151
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
152
|
Löhr B, Streitner C, Steffen A, Lange T, Staiger D. A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep 2013; 41:439-45. [DOI: 10.1007/s11033-013-2878-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
|
153
|
Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. Biosci Biotechnol Biochem 2013; 77:2169-74. [PMID: 24200775 DOI: 10.1271/bbb.130218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sweet potato flowers were collected for a transcriptome analysis to identify the putative floral-specific and flowering regulatory-related genes by using the RNA-sequencing technique. Pair-end short reads were de novo assembled by an integrated strategy, and then the floral transcriptome was carefully compared with several published vegetative transcriptomes. A total of 2595 putative floral-specific and 2928 putative vegetative-specific transcripts were detected. We also identified a large number of transcripts similar to the key genes in the flowering regulation network of Arabidopsis thaliana.
Collapse
|
154
|
Luo J, Ma N, Pei H, Chen J, Li J, Gao J. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5075-84. [PMID: 24014864 PMCID: PMC3830487 DOI: 10.1093/jxb/ert296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays an important role in organ growth. In Arabidopsis, ethylene can inhibit root elongation by stabilizing DELLA proteins. In previous work, it was found that ethylene suppressed cell expansion in rose petals, and five unisequences of DELLA genes are induced by ethylene. However, the mechanism of transcriptional regulation of DELLA genes by ethylene is still not clear. The results showed that the expression of RhGAI1 was induced in both ethylene-treated and ETR gene-silenced rose petals, and the promoter activity of RhGAI1 was strongly induced by RhEIN3-3 in Arabidopsis protoplasts. What is more, RhEIN3-3 could bind to the promoter of RhGAI1 directly in an electrophoretic mobility shift assay (EMSA). Cell expansion was suppressed in RhGAI1-Δ17-overexpressed Arabidopsis petals and promoted in RhGAI1-silenced rose petals. Moreover, in RhGAI1-silenced petals, the expression of nine cell expansion-related genes was clearly changed, and RhGAI1 can bind to the promoter of RhCesA2 in an EMSA. These results suggested that RhGAI1 was regulated by ethylene at the transcriptional level, and RhGAI1 was a direct target of RhEIN3-3. Also, RhGAI1 was shown to be involved in cell expansion partially through regulating the expression of cell expansion-related genes. Furthermore, RhCesA2 was a direct target of RhGAI1. This work uncovers the transcriptional regulation of RhGAI1 by ethylene and provides a better understanding of how ethylene regulates petal expansion in roses.
Collapse
Affiliation(s)
| | | | | | | | | | - Junping Gao
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
155
|
Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling HQ, Zhang A. Novel natural allelic variations at the Rht-1 loci in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1026-37. [PMID: 23992198 DOI: 10.1111/jipb.12103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 05/25/2023]
Abstract
Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1 gene. We analyzed the natural allelic variations of three homoeologous loci Rht-A1, Rht-B1, and Rht-D1 in Chinese wheat (Triticum aestivum L.) micro-core collections and the Rht-B1/D1 genotypes in over 1,500 bred cultivars and germplasms using a modified EcoTILLING. We identified six new Rht-A1 allelic variations (Rht-A1b-g), eight new Rht-B1 allelic variations (Rht-B1h-o), and six new Rht-D1 allelic variations (Rht-D1e-j). These allelic variations contain single nucleotide polymorphisms (SNPs) or small insertions and deletions in the coding or uncoding regions, involving two frame-shift mutations and 15 missenses. Of which, Rht-D1e and Rht-D1h resulted in the loss of interactions of GID1-DELLA-GID2, Rht-B1i could increase plant height. We found that the Rht-B1h contains the same SNPs and 197 bp fragment insertion as reported in Rht-B1c. Further detection of Rht-B1h in Tibet wheat germplasms and wheat relatives indicated that Rht-B1c may originate from Rht-B1h. These results suggest rich genetic diversity at the Rht-1 loci and provide new resources for wheat breeding.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Huang YJ, Liu LL, Huang JQ, Wang ZJ, Chen FF, Zhang QX, Zheng BS, Chen M. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.). BMC Genomics 2013; 14:691. [PMID: 24106755 PMCID: PMC3853572 DOI: 10.1186/1471-2164-14-691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/06/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. RESULTS Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. CONCLUSIONS Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC' model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants.
Collapse
Affiliation(s)
- You-Jun Huang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Li-Li Liu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian-Qin Huang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Zheng-Jia Wang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Fang-Fang Chen
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Qi-Xiang Zhang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Bing-Song Zheng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang 311300, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
157
|
Ciolfi A, Sessa G, Sassi M, Possenti M, Salvucci S, Carabelli M, Morelli G, Ruberti I. Dynamics of the shade-avoidance response in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:331-53. [PMID: 23893169 PMCID: PMC3762654 DOI: 10.1104/pp.113.221549] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/23/2013] [Indexed: 05/18/2023]
Abstract
Shade-intolerant plants perceive the reduction in the ratio of red light (R) to far-red light (FR) as a warning of competition with neighboring vegetation and display a suite of developmental responses known as shade avoidance. In recent years, major progress has been made in understanding the molecular mechanisms underlying shade avoidance. Despite this, little is known about the dynamics of this response and the cascade of molecular events leading to plant adaptation to a low-R/FR environment. By combining genome-wide expression profiling and computational analyses, we show highly significant overlap between shade avoidance and deetiolation transcript profiles in Arabidopsis (Arabidopsis thaliana). The direction of the response was dissimilar at the early stages of shade avoidance and congruent at the late ones. This latter regulation requires LONG HYPOCOTYL IN FAR RED1/SLENDER IN CANOPY SHADE1 and phytochrome A, which function largely independently to negatively control shade avoidance. Gene network analysis highlights a subnetwork containing ELONGATED HYPOCOTYL5 (HY5), a master regulator of deetiolation, in the wild type and not in phytochrome A mutant upon prolonged low R/FR. Network analysis also highlights a direct connection between HY5 and HY5 HOMOLOG (HYH), a gene functionally implicated in the inhibition of hypocotyl elongation and known to be a direct target of the HY5 transcription factor. Kinetics analysis show that the HYH gene is indeed late induced by low R/FR and that its up-regulation depends on the action of HY5, since it does not occur in hy5 mutant. Therefore, we propose that one way plants adapt to a low-R/FR environment is by enhancing HY5 function.
Collapse
|
158
|
Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, Hytönen T. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. THE PLANT CELL 2013; 25:3296-310. [PMID: 24038650 PMCID: PMC3809533 DOI: 10.1105/tpc.113.115055] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 05/18/2023]
Abstract
In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.
Collapse
Affiliation(s)
- Katriina Mouhu
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Takeshi Kurokura
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Elli A. Koskela
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Victor A. Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paula Elomaa
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014 Finland
- Address correspondence to
| |
Collapse
|
159
|
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. THE PLANT CELL 2013; 25:3535-52. [PMID: 24064768 PMCID: PMC3809548 DOI: 10.1105/tpc.113.115659] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Eric J. Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Yi Cao
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
160
|
Niu S, Li Z, Yuan H, Fang P, Chen X, Li W. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3411-24. [PMID: 23918971 PMCID: PMC3733162 DOI: 10.1093/jxb/ert186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioactive gibberellins (GAs) are involved in many developmental aspects of the life cycle of plants, acting either directly or through interaction with other hormones. Accumulating evidence suggests that GAs have an important effect on root growth; however, there is currently little information on the specific regulatory mechanism of GAs during adventitious root development. A study was conducted on tobacco (Nicotiana tabacum) plants for altered rates of biosynthesis, catabolism, and GA signalling constitutively or in specific tissues using a transgenic approach. In the present study, PtGA20ox, PtGA2ox1, and PtGAI were overexpressed under the control of the 35S promoter, vascular cambium-specific promoter (LMX5), or root meristem-specific promoter (TobRB7), respectively. Evidence is provided that the precise localization of bioactive GA in the stem but not in the roots is required to regulate adventitious root development in tobacco. High levels of GA negatively regulate the early initiation step of root formation through interactions with auxin, while a proper and mobile GA signal is required for the emergence and subsequent long-term elongation of established primordia. The results demonstrated that GAs have an inhibitory effect on adventitious root formation but a stimulatory effect on root elongation.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhexin Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Pan Fang
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaoyang Chen
- Laboratory of Bio-technology of Tropical and Subtropical Forestry, College of Forestry, South China Agriculture University, Guangzhou, 510642, PR China
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
161
|
Song S, Qi T, Huang H, Xie D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. MOLECULAR PLANT 2013; 6:1065-73. [PMID: 23543439 DOI: 10.1093/mp/sst054] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
162
|
Hao GF, Yang SG, Yang GF, Zhan CG. Computational gibberellin-binding channel discovery unraveling the unexpected perception mechanism of hormone signal by gibberellin receptor. J Comput Chem 2013; 34:2055-64. [PMID: 23765254 DOI: 10.1002/jcc.23355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/01/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA-binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008, 456, 459] involving two conformational states ("OPEN" and "CLOSED") of GID1. According to the new perception mechanism, GA acts as a "conformational stabilizer," rather than the previously speculated "allosteric inducer," to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism-based rational design of novel, potent growth regulators that target crops and ornamental plants.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | | | | | |
Collapse
|
163
|
Wong CE, Singh MB, Bhalla PL. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process. PLoS One 2013; 8:e65319. [PMID: 23762343 PMCID: PMC3675103 DOI: 10.1371/journal.pone.0065319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Flowering process governs seed set and thus affects agricultural productivity. Soybean, a major legume crop, requires short-day photoperiod conditions for flowering. While leaf-derived signal(s) are essential for the photoperiod-induced floral initiation process at the shoot apical meristem, molecular events associated with early floral transition stages in either leaves or shoot apical meristems are not well understood. To provide novel insights into the molecular basis of floral initiation, RNA-Seq was used to characterize the soybean transcriptome of leaf and micro-dissected shoot apical meristem at different time points after short-day treatment. Shoot apical meristem expressed a higher number of transcripts in comparison to that of leaf highlighting greater diversity and abundance of transcripts expressed in the shoot apical meristem. A total of 2951 shoot apical meristem and 13,609 leaf sequences with significant profile changes during the time course examined were identified. Most changes in mRNA level occurred after 1short-day treatment. Transcripts involved in mediating responses to stimulus including hormones or in various metabolic processes represent the top enriched GO functional category for the SAM and leaf dataset, respectively. Transcripts associated with protein degradation were also significantly changing in leaf and SAM implicating their involvement in triggering the developmental switch. RNA-Seq analysis of shoot apical meristem and leaf from soybean undergoing floral transition reveal major reprogramming events in leaves and the SAM that point toward hormones gibberellins (GA) and cytokinin as key regulators in the production of systemic flowering signal(s) in leaves. These hormones may form part of the systemic signals in addition to the established florigen, FLOWERING LOCUS T (FT). Further, evidence is emerging that the conversion of shoot apical meristem to inflorescence meristem is linked with the interplay of auxin, cytokinin and GA creating a low cytokinin and high GA environment.
Collapse
Affiliation(s)
- Chui E. Wong
- Plant Molecular Biology and Biotechnology Group, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Group, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Group, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
164
|
Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L. Nitric oxide as a key component in hormone-regulated processes. PLANT CELL REPORTS 2013; 32:853-66. [PMID: 23584547 DOI: 10.1007/s00299-013-1434-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE) CC327, Universidad Nacional de La Plata-CONICET, Diagonal 113 y calle 61 N°495, CP 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
165
|
Foo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. ANNALS OF BOTANY 2013; 111:769-79. [PMID: 23508650 PMCID: PMC3631329 DOI: 10.1093/aob/mct041] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/14/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. METHODS Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. KEY RESULTS Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. CONCLUSIONS Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells.
Collapse
Affiliation(s)
- Eloise Foo
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - John J. Ross
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - William T. Jones
- Plant & Food Research Palmerston North, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442, New Zealand
| | - James B. Reid
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
166
|
Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:72. [PMID: 23577014 PMCID: PMC3617366 DOI: 10.3389/fpls.2013.00072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Collapse
Affiliation(s)
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
167
|
Noir S, Bömer M, Takahashi N, Ishida T, Tsui TL, Balbi V, Shanahan H, Sugimoto K, Devoto A. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. PLANT PHYSIOLOGY 2013; 161:1930-51. [PMID: 23439917 PMCID: PMC3613466 DOI: 10.1104/pp.113.214908] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular "stand-by mode" by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition.
Collapse
|
168
|
Abstract
The plant hormone gibberellin (GA) regulates major aspects of plant growth and development. The role of GA in determining plant stature had major impacts on agriculture in the 1960s, and the development of semi-dwarf varieties that show altered GA responses contributed to a huge increase in grain yields during the ‘green revolution’. The past decade has brought great progress in understanding the molecular basis of GA action, with the cloning and characterization of GA signaling components. Here, we review the molecular basis of the GA signaling pathway, from the perception of GA to the regulation of downstream genes.
Collapse
Affiliation(s)
- Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
169
|
Archacki R, Buszewicz D, Sarnowski TJ, Sarnowska E, Rolicka AT, Tohge T, Fernie AR, Jikumaru Y, Kotlinski M, Iwanicka-Nowicka R, Kalisiak K, Patryn J, Halibart-Puzio J, Kamiya Y, Davis SJ, Koblowska MK, Jerzmanowski A. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis. PLoS One 2013; 8:e58588. [PMID: 23536800 PMCID: PMC3594165 DOI: 10.1371/journal.pone.0058588] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.
Collapse
Affiliation(s)
- Rafal Archacki
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J. Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna T. Rolicka
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Maciej Kotlinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalisiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Patryn
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Halibart-Puzio
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Seth J. Davis
- Max-Planck Institute for Plant Breeding, Cologne, Germany
| | - Marta K. Koblowska
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Jerzmanowski
- Department of Plant Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
170
|
Ariizumi T, Shinozaki Y, Ezura H. Genes that influence yield in tomato. BREEDING SCIENCE 2013; 63:3-13. [PMID: 23641176 PMCID: PMC3621442 DOI: 10.1270/jsbbs.63.3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/07/2012] [Indexed: 05/18/2023]
Abstract
Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield.
Collapse
|
171
|
Ma X, Song L, Yang Y, Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:751-762. [PMID: 23206262 DOI: 10.1111/nph.12056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture. Using genetic and molecular approaches, we analyzed the roles of a mutated cyclophilin in the control of plant architecture. The Arabidopsis mutant roc1 has reduced stem elongation and increased shoot branching, and the mutant phenotypes are strongly affected by temperature and photoperiod. Map-based cloning and transgenic experiments demonstrated that the roc1 mutant phenotypes are caused by a gain-of-function mutation in a cyclophilin gene, ROC1. Besides, application of the plant hormone gibberellic acid (GA) further suppresses stem elongation in the mutant. GA treatment enhances the accumulation of mutated but not of wildtype (WT) ROC1 proteins. The roc1 mutation does not seem to interfere with GA biosynthesis or signaling. GA signaling, however, antagonizes the effect of the roc1 mutation on stem elongation. The altered plant architecture may result from the activation of an R gene by the roc1 protein. We also present a working model for the interaction between the roc1 mutation and GA signaling in regulating stem elongation.
Collapse
Affiliation(s)
- Xiqing Ma
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Li Song
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaxuan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
172
|
Oakenfull RJ, Baxter R, Knight MR. A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS One 2013; 8:e54119. [PMID: 23349799 PMCID: PMC3547970 DOI: 10.1371/journal.pone.0054119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function.
Collapse
Affiliation(s)
- Rachael J. Oakenfull
- Durham Centre for Crop Improvement Technology, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Robert Baxter
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Marc R. Knight
- Durham Centre for Crop Improvement Technology, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
173
|
Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S, Zur N, Ophir R, Blumwald E, Sadka A. Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199686 DOI: 10.1016/j.plantsci.2012.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gibberellins (GAs) affect flowering in a species-dependent manner: in long-day and biennial plants they promote flowering, whereas in other plants, including fruit trees, they inhibit it. The mechanism by which GAs promote flowering in Arabidopsis is not fully understood, although there is increasing evidence that they may act through more than one pathway. In citrus, GA treatment during the flowering induction period reduces the number of flowers; the mechanism of flowering inhibition is not clear; the hormone may act directly in the bud to determine its fate toward vegetative growth, generate a mobile signal, or both. However, bud metabolic and regulatory pathways are expected to be altered upon GA treatment. We investigated the effect of GA treatments on global gene expression in the bud during the induction period, and on the expression of key flowering genes. Overall, about 2000 unigenes showed altered expression, with about 300 showing at least a two-fold change. Changes in flavonoids and trehalose metabolic pathways were validated, and among other altered pathways, such as cell-wall components, were discussed in light of GA's inhibition of flowering. Among flowering-control genes, GA treatment resulted in reduced mRNA levels of FT, AP1 and a few flower-organ-identity genes. mRNA levels of FLC-like and SOC1 were not altered by the treatment, whereas LEAFY mRNA was induced in GA-treated buds. Surprisingly, FT expression was higher in buds than leaves. Overall, our results shed light on changes taking place in the bud during flowering induction in response to GA treatment.
Collapse
Affiliation(s)
- Ravit Goldberg-Moeller
- Department of Fruit Trees Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. THE PLANT CELL 2013; 25:324-41. [PMID: 23341337 PMCID: PMC3584545 DOI: 10.1105/tpc.112.107227] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/19/2012] [Accepted: 12/30/2012] [Indexed: 05/18/2023]
Abstract
The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments.
Collapse
Affiliation(s)
- Lina Duan
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117604, Singapore
| | - Daniela Dietrich
- Plant Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Chong Han Ng
- Temasek Lifesciences Laboratory, National University of Singapore, 117604, Singapore
| | - Penny Mei Yeen Chan
- Temasek Lifesciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117604, Singapore
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Malcolm J. Bennett
- Plant Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - José R. Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117604, Singapore
- Address correspondence to
| |
Collapse
|
175
|
Oakenfull RJ, Baxter R, Knight MR. A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS One 2013. [PMID: 23349799 DOI: 10.1371/journal.pone.005411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function.
Collapse
Affiliation(s)
- Rachael J Oakenfull
- Durham Centre for Crop Improvement Technology, Durham University, Durham, United Kingdom
| | | | | |
Collapse
|
176
|
Moghaddam MRB, den Ende WV. Sugars, the clock and transition to flowering. FRONTIERS IN PLANT SCIENCE 2013; 4:22. [PMID: 23420760 PMCID: PMC3572515 DOI: 10.3389/fpls.2013.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin and jasmonate signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PHYTOCHROME INTERACTING FACTORS, invertases, and trehalose-6-phosphate) might fulfill central roles in the transition to flowering as well. The emerging concept of "sweet immunity," modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- *Correspondence: Wim Van den Ende, Laboratory of Molecular Plant Biology, The Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium. e-mail:
| |
Collapse
|
177
|
Ramos ML, Altieri E, Bulos M, Sala CA. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:251-263. [PMID: 22972203 DOI: 10.1007/s00122-012-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Collapse
Affiliation(s)
- María Laura Ramos
- Biotechnology Department, NIDERA S.A, Ruta 8 km 376, Casilla de Correo 6, 2600 Venado Tuerto, Santa Fe, Argentina
| | | | | | | |
Collapse
|
178
|
Satoh K, Kondoh H, De Leon TB, Macalalad RJA, Cabunagan RC, Cabauatan PQ, Mauleon R, Kikuchi S, Choi IR. Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res 2012. [PMID: 23183448 DOI: 10.1016/j.virusres.2012.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rice cultivar Taichung Native 1 (TN1) is susceptible to Rice tungro spherical virus (RTSV). TW16 is a backcross line developed between TN1 and RTSV-resistant cultivar Utri Merah. RTSV accumulation in TW16 was significantly lower than in TN1, although both TN1 and TW16 remained asymptomatic. We compared the gene expression profiles of TN1 and TW16 infected by RTSV to identify the gene expression patterns accompanying the accumulation and suppression of RTSV. About 11% and 12% of the genes in the entire genome were found differentially expressed by RTSV in TN1 and TW16, respectively. About 30% of the differentially expressed genes (DEGs) were detected commonly in both TN1 and TW16. DEGs related to development and stress response processes were significantly overrepresented in both TN1 and TW16. Evident differences in gene expression between TN1 and TW16 instigated by RTSV included (1) suppression of more genes for development-related transcription factors in TW16; (2) activation of more genes for development-related peptide hormone RALF in TN1; (3) TN1- and TW16-specific regulation of genes for jasmonate synthesis and pathway, and genes for stress-related transcription factors such as WRKY, SNAC, and AP2-EREBP; (4) activation of more genes for glutathione S-transferase in TW16; (5) activation of more heat shock protein genes in TN1; and (6) suppression of more genes for Golden2-like transcription factors involved in plastid development in TN1. The results suggest that a significant number of defense and development-related genes are still regulated in asymptomatic plants even with a very low level of RTSV, and that the TN1- and TW16-specific gene regulations might be associated with regulation of RTSV accumulation in the plants.
Collapse
Affiliation(s)
- Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, Garcia-Martinez JL. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. PLANT PHYSIOLOGY 2012; 160:1581-96. [PMID: 22942390 PMCID: PMC3490602 DOI: 10.1104/pp.112.204552] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/31/2012] [Indexed: 05/18/2023]
Abstract
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA₃. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA₃ or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA₃ application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Collapse
|
180
|
Lombardi-Crestana S, da Silva Azevedo M, e Silva GFF, Pino LE, Appezzato-da-Glória B, Figueira A, Nogueira FTS, Peres LEP. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5689-703. [PMID: 22915742 PMCID: PMC3444280 DOI: 10.1093/jxb/ers221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.
Collapse
Affiliation(s)
- Simone Lombardi-Crestana
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
| | - Mariana da Silva Azevedo
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura (CENA), USPAv. Centenário, 303, CEP 13400-970 Piracicaba-SP, Brazil
| | - Geraldo Felipe Ferreira e Silva
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biologia, Universidade Estadual Paulista (UNESP),Distrito de Rubião Jr., s/n. CEP 18618-970 Botucatu-SPBrazil.
| | - Lílian Ellen Pino
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura (CENA), USPAv. Centenário, 303, CEP 13400-970 Piracicaba-SP, Brazil
| | - Beatriz Appezzato-da-Glória
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
| | - Antonio Figueira
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura (CENA), USPAv. Centenário, 303, CEP 13400-970 Piracicaba-SP, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biologia, Universidade Estadual Paulista (UNESP),Distrito de Rubião Jr., s/n. CEP 18618-970 Botucatu-SPBrazil.
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo (USP),Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba-SPBrazil
| |
Collapse
|
181
|
Facella P, Daddiego L, Perrotta G. CRY1a influences the diurnal transcription of photoreceptor genes in tomato plants after gibberellin treatment. PLANT SIGNALING & BEHAVIOR 2012; 7:1034-1036. [PMID: 22827952 PMCID: PMC3474674 DOI: 10.4161/psb.20657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Light is one of the most important environmental signal for plants. Involvement of hormones, such as gibberellic acid, in light regulated development has been known for many years, though the molecular mechanisms remain still largely unknown. To shed light on possible interactions between phyto-hormones and photoperceptive photoreceptors of tomato, in a recent work we investigated the molecular effects of exogenous gibberellin to cryptochrome and phytochrome transcripts in wild type tomato as well as in a mutant genotype with a non-functional cryptochrome 1a and in a transgenic line overexpressing cryptochrome 2. Results highlight that following addition of gibberellin, cryptochrome and phytochrome transcription patterns are strongly modified, especially in cryptochrome 1a deficient plants. Our results suggest that cryptochrome mediated light responses can be modulated by gibberellin accumulation level, in tomato plants.
Collapse
|
182
|
Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 2012; 14:810-7. [PMID: 22820377 PMCID: PMC3606816 DOI: 10.1038/ncb2546] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/13/2012] [Indexed: 11/08/2022]
Abstract
Brassinosteroid and gibberellin promote many similar developmental responses in plants; however, their relationship remains unclear. Here we show that BR and GA act interdependently through a direct interaction between the BR-activated BZR1 and GA-inactivated DELLA transcription regulators. GA promotion of cell elongation required BR signalling, whereas BR or active BZR1 suppressed the GA-deficient dwarf phenotype. DELLAs directly interacted with BZR1 and inhibited BZR1-DNA binding both in vitro and in vivo. Genome-wide analysis defined a BZR1-dependent GA-regulated transcriptome, which is enriched with light-regulated genes and genes involved in cell wall synthesis and photosynthesis/chloroplast function. GA promotion of hypocotyl elongation requires both BZR1 and the phytochrome-interacting factors (PIFs), as well as their common downstream targets encoding the PRE-family helix-loop-helix factors. The results demonstrate that GA releases DELLA-mediated inhibition of BZR1, and that the DELLA-BZR1-PIF4 interaction defines a core transcription module that mediates coordinated growth regulation by GA, BR and light signals.
Collapse
|
183
|
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. THE PLANT CELL 2012. [PMID: 22669881 DOI: 10.2307/23264480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant-insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-β-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.
Collapse
Affiliation(s)
- Gao-Jie Hong
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
184
|
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. THE PLANT CELL 2012; 24:2635-48. [PMID: 22669881 PMCID: PMC3406894 DOI: 10.1105/tpc.112.098749] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant-insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-β-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.
Collapse
Affiliation(s)
- Gao-Jie Hong
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Xue-Yi Xue
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, People’s Republic of China
- Address correspondence to
| |
Collapse
|
185
|
Porri A, Torti S, Romera-Branchat M, Coupland G. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 2012; 139:2198-209. [PMID: 22573618 DOI: 10.1242/dev.077164] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The plant growth regulator gibberellin (GA) contributes to many developmental processes, including the transition to flowering. In Arabidopsis, GA promotes this transition most strongly under environmental conditions such as short days (SDs) when other regulatory pathways that promote flowering are not active. Under SDs, GAs activate transcription of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY) at the shoot meristem, two genes encoding transcription factors involved in flowering. Here, the tissues in which GAs act to promote flowering were tested under different environmental conditions. The enzyme GIBBERELLIN 2 OXIDASE 7 (GA2ox7), which catabolizes active GAs, was overexpressed in most tissues from the viral CaMV 35S promoter, specifically in the vascular tissue from the SUCROSE TRANSPORTER 2 (SUC2) promoter or in the shoot apical meristem from the KNAT1 promoter. We find that under inductive long days (LDs), GAs are required in the vascular tissue to increase the levels of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) mRNAs, which encode a systemic signal transported from the leaves to the meristem during floral induction. Similarly, impairing GA signalling in the vascular tissue reduces FT and TSF mRNA levels and delays flowering. In the meristem under inductive LDs, GAs are not required to activate SOC1, as reported under SDs, but for subsequent steps in floral induction, including transcription of genes encoding SQUAMOSA PROMOTER BINDING PROMOTER LIKE (SPL) transcription factors. Thus, GA has important roles in promoting transcription of FT, TSF and SPL genes during floral induction in response to LDs, and these functions are spatially separated between the leaves and shoot meristem.
Collapse
Affiliation(s)
- Aimone Porri
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | | | | | | |
Collapse
|
186
|
Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR. Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci U S A 2012; 109:7571-6. [PMID: 22523240 PMCID: PMC3358864 DOI: 10.1073/pnas.1113666109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.
Collapse
Affiliation(s)
- Alistair M. Middleton
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Zentrum für Biosystemanalyse, Albert-Ludwigs-Universität, 79104 Freiburg im Breisgau, Germany
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| | - Susana Úbeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Jayne Griffiths
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Tara Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Peter Hedden
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Stephen G. Thomas
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Andrew L. Phillips
- Plant Science Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Michael J. Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| | - Markus R. Owen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| |
Collapse
|
187
|
Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 2012. [PMID: 22529386 DOI: 10.1073/pnas.120161610917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Bhattacharya A, Ward DA, Hedden P, Phillips AL, Power JB, Davey MR. Engineering gibberellin metabolism in Solanum nigrum L. by ectopic expression of gibberellin oxidase genes. PLANT CELL REPORTS 2012; 31:945-953. [PMID: 22238061 DOI: 10.1007/s00299-011-1214-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
Gibberellins (GAs) control many aspects of plant development, including seed germination, shoot growth, flower induction and growth and fruit expansion. Leaf explants of Solanum nigrum (Black Nightshade; Solanaceae) were used for Agrobacterium-mediated delivery of GA-biosynthetic genes to determine the influence of their encoded enzymes on the production of bioactive GAs and plant stature in this species. Constructs were prepared containing the neomycin phosphotransferase (nptII) gene for kanamycin resistance as a selectable marker, and the GA-biosynthetic genes, their expression under the control of the CaMV 35S promoter. The GA-biosynthetic genes comprised AtGA20ox1, isolated from Arabidopsis thaliana, the product from which catalyses the formation of C(19)-GAs, and MmGA3ox1 and MmGA3ox2, isolated from Marah macrocarpus, which encode functionally different GA 3-oxidases that convert C(19)-GAs to biologically active forms. Increase in stature was observed in plants transformed with AtGA20ox1, MmGA3ox2 and MmGA3ox1 + MmGA3ox2, their presence and expression being confirmed by PCR and RT-PCR, respectively, accompanied by an increase in GA(1) content. Interestingly, MmGA3ox1 alone did not induce a sustained increase in plant height, probably because of only a marginal increase in bioactive GA(1) content in the transformed plants. The results are discussed in the context of regulating plant stature, since this strategy would decrease the use of chemicals to promote plant growth.
Collapse
Affiliation(s)
- A Bhattacharya
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | | | | | | |
Collapse
|
189
|
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 2012; 109:E1192-200. [PMID: 22529386 DOI: 10.1073/pnas.1201616109] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.
Collapse
|
190
|
Moriconi JI, Buet A, Simontacchi M, Santa-María GE. Near-isogenic wheat lines carrying altered function alleles of the Rht-1 genes exhibit differential responses to potassium deprivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:199-207. [PMID: 22325882 DOI: 10.1016/j.plantsci.2011.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 05/05/2023]
Abstract
Most of the elements involved in the integration of signals of low external K(+)-supply into a physiological response pathway remain essentially unknown. The aim of this work was to study the influence exerted by DELLA proteins, which are known to be key components for the control of growth, on plant responses during K(+) deprivation in wheat (Triticum aestivum) by using two sets of near-isogenic lines (NILs) in the Maringa and April Bearded cultivars. After K(+) shortage, the NILs of both cultivars containing the Rht-B1b,Rht-D1b alleles, which encode altered function DELLA proteins, displayed either a slight or no decrease in chlorophyll content, in contrast to the sharp decrease observed in the NILs having the wild type alleles (Rht-B1a,Rht-D1a). That difference was accompanied by a lower relative decrease of biomass accumulation only in the Maringa cultivar. In both cultivars, high chlorophyll retention was coupled with K(+) starvation-induced differences in superoxide dismutase and ascorbate peroxidase activities, which were enhanced in K(+)-starved Rht-B1b,Rht-D1b NILs. In addition, Rht-B1b,Rht-D1b and Rht-B1a,Rht-D1a NILs markedly differed in the accumulation of the major cations Ca(2+), Na(+) and K(+). These results suggest a major role of the Rht-1 genes in the control of physiological responses during K(+) deprivation.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino Circunvalación Laguna Km 8.5, Chascomús, Buenos Aires 7130, Argentina
| | | | | | | |
Collapse
|
191
|
Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012; 139:1285-95. [PMID: 22357928 DOI: 10.1242/dev.074567] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.
Collapse
Affiliation(s)
- Mark T Waters
- ARC Centre of Excellence for Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
192
|
Wang SS, Liu ZZ, Sun C, Shi QH, Yao YX, You CX, Hao YJ. Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:303-10. [PMID: 22153898 DOI: 10.1016/j.jplph.2011.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/07/2023]
Abstract
DELLA proteins are essential components of GA signal transduction. MhGAI1 was isolated from the tea crabapple (Malus hupehensis Redh. var. pingyiensis), and it was found to encode a DELLA protein. Mhgai1 is a GA-insensitive allele that was artificially generated via a bridge-PCR approach. Ectopic expression of Mhgai1 reduced plant stature, decreased spontaneous fruit-set-ratio and enhanced drought-tolerance in transgenic tomatoes. In addition, we examined the long-distance movement of Mhgai1 mRNAs by grafting experiments and SqRT-PCR analysis. It was found that the wild-type scions accumulated Mhgai1 transcripts trafficked from the transgenic rootstocks and therefore exhibited dwarf phenotypes. Furthermore, transgenic tomato plants produced more soluble solids, sugars and organic acids compared to wild-type tomatoes, suggesting an involvement of GA signaling in the regulation of fruit quality. Despite noticeable accumulation in the leaves and stems of WT scions, Mhgai1 transcripts were undetectable in flowers and fruit. Therefore, fruit quality was less influenced by the grafting of WT scions onto transgenic rootstocks than they were by the ectopic expression of Mhgai1 in transgenic rootstocks. Taken together, MhGAI1, which functions as a repressor in the GA signaling pathway, and its GA-insensitive allele, Mhgai1, could turn out to be useful targets for the genetic improvement of dwarfing rootstocks in apples.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | | | | | | | | | | | |
Collapse
|
193
|
Putranto RA, Sanier C, Leclercq J, Duan C, Rio M, Jourdan C, Thaler P, Sabau X, Argout X, Montoro P. Differential gene expression in different types of Hevea brasiliensis roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:149-58. [PMID: 22195588 DOI: 10.1016/j.plantsci.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/04/2011] [Accepted: 08/16/2011] [Indexed: 05/05/2023]
Abstract
Three types of roots (taproots, first order laterals and second order laterals) were functionally characterized on 7-month-old in vitro plantlets regenerated by somatic embryogenesis in Hevea brasiliensis. A histological analysis revealed different levels of differentiation depending on root diameter. A primary structure was found in first and second order lateral roots, while taproots displayed a secondary structure. The expression of 48 genes linked to some of the regulatory pathways acting in roots was compared in leaves, stems and the different types of roots by real-time RT-PCR. Thirteen genes were differentially expressed in the different organs studied in plants grown under control conditions. Nine additional other genes were differentially regulated between organs under water deficit conditions. In addition, 10 genes were significantly regulated in response to water deficit, including 8 regulated mainly in lateral roots types. Our results suggest that the regulation of gene expression in lateral roots is different than that in taproots, which have a main role in nutrient uptake and transport, respectively.
Collapse
|
194
|
Shan X, Yan J, Xie D. Comparison of phytohormone signaling mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:84-91. [PMID: 22001935 DOI: 10.1016/j.pbi.2011.09.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Plant hormones are crucial signaling molecules that coordinate all aspects of plant growth, development and defense. A great deal of attention has been attracted from biologists to study the molecular mechanisms for perception and signal transduction of plant hormones during the last two decades. Tremendous progress has been made in identifying receptors and key signaling components of plant hormones. The holistic picture of hormone signaling pathways is extremely complicated, this review will give a general overview of perception and signal transduction mechanisms of auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroid, and jasmonate.
Collapse
Affiliation(s)
- Xiaoyi Shan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
195
|
Sauret-Güeto S, Calder G, Harberd NP. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:628-39. [PMID: 21985616 DOI: 10.1111/j.1365-313x.2011.04817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth.
Collapse
|
196
|
Urbanová T, Tarkowská D, Strnad M, Hedden P. Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1135/cccc2011098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gibberellins (GAs) are a large group of diterpenoid carboxylic acids, some members of which function as plant hormones controlling diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have shown that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In this review, we summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss methods for their qualitative and quantitative analysis. The challenges for their extraction and purification from plant tissues, which form complex matrices containing thousands of interfering substances, are discussed.
Collapse
|
197
|
Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. THE PLANT CELL 2012; 24:66-79. [PMID: 22253226 PMCID: PMC3289570 DOI: 10.1105/tpc.111.093096] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 05/17/2023]
Abstract
The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Nickolay Voronin
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fan Gong
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Peter Hedden
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Hillel Fromm
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
198
|
Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LSP, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. PLANT PHYSIOLOGY 2011; 157:1900-13. [PMID: 22013217 PMCID: PMC3327212 DOI: 10.1104/pp.111.187302] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 05/18/2023]
Abstract
The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk.
Collapse
|
199
|
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. PLANTA 2011; 234:1285-98. [PMID: 21792553 DOI: 10.1007/s00425-011-1485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/07/2011] [Indexed: 05/02/2023]
Abstract
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
200
|
Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. PLANT PHYSIOLOGY 2011; 157:2120-30. [PMID: 22010107 PMCID: PMC3327208 DOI: 10.1104/pp.111.185272] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/12/2011] [Indexed: 05/18/2023]
Abstract
Dominance, semidominance, and recessiveness are important modes of Mendelian inheritance. The phytohormone gibberellin (GA) regulates many plant growth and developmental processes. The previously cloned semidominant GA-insensitive (GAI) genes Reduced height1 (Rht1) and Rht2 in wheat (Triticum aestivum) were the basis of the Green Revolution. However, no completely dominant GAI gene has been cloned. Here, we report the molecular characterization of Rht-B1c, a dominant GAI allele in wheat that confers more extreme characteristics than its incompletely dominant alleles. Rht-B1c is caused by a terminal repeat retrotransposons in miniature insertion in the DELLA domain. Yeast two-hybrid assays showed that Rht-B1c protein fails to interact with GA-INSENSITIVE DWARF1 (GID1), thereby blocking GA responses and resulting in extreme dwarfism and pleiotropic effects. By contrast, Rht-B1b protein only reduces interaction with GID1. Furthermore, we analyzed its functions using near-isogenic lines and examined its molecular mechanisms in transgenic rice. These results indicated that the affinity between GID1 and DELLA proteins is key to regulation of the stability of DELLA proteins, and differential interactions determine dominant and semidominant gene responses to GA.
Collapse
|