RMS5 are also independently regulated by indole-3-acetic acid. RMS1, rather than RMS5, appears to be a key regulator of the branching inhibitor. This study presents new interactions between RMS genes and provides further evidence toward the ongoing elucidation of a model of axillary bud outgrowth in pea.
Collapse
Affiliation(s)
- Xenie Johnson
- Station de Génétique et d'Amélioration des Plantes, Institut J.P. Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
185
|
Lers A, Sonego L, Green PJ, Burd S. Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission. PLANT PHYSIOLOGY 2006; 142:710-21. [PMID: 16920876 PMCID: PMC1586048 DOI: 10.1104/pp.106.080135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using antisense tomato plants in which the LX protein level was reduced. LX protein levels normally become elevated when leaves senesce and antisense inhibition of LX retarded the progression of senescence. Moreover, we observed a marked delay of leaf abscission in LX-deficient plants. This correlated with specific induction of LX protein in the tomato mature abscission zone tissue. LX RNase gene regulation and the consequences of antisense inhibition indicate that LX has an important functional role in both abscission and senescence.
Collapse
Affiliation(s)
- Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | |
Collapse
|
186
|
Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. PLANT PHYSIOLOGY 2006; 141:1376-88. [PMID: 16778011 PMCID: PMC1533915 DOI: 10.1104/pp.106.082941] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Leaf senescence is a developmentally programmed degeneration process, which is fine tuned by a complex regulatory network for plant fitness. However, molecular regulation of leaf senescence is poorly understood, especially in rice (Oryza sativa), an important staple crop for more than half of the world population. Here, we report a novel nuclear-localized CCCH-type zinc finger protein, Oryza sativa delay of the onset of senescence (OsDOS), involved in delaying leaf senescence in rice. The expression of OsDOS was down-regulated during natural leaf senescence, panicle development, and pollination, although its transcripts were accumulated in various organs. RNAi knockdown of OsDOS caused an accelerated age-dependent leaf senescence, whereas its overexpression produced a marked delay of leaf senescence, suggesting that it acts as a negative regulator for leaf senescence. A genome-wide expression analysis further confirmed its negative regulation for leaf senescence and revealed that, in particular, the jasmonate (JA) pathway was found to be hyperactive in the OsDOS RNAi transgenic lines but impaired in the OsDOS overexpressing transgenic lines, indicating that this pathway is likely involved in the OsDOS-mediated delaying of leaf senescence. Furthermore, methyl JA treatments of both seeds and detached leaves from the RNAi and the overexpressing transgenic lines showed hyper- and hyporesponses, respectively, consistent with the negative regulation of the JA pathway by OsDOS. Together, these results indicate that OsDOS is a novel nuclear protein that delays leaf senescence likely, at least in part, by integrating developmental cues to the JA pathway.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Centre for Plant Gene Research, Beijing 100080, China
| | | | | | | | | |
Collapse
|
187
|
Schlögelhofer P, Garzón M, Kerzendorfer C, Nizhynska V, Bachmair A. Expression of the ubiquitin variant ubR48 decreases proteolytic activity in Arabidopsis and induces cell death. PLANTA 2006; 223:684-97. [PMID: 16200408 DOI: 10.1007/s00425-005-0121-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/27/2005] [Indexed: 05/04/2023]
Abstract
The ubiquitin-proteasome pathway is the major route for protein degradation in eukaryotes. We show here that this pathway can be inhibited in Arabidopsis thaliana by expression of a ubiquitin variant that contains Arg instead of Lys at position 48 (ubR48). A major consequence of ubR48 expression is the induction of cell death. Cell death induction coincides with the appearance of reactive oxygen intermediates, but is independent of salicylic acid. We found changes in expression of some defense-related genes, but these changes are apparently insufficient to cause alterations in the response to a bacterial pathogen. Expression of ubR48 from an inducible gene allowed investigation of kinetic parameters of cell death induction. In the absence of additional stress factors, slow death processes dominate if the transgene is induced in seedlings older than 2 weeks. The inducible gene also allowed isolation of suppressor mutants. Expression of ubR48 may cause changes similar to inhibition of the proteasome, which also induces various forms of cell death. Thus, ubR48 is a tool to manipulate protein turnover and to probe cell death programs in plants.
Collapse
|
188
|
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2006; 119:37-42. [PMID: 16284709 DOI: 10.1007/s10265-005-0232-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/31/2005] [Indexed: 05/05/2023]
Abstract
Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number. Therefore, leaf-size mutants should be classified according to the effects of the mutations on the cell number and/or size. A group of mutants represented by angustifolia3/grf-interacting factor1 and aintegumenta exhibits an intriguing cellular phenotype termed compensation: when the leaf cell number is decreased due to the mutation, the leaf cell size increases, leading to compensation in leaf area. Several lines of genetic evidence suggest that compensation is probably not a result of the uncoupling of cell division from cell growth. Rather, the evidence suggests an organ-wide mechanism that coordinates cell proliferation with cell expansion during leaf development. Our results provide a key, novel concept that explains how leaf size is controlled at the organ level.
Collapse
Affiliation(s)
- Gorou Horiguchi
- National Institute for Basic Biology/Okazaki Institute for Integrated Bioscience, Myodaiji-cho Nishigo Naka 38, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
189
|
Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. PLANT PHYSIOLOGY 2005; 138:1018-26. [PMID: 15894742 PMCID: PMC1150416 DOI: 10.1104/pp.105.060400] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | |
Collapse
|
190
|
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. THE NEW PHYTOLOGIST 2005; 165:683-701. [PMID: 15720680 DOI: 10.1111/j.1469-8137.2004.01285.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Research on legume nodule development has contributed greatly to our current understanding of plant-microbe interactions. However, the factors that orchestrate root nodule senescence have received relatively little attention. Accumulating evidence suggests that redox signals contribute to the establishment of symbiosis and senescence. Although degenerative in nature, nodule senescence is an active process programmed in development in which reactive oxygen species (ROS), antioxidants, hormones and proteinases have key roles. Nodules have high levels of the redox buffers, ascorbate and glutathione, which are important in the nodulation process and in senescence. These metabolites decline with N-fixation as the nodule ages but the resultant decrease in redox buffering capacity does not necessarily lead to enhanced ROS or oxidative stress. We propose models by which ROS and antioxidants interact with hormones such as abscisic acid in the orchestration of nodule senescence.
Collapse
Affiliation(s)
- Alain Puppo
- UMR CNRS-UNSA-INRA IPMSV 400, Route des Chappes, BP167 06903 Sophia-Antipolis Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. THE PLANT CELL 2005; 17:746-59. [PMID: 15705953 PMCID: PMC1069696 DOI: 10.1105/tpc.104.027714] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 12/05/2004] [Indexed: 05/18/2023]
Abstract
Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.
Collapse
|
192
|
Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. THE PLANT CELL 2005; 17:464-74. [PMID: 15659639 PMCID: PMC548819 DOI: 10.1105/tpc.104.026716] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 11/12/2004] [Indexed: 05/18/2023]
Abstract
In Pisum sativum, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.
Collapse
Affiliation(s)
- Eloise Foo
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | | | |
Collapse
|
193
|
Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development. THE PLANT CELL 2004; 16:3181-95. [PMID: 15579807 PMCID: PMC535867 DOI: 10.1105/tpc.104.161220] [Citation(s) in RCA: 401] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Jennifer Moon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
194
|
Schwechheimer C, Schwager K. Regulated proteolysis and plant development. PLANT CELL REPORTS 2004; 23:353-364. [PMID: 15365760 DOI: 10.1007/s00299-004-0858-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 07/22/2004] [Accepted: 07/22/2004] [Indexed: 05/24/2023]
Abstract
Eukaryotes use the ubiquitin-proteasome system to control the abundance of regulatory proteins such as cell-cycle proteins and transcription factors. Over 5% of the Arabidopsis genome encodes for proteins with an apparent functional homology to components of the ubiquitin-proteasome system. This suggests that ubiquitin-mediated proteolysis has a major role in plant growth and development. Consistent with this notion, various processes, including most phytohormone responses and photomorphogenesis, have already been shown to require protein degradation in one way or another. In this review, we provide an overview of the plant ubiquitin-proteasome system and its role during Arabidopsis development. Since we consider auxin response and photomorphogenesis as particularly instructive examples, these processes are reviewed in greater detail.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Developmental Genetics, Centre for Plant Molecular Biology, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
| | | |
Collapse
|
195
|
Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF. Molecular analyses of the Arabidopsis TUBBY-like protein gene family. PLANT PHYSIOLOGY 2004; 134:1586-97. [PMID: 15064372 PMCID: PMC419833 DOI: 10.1104/pp.103.037820] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 01/29/2004] [Accepted: 01/29/2004] [Indexed: 05/20/2023]
Abstract
In mammals, TUBBY-like proteins play an important role in maintenance and function of neuronal cells during postdifferentiation and development. We have identified a TUBBY-like protein gene family with 11 members in Arabidopsis, named AtTLP1-11. Although seven of the AtTLP genes are located on chromosome I, no local tandem repeats or gene clusters are identified. Except for AtTLP4, reverse transcription-PCR analysis indicates that all these genes are expressed in various organs in 6-week-old Arabidopsis. AtTLP1, 2, 3, 6, 7, 9, 10, and 11 are expressed ubiquitously in all the organs tested, but the expression of AtTLP5 and 8 shows dramatic organ specificity. These 11 family members share 30% to 80% amino acid similarities across their conserved C-terminal tubby domains. Unlike the highly diverse N-terminal region of animal TUBBY-like proteins, all AtTLP members except AtTLP8 contain a conserved F-box domain (51-57 residues). The interaction between AtTLP9 and ASK1 (Arabidopsis Skp1-like 1) is confirmed via yeast (Saccharomyces cerevisiae) two-hybrid assays. Abscisic acid (ABA)-insensitive phenotypes are observed for two independent AtTLP9 mutant lines, whereas transgenic plants overexpressing AtTLP9 are hypersensitive to ABA. These results suggest that AtTLP9 may participate in the ABA signaling pathway.
Collapse
Affiliation(s)
- Chia-Ping Lai
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | |
Collapse
|
196
|
Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. THE PLANT CELL 2004; 16:582-95. [PMID: 14973168 PMCID: PMC385274 DOI: 10.1105/tpc.017673] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 12/30/2003] [Indexed: 05/17/2023]
Abstract
Self-incompatibility S-locus-encoded F-box (SLF) proteins have been identified in Antirrhinum and several Prunus species. Although they appear to play an important role in self-incompatible reaction, functional evidence is lacking. Here, we provide several lines of evidence directly implicating a role of AhSLF-S(2) in self-incompatibility in Antirrhinum. First, a nonallelic physical interaction between AhSLF-S(2) and S-RNases was demonstrated by both coimmunoprecipitation and yeast two-hybrid assays. Second, AhSLF-S(2) interacts with ASK1- and CULLIN1-like proteins in Antirrhinum, and together, they likely form an Skp1/Cullin or CDC53/F-box (SCF) complex. Third, compatible pollination was specifically blocked after the treatment of the proteasomal inhibitors MG115 and MG132, but they had little effect on incompatible pollination both in vitro and in vivo, indicating that the ubiquitin/26S proteasome activity is involved in compatible pollination. Fourth, the ubiquitination level of style proteins was increased substantially after compatible pollination compared with incompatible pollination, and coimmunoprecipitation revealed that S-RNases were ubiquitinated after incubating pollen proteins with compatible but not with incompatible style proteins, suggesting that non-self S-RNases are possibly degraded by the ubiquitin/26S proteasome pathway. Fifth, the S-RNase level appeared to be reduced after 36 h of compatible pollination. Taken together, these results show that AhSLF-S(2) interacts with S-RNases likely through a proposed SCF(AhSLF-S2) complex that targets S-RNase destruction during compatible rather than incompatible pollination, thus providing a biochemical basis for the inhibition of pollen tube growth as observed in self-incompatible response in Antirrhinum.
Collapse
Affiliation(s)
- Hong Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
A recent, genome-wide study shows that the transcriptional program underlying leaf senescence is active and complex, reflecting the activation of more than 2,000 genes in Arabidopsis, with gene products involved in a broad spectrum of regulatory, biochemical and cellular events.
Collapse
Affiliation(s)
- Shimon Gepstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
198
|
Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D. The ASK1 and ASK2 genes are essential for Arabidopsis early development. THE PLANT CELL 2004; 16:5-20. [PMID: 14688296 PMCID: PMC301391 DOI: 10.1105/tpc.017772] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.
Collapse
Affiliation(s)
- Fuquan Liu
- Laboratory of Plant Signal Transduction, Institute of Molecular and Cell Biology, 117609 Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M. Large-scale identification of leaf senescence-associated genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:629-42. [PMID: 14617064 DOI: 10.1046/j.1365-313x.2003.01908.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a form of programmed cell death, and is believed to involve preferential expression of a specific set of "senescence-associated genes" (SAGs). To decipher the molecular mechanisms and the predicted complex network of regulatory pathways involved in the senescence program, we have carried out a large-scale gene identification study in a reference plant, Arabidopsis thaliana. Using suppression subtractive hybridization, we isolated approximately 800 cDNA clones representing SAGs expressed in senescing leaves. Differential expression was confirmed by Northern blot analysis for 130 non-redundant genes. Over 70 of the identified genes have not previously been shown to participate in the senescence process. SAG-encoded proteins are likely to participate in macromolecule degradation, detoxification of oxidative metabolites, induction of defense mechanisms, and signaling and regulatory events. Temporal expression profiles of selected genes displayed several distinct patterns, from expression at a very early stage, to the terminal phase of the senescence syndrome. Expression of some of the novel SAGs, in response to age, leaf detachment, darkness, and ethylene and cytokinin treatment was compared. The large repertoire of SAGs identified here provides global insights about regulatory, biochemical and cellular events occurring during leaf senescence.
Collapse
Affiliation(s)
- Shimon Gepstein
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Plants exhibit both mitotic and postmitotic senescence. Mitotic senescence, also known as proliferative senescence, occurs when germline-like meristem cells lose their ability to undergo mitotic cell division. Unlike replicative senescence in yeast and human cells in culture, mitotic senescence in plants is not controlled by telomere shortening. Postmitotic senescence, an active degenerative process, occurs in organs such as leaves and floral petals. Substantial progress has been made toward understanding the molecular mechanisms of postmitotic senescence (especially leaf senescence). Leaf senescence is a form of programmed cell death that can be regulated by an array of endogenous factors and environmental cues. Gene expression is required in order for leaf cells to die. In Arabidopsis thaliana, up to 2500 genes (including more than 130 that encode transcription factors) are transcribed during leaf senescence. Mutant analysis and functional genomics approaches have revealed important roles for several of these genes in leaf senescence. In addition to summarizing our current understanding of senescence in plants at the molecular level, this Review compares mechanisms of senescence in yeast and animal systems.
Collapse
Affiliation(s)
- Susheng Gan
- Cornell Genomics Initiative and Department of Horticulture, G51 Emerson Hall, Cornell University, Ithaca, NY 14853-5904, USA.
| |
Collapse
|