151
|
Xie L, Cai M, Li X, Zheng H, Xie Y, Cheng Z, Bai Y, Li J, Mu S, Gao J. Overexpression of PheNAC3 from moso bamboo promotes leaf senescence and enhances abiotic stress tolerance in Arabidopsis. PeerJ 2020; 8:e8716. [PMID: 32266114 PMCID: PMC7120055 DOI: 10.7717/peerj.8716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
The NAC family is one of the largest transcription factor families unique to plants, which regulates the growth and development, biotic and abiotic stress responses, and maturation and senescence in plants. In this study, PheNAC3, a NAC gene, was isolated and characterized from moso bamboo (Phyllostachys edulis). PheNAC3 belong to the NAC1 subgroup and has a conserved NAC domain on the N-terminus, which with 88.74% similarity to ONAC011 protein. PheNAC3 localized in the nucleus and exhibited transactivation activity. PheNAC3 was upregulated during the process of senescence of leaves and detected shoots. PheNAC3 was also induced by ABA, MeJA, NaCl and darkness, but it had no remarkable response to PEG and SA treatments. Overexpression of PheNAC3 could cause precocious senescence in Arabidopsis. Transgenic Arabidopsis displayed faster seed germination, better seedling growth, and a higher survival rate than the wild-type under salt or drought stress conditions. Moreover, AtSAG12 associated with senescence and AtRD29A and AtRD29b related to ABA were upregulated by PheNAC3 overexpression, but AtCAB was inhibited. These findings show that PheNAC3 may participate in leaf senescence and play critical roles in the salt and drought stress response.
Collapse
Affiliation(s)
- Lihua Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China.,Pingdingshan University, Pingdingshan, Henan, China
| | - Miaomiao Cai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Xiangyu Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Huifang Zheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Yali Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Zhanchao Cheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Yucong Bai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Juan Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Shaohua Mu
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
152
|
Zhang SW, Yuan C, An LY, Niu Y, Song M, Tang QL, Wei DY, Tian SB, Wang YQ, Yang Y, Wang ZM. SmCOI1 affects anther dehiscence in a male-sterile Solanum melongena line. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:1-8. [PMID: 32362742 PMCID: PMC7193836 DOI: 10.5511/plantbiotechnology.19.1107a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seed; however, the molecular mechanisms of anther indehiscence-based male sterility have not been thoroughly explored in eggplant (Solanum melongena L.). Here, we used two-dimensional gel electrophoresis to compare the protein profiles in the anthers of normally developing (F142) and anther indehiscent (S16) S. melongena plants. Four differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Of these proteins, the transcript accumulation of the eggplant CORONATINE INSENSITIVE1 (SmCOI1) was significantly downregulated in S16 relative to F142. Phylogenetic analysis showed that SmCOI1 has high amino acid sequence similarity and clustered into the same subgroup as its homologs in other members of the Solanaceae. Subcellular localization analysis showed that SmCOI1 localized to the nucleus. Moreover, reverse-transcription quantitative PCR revealed that the jasmonic acid pathway genes SmJAZ1 and SmOPR3 are upregulated in F142 relative to S16. Protein-protein interaction studies identified a direct interaction between SmCOI1 and SmOPR3, but SmCOI1 failed to interact with SmJAZ1. These findings shed light on the regulatory mechanisms of anther dehiscence in eggplant.
Collapse
Affiliation(s)
- Shao-Wei Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Chao Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Li-Yu An
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Yi Niu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Ming Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Qing-Lin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Da-Yong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Shi-Bing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yong-Qing Wang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| | - Zhi-Ming Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| |
Collapse
|
153
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
154
|
Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q. MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation. PLANT PHYSIOLOGY 2020; 182:1272-1283. [PMID: 31871072 PMCID: PMC7054866 DOI: 10.1104/pp.19.01070] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Lignin is a phenylpropanoid-derived polymer that functions as a major component of cell walls in plant vascular tissues. Biosynthesis of the aromatic amino acid Phe provides precursors for many secondary metabolites, including lignins and flavonoids. Here, we discovered that MYB transcription factors MYB20, MYB42, MYB43, and MYB85 are transcriptional regulators that directly activate lignin biosynthesis genes and Phe biosynthesis genes during secondary wall formation in Arabidopsis (Arabidopsis thaliana). Disruption of MYB20, MYB42, MYB43, and MYB85 resulted in growth development defects and substantial reductions in lignin biosynthesis. In addition, our data showed that these MYB proteins directly activated transcriptional repressors that specifically inhibit flavonoid biosynthesis, which competes with lignin biosynthesis for Phe precursors. Together, our results provide important insights into the molecular framework for the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Pan Geng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Su Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyue Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cuihuan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing 100084, China
| | - Yingping Cao
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Chunxiang Fu
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Xue Han
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
155
|
Khandal H, Singh AP, Chattopadhyay D. The MicroRNA397b -LACCASE2 Module Regulates Root Lignification under Water and Phosphate Deficiency. PLANT PHYSIOLOGY 2020; 182:1387-1403. [PMID: 31949029 PMCID: PMC7054887 DOI: 10.1104/pp.19.00921] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/07/2020] [Indexed: 05/18/2023]
Abstract
Deficiency of water and phosphate induce lignin deposition in roots. LACCASEs, a family of cell wall-localized multicopper oxidases, are involved in lignin biosynthesis. We demonstrate here that LACCASE2 (LAC2) acts as a negative regulator of lignin deposition in root vascular tissues during water deficit. An Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of LAC2 displayed a short primary root and high lignin deposition in root vascular tissues. However, restoration of LAC2 expression rescued these phenotypes. LAC2 expression was significantly down-regulated under water deficit and posttranscriptionally regulated by microRNA397b (miR397b) in roots under normal and water-deficit conditions. Down-regulation of miR397b activity increased LAC2 expression and root length, and decreased lignin content in root vasculature. Similarly, phosphate (Pi) deficiency inversely affected miR397b and LAC2 expression. Lignin deposition in the root elongation zone under Pi-limited conditions was dependent on LAC2 expression. Localized iron accumulation and callose deposition in the root elongation zone under Pi deficiency increased with LAC2-dependent lignification, suggesting a direct relationship between these processes. Our study reveals a regulatory role for the miR397b-LAC2 module in root lignification during water and phosphate deficiency.
Collapse
Affiliation(s)
- Hitaishi Khandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
156
|
Comparative Transcriptome Analysis Reveals Stem Secondary Growth of Grafted Rosa rugosa 'Rosea' Scion and R. multiflora 'Innermis' Rootstock. Genes (Basel) 2020; 11:genes11020228. [PMID: 32098112 PMCID: PMC7073730 DOI: 10.3390/genes11020228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Grafted plant is a chimeric organism formed by the connection of scion and rootstock through stems, so stem growth and development become one of the important factors to affect grafted plant state. However, information regarding the molecular responses of stems secondary growth after grafting is limited. A grafted Rosa plant, with R. rugosa 'Rosea' as the scion (Rr_scion) grafted onto R. multiflora 'Innermis' as the stock (Rm_stock), has been shown to significantly improve stem thickness. To elucidate the molecular mechanisms of stem secondary growth in grafted plant, a genome-wide transcription analysis was performed using an RNA sequence (RNA-seq) method between the scion and rootstock. Comparing ungrafted R. rugosa 'Rosea' (Rr) and R. multiflora 'Innermis' (Rm) plants, there were much more differentially expressed genes (DEGs) identified in Rr_scion (6887) than Rm_stock (229). Functional annotations revealed that DEGs in Rr_scion are involved in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: the phenylpropanoid biosynthesis metabolism and plant hormone signal transduction, whereas DEGs in Rm_stock were associated with starch and sucrose metabolism pathway. Moreover, different kinds of signal transduction-related DEGs, e.g., receptor-like serine/threonine protein kinases (RLKs), transcription factor (TF), and transporters, were identified and could affect the stem secondary growth of both the scion and rootstock. This work provided new information regarding the underlying molecular mechanism between scion and rootstock after grafting.
Collapse
|
157
|
Zhang Q, Luo F, Zhong Y, He J, Li L. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1449-1458. [PMID: 31740956 DOI: 10.1093/jxb/erz513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/13/2019] [Indexed: 05/23/2023]
Abstract
In Arabidopsis, secondary cell walls (SCW) are formed in fiber cells and vessel cells in vascular tissue for providing plants with mechanical strength and channels for the long distance transportation of water and nutrients. NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) acts as a key gene for the initiation of SCW formation through a hierarchical transcription network. In this study, we report that NST activity is modulated by the NAC domain transcription factor XYLEM NAC DOMAIN1 (XND1) during plant growth. Using yeast two-hybrid screening and in vivo protein interaction analysis, XND1 was identified as an NST-interacting protein that modulates NST1 activity. XND1 and NST1 were co-localized in the nucleus and the interaction of XND1 with NST1 resulted in inhibition of NST1 transactivation activity. In the process of inflorescence growth, XND1 was expressed with a similar pattern to NST1. Up-regulation of XND1 in fiber cells repressed SCW formation. The study demonstrates that NST1 activity is modulated by XND1 in the regulation of secondary cell walls formation.
Collapse
Affiliation(s)
- Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Fang Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jiajia He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
158
|
Lou HQ, Fan W, Jin JF, Xu JM, Chen WW, Yang JL, Zheng SJ. A NAC-type transcription factor confers aluminium resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin. PLANT, CELL & ENVIRONMENT 2020; 43:463-478. [PMID: 31713247 DOI: 10.1111/pce.13676] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/23/2019] [Accepted: 11/02/2019] [Indexed: 05/06/2023]
Abstract
Transcriptional regulation is important for plants to respond to toxic effects of aluminium (Al). However, our current knowledge to these events is confined to a few transcription factors. Here, we functionally characterized a rice bean (Vigna umbellata) NAC-type transcription factor, VuNAR1, in terms of Al stress response. We demonstrated that rice bean VuNAR1 is a nuclear-localized transcriptional activator, whose expression was specifically upregulated by Al in roots but not in shoot. VuNAR1 overexpressing Arabidopsis plants exhibit improved Al resistance via Al exclusion. However, VuNAR1-mediated Al exclusion is independent of the function of known Al-resistant genes. Comparative transcriptomic analysis revealed that VuNAR1 specifically regulates the expression of genes associated with protein phosphorylation and cell wall modification in Arabidopsis. Transient expression assay demonstrated the direct transcriptional activation of cell wall-associated receptor kinase 1 (WAK1) by VuNAR1. Moreover, yeast one-hybrid assays and MEME motif searches identified a new VuNAR1-specific binding motif in the promoter of WAK1. Compared with wild-type Arabidopsis plants, VuNAR1 overexpressing plants have higher WAK1 expression and less pectin content. Taken together, our results suggest that VuNAR1 regulates Al resistance by regulating cell wall pectin metabolism via directly binding to the promoter of WAK1 and induce its expression.
Collapse
Affiliation(s)
- He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
159
|
ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proc Natl Acad Sci U S A 2020; 117:3281-3290. [PMID: 31974310 PMCID: PMC7022211 DOI: 10.1073/pnas.1914422117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is considerable interest in engineering plant cell wall components, particularly lignin, to improve forage quality and biomass properties for processing to fuels and bioproducts. However, modifying lignin content and/or composition in transgenic plants through down-regulation of lignin biosynthetic enzymes can induce expression of defense response genes in the absence of biotic or abiotic stress. Arabidopsis thaliana lines with altered lignin through down-regulation of hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) or loss of function of cinnamoyl CoA reductase 1 (CCR1) express a suite of pathogenesis-related (PR) protein genes. The plants also exhibit extensive cell wall remodeling associated with induction of multiple cell wall-degrading enzymes, a process which renders the corresponding biomass a substrate for growth of the cellulolytic thermophile Caldicellulosiruptor bescii lacking a functional pectinase gene cluster. The cell wall remodeling also results in the release of size- and charge-heterogeneous pectic oligosaccharide elicitors of PR gene expression. Genetic analysis shows that both in planta PR gene expression and release of elicitors are the result of ectopic expression in xylem of the gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1), which is normally expressed during anther and silique dehiscence. These data highlight the importance of pectin in cell wall integrity and the value of lignin modification as a tool to interrogate the informational content of plant cell walls.
Collapse
|
160
|
Yao W, Zhang D, Zhou B, Wang J, Li R, Jiang T. Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. BMC PLANT BIOLOGY 2020; 20:12. [PMID: 31914923 PMCID: PMC6950812 DOI: 10.1186/s12870-019-2191-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/08/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND NAC (NAM/ATAF/CUC) is one of the largest plant-specific transcription factor (TF) families known to play significant roles in wood formation. Acting as master gene regulators, a few NAC genes can activate secondary wall biosynthesis during wood formation in woody plants. RESULTS In the present study, firstly, we screened 110 differentially expressed NAC genes in the leaves, stems, and roots of di-haploid Populus simonii×P. nigra by RNA-Seq. Then we identified a nucleus-targeted gene, NAC15 gene, which was one of the highly expressed genes in the stem among 110 NAC family members. Thirdly, we conducted expression pattern analysis of NAC15 gene, and observed NAC15 gene was most highly expressed in the xylem by RT-qPCR. Moreover, we transferred NAC15 gene into tobacco and obtained 12 transgenic lines overexpressing NAC15 gene (TLs). And the relative higher content of hemicellulose, cellulose and lignin was observed in the TLs compared to the control lines containing empty vector (CLs). It also showed darker staining in the culms of the TLs with phloroglucinol staining, compared to the CLs. Furthermore, the relative expression level of a few lignin- and cellulose-related genes was significantly higher in the TLs than that in the CLs. CONCLUSIONS The overall results indicated that NAC15 gene is highly expressed in the xylem of poplar and may be a potential candidate gene playing an important role in wood formation in transgenic tobacco.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Dawei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| | - Jianping Wang
- Department of Agronomy, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Renhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
161
|
Abdel-Salam EM, Faisal M, Alatar AA, Saquib Q, Alwathnani HA. Comparative Analysis between Wild and Cultivated Cucumbers Reveals Transcriptional Changes during Domestication Process. PLANTS (BASEL, SWITZERLAND) 2020; 9:E63. [PMID: 31947725 PMCID: PMC7020419 DOI: 10.3390/plants9010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/01/2022]
Abstract
The cultivated cucumber (Cucumis sativus L.) was reported to have been developed from a wild cucumber (Cucumis hystrix Chakrav.), nevertheless, these two organisms exhibit noteworthy differences. For example, the wild cucumber is known for its high resistance to different biotic and abiotic stresses. Moreover, the leaves and fruits of the wild cucumber have a bitter taste compared to the cultivated cucumber. These differences could be attributed mainly to the differences in gene expression levels. In the present investigation, we analyzed the RNA-sequencing data to show the differentially expressed genes (DEGs) between the wild and cultivated cucumbers. The identified DEGs were further utilized for Gene Ontology (GO) and pathway enrichment analysis and for identification of transcription factors and regulators. In the results, several enriched GO terms in the biological process, cellular component, and molecular functions categories were identified and various enriched pathways, especially the biosynthesis pathways of secondary products were recognized. Plant-specific transcription factor families were differentially expressed between the wild and cultivated cucumbers. The results obtained provide preliminary evidence for the transcriptional differences between the wild and cultivated cucumbers which developed during the domestication process as a result of natural and/or artificial selection, and they formulate the basis for future genetic research and improvement of the cultivated cucumber.
Collapse
Affiliation(s)
- Eslam M. Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia; (E.M.A.-S.); (A.A.A.); (H.A.A.)
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia; (E.M.A.-S.); (A.A.A.); (H.A.A.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia; (E.M.A.-S.); (A.A.A.); (H.A.A.)
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hend A. Alwathnani
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia; (E.M.A.-S.); (A.A.A.); (H.A.A.)
| |
Collapse
|
162
|
Sun Q, Huang J, Guo Y, Yang M, Guo Y, Li J, Zhang J, Xu W. A cotton NAC domain transcription factor, GhFSN5, negatively regulates secondary cell wall biosynthesis and anther development in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:303-314. [PMID: 31783206 DOI: 10.1016/j.plaphy.2019.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
NAC domain transcription factors (TFs) are plant-specific transcriptional regulators, some of which play crucial roles in secondary cell wall (SCW) biosynthesis in plants. Cotton is one of the most important natural fiber producing crops, whose mature fiber SCW contains more than 90% cellulose with very small amounts of xylan and lignin, but little is known about the molecular mechanism underlying fiber SCW formation. We previously identified seven fiber preferentially expressed NAC members, GhFSN1-7. One, GhFSN1, was demonstrated to positively regulate fiber SCW thickening, but the functions of other GhFSN members remain unknown. In this study, roles of GhFSN5 were dissected. qRT-PCR analysis showed that GhFSN5 was predominantly transcribed during the fiber SCW thickening stage. In addition, a large number of fiber SCW biosynthetic genes and SCW-related TFs were co-expressed with GhFSN5. Heterologous expression of GhFSN5 in Arabidopsis resulted in plants with smaller siliques and severe sterility. Anther dehiscence in transgenic lines was not substantially affected, but most pollen was collapsed and nonviable. Furthermore, cellulose and lignin contents in inflorescence stems as well as roots were reduced in transgenic lines, compared with the wild type. Moreover, a set of SCW biosynthetic genes for cellulose, xylan and lignin and several transcription factors involved in regulation of SCW formation were down-regulated in transgenic plants. Our findings indicate that GhFSN5 acts as a negative regulator of SCW formation and anther development and expands our understanding of transcriptional regulation of SCW biosynthesis.
Collapse
Affiliation(s)
- Qianwen Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yifan Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Mingming Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
163
|
Yu Y, Liu H, Zhang N, Gao C, Qi L, Wang C. The BpMYB4 Transcription Factor From Betula platyphylla Contributes Toward Abiotic Stress Resistance and Secondary Cell Wall Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:606062. [PMID: 33537043 PMCID: PMC7847980 DOI: 10.3389/fpls.2020.606062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 05/19/2023]
Abstract
The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the largest transcription factor families in plants, and is widely involved in the regulation of plant metabolism. In this study, we show that a MYB4 transcription factor, BpMYB4, identified from birch (Betula platyphylla Suk.) and homologous to EgMYB1 from Eucalyptus robusta Smith and ZmMYB31 from Zea mays L. is involved in secondary cell wall synthesis. The expression level of BpMYB4 was higher in flowers relative to other tissues, and was induced by artificial bending and gravitational stimuli in developing xylem tissues. The expression of this gene was not enriched in the developing xylem during the active season, and showed higher transcript levels in xylem tissues around sprouting and near the dormant period. BpMYB4 also was induced express by abiotic stress. Functional analysis indicated that expression of BpMYB4 in transgenic Arabidopsis (Arabidopsis thaliana) plants could promote the growth of stems, and result in increased number of inflorescence stems and shoots. Anatomical observation of stem sections showed lower lignin deposition, and a chemical contents test also demonstrated increased cellulose and decreased lignin content in the transgenic plants. In addition, treatment with 100 mM NaCl and 200 mM mannitol resulted in the germination rate of the over-expressed lines being higher than that of the wild-type seeds. The proline content in transgenic plants was higher than that in WT, but MDA content was lower than that in WT. Further investigation in birch using transient transformation techniques indicated that overexpression of BpMYB4 could scavenge hydrogen peroxide and O2 .- and reduce cell damage, compared with the wild-type plants. Therefore, we believe that BpMYB4 promotes stem development and cellulose biosynthesis as an inhibitor of lignin biosynthesis, and has a function in abiotic stress resistance.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Huizi Liu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Nan Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Liwang Qi
- Chinese Academy of Forestry, Beijing, China
- Liwang Qi,
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- *Correspondence: Chao Wang,
| |
Collapse
|
164
|
Hoang XLT, Nguyen NC, Nguyen YNH, Watanabe Y, Tran LSP, Thao NP. The Soybean GmNAC019 Transcription Factor Mediates Drought Tolerance in Arabidopsis in an Abscisic Acid-Dependent Manner. Int J Mol Sci 2019; 21:E286. [PMID: 31906240 PMCID: PMC6981368 DOI: 10.3390/ijms21010286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yen-Nhi Hoang Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| |
Collapse
|
165
|
Matias Hurtado FM, Pinto MDS, de Oliveira PN, Riaño-Pachón DM, Inocente LB, Carrer H. Analysis of NAC Domain Transcription Factor Genes of Tectona grandis L.f. Involved in Secondary Cell Wall Deposition. Genes (Basel) 2019; 11:E20. [PMID: 31878092 PMCID: PMC7016782 DOI: 10.3390/genes11010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
NAC proteins are one of the largest families of plant-specific transcription factors (TFs). They regulate diverse complex biological processes, including secondary xylem differentiation and wood formation. Recent genomic and transcriptomic studies of Tectona grandis L.f. (teak), one of the most valuable hardwood trees in the world, have allowed identification and analysis of developmental genes. In the present work, T. grandis NAC genes were identified and analyzed regarding to their evolution and expression profile during wood formation. We analyzed the recently published T. grandis genome, and identified 130 NAC proteins that are coded by 107 gene loci. These proteins were classified into 23 clades of the NAC family, together with Populus, Eucalyptus, and Arabidopsis. Data on transcript expression revealed specific temporal and spatial expression patterns for the majority of teak NAC genes. RT-PCR indicated expression of VND genes (Tg11g04450-VND2 and Tg15g08390-VND4) related to secondary cell wall formation in xylem vessels of 16-year-old juvenile trees. Our findings open a way to further understanding of NAC transcription factor genes in T. grandis wood biosynthesis, while they are potentially useful for future studies aiming to improve biomass and wood quality using biotechnological approaches.
Collapse
Affiliation(s)
- Fernando Manuel Matias Hurtado
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Maísa de Siqueira Pinto
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Perla Novais de Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Diego Mauricio Riaño-Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo. Av. Centenário 303, Piracicaba, SP 13416-000, Brazil;
| | - Laura Beatriz Inocente
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; (F.M.M.H.); (M.d.S.P.); (P.N.d.O.)
| |
Collapse
|
166
|
NAC-Like Gene GIBBERELLIN SUPPRESSING FACTOR Regulates the Gibberellin Metabolic Pathway in Response to Cold and Drought Stresses in Arabidopsis. Sci Rep 2019; 9:19226. [PMID: 31848381 PMCID: PMC6917810 DOI: 10.1038/s41598-019-55429-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
To investigate the functions of NAC-like genes, we reported the characterization and functional analysis of one Arabidopsis NAC-like gene which showed a novel function in the regulation of gibberellin biosynthesis and named as GIBBERELLIN SUPPRESSING FACTOR (GSF). GSF acts as a transcriptional activator and has transactivation capacity based on yeast transcription activity assays. YFP + GSF-TM (lacking a transmembrane domain) fusion proteins accumulated in the nuclei, while the YFP + GSF fusion proteins only accumulated in the ER membrane and were absent from the nuclei. These results revealed that GSF requires processing and release from the ER and transportation into the nucleus to perform its function. The ectopic expression of GSF-TM caused a dwarfism phenotype, which was correlated with the upregulation of the gibberellin (GA) deactivation genes GA2-oxidases 2/6 (GA2ox2/6) and the downregulation of the GA biosynthetic genes GA20-oxidases 1–4 (GA20ox1-4). The external application of GA rescued the dwarfism in the 35 S::GSF-TM plants, indicating that GSF affects GA biosynthesis, rather than the GA signaling pathway. Further analysis indicated that the upregulation of GA2ox2/6 is a key factor for the GSF function to regulate the GA level, since 35 S::GA20ox1 could not rescue the dwarfism in the 35 S::GSF-TM plants. Cold treatment induced the processing of the YFP + GSF fusion proteins from the ER membrane and their entry into the nuclei, which is correlated with the cold-induced upregulation of GA2oxs. In addition, the expression of GA2oxs was induced by drought, and the 35 S::GSF-TM plants showed drought tolerance compared to the wild-type plants. Our data suggest a role for GSF in response to abiotic stresses, such as cold and drought, by suppressing the biosynthesis of GA in Arabidopsis.
Collapse
|
167
|
Acosta IF, Przybyl M. Jasmonate Signaling during Arabidopsis Stamen Maturation. PLANT & CELL PHYSIOLOGY 2019; 60:2648-2659. [PMID: 31651948 PMCID: PMC6896695 DOI: 10.1093/pcp/pcz201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The last stages of stamen development, collectively called stamen maturation, encompass pollen viability, filament elongation and anther dehiscence or opening. These processes are essential for male fertility in Arabidopsis and require the function of jasmonate signaling. There is a good understanding of jasmonate synthesis, perception and transcriptional outputs in Arabidopsis stamens. In addition, the spatiotemporal localization of jasmonate signaling components at the tissue and cellular levels has started to emerge in recent years. However, the ultimate cellular functions activated by jasmonate to promote stamen maturation remain unknown. The hormones auxin and gibberellin have been proposed to control the activation of jasmonate synthesis to promote stamen maturation, although we hypothesize that this action is rather indirect. In this review, we examine these different areas, attempt to clarify some confusing aspects found in the literature and raise testable hypothesis that may help to further understand how jasmonate controls male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| | - Marine Przybyl
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
168
|
Lyu X, Chen S, Liao N, Liu J, Hu Z, Yang J, Zhang M. Characterization of watermelon anther and its programmed cell death-associated events during dehiscence under cold stress. PLANT CELL REPORTS 2019; 38:1551-1561. [PMID: 31463555 DOI: 10.1007/s00299-019-02466-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/19/2019] [Indexed: 05/13/2023]
Abstract
The 'neglected' thermophile fruit crop of watermelon was first used as a model crop to study the PCD associated with anther dehiscence in cold-exposed condition during anther development. Anther dehiscence ensures normal pollen release and successful fertilization at fruit-setting stages in flowering plants. However, most researches pertinent to anther dehiscence are centered on model plant and/or major field crops under optimal growth condition. Due to anther indehiscence in cold condition, crop plants of thermophile tropical or subtropical fruit crops fail to accomplish timely pollination and fertilization, resulting in a great yield loss annually. Herein, we developed an ideal model crop for studying the programmed cell death (PCD) associated with anther dehiscence under low-temperature stress using the S-shaped spiral anther in watermelon as instead. Our results revealed that, including the tapetal cell layers, both cells of the interlocular septum and the stomium were blocked in PCD associated with anther dehiscence at 15 °C. Likewise, TUNEL assays visualized the evidence that low temperature at 15 °C interferes with not only the PCD of tapetal cells, but also the PCD of interlocular septum and stomium. Furthermore, the expressions of genes correlated with PCD of tapetum and stomium were significantly inhibited at 15 °C, suggesting that low temperature affects anther dehiscence by inhibiting PCD of sporophytic tissue-related gene expressions. The findings of the current research provide mechanistic insights into anther indehiscence leading to poor fruit-setting for thermophile fruit crop such as watermelon under adverse cold condition in flowering.
Collapse
Affiliation(s)
- Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Shuna Chen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Jie Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, People's Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, People's Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhang Road, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
169
|
Yuan Y, Zhang J, Kallman J, Liu X, Meng M, Lin J. Polysaccharide biosynthetic pathway profiling and putative gene mining of Dendrobium moniliforme using RNA-Seq in different tissues. BMC PLANT BIOLOGY 2019; 19:521. [PMID: 31775630 PMCID: PMC6882186 DOI: 10.1186/s12870-019-2138-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/14/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dendrobium moniliforme (Linnaeus) Swartz is a well-known plant used in traditional Chinese medicine due to bioactive constituents. Polysaccharides are the main medicinal ingredients, yet no studies have been published on polysaccharide biosynthesis in D. moniliforme. To comprehensively investigate the polysaccharide at the transcription level, we performed de novo transcriptome sequencing for the first time to produce a comprehensive transcriptome of D. moniliforme. RESULTS In our study, a database of 562,580 unigenes (average length = 1115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, we identified 1204 carbohydrate-active related unigenes against CAZy database, including 417 glycosyltransferase genes (GTs), 780 glycoside hydrolases (GHs), 19 carbohydrate esterases (CEs), 75 carbohydrate-binding modules (CBMs), and 44 polysaccharide lyases (PLs). In the cellulose synthase family, 21 differential expression genes (DEGs) related to polysaccharide were identified. Subsequently, the tissue-specific expression patterns of the genes involved in polysaccharide pathway were investigated, which provide understanding of the biosynthesis and regulation of DMP at the molecular level. The two key enzyme genes (Susy and SPS) involved in the polysaccharide pathway were identified, and their expression patterns in different tissues were further analyzed using quantitative real-time PCR. CONCLUSIONS We determined the content of polysaccharides from Dendrobium moniliforme under different tissues, and we obtained a large number of differential genes by transcriptome sequencing. This database provides a pool of candidate genes involved in biosynthesis of polysaccharides in D. moniliforme. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb.
Collapse
Affiliation(s)
- Yingdan Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Miaojing Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jie Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
170
|
Li Q, Wu Z, Wu H, Fang W, Chen F, Teng N. Transcriptome Profiling Unravels a Vital Role of Pectin and Pectinase in Anther Dehiscence in Chrysanthemum. Int J Mol Sci 2019; 20:E5865. [PMID: 31766739 PMCID: PMC6928809 DOI: 10.3390/ijms20235865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium (Ramat.) Kitamura) plants have great ornamental value, but their flowers can also be a source of pollen contamination. Previously, morphological and cytological studies have shown that anthers of some chrysanthemum cultivars such as 'Qx-115' fail to dehisce, although the underlying mechanism is largely unknown. In this study, we investigated the molecular basis of anther indehiscence in chrysanthemum via transcriptome analysis of a dehiscent cultivar ('Qx-097') and an indehiscent cultivar ('Qx-115'). We also measured related physiological indicators during and preceding the period of anther dehiscence. Our results showed a difference in pectinase accumulation and activity between the two cultivars during dehiscence. Detection of de-esterified pectin and highly esterified pectin in anthers during the period preceding anther dehiscence using LM19 and LM20 monoclonal antibodies showed that both forms of pectin were absent in the stomium region of 'Qx-097' anthers but were abundant in that of 'Qx-115' anthers. Analysis of transcriptome data revealed a significant difference in the expression levels of two transcription factor-encoding genes, CmLOB27 and CmERF72, between 'Qx-097' and 'Qx-115' during anther development. Transient overexpression of CmLOB27 and CmERF72 separately in tobacco leaves promoted pectinase biosynthesis. We conclude that CmLOB27 and CmERF72 are involved in the synthesis of pectinase, which promotes the degradation of pectin. Our results lay a foundation for further investigation of the role of CmLOB27 and CmERF72 transcription factors in the process of anther dehiscence in chrysanthemum.
Collapse
Affiliation(s)
- Qian Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing 210095, China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing 210095, China
| | - Huijun Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing 210095, China
| |
Collapse
|
171
|
Diniz AL, Ferreira SS, Ten-Caten F, Margarido GRA, Dos Santos JM, Barbosa GVDS, Carneiro MS, Souza GM. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol J 2019; 17:1404-1414. [PMID: 31871586 PMCID: PMC6906722 DOI: 10.1016/j.csbj.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
Sugarcane is one of the most sustainable energy crops among cultivated crops presenting the highest tonnage of cultivated plants. Its high productivity of sugar, bioethanol and bioelectricity make it a promising green alternative to petroleum. Furthermore, the myriad of products that can be derived from sugarcane biomass has been driving breeding programs towards varieties with a higher yield of fiber and a more vigorous and sustainable performance: the energy cane. Here we provide an overview of the energy cane including plant description, breeding efforts, types, and end-uses. In addition, we describe recently published genomic resources for the development of this crop, discuss current knowledge of cell wall metabolism, bioinformatic tools and databases available for the community.
Collapse
Affiliation(s)
- Augusto L Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Sávio S Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo 05508-090, SP, Brazil
| | - Felipe Ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - João M Dos Santos
- Departamento de Fitotecnia e Fitossanidade, Centro de Ciências Agrárias, Universidade Federal de Alagoas, BR 104 Norte, km 85, Rio Largo 571000-000, AL, Brazil
| | - Geraldo V de S Barbosa
- Departamento de Fitotecnia e Fitossanidade, Centro de Ciências Agrárias, Universidade Federal de Alagoas, BR 104 Norte, km 85, Rio Largo 571000-000, AL, Brazil
| | - Monalisa S Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera km 174, Araras 13600-970, SP, Brazil
| | - Glaucia M Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
172
|
Yang Y, Yoo CG, Rottmann W, Winkeler KA, Collins CM, Gunter LE, Jawdy SS, Yang X, Pu Y, Ragauskas AJ, Tuskan GA, Chen JG. PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC PLANT BIOLOGY 2019; 19:486. [PMID: 31711424 PMCID: PMC6849256 DOI: 10.1186/s12870-019-2111-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. RESULTS Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. CONCLUSIONS PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.
Collapse
Affiliation(s)
- Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | | | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sara S. Jawdy
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering & Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin-Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
173
|
Li XJ, Yang JL, Hao B, Lu YC, Qian ZL, Li Y, Ye S, Tang JR, Chen M, Long GQ, Zhao Y, Zhang GH, Chen JW, Fan W, Yang SC. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC PLANT BIOLOGY 2019; 19:451. [PMID: 31655543 PMCID: PMC6815444 DOI: 10.1186/s12870-019-2067-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.
Collapse
Affiliation(s)
- Xue-Jiao Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Jian-Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Ying-Chun Lu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Zhi-Long Qian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Ying Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Shuang Ye
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Jun-Rong Tang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Guang-Qiang Long
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Jun-Wen Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
174
|
Genome-Wide Investigation of the NAC Gene Family and Its Potential Association with the Secondary Cell Wall in Moso Bamboo. Biomolecules 2019; 9:biom9100609. [PMID: 31615151 PMCID: PMC6843218 DOI: 10.3390/biom9100609] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 01/20/2023] Open
Abstract
NAC (NAM, ATAF, and CUC) transcription factors (TFs) are implicated in the transcriptional regulation of diverse processes and have been characterized in a number of plant species. However, NAC TFs are still not well understood in bamboo, especially their potential association with the secondary cell wall (SCW). Here, 94 PeNACs were identified and characterized in moso bamboo (Phyllostachys edulis). Based on their gene structures and conserved motifs, the PeNACs were divided into 11 groups according to their homologs in Arabidopsis. PeNACs were expressed variously in different tissues of moso bamboo, suggesting their functional diversity. Fifteen PeNACs associated with the SCW were selected for co-expression analysis and validation. It was predicted that 396 genes were co-expressed with the 15 PeNACs, in which 16 and 55 genes were involved in the lignin catabolic process and cellulose biosynthetic process respectively. As the degree of lignification in the growing bamboo shoots increased, all 15 PeNACs were upregulated with a trend of rising first and then decreasing except PeNAC37, which increased continuously. These results indicated that these PeNACs might play important roles in SCW biosynthesis and lignification in bamboo shoots. Seven of 15 PeNACs had been found positively co-expressed with seven PeMYBs, and they had similar expression patterns with those of the PeMYBs in bamboo shoots. The targeted sites of miR164 were found in 16 PeNACs, of which three PeNACs associated with SCW were validated to have an opposite expression trend to that of miR164 in growing bamboo shoots. In addition, three PeNACs were selected and verified to have self-activation activities. These results provide comprehensive information of the NAC gene family in moso bamboo, which will be helpful for further functional studies of PeNACs to reveal the molecular regulatory mechanisms of bamboo wood property.
Collapse
|
175
|
Wu S, Tan H, Hao X, Xie Z, Wang X, Li D, Tian L. Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature. PLANT SIGNALING & BEHAVIOR 2019; 14:1679015. [PMID: 31610741 PMCID: PMC6866692 DOI: 10.1080/15592324.2019.1679015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Peiai64S (PA64S) is a photo-thermo-sensitive genic male sterile line (PTGMS), with wide application in hybrid seed production in rice (Oryza sativa L.). Micro-RNAs are 21-24 nt, endogenously expressed small RNAs that have been characterized in various developmental stages of rice, but none have been studied with respect to the regulation of TGMS in rice. Here, we employed high-throughput sequencing to identify expression profiles of miRNAs in the anthers of PA64S at high (PA64S-H) and low temperature (PA64S-L). Two small RNA libraries from PA64S-H and PA64-L anthers were sequenced, and 263 known and 321 novel candidate miRNAs were identified. Based on the number of sequencing reads, a total of 133 known miRNAs were found to be differentially expressed between PA64S-H and PA64S-L. Target prediction showed that the target genes encode MYB and TCP transcription factors, and bHLH proteins. These target genes are related to pollen development and male sterility, suggesting that miRNA/targets may play roles in regulating TGMS in rice. Further, starch and sucrose metabolism pathways, sphingolipid metabolism, arginine and proline metabolism, and plant hormone signal transduction pathways were enriched by KEGG pathway annotation. These findings contribute to our understanding of the role of miRNAs during anther development and TGMS occurrence in rice.
Collapse
Affiliation(s)
- Sha Wu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Hang Tan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xiaohui Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
176
|
Su X, Zhao Y, Wang H, Li G, Cheng X, Jin Q, Cai Y. Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd.) and functional identification of PbCCR1 in lignin biosynthesis. BMC PLANT BIOLOGY 2019; 19:417. [PMID: 31604417 PMCID: PMC6788021 DOI: 10.1186/s12870-019-2046-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND The content of stone cells and lignin is one of the key factors affecting the quality of pear fruit. In a previous study, we determined the developmental regularity of stone cells and lignin in 'Dangshan Su' pear fruit 15-145 days after pollination (DAP). However, the development of fruit stone cells and lignin before 15 DAP has not been heavily researched. RESULTS In this study, we found that primordial stone cells began to appear at 7 DAP and that the fruit had formed a large number of stone cells at 15 DAP. Subsequently, transcriptome sequencing was performed on fruits at 0, 7, and 15 DAP and identified 3834 (0 vs. 7 DAP), 4049 (7 vs. 15 DAP) and 5763 (0 vs. 15 DAP) DEGs. During the 7-15 DAP period, a large number of key enzyme genes essential for lignin biosynthesis are gradually up-regulated, and their expression pattern is consistent with the accumulation of lignin in this period. Further analysis found that the biosynthesis of S-type lignin in 'Dangshan Su' pear does not depend on the catalytic activity of PbSAD but is primarily generated by the catalytic activity of caffeoyl-CoA through CCoAOMT, CCR, F5H, and CAD. We cloned PbCCR1, 2 and analysed their functions in Chinese white pear lignin biosynthesis. PbCCR1 and 2 have a degree of functional redundancy; both demonstrate the ability to participate in lignin biosynthesis. However, PbCCR1 may be the major gene for lignin biosynthesis, while PbCCR2 has little effect on lignin biosynthesis. CONCLUSIONS Our results revealed that 'Dangshan Su' pear began to form a large number of stone cells and produce lignin after 7 DAP and mainly accumulated materials from 0 to 7 DAP. PbCCR1 is mainly involved in the biosynthesis of lignin in 'Dangshan Su' pear and plays a positive role in lignin biosynthesis.
Collapse
Affiliation(s)
- Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yu Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Han Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| |
Collapse
|
177
|
Tamura T, Endo H, Suzuki A, Sato Y, Kato K, Ohtani M, Yamaguchi M, Demura T. Affinity-based high-resolution analysis of DNA binding by VASCULAR-RELATED NAC-DOMAIN7 via fluorescence correlation spectroscopy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:298-313. [PMID: 31313414 DOI: 10.1111/tpj.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
VASCULAR-RELATED NAC-DOMAIN7 (VND7) is the master transcription factor for vessel element differentiation in Arabidopsis thaliana. To identify the cis-acting sequence(s) bound by VND7, we employed fluorescence correlation spectroscopy (FCS) to find VND7-DNA interactions quantitatively. This identified an 18-bp sequence from the promoter of XYLEM CYSTEINE PEPTIDASE1 (XCP1), a direct target of VND7. A quantitative assay for binding affinity between VND7 and the 18-bp sequence revealed the core nucleotides contributing to specific binding between VND7 and the 18-bp sequence. Moreover, by combining the systematic evolution of ligands by exponential enrichment (SELEX) technique with known consensus sequences, we defined a motif termed the Ideal Core Structure for binding by VND7 (ICSV). We also used FCS to search for VND7 binding sequences in the promoter regions of other direct targets. Taking these data together, we proposed that VND7 preferentially binds to the ICSV sequence. Additionally, we found that substitutions among the core nucleotides affected transcriptional regulation by VND7 in vivo, indicating that the core nucleotides contribute to vessel-element-specific gene expression. Furthermore, our results demonstrate that FCS is a powerful tool for unveiling the DNA-binding properties of transcription factors.
Collapse
Affiliation(s)
- Taizo Tamura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Atsunobu Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ko Kato
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
178
|
Xu XF, Wang B, Feng YF, Xue JS, Qian XX, Liu SQ, Zhou J, Yu YH, Yang NY, Xu P, Yang ZN. AUXIN RESPONSE FACTOR17 Directly Regulates MYB108 for Anther Dehiscence. PLANT PHYSIOLOGY 2019; 181:645-655. [PMID: 31345954 PMCID: PMC6776866 DOI: 10.1104/pp.19.00576] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/13/2019] [Indexed: 05/02/2023]
Abstract
The timely release of mature pollen following anther dehiscence is essential for reproduction in flowering plants. AUXIN RESPONSE FACTOR17 (ARF17) plays a crucial role in pollen wall pattern formation, tapetum development, and auxin signal transduction in anthers. Here, we showed that ARF17 is also involved in anther dehiscence. The Arabidopsis (Arabidopsis thaliana) arf17 mutant exhibits defective endothecium lignification, which leads to defects in anther dehiscence. The expression of MYB108, which encodes a transcription factor important for anther dehiscence, was dramatically down-regulated in the flower buds of arf17 Chromatin immunoprecipitation assays and electrophoretic mobility shift assays showed ARF17 directly binds to the MYB108 promoter. In an ARF17-GFP transgenic line, in which ARF17-GFP fully complements the arf17 phenotype, ARF17-GFP was observed in the endothecia at anther stage 11. The GUS signal driven by the MYB108 promoter was also detected in endothecia at late anther stages in transgenic plants expressing promoterMYB108::GUS Thus, the expression pattern of both ARF17 and MYB108 is consistent with the function of these genes in anther dehiscence. Furthermore, the expression of MYB108 driven by the ARF17 promoter successfully restored the defects in anther dehiscence of arf17 These results demonstrated that ARF17 regulates the expression of MYB108 for anther dehiscence. Together with its function in microcytes and tapeta, ARF17 likely coordinates the development of different sporophytic cell layers in anthers. The ARF17-MYB108 pathway involved in regulating anther dehiscence is also discussed.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Bo Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Feng Feng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Xue Qian
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Si-Qi Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ya-Hui Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Yin Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
179
|
Zhao SQ, Li WC, Zhang Y, Tidy AC, Wilson ZA. Knockdown of Arabidopsis ROOT UVB SENSITIVE4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium. PLANT & CELL PHYSIOLOGY 2019; 60:2293-2306. [PMID: 31268148 DOI: 10.1093/pcp/pcz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
ROOT UV-B SENSITIVE4 (RUS4) encodes a protein with no known function that contains a conserved Domain of Unknown Function 647 (DUF647). The DUF647-containing proteins RUS1 and RUS2 have previously been associated with root UV-B-sensing pathway that plays a major role in Arabidopsis early seedling morphogenesis and development. Here, we show that RUS4 knockdown Arabidopsis plants, referred to as amiR-RUS4, were severely reduced in male fertility with indehiscent anthers. Light microscopy of anther sections revealed a significantly reduced secondary wall thickening in the endothecium of amiR-RUS4 anthers. We further show that the transcript abundance of the NAC domain genes NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and NST2, which have been shown to regulate the secondary cell wall thickenings in the anther endothecium, were dramatically reduced in the amiR-RUS4 floral buds. Expression of the secondary cell wall-associated MYB transcription factor genes MYB103 and MYB85 were also strongly reduced in floral buds of the amiR-RUS4 plants. Overexpression of RUS4 led to increased secondary thickening in the endothecium. However, the rus4-2 mutant exhibited no obvious phenotype. Promoter-GUS analysis revealed that the RUS4 promoter was highly active in the anthers, supporting its role in anther development. Taken together, these results suggest that RUS4, probably functions redundantly with other genes, may play an important role in the secondary thickening formation in the anther endothecium by indirectly affecting the expression of secondary cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Shu-Qing Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wen-Chao Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Yi Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Alison C Tidy
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
180
|
Tonfack LB, Hussey SG, Veale A, Myburg AA, Mizrachi E. Analysis of Orthologous SECONDARY WALL-ASSOCIATED NAC DOMAIN1 (SND1) Promotor Activity in Herbaceous and Woody Angiosperms. Int J Mol Sci 2019; 20:E4623. [PMID: 31540430 PMCID: PMC6770381 DOI: 10.3390/ijms20184623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
SECONDARY WALL-ASSOCIATED NAC DOMAIN1 (SND1) is a master regulator of fibre secondary wall deposition in Arabidopsis thaliana (Arabidopsis), with homologs in other angiosperms and gymnosperms. However, it is poorly understood to what extent the fibre-specific regulation of the SND1 promoter, and that of its orthologs, is conserved between diverged herbaceous and woody lineages. We performed a reciprocal reporter gene analysis of orthologous SND1 promoters from Arabidopsis (AthSND1), Eucalyptus grandis (EgrNAC61) and Populus alba × P. grandidentata (PagWND1A) relative to secondary cell wall-specific Cellulose Synthase4 (CesA4) and CesA7 promoters, in both a non-woody (Arabidopsis) and a woody (poplar) system. β-glucuronidase (GUS) reporter analysis in Arabidopsis showed that the SND1 promoter was active in vascular tissues as previously reported and showed interfascicular and xylary fibre-specific expression in inflorescence stems, while reporter constructs of the woody plant-derived promoters were partial to the (pro)cambium-phloem and protoxylem. In transgenic P. tremula × P. alba plants, all three orthologous SND1 promoters expressed the GUS reporter similarly and preferentially in developing secondary xylem, ray parenchyma and cork cambium. Ours is the first study to reciprocally test orthologous SND1 promoter specificity in herbaceous and woody species, revealing diverged regulatory functions in the herbaceous system.
Collapse
Affiliation(s)
- Libert B Tonfack
- Plant Physiology and Improvement Unit, Laboratory of Biotechnology and Environment, Department of Plant Biology, University of Yaoundé I, Yaoundé 0812, Cameroon.
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria 0002, South Africa.
| | - Adri Veale
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria 0002, South Africa.
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria 0002, South Africa.
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
181
|
Kishi-Kaboshi M, Aida R, Sasaki K. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium. BREEDING SCIENCE 2019; 69:536-544. [PMID: 31598089 PMCID: PMC6776152 DOI: 10.1270/jsbbs.19036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 05/30/2023]
Abstract
The chrysanthemum (Chrysanthemum morifolium) is one of the most popular ornamental plants in the world. Genetic transformation is a promising tool for improving traits, editing genomes, and studying plant physiology. Promoters are vital components for efficient transformation, determining the level, location, and timing of transgene expression. The cauliflower mosaic virus (CaMV) 35S promoter is most frequently used in dicotyledonous plants but is less efficient in chrysanthemums than in tobacco or torenia plants. Previously, we used the parsley ubiquitin (PcUbi) promoter in chrysanthemums for the first time and analyzed its activity in transgenic calli. To expand the variety of constitutive promoters in chrysanthemums, we cloned the upstream region of the actin 2 (CmACT2) gene and compared its promoter activity with the 35S and PcUbi promoters in several organs, as well as its durability for long-term cultivation. The CmACT2 promoter has higher activity than the 35S promoter in calli but is less durable. The PcUbi promoter has the highest activity not only in calli but also in leaves, ray florets, and disk florets, and retains its activity after long-term cultivation. In conclusion, we have provided useful information and an additional type of promoter available for transgene expression in chrysanthemums.
Collapse
|
182
|
SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A 2019; 116:18710-18716. [PMID: 31444299 DOI: 10.1073/pnas.1807863116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In plants, secondary growth results in radial expansion of stems and roots, generating large amounts of biomass in the form of wood. Using genome-wide association studies (GWAS)-guided reverse genetics in Arabidopsis thaliana, we discovered SOBIR1/EVR, previously known to control plant immunoresponses and abscission, as a regulator of secondary growth. We present anatomical, genetic, and molecular evidence indicating that SOBIR1/EVR prevents the precocious differentiation of xylem fiber, a key cell type for wood development. SOBIR1/EVR acts through a mechanism that involves BREVIPEDICELLUS (BP) and ERECTA (ER), 2 proteins previously known to regulate xylem fiber development. We demonstrate that BP binds SOBIR1/EVR promoter and that SOBIR1/EVR expression is enhanced in bp mutants, suggesting a direct, negative regulation of BP over SOBIR1/EVR expression. We show that SOBIR1/EVR physically interacts with ER and that defects caused by the sobir1/evr mutation are aggravated by mutating ER, indicating that SOBIR1/EVR and ERECTA act together in the control of the precocious formation of xylem fiber development.
Collapse
|
183
|
Chen W, Hsu W, Hsu H, Yang C. A tetraspanin gene regulating auxin response and affecting orchid perianth size and various plant developmental processes. PLANT DIRECT 2019; 3:e00157. [PMID: 31406958 PMCID: PMC6680136 DOI: 10.1002/pld3.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 05/25/2023]
Abstract
The competition between L (lip) and SP (sepal/petal) complexes in P-code model determines the identity of complex perianth patterns in orchids. Orchid tetraspanin gene Auxin Activation Factor (AAF) orthologs, whose expression strongly correlated with the expansion and size of the perianth after P code established, were identified. Virus-induced gene silencing (VIGS) of OAGL6-2 in L complex resulted in smaller lips and the down-regulation of Oncidium OnAAF. VIGS of PeMADS9 in L complex resulted in the enlarged lips and up-regulation of Phalaenopsis PaAAF. Furthermore, the larger size of Phalaenopsis variety flowers was associated with higher PaAAF expression, larger and more cells in the perianth. Thus, a rule is established that whenever bigger perianth organs are made in orchids, higher OnAAF/PaAAF expression is observed after their identities are determined by P-code complexes. Ectopic expression Arabidopsis AtAAF significantly increased the size of flower organs by promoting cell expansion in transgenic Arabidopsis due to the enhancement of the efficiency of the auxin response and the subsequent suppression of the jasmonic acid (JA) biosynthesis genes (DAD1/OPR3) and BIGPETAL gene during late flower development. In addition, auxin-controlled phenotypes, such as indehiscent anthers, enhanced drought tolerance, and increased lateral root formation, were also observed in 35S::AtAAF plants. Furthermore, 35S::AtAAF root tips maintained gravitropism during auxin treatment. In contrast, the opposite phenotype was observed in palmitoylation-deficient AtAAF mutants. Our data demonstrate an interaction between the tetraspanin AAF and auxin/JA that regulates the size of flower organs and impacts various developmental processes.
Collapse
Affiliation(s)
- Wei‐Hao Chen
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Wei‐Han Hsu
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Hsing‐Fun Hsu
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Chang‐Hsien Yang
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
184
|
Nguyen HTK, Hyoung S, Kim HJ, Cho KM, Shin JS. The transcription factor γMYB2 acts as a negative regulator of secondary cell wall thickening in anther and stem. Gene 2019; 702:158-165. [PMID: 30930225 DOI: 10.1016/j.gene.2019.03.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Secondary cell wall (SCW) thickening provides the mechanical force for anther dehiscence and plays an important role in the formation of xylem structure. We have previously reported that γMYB2, a MYB coiled-coil protein, directly binds to the P1BS cis-element of the PLA2-γ promoter and acts as a co-activator of γMYB1 in controlling the expression of PLA2-γ. In this study, we analyzed morphological phenotypes of the constitutive overexpression (γMYB2-OE) and knock-down (γMYB2-KD) lines of γMYB2. We found that γMYB2 overexpression caused the collapse of the endothecium layer, thereby suppressing anther dehiscence and forming short infertile siliques. The γMYB2-OE also showed less cellulose deposition in the xylem and had a longer primary stem than the wild-type, while γMYB2-KD had greater cellulose accumulation and a shorter primary stem than the wild-type. We demonstrated that the male sterility and the longer primary stem in γMYB2-OE were caused by reduced expression of SCW thickening-related genes. Our results suggest that γMYB2 acts as a negative regulator in controlling the SCW thickening in Arabidopsis.
Collapse
Affiliation(s)
- Ha Thi Kim Nguyen
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hae Jin Kim
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, NE 68588, USA
| | - Kwang Moon Cho
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
185
|
Xia X, Li H, Cao D, Luo X, Yang X, Chen L, Liu B, Wang Q, Jing D, Cao S. Characterization of a NAC transcription factor involved in the regulation of pomegranate seed hardness (Punica granatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:379-388. [PMID: 30954020 DOI: 10.1016/j.plaphy.2019.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
The pomegranate, Punica granatum L., which has been cultivated since antiquity, is known to be a superfruit, possessing an array of functional anti-oxidants and various other health benefits. The hardness of pomegranate seeds is an important indicator of fruit quality, which in turn affects economic value and market demand. However, the molecular mechanism underlying pomegranate seed hardness remains to be fully understood. In this study, we found a positive correlation between seed hardness and lignin content in two pomegranate varieties: "Tunisia" and "Sanbai". Specifically, genes associated with lignin biosynthesis were differentially expressed in soft-seed and hard-seed pomegranate varieties. Among these differential genes, we cloned and characterized the NAC transcription factor PgSND1-like. Sequence alignment found a single base replacement at the 166-bp position of CDS in the PgSND1-like gene from "Tunisia" and "Sanbai". Both PgSND1-like (Sanbai) and PgSND1-like (Tunisia) proteins are localized in the cell nucleus and have a transcription activation domain in the C-terminus. Yeast two-hybrid analysis indicated that PgSND1-like protein interacts with itself to form a homodimer. Overexpression of PgSND1-like (Sanbai) in Arabidopsis showed a higher lignin content in inflorescence stem and mature seed compared with wild-type Arabidopsis. Accordingly, the expression levels of several lignin biosynthesis-associated genes were upregulated in stem cells and mature seeds of transgenic plants. However, PgSND1-like (Tunisia) transgenic Arabidopsis showed no phenotypic differences with wild-type Arabidopsis. Taken together, we suggest that PgSND1-like may regulate at least two different functions in two pomegranate varieties, promoting lignin biosynthesis and seed hardness of pomegranate.
Collapse
Affiliation(s)
- Xiaocong Xia
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Da Cao
- The University of Queensland , St Lucia, QLD 4072, Australia
| | - Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Beibei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Dan Jing
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, China.
| |
Collapse
|
186
|
Xu M, Li SJ, Liu XF, Yin XR, Grierson D, Chen KS. Ternary complex EjbHLH1-EjMYB2-EjAP2-1 retards low temperature-induced flesh lignification in loquat fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:731-737. [PMID: 31059995 DOI: 10.1016/j.plaphy.2019.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
Many transcription factors (TFs), including NACs and MYBs, are involved in regulation of lignin biosynthesis during plant development and in responses to biotic and abiotic stresses. The lignin biosynthesis gene Ej4CL1 has been identified as a target for cold-induced TFs. We isolated a bHLH gene from loquat, EjbHLH1, the expression of which was negatively correlated with cold-induced fruit lignification. During low temperature storage (0 °C), EjbHLH1 transcripts were stable but accumulated during low-temperature conditioning (LTC) treatment, an acclimation process that reduces lignification during subsequent storage at 0 °C. Dual luciferase assays showed EjbHLH1 could repress Ej4CL1 promoter, but yeast one hybrid assay indicated EjbHLH1 is not able to bind to the Ej4CL1 promoter. Bimolecular fluorescence complementation (BIFC) indicated that EjbHLH1 could interact with EjAP2-1 and EjMYB2, two previously characterized fruit lignification related transcription factors and firefly luciferase complementation imaging assay indicated EjbHLH1, EjMYB2 and EjAP2-1 could form a ternary complex which enhanced repression of transcription from the Ej4CL1 promoter, reducing lignification at 0 °C.
Collapse
Affiliation(s)
- Meng Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Shao-Jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Kun-Song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
187
|
The miRNA-Mediated Post-Transcriptional Regulation of Maize in Response to High Temperature. Int J Mol Sci 2019; 20:ijms20071754. [PMID: 30970661 PMCID: PMC6480492 DOI: 10.3390/ijms20071754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
High temperature (HT) has recently become one of the most important abiotic stresses restricting crop production worldwide. MicroRNAs (miRNAs) are important regulators in plant development and stress responses. However, knowledge of miRNAs of maize in response to HT is limited. In this study, we simultaneously adopted miRNA sequencing and transcriptome profiling to analyze the differential expression of miRNAs and mRNAs in maize during exposure to HT stress. Our analysis revealed 61 known miRNAs belonging to 26 miRNA families and 42 novel miRNAs showing significant differential expression, with the majority being downregulated. Meanwhile, the expression of 5450 mRNAs was significantly altered in the same stressed tissues. Differentially expressed transcripts were most significantly associated with response to stress, photosynthesis, biosynthesis of secondary metabolites, and signal transduction pathways. In addition, we discovered 129 miRNA–mRNA pairs that were regulated antagonistically, and further depiction of the targeted mRNAs indicated that several transcription factors, protein kinases, and receptor-like-protein-related transmembrane transport and signaling transduction were profoundly affected. This study has identified potential key regulators of HT-stress response in maize and the subset of genes that are likely to be post-transcriptionally regulated by miRNAs under HT stress.
Collapse
|
188
|
Zhang X, Cheng Z, Zhao K, Yao W, Sun X, Jiang T, Zhou B. Functional characterization of poplar NAC13 gene in salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:1-8. [PMID: 30824042 DOI: 10.1016/j.plantsci.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 05/21/2023]
Abstract
Transcription factor (TF) genes play a critical role in plant abiotic and biotic stress responses. In this study, we cloned a poplar TF NAC13 gene (Potri.001G404100.1), which is significantly up-regulated to salt stress. Then we developed gene overexpression and antisense suppression constructions driven by CaMV35S, and successfully transferred them to a poplar variety 84 K (Populus alba × P. glandulosa), respectively. Evidence from molecular assay indicated that NAC13 overexpression and antisense suppression fragments have been integrated into the poplar genome. The morphological and physiological characterization and salt treatment results indicated the NAC13-overexpressing transgenic plants enhance salt tolerance significantly, compared to wide type. In contrast, the NAC13-suppressing transgenic plants are significantly sensitive to salt stress, compared to wide type. Evidence from transgenic Arabidopsis expressing GUS gene indicated that the gene driven by NAC13 promoter is mainly expressed in the roots and leaves of young plants. These studies indicate that the NAC13 gene plays a vital role in salt stress response.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Xiaomei Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
189
|
Dai SY, Hsu WH, Yang CH. The Gene ANTHER DEHISCENCE REPRESSOR (ADR) Controls Male Fertility by Suppressing the ROS Accumulation and Anther Cell Wall Thickening in Arabidopsis. Sci Rep 2019; 9:5112. [PMID: 30911018 PMCID: PMC6434047 DOI: 10.1038/s41598-019-41382-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Male sterility in plants is caused by various stimuli such as hormone changes, stress, cytoplasmic alterations and nuclear gene mutations. The gene ANTHER DEHISCENCE REPRESSOR (ADR), which is involved in regulating male sterility in Arabidopsis, was functionally analyzed in this study. In ADR::GUS flowers, strong GUS activity was detected in the anthers of young flower buds but was low in mature flowers. ADR + GFP fusion proteins, which can be modified by N-myristoylation, were targeted to peroxisomes. Ectopic expression of ADR in transgenic Arabidopsis plants resulted in male sterility due to anther indehiscence. The defect in anther dehiscence in 35S::ADR flowers is due to the reduction of ROS accumulation, alteration of the secondary thickening in the anther endothecium and suppression of the expression of NST1 and NST2, which are required for anther dehiscence through regulation of secondary wall thickening in anther endothecial cells. This defect could be rescued by external application of hydrogen peroxide (H2O2). These results demonstrated that ADR must be N-myristoylated and targeted to the peroxisome during the early stages of flower development to negatively regulate anther dehiscence by suppressing ROS accumulation and NST1/NST2 expression.
Collapse
Affiliation(s)
- Shu-Yu Dai
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.
| |
Collapse
|
190
|
Guérin C, Roche J, Allard V, Ravel C, Mouzeyar S, Bouzidi MF. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One 2019; 14:e0213390. [PMID: 30840709 PMCID: PMC6402696 DOI: 10.1371/journal.pone.0213390] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 02/01/2023] Open
Abstract
The NAC family is one of the largest plant-specific transcription factor families, and some of its members are known to play major roles in plant development and response to biotic and abiotic stresses. Here, we inventoried 488 NAC members in bread wheat (Triticum aestivum). Using the recent release of the wheat genome (IWGS RefSeq v1.0), we studied duplication events focusing on genomic regions from 4B-4D-5A chromosomes as an example of the family expansion and neofunctionalization of TaNAC members. Differentially expressed TaNAC genes in organs and in response to abiotic stresses were identified using publicly available RNAseq data. Expression profiling of 23 selected candidate TaNAC genes was studied in leaf and grain from two bread wheat genotypes at two developmental stages in field drought conditions and revealed insights into their specific and/or overlapping expression patterns. This study showed that, of the 23 TaNAC genes, seven have a leaf-specific expression and five have a grain-specific expression. In addition, the grain-specific genes profiles in response to drought depend on the genotype. These genes may be considered as potential candidates for further functional validation and could present an interest for crop improvement programs in response to climate change. Globally, the present study provides new insights into evolution, divergence and functional analysis of NAC gene family in bread wheat.
Collapse
Affiliation(s)
- Claire Guérin
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Jane Roche
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
- * E-mail:
| | - Vincent Allard
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Catherine Ravel
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Said Mouzeyar
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Mohamed Fouad Bouzidi
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| |
Collapse
|
191
|
Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 2019; 20:113. [PMID: 30727951 PMCID: PMC6366116 DOI: 10.1186/s12864-019-5500-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/30/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The NAC (NAM, ATAF1/2, and CUC2) transcription factor family represents a group of large plant-specific transcriptional regulators, participating in plant development and response to external stress. However, there is no comprehensive study on the NAC genes of Tartary buckwheat (Fagopyrum tataricum), a large group of extensively cultivated medicinal and edible plants. The recently published Tartary buckwheat genome permits us to explore all the FtNAC genes on a genome-wide basis. RESULTS In the present study, 80 NAC (FtNAC) genes of Tartary buckwheat were obtained and named uniformly according to their distribution on chromosomes. Phylogenetic analysis of NAC proteins in both Tartary buckwheat and Arabidopsis showed that the FtNAC proteins are widely distributed in 15 subgroups with one subgroup unclassified. Gene structure analysis found that multitudinous FtNAC genes contained three exons, indicating that the structural diversity in Tartary buckwheat NAC genes is relatively low. Some duplication genes of FtNAC have a conserved structure that was different from others, indicating that these genes may have a variety of functions. By observing gene expression, we found that FtNAC genes showed abundant differences in expression levels in various tissues and at different stages of fruit development. CONCLUSIONS In this research, 80 NAC genes were identified in Tartary buckwheat, and their phylogenetic relationships, gene structures, duplication, global expression and potential roles in Tartary buckwheat development were studied. Comprehensive analysis will be useful for a follow-up study of functional characteristics of FtNAC genes and for the development of high-quality Tartary buckwheat varieties.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
192
|
Hu P, Zhang K, Yang C. BpNAC012 Positively Regulates Abiotic Stress Responses and Secondary Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 179:700-717. [PMID: 30530740 PMCID: PMC6426422 DOI: 10.1104/pp.18.01167] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 05/20/2023]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in plant biological processes and stress responses. Here, we characterized the functional roles of BpNAC012 in white birch (Betula platyphylla). We found that BpNAC012 serves as a transcriptional activator. Gain- and loss-of-function analyses revealed that the transcript level of BpNAC012 was positively associated with salt and osmotic stress tolerance. BpNAC012 activated the core sequence CGT[G/A] to induce the expression of abiotic stress-responsive downstream genes, including Δ-1-pyrroline-5-carboxylate synthetase, superoxide dismutase, and peroxidase, resulting in enhanced salt and osmotic stress tolerance in BpNAC012 overexpression transgenic birch lines. We also showed that BpNAC012 is expressed predominantly in mature stems and that RNA interference-induced suppression of BpNAC012 caused a drastic reduction in the secondary wall thickening of stem fibers. Overexpression of BpNAC012 activated the expression of secondary wall-associated downstream genes by directly binding to the secondary wall NAC-binding element sites, resulting in ectopic secondary wall deposition in the stem epidermis. Moreover, salt and osmotic stresses elicited higher expression levels of lignin biosynthetic genes and elevated lignin accumulation in BpNAC012 overexpression lines. These findings provide insight into the functions of NAC transcription factors.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| |
Collapse
|
193
|
Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep 2019; 46:1985-2002. [PMID: 30706357 DOI: 10.1007/s11033-019-04648-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Hydrogen peroxide (H2O2) is known to accumulate in plants during abiotic stress conditions and also acts as a signalling molecule. In this study, Arabidopsis thaliana transgenics overexpressing cytosolic CuZn-superoxide dismutase (PaSOD) from poly-extremophile high-altitude Himalayan plant Potentilla atrosanguinea, cytosolic ascorbate peroxidase (RaAPX) from Rheum australe and dual transgenics overexpressing both the genes were developed and analyzed under salt stress. In comparison to wild-type (WT) or single transgenics, the performance of dual transgenics under salt stress was better with higher biomass accumulation and cellulose content. We identified genes involved in cell wall biosynthesis, including nine cellulose synthases (CesA), seven cellulose synthase-like proteins together with other wall-related genes. RNA-seq analysis and qPCR revealed differential regulation of genes (CesA 4, 7 and 8) and transcription factors (MYB46 and 83) involved in secondary cell wall cellulose biosynthesis, amongst which most of the cellulose biosynthesis gene showed upregulation in single (PaSOD line) and dual transgenics at 100 mM salt stress. A positive correlation between cellulose content and H2O2 accumulation was observed in these transgenic lines. Further, cellulose content was 1.6-2 folds significantly higher in PaSOD and dual transgenic lines, 1.4 fold higher in RaAPX lines as compared to WT plants under stress conditions. Additionally, transgenics overexpressing PaSOD and RaAPX also displayed higher amounts of phenolics as compared to WT. The novelty of present study is that H2O2 apart from its role in signalling, it also provides mechanical strength to plants and aid in plant biomass production during salt stress by transcriptional activation of cellulose biosynthesis pathway. This modulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create plants with enhanced cellulose content for biofuel use.
Collapse
|
194
|
Yeh CM, Kobayashi K, Fujii S, Fukaki H, Mitsuda N, Ohme-Takagi M. Blue Light Regulates Phosphate Deficiency-Dependent Primary Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1803. [PMID: 32082352 PMCID: PMC7005603 DOI: 10.3389/fpls.2019.01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/24/2019] [Indexed: 05/09/2023]
Abstract
Plants have evolved mechanisms to improve utilization efficiency or acquisition of inorganic phosphate (Pi) in response to Pi deficiency, such as altering root architecture, secreting acid phosphatases, and activating the expression of genes related to Pi uptake and recycling. Although many genes responsive to Pi starvation have been identified, transcription factors that affect tolerance to Pi deficiency have not been well characterized. We show here that the ectopic expression of B-BOX32 (BBX32) and the mutation of ELONGATED HYPOCOTYL 5 (HY5), whose transcriptional activity is negatively regulated by BBX32, resulted in the tolerance to Pi deficiency in Arabidopsis. The primary root lengths of 35S:BBX32 and hy5 plants were only slightly inhibited under Pi deficient condition and the fresh weights were significantly higher than those of wild type. The Pi deficiency-tolerant root phenotype of hy5 was similarly observed when grown on the medium without Pi. In addition, a double mutant, hy5 slr1, without lateral roots, also showed a long primary root phenotype under phosphate deficiency, indicating that the root phenotype of hy5 does not result from an increase of external Pi uptake. Moreover, we found that blue light may regulate Pi deficiency-dependent primary root growth inhibition through activating peroxidase gene expression, suggesting the Pi-deficiency tolerant root phenotype of hy5 may be due to blockage of blue light responses. Altogether, this study points out light quality may play an important role in the regulation of Pi deficiency responses. It may contribute to regulate plant growth under Pi deficiency through proper illumination.
Collapse
Affiliation(s)
- Chuan-Ming Yeh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute of Tropical Plant Sciences and Microbiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Fujii
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Masaru Ohme-Takagi,
| |
Collapse
|
195
|
Yang X, Kim MY, Ha J, Lee SH. Overexpression of the Soybean NAC Gene GmNAC109 Increases Lateral Root Formation and Abiotic Stress Tolerance in Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1036. [PMID: 32153598 PMCID: PMC6707213 DOI: 10.3389/fpls.2019.01036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/24/2019] [Indexed: 05/02/2023]
Abstract
NACs are plant-specific transcription factors that have crucial roles in plant development and biotic and/or abiotic stress responses. This study characterized the functions of the soybean NAC gene GmNAC109 using an overexpression construct in Arabidopsis lines. Sequence analysis revealed that GmNAC109 is highly homologous to ATAF1 (Arabidopsis Transcription Activation Factor 1), which regulates biotic and abiotic stress responses. GmNAC109 protein localized to the nucleus and its C-terminal domain exhibited transcriptional activation activity. Salt, dehydration, and cold stresses significantly increased expression of GmNAC109 in soybean. Similarly, Arabidopsis plants overexpressing GmNAC109 were more tolerant to drought and salt stress than wild-type Col-0 plants. Stress response-related genes, such as DREB1A (drought-responsive element-binding 1A), DREB2A, AREB1 (ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN 1), AREB2, RD29A (RESPONSIVE TO Desiccation 29A), and COR15A (COLD REGULATED 15A) were upregulated in GmNAC109-overexpressing transgenic Arabidopsis lines. The transgenic lines showed upregulation of the ABA-responsive genes ABI1 (ABA INSENSITIVE 1) and ABI5 and hypersensitivity to ABA. However, GmNAC109 did not increase expression of the ABA-biosynthetic gene NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3) and endogenous ABA content in the transgenic lines. Overexpression of GmNAC109 significantly increased lateral root formation in transgenic Arabidopsis lines. Expression of AIR3 (AUXIN-INDUCED IN ROOT CULTURES 3) and ARF2 (AUXIN RESPONSE FACTOR 2) was increased and decreased in these transgenic lines, respectively, indicating that GmNAC109 is involved in the auxin signaling pathway and thereby helps to regulate hairy root formation. Our results provide a basis for development of soybean lines with improved tolerance to abiotic stresses via genetic manipulation.
Collapse
Affiliation(s)
- Xuefei Yang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- *Correspondence: Suk-Ha Lee,
| |
Collapse
|
196
|
Lee KH, Avci U, Qi L, Wang H. The α-Aurora Kinases Function in Vascular Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:188-201. [PMID: 30329113 DOI: 10.1093/pcp/pcy195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
The Aurora kinases are serine/threonine kinases with conserved functions in mitotic cell division in eukaryotes. In Arabidopsis, Aurora kinases play important roles in primary meristem maintenance, but their functions in vascular development are still elusive. We report a dominant xdi-d mutant showing the xylem development inhibition (XDI) phenotype. Gene identification and transgenic overexpression experiments indicated that the activation of the Arabidopsis Aurora 2 (AtAUR2) gene is responsible for the XDI phenotype. In contrast, the aur1-2 aur2-2 double mutant plants showed enhanced differentiation of phloem and xylem cells, indicating that the Aurora kinases negatively affect xylem differentiation. The transcript levels of key regulatory genes in vascular cell differentiation, i.e. ALTERED PHLOEM DEVELOPMENT (APL), VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7, were higher in the aur1-2 aur2-2 double mutant and lower in xdi-d mutants compared with the wild-type plants, further supporting the functions of α-Aurora kinases in vascular development. Gene mutagenesis and transgenic studies showed that protein phosphorylation and substrate binding, but not protein dimerization and ubiquitination, are critical for the biological function of AtAUR2. These results indicate that α-Aurora kinases play key roles in vascular cell differentiation in Arabidopsis.
Collapse
Affiliation(s)
- Kwang-Hee Lee
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Utku Avci
- Bioengineering Department, Faculty of Engineering, Recep Tayyip Erdogan University, Rize, Turkey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
197
|
Saelim L, Akiyoshi N, Tan TT, Ihara A, Yamaguchi M, Hirano K, Matsuoka M, Demura T, Ohtani M. Arabidopsis Group IIId ERF proteins positively regulate primary cell wall-type CESA genes. JOURNAL OF PLANT RESEARCH 2019; 132:117-129. [PMID: 30478480 DOI: 10.1007/s10265-018-1074-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/21/2018] [Indexed: 05/22/2023]
Abstract
The cell wall determines morphology and the environmental responses of plant cells. The primary cell wall (PCW) is produced during cell division and expansion, determining the cell shape and volume. After cell expansion, specific types of plant cells produce a lignified wall, known as a secondary cell wall (SCW). We functionally analyzed Group IIId Arabidopsis AP2/EREBP genes, namely ERF34, ERF35, ERF38, and ERF39, which are homologs of a rice ERF gene previously proposed to be related to SCW biosynthesis. Expression analysis revealed that these four genes are expressed in regions related to cell division and/or cell differentiation in seedlings (i.e., shoot apical meristems, the primordia of leaves and lateral roots, trichomes, and central cylinder of primary roots) and flowers (i.e., vascular tissues of floral organs and replums and/or valve margins of pistils). Overexpression of ERF genes significantly upregulated PCW-type, but not SCW-type, CESA genes encoding cellulose synthase catalytic subunits in Arabidopsis seedlings. Transient co-expression reporter analysis indicated that ERF35, ERF38, and ERF39 possess transcriptional activator activity, and that ERF34, ERF35, ERF38, and ERF39 upregulated the promoter activity of CESA1, a PCW-type CESA gene, through the DRECRTCOREAT elements, the core cis-acting elements known to be recognized by AP2/ERF proteins. Together, our findings show that Group IIId ERF genes are positive transcriptional regulators of PCW-type CESA genes in Arabidopsis and are possibly involved in modulating cellulose biosynthesis in response to developmental requirements and environmental stimuli.
Collapse
Affiliation(s)
- Laddawan Saelim
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Nobuhiro Akiyoshi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tian Tian Tan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ayumi Ihara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masatoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
198
|
Sukiran NL, Ma JC, Ma H, Su Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:161-174. [PMID: 30604322 DOI: 10.1007/s11103-018-0810-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
Collapse
Affiliation(s)
- Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Center of Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Julia C Ma
- State College Area High School, State College, PA, 16801, USA
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
199
|
|
200
|
Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS One 2018; 13:e0209769. [PMID: 30592743 PMCID: PMC6310276 DOI: 10.1371/journal.pone.0209769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The plant NAC transcription factors depict one of the largest plant transcription factor families. They regulate a wide range of different developmental processes and most probably played an important role in the evolutionary diversification of plants. This makes comparative studies of the NAC transcription factor family between individual species and genera highly relevant and such studies have in recent years been greatly facilitated by the increasing number of fully sequenced complex plant genomes. This study combines the characterization of the NAC transcription factors in the recently sequenced genome of the cereal crop barley with expression analysis and a comprehensive phylogenetic characterization of the NAC transcription factors in other monocotyledonous plant species. Our results provide evidence for the emergence of a NAC transcription factor subclade that is exclusively expressed in the grains of the Poaceae family of grasses. These notably comprise a number of cereal crops other than barley, such as wheat, rice, maize or millet, which are all cultivated for their starchy edible grains. Apparently, the grain specific subclade emerged from a well described subgroup of NAC transcription factors associated with the senescence process. A promoter exchange subsequently resulted in grain specific expression. We propose to designate this transcription factor subclade Grain-NACs and we discuss their involvement in programmed cell death as well as their potential role in the evolution of the Poaceae grain, which doubtlessly is of central importance for human nutrition.
Collapse
|