151
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
152
|
Huang X, Hu L, Wu X. Identification of a novel effector BxSapB3 that enhances the virulence of pine wood nematode Bursaphelenchus xylophilus. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1071-1078. [PMID: 31559428 DOI: 10.1093/abbs/gmz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Pine wilt disease, caused by the pine wood nematode Bursaphelenchus xylophilus, leads to severe damage to pine forests in China. In our previous study, effectors secreted by this pathogen were shown to play roles in the different infection stages of pine wilt disease, and a series of candidate effectors were predicted by transcriptome sequencing. This study identified and characterized a novel effector, BxSapB3, which was among these candidate effectors. Agrobacterium-mediated transient expression was used to identify BxSapB3. BxSapB3 was secreted by B. xylophilus and found to be capable of inducing cell death in Nicotiana benthamiana. Quantitative real-time PCR (qRT-PCR) analysis revealed that BxSapB3 was upregulated in a highly virulent strain of B. xylophilus and expressed at lower levels in a weakly virulent strain at the early stages of infection. When BxSapB3 was silenced in B. xylophilus, the process of infection was delayed. These results indicate that BxSapB3 acts as an effector and contributes to virulence at the early stages of B. xylophilus infection.
Collapse
Affiliation(s)
- Xin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Longjiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
153
|
Li T, Wang Q, Feng R, Li L, Ding L, Fan G, Li W, Du Y, Zhang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. THE NEW PHYTOLOGIST 2019. [PMID: 31436314 DOI: 10.1111/nph.16139] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruirui Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Licai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
154
|
Wang A, Pan L, Niu X, Shu X, Yi X, Yamamoto N, Li S, Deng Q, Zhu J, Liang Y, Wang L, Li P, Zheng A. Comparative secretome analysis of different smut fungi and identification of plant cell death-inducing secreted proteins from Tilletia horrida. BMC PLANT BIOLOGY 2019; 19:360. [PMID: 31419944 PMCID: PMC6697988 DOI: 10.1186/s12870-019-1924-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Tilletia horrida is a basidiomycete fungus that causes rice kernel smut, one of the most important rice diseases in hybrid rice growing areas worldwide. However, little is known about its mechanisms of pathogenicity. We previously reported the genome of T. horrida, and 597 genes that encoded secreted proteins were annotated. Among these were some important effector genes related to pathogenicity. RESULTS A secretome analysis suggested that five Tilletia fungi shared more gene families than were found in other smuts, and there was high conservation between them. Furthermore, we screened 597 secreted proteins from the T. horrida genome, some of which induced expression in host-pathogen interaction processes. Through transient expression, we demonstrated that two putative effectors could induce necrosis phenotypes in Nicotiana benthamiana. These two encoded genes were up-regulated during early infection, and the encoded proteins were confirmed to be secreted using a yeast secretion system. For the putative effector gene smut_5844, a signal peptide was required to induce non-host cell death, whereas ribonuclease catalytic active sites were required for smut_2965. Moreover, both putative effectors could induce an immune response in N. benthamiana leaves. Interestingly, one of the identified potential host interactors of smut_5844 was laccase-10 protein (OsLAC10), which has been predicted to be involved in plant lignification and iron metabolism. CONCLUSIONS Overall, this study identified two secreted proteins in T. horrida that induce cell death or are involved in defense machinery in non-host plants. This research provides a useful foundation for understanding the interaction between rice and T. horrida.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Linxiu Pan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Xinyue Shu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Xiaoqun Yi
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Naoki Yamamoto
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
155
|
Cheng W, Lin M, Qiu M, Kong L, Xu Y, Li Y, Wang Y, Ye W, Dong S, He S, Wang Y. Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environ Microbiol 2019; 21:4537-4547. [PMID: 31314944 DOI: 10.1111/1462-2920.14744] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 11/29/2022]
Abstract
Chitin is a structural and functional component of the fungal cell wall and also serves as a pathogen-associated molecular pattern (PAMP) that triggers the innate immune responses of host plants. However, no or very little chitin is found in the fungus-like oomycetes. In Phytophthora spp., the presence of chitin has not been demonstrated so far, although putative chitin synthase (CHS) genes, which encode the enzymes that synthesize chitin, are present in their genomes. Here, we revealed that chitin is present in the zoospores and released sporangia of Phytophthora, and this is most consistent with the transcriptional pattern of PcCHS in Phytophthora capsici and PsCHS1 in Phytophthora sojae. Disruption of the CHS genes indicated that PcCHS and PsCHS1, but not PsCHS2 (which exhibited very weak transcription), have similar functions involved in mycelial growth, sporangial production, zoospore release and the pathogenesis of P. capsici and P. sojae. We also suggest that chitin in the zoospores of P. capsici can act as a PAMP that is recognized by the chitin receptors AtLYK5 or AtCERK1 of Arabidopsis. These results provide new insights into the biological significance of chitin and CHSs in Phytophthora and help with the identification of potential targets for disease control.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Menglan Lin
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shuilin He
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
156
|
Chen XR, Zhang Y, Li HY, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR Effector PcAvh1 Is Required for Full Virulence of Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:986-1000. [PMID: 30811314 DOI: 10.1094/mpmi-09-18-0251-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Ye Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hai-Yang Li
- 3College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zi-Hui Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Gui-Lin Sheng
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan-Peng Li
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yu-Ping Xing
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Shen-Xin Huang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hang Tao
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tung Kuan
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Yi Zhai
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
157
|
Malar C M, Yuzon JD, Das S, Das A, Panda A, Ghosh S, Tyler BM, Kasuga T, Tripathy S. Haplotype-Phased Genome Assembly of Virulent Phytophthora ramorum Isolate ND886 Facilitated by Long-Read Sequencing Reveals Effector Polymorphisms and Copy Number Variation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1047-1060. [PMID: 30794480 DOI: 10.1094/mpmi-08-18-0222-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora ramorum is a destructive pathogen that causes sudden oak death disease. The genome sequence of P. ramorum isolate Pr102 was previously produced, using Sanger reads, and contained 12 Mb of gaps. However, isolate Pr102 had shown reduced aggressiveness and genome abnormalities. In order to produce an improved genome assembly for P. ramorum, we performed long-read sequencing of highly aggressive P. ramorum isolate CDFA1418886 (abbreviated as ND886). We generated a 60.5-Mb assembly of the ND886 genome using the Pacific Biosciences (PacBio) sequencing platform. The assembly includes 302 primary contigs (60.2 Mb) and nine unplaced contigs (265 kb). Additionally, we found a 'highly repetitive' component from the PacBio unassembled unmapped reads containing tandem repeats that are not part of the 60.5-Mb genome. The overall repeat content in the primary assembly was much higher than the Pr102 Sanger version (48 versus 29%), indicating that the long reads have captured repetitive regions effectively. The 302 primary contigs were phased into 345 haplotype blocks and 222,892 phased variants, of which the longest phased block was 1,513,201 bp with 7,265 phased variants. The improved phased assembly facilitated identification of 21 and 25 Crinkler effectors and 393 and 394 RXLR effector genes from two haplotypes. Of these, 24 and 25 RXLR effectors were newly predicted from haplotypes A and B, respectively. In addition, seven new paralogs of effector Avh207 were found in contig 54, not reported earlier. Comparison of the ND886 assembly with Pr102 V1 assembly suggests that several repeat-rich smaller scaffolds within the Pr102 V1 assembly were possibly misassembled; these regions are fully encompassed now in ND886 contigs. Our analysis further reveals that Pr102 is a heterokaryon with multiple nuclear types in the sequences corresponding to contig 10 of ND886 assembly.
Collapse
Affiliation(s)
- Mathu Malar C
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jennifer D Yuzon
- 3Department of Plant Pathology, University of California, Davis, CA, U.S.A
- 4USDA-ARS, Davis, CA, U.S.A
| | - Subhadeep Das
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Das
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arijit Panda
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samrat Ghosh
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brett M Tyler
- 5Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7303, U.S.A
| | - Takao Kasuga
- 3Department of Plant Pathology, University of California, Davis, CA, U.S.A
- 4USDA-ARS, Davis, CA, U.S.A
| | - Sucheta Tripathy
- 1Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata, 700032, India
- 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
158
|
Combier M, Evangelisti E, Piron MC, Rengel D, Legrand L, Shenhav L, Bouchez O, Schornack S, Mestre P. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. PLoS One 2019; 14:e0220184. [PMID: 31356604 PMCID: PMC6663016 DOI: 10.1371/journal.pone.0220184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, Université de Strasbourg, INRA, Colmar, France
| | - Edouard Evangelisti
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - David Rengel
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Liron Shenhav
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, Université de Strasbourg, INRA, Colmar, France
| |
Collapse
|
159
|
Hao G, McCormick S, Vaughan MM, Naumann TA, Kim HS, Proctor R, Kelly A, Ward TJ. Fusarium graminearum arabinanase (Arb93B) Enhances Wheat Head Blight Susceptibility by Suppressing Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:888-898. [PMID: 30759350 DOI: 10.1094/mpmi-06-18-0170-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fusarium head blight (FHB) of wheat and barley caused by the fungus Fusarium graminearum reduces crop yield and contaminates grain with mycotoxins. In this study, we investigated two exo-1,5-α-L-arabinanases (Arb93A and Arb93B) secreted by F. graminearum and their effect on wheat head blight development. Arabinan is an important component of plant cell walls but it was not known whether these arabinanases play a role in FHB. Both ARB93A and ARB93B were induced during the early stages of infection. arb93A mutants did not exhibit a detectable change in ability to cause FHB, whereas arb93B mutants caused lower levels of FHB symptoms and deoxynivalenol contamination compared with the wild type. Furthermore, virulence and deoxynivalenol contamination were restored to wild-type levels in ARB93B complemented mutants. Fusion proteins of green fluorescent protein (GFP) with the predicted chloroplast peptide or the mature protein of Arb93B were not observed in the chloroplast. Reactive oxygen species (ROS) production was reduced in the infiltrated zones of Nicotiana benthamiana leaves expressing ARB93B-GFP. Coexpression of ARB93B-GFP and Bax in N. benthamiana leaves significantly suppressed Bax-programmed cell death. Our results indicate that Arb93B enhances plant disease susceptibility by suppressing ROS-associated plant defense responses.
Collapse
Affiliation(s)
- Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Todd A Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Robert Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Amy Kelly
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, Peoria, IL, U.S.A
| |
Collapse
|
160
|
Fabre F, Vignassa M, Urbach S, Langin T, Bonhomme L. Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism. PLANT, CELL & ENVIRONMENT 2019; 42:2291-2308. [PMID: 30866080 DOI: 10.1111/pce.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Fungal plant diseases are controlled by a complex molecular dialogue that involves pathogen effectors able to manipulate plant susceptibility factors at the earliest stages of the interaction. By probing the wheat-Fusarium graminearum pathosystem, we profiled the coregulations of the fungal and plant proteins shaping the molecular responses of a 96-hr-long infection's dynamics. Although no symptoms were yet detectable, fungal biomass swiftly increased along with an extremely diverse set of secreted proteins and candidate effectors supposed to target key plant organelles. Some showed to be early accumulated during the interaction or already present in spores, otherwise stored in germinating spores and detectable in an in vitro F. graminearum exudate. Wheat responses were swiftly set up and were evidenced before any visible symptom. Significant wheat protein abundance changes co-occurred along with the accumulation of putative secreted fungal proteins and predicted effectors. Regulated wheat proteins were closely connected to basal cellular processes occurring during spikelet ontogeny, and particular coregulation patterns were evidenced between chloroplast proteins and fungal proteins harbouring a predicted chloroplast transit peptide. The described plant and fungal coordinated responses provide a resourceful set of data and expand our understanding of the wheat-F. graminearum interaction.
Collapse
Affiliation(s)
- Francis Fabre
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Manon Vignassa
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Serge Urbach
- Functional Proteomics Platform (FPP), Institute of Functional Genomics (IGF), CNRS UMR 5203 INSERM U661, Montpellier, France
| | - Thierry Langin
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
161
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
162
|
Lan X, Liu Y, Song S, Yin L, Xiang J, Qu J, Lu J. Plasmopara viticola effector PvRXLR131 suppresses plant immunity by targeting plant receptor-like kinase inhibitor BKI1. MOLECULAR PLANT PATHOLOGY 2019; 20:765-783. [PMID: 30945786 PMCID: PMC6637860 DOI: 10.1111/mpp.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC- ) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.
Collapse
Affiliation(s)
- Xia Lan
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yunxiao Liu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
163
|
Wang C, Liu Y, Liu L, Wang Y, Yan J, Wang C, Li C, Yang J. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi J Biol Sci 2019; 26:795-807. [PMID: 31049006 PMCID: PMC6486625 DOI: 10.1016/j.sjbs.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.
Collapse
Key Words
- ATMT, agrobacterium tumefaciens-mediated transformation
- BAS, biotrophy-associated secreted
- BIC, biotrophic interfacial complex
- Bgh, Blumeria graminis
- DAB, diaminobenzidine
- EIHM, extra-invasive hyphal membrane
- Effector
- GFP, green fluorescence protein
- GST, glutathione-S-transferase
- Hemibiotrophic fungi
- IH, invasive hyphae
- LTH, Lijiangxintuanheigu
- M.oryzae, Magnaporthe oryzae
- Magnaporthe oryzae
- ORF, open reading frame
- OsMPK12, rice mitogen-activated protein kinase 12
- OsMPK6, rice mitogen-activated protein kinase 6
- PBS, phosphate buffer saline
- PCD, programmed cell death
- PDA, potato dextrose agar
- PR gene, pathogenicity related gene
- ROS, reactive oxygen species
- Rice
- YLG, Yue Liang Gu
- hpi, hours post inoculation
Collapse
Affiliation(s)
- Chunmei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yanfang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China.,Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jinlu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| |
Collapse
|
164
|
Toljamo A, Blande D, Munawar M, Kärenlampi SO, Kokko H. Expression of the GAF Sensor, Carbohydrate-Active Enzymes, Elicitins, and RXLRs Differs Markedly Between Two Phytophthora cactorum Isolates. PHYTOPATHOLOGY 2019; 109:726-735. [PMID: 30412010 DOI: 10.1094/phyto-04-18-0136-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.
Collapse
Affiliation(s)
- Anna Toljamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Daniel Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mustafa Munawar
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sirpa O Kärenlampi
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
165
|
Yin C, Ramachandran SR, Zhai Y, Bu C, Pappu HR, Hulbert SH. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. THE NEW PHYTOLOGIST 2019; 222:1561-1572. [PMID: 30623449 DOI: 10.1111/nph.15676] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/03/2019] [Indexed: 05/11/2023]
Abstract
Fungal plant pathogens, like rust-causing biotrophic fungi, secrete hundreds of effectors into plant cells to subvert host immunity and promote pathogenicity on their host plants by manipulating specific physiological processes or signal pathways, but the actual function has been demonstrated for very few of these proteins. Here, we show that the PgtSR1 effector proteins, encoded by two allelic genes (PgtSR1-a and PgtSR1-b), from the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt), suppress RNA silencing in plants and impede plant defenses by altering the abundance of small RNAs that serve as defense regulators. Expression of the PgtSR1s in plants revealed that the PgtSR1s promote susceptibility to multiple pathogens and partially suppress cell death triggered by multiple R proteins. Overall, our study provides the first evidence that the filamentous fungus P. graminis has evolved to produce fungal suppressors of RNA silencing and indicates that PgtSR1s suppress both basal defenses and effector triggered immunity.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Sowmya R Ramachandran
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chunya Bu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Scot H Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| |
Collapse
|
166
|
Fang A, Gao H, Zhang N, Zheng X, Qiu S, Li Y, Zhou S, Cui F, Sun W. A Novel Effector Gene SCRE2 Contributes to Full Virulence of Ustilaginoidea virens to Rice. Front Microbiol 2019; 10:845. [PMID: 31105658 PMCID: PMC6492501 DOI: 10.3389/fmicb.2019.00845] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut (RFS), has become one of the most devastating rice pathogens worldwide. As a group of essential virulence factors, the effectors in the filamentous fungus might play central roles in the interaction between plants and pathogens. However, little is known about the roles of individual effectors in U. virens virulence. In this study, we identified and characterized a small secreted cysteine-rich effector, SCRE2, in U. virens. SCRE2 was first confirmed as an effector through yeast secretion, protein localization and translocation assays, as well as its expression pattern during U. virens infection. Transient expression of SCRE2 in Nicotiana benthamiana suppressed necrosis-like defense symptoms triggered by the mammalian BAX and oomycete elicitin INF1 proteins. The ability of SCRE2 to inhibit immunity-associated responses in N. benthamiana, including elicitor-triggered cell death and oxidative burst, is further defined to a small peptide region SCRE268-85 through expressing a series of truncated proteins. Convincingly, ectopic expression of SCRE2 in the transgenic rice cells significantly inhibited pathogen-associated molecular pattern-triggered immunity including flg22- and chitin-induced defense gene expression and oxidative burst. Furthermore, the scre2 knockout mutant generated by the CRISPR/Cas9 system greatly attenuated in U. virens virulence to rice. Collectively, this study indicates that the effector SCRE2 is able to inhibit plant immunity and is required for full virulence of U. virens.
Collapse
Affiliation(s)
- Anfei Fang
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China.,College of Plant Protection, Southwest University, Chongqing, China
| | - Han Gao
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Nan Zhang
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinhang Zheng
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanshan Qiu
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuejiao Li
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuang Zhou
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fuhao Cui
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wenxian Sun
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
167
|
Mohd-Assaad N, McDonald BA, Croll D. The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses. Environ Microbiol 2019; 21:2677-2695. [PMID: 30838748 DOI: 10.1111/1462-2920.14583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 01/28/2023]
Abstract
Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH, Zurich, 8092 Zurich, Switzerland.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH, Zurich, 8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
168
|
Xie S, Wang Y, Wei W, Li C, Liu Y, Qu J, Meng Q, Lin Y, Yin W, Yang Y, Luo C. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Curr Genet 2019; 65:1185-1197. [PMID: 30993412 DOI: 10.1007/s00294-019-00970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/31/2023]
Abstract
Bax inhibitor-1 (BI-1), an evolutionarily conserved protein, is a suppressor of cell death induced by the proapoptotic protein Bax and is involved in the response to biotic and abiotic stress in animals, plants and yeast. Rice false smut caused by Ustilaginoidea virens is one of the destructive rice diseases worldwide. Although BI-1 proteins are widely distributed across filamentous fungi, few of them are functionally characterized. In this study, we identified a BI-1 protein in U. virens, UvBI-1, which contains a predicted Bax inhibitor-1-like family domain and could suppress the cell death induced by Bax. By co-transformation of the CRISPR/Cas9 construct along with donor DNA fragment containing the hygromycin resistance gene, we successfully generated Uvbi-1 deletion mutants. The UvBI-1 deletion showed an increase in mycelia vegetative growth and conidiation, suggesting this gene acts as a negative regulator of the growth and conidiation. In addition, the Uvbi-1 mutants exhibited higher sensitivity to osmotic and salt stress, hydrogen peroxide stress, and cell wall or membrane stress than the wild-type strain. Furthermore, UvBI-1 deletion was found to cause increased production of secondary metabolites and loss of pathogenicity of U. virens. Taken together, our results demonstrate that UvBI-1 plays a negative role in mycelial growth and conidiation, and is critical for stress tolerance, cell wall integrity, secondary metabolites production and pathogenicity of U. virens. Therefore, this study provides new evidence on the conserved function of BI-1 among fungal organisms and other species.
Collapse
Affiliation(s)
- Songlin Xie
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufu Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongyang Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Liu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsong Qu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianghong Meng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixiao Yin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaoxi Luo
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
169
|
Luo S, Liu S, Kong L, Peng H, Huang W, Jian H, Peng D. Two venom allergen-like proteins, HaVAP1 and HaVAP2, are involved in the parasitism of Heterodera avenae. MOLECULAR PLANT PATHOLOGY 2019; 20:471-484. [PMID: 30422356 PMCID: PMC6637866 DOI: 10.1111/mpp.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the fact that venom allergen-like proteins (VAPs) have been identified in many animal- and plant-parasitic nematodes, studies on VAPs in Heterodera avenae, which is an important phytonematode, are still in their infancy. Here, we isolated, cloned and characterized two VAPs, named HaVAP1 and HaVAP2, from H. avenae. The two encoded proteins, HaVAP1 and HaVAP2, harbour an SCP-like domain each, but share only 38% identity with each other. HaVAP1 and HaVAP2 are expressed in subventral and dorsal oesophageal glands, respectively. HaVAP1 is expressed mainly at the early stages, whereas HaVAP2 accumulates principally at the late stages. Both HaVAP1 and HaVAP2 are secreted when expressed in Nicotiana benthamiana leaves, but HaVAP1 is delivered into chloroplasts, whereas HaVAP2 is translocated to the nucleus without signal peptides. Knocking down HaVAP1 increased the virulence of H. avenae. In contrast, silencing of HaVAP2 hampered the parasitism of H. avenae. Both HaVAP1 and HaVAP2 suppressed the cell death induced by BAX in N. benthamiana leaves. Moreover, HaVAP2 physically interacted with a CYPRO4-like protein (HvCLP) of Hordeum vulgare in the nucleus of the plant. It is reasonable to speculate that the changes in the transcript of HvCLP are associated with HaVAP2 during the parasitism of H. avenae. All results obtained in this study show that both HaVAP1 and HaVAP2 are involved in the parasitism of H. avenae, but they possess different functions, broadening our understanding of the parasitic mechanism of H. avenae.
Collapse
Affiliation(s)
- Shujie Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
170
|
Yang B, Wang Y, Guo B, Jing M, Zhou H, Li Y, Wang H, Huang J, Wang Y, Ye W, Dong S, Wang Y. The Phytophthora sojae RXLR effector Avh238 destabilizes soybean Type2 GmACSs to suppress ethylene biosynthesis and promote infection. THE NEW PHYTOLOGIST 2019; 222:425-437. [PMID: 30394556 DOI: 10.1111/nph.15581] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/29/2018] [Indexed: 05/06/2023]
Abstract
Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Hao Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yufei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
171
|
Guo B, Wang H, Yang B, Jiang W, Jing M, Li H, Xia Y, Xu Y, Hu Q, Wang F, Yu F, Wang Y, Ye W, Dong S, Xing W, Wang Y. Phytophthora sojae Effector PsAvh240 Inhibits Host Aspartic Protease Secretion to Promote Infection. MOLECULAR PLANT 2019; 12:552-564. [PMID: 30703565 DOI: 10.1016/j.molp.2019.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Plants secrete defense molecules into the extracellular space (the apoplast) to combat attacking microbes. However, the mechanisms by which successful pathogens subvert plant apoplastic immunity remain poorly understood. In this study, we show that PsAvh240, a membrane-localized effector of the soybean pathogen Phytophthora sojae, promotes P. sojae infection in soybean hairy roots. We found that PsAvh240 interacts with the soybean-resistant aspartic protease GmAP1 in planta and suppresses the secretion of GmAP1 into the apoplast. By solving its crystal structure we revealed that PsAvh240 contain six α helices and two WY motifs. The first two α helices of PsAvh240 are responsible for its plasma membrane-localization and are required for PsAvh240's interaction with GmAP1. The second WY motifs of two PsAvh240 molecules form a handshake arrangement resulting in a handshake-like dimer. This dimerization is required for the effector's repression of GmAP1 secretion. Taken together, these data reveal that PsAvh240 localizes at the plasma membrane to interfere with GmAP1 secretion, which represents an effective mechanism by which effector proteins suppress plant apoplastic immunity.
Collapse
Affiliation(s)
- Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Wenjing Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Qinli Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fangfang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, China
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Weiman Xing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
172
|
Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. MOLECULAR PLANT PATHOLOGY 2019; 20:356-371. [PMID: 30320960 PMCID: PMC6637884 DOI: 10.1111/mpp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.
Collapse
Affiliation(s)
- Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhirou Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
173
|
Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H. A Novel G16B09-Like Effector From Heterodera avenae Suppresses Plant Defenses and Promotes Parasitism. FRONTIERS IN PLANT SCIENCE 2019; 10:66. [PMID: 30800135 PMCID: PMC6376208 DOI: 10.3389/fpls.2019.00066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes secrete effectors into host plant tissues to facilitate parasitism. In this study, we identified a G16B09-like effector protein family from the transcriptome of Heterodera avenae, and then verified that most of the members could suppress programmed cell death triggered by BAX in Nicotiana benthamiana. Ha18764, the most homologous to G16B09, was further characterized for its function. Our experimental evidence suggested that Ha18764 was specifically expressed in the dorsal gland and was dramatically upregulated in the J4 stage of nematode development. A Magnaporthe oryzae secretion system in barley showed that the signal peptide of Ha18764 had secretion activity to deliver mCherry into plant cells. Arabidopsis thaliana overexpressing Ha18764 or Hs18764 was more susceptible to Heterodera schachtii. In contrast, BSMV-based host-induced gene silencing (HIGS) targeting Ha18764 attenuated H. avenae parasitism and its reproduction in wheat plants. Transient expression of Ha18764 suppressed PsojNIP, Avr3a/R3a, RBP-1/Gpa2, and MAPK kinases (MKK1 and NPK1Nt)-related cell death in Nicotiana benthamiana. Co-expression assays indicated that Ha18764 also suppressed cell death triggered by four H. avenae putative cell-death-inducing effectors. Moreover, Ha18764 was also shown strong PTI suppression such as reducing the expression of plant defense-related genes, the burst of reactive oxygen species, and the deposition of cell wall callose. Together, our results indicate that Ha18764 promotes parasitism, probably by suppressing plant PTI and ETI signaling in the parasitic stages of H. avenae.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | | |
Collapse
|
174
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
175
|
Pecrix Y, Buendia L, Penouilh‐Suzette C, Maréchaux M, Legrand L, Bouchez O, Rengel D, Gouzy J, Cottret L, Vear F, Godiard L. Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:730-748. [PMID: 30422341 PMCID: PMC6849628 DOI: 10.1111/tpj.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.
Collapse
Affiliation(s)
- Yann Pecrix
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Luis Buendia
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Charlotte Penouilh‐Suzette
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Maude Maréchaux
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Olivier Bouchez
- GeT‐PlaGeUS INRA 1426INRA AuzevilleF‐31326Castanet‐Tolosan CedexFrance
| | - David Rengel
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Jérôme Gouzy
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Cottret
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | | | - Laurence Godiard
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| |
Collapse
|
176
|
Rao W, Zheng X, Liu B, Guo Q, Guo J, Wu Y, Shangguan X, Wang H, Wu D, Wang Z, Hu L, Xu C, Jiang W, Huang J, Shi S, He G. Secretome Analysis and In Planta Expression of Salivary Proteins Identify Candidate Effectors from the Brown Planthopper Nilaparvata lugens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:227-239. [PMID: 30168780 DOI: 10.1094/mpmi-05-18-0122-r] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a phloem sap-feeding insect. During feeding on rice plants, BPH secretes salivary proteins with potential effector functions, which may play a critical role in the plant-insect interactions. However, a limited number of BPH effector proteins have been identified to date. Here, we sequenced the salivary gland transcriptomes of five BPH populations and subsequently established a N. lugens secretome consisting of 1,140 protein-encoding genes. Secretome analysis revealed the presence of both conserved and rapidly evolving salivary proteins. A screen for potential effectors that elicit responses in the plant was performed via the transient expression analysis of 64 BPH salivary proteins in Nicotiana benthamiana leaves and rice protoplasts. The salivary proteins Nl12, Nl16, Nl28, and Nl43 induced cell death, whereas Nl40 induced chlorosis and Nl32 induced a dwarf phenotype in N. benthamiana, indicating effector properties of these proteins. Ectopic expression of the six salivary proteins in N. benthamiana upregulated expression of defense-related genes and callose deposition. Tissue expression analysis showed a higher expression level of the six candidate effectors in salivary glands than in other tissues. Subcellular localization and analysis of the domain required for cell death showed a diverse structure of the six effectors. Nl28, Nl40, and Nl43 are N. lugens specific; in contrast, Nl12, Nl16, and Nl32 are conserved among insects. The Nl40 family has numerous isoforms produced by alternative splicing, exemplifying rapid evolution and expansion of effector proteins in the BPH. Our results suggest a potential large effector repertoire in BPH and a higher level of effector conservation exist in BPH compared with that in plant pathogens.
Collapse
Affiliation(s)
- Weiwei Rao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaohong Zheng
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingfang Liu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qin Guo
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jianping Guo
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yan Wu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinxin Shangguan
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Huiying Wang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Di Wu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhizheng Wang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Liang Hu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chunxue Xu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Weihua Jiang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jin Huang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shaojie Shi
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
177
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
178
|
Wang Y, Wang Y. Phytophthora sojae effectors orchestrate warfare with host immunity. Curr Opin Microbiol 2018; 46:7-13. [PMID: 29454192 DOI: 10.1016/j.mib.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Phytophthora sojae is one of the most damaging plant pathogens of soybean. To aid establishment of a compatible interaction with its host, P. sojae deploys many secreted effectors. These effectors act either in the apoplastic space to cope with hostile conditions or inside of host cells to reprogram host physiology favoring pathogen growth. Effectors have been used as molecular probes, which revealed in Phytophthora that effectors execute their virulence function via manipulating host targets. In addition, recent studies have discovered 'pseudo-effectors' in Phytophthora that act as decoys to shield virulence effectors from host defense, a new paradigm in plant-pathogen interactions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
179
|
Li H, Wang H, Jing M, Zhu J, Guo B, Wang Y, Lin Y, Chen H, Kong L, Ma Z, Wang Y, Ye W, Dong S, Tyler B, Wang Y. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. eLife 2018; 7:e40039. [PMID: 30346270 PMCID: PMC6249003 DOI: 10.7554/elife.40039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Haonan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Maofeng Jing
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Jinyi Zhu
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Baodian Guo
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yang Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yachun Lin
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Han Chen
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Liang Kong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Zhenchuan Ma
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Suomeng Dong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Brett Tyler
- Center for Genome Research and BiocomputingOregon State UniversityCorvallisUnited States
- Department of Botany and Plant PathologyOregon State UniversityCorvallisUnited States
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| |
Collapse
|
180
|
Wang A, Pang L, Wang N, Ai P, Yin D, Li S, Deng Q, Zhu J, Liang Y, Zhu J, Li P, Zheng A. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 2018; 8:15413. [PMID: 30337609 PMCID: PMC6194002 DOI: 10.1038/s41598-018-33752-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2 Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Linxiu Pang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Na Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agricultural Science, Wuhan, Hubei, 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China.
| |
Collapse
|
181
|
Wang Y, Ye W, Wang Y. Genome-wide identification of long non-coding RNAs suggests a potential association with effector gene transcription in Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2018; 19:2177-2186. [PMID: 29665235 PMCID: PMC6638102 DOI: 10.1111/mpp.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 05/08/2023]
Abstract
Numerous long non-coding RNAs (lncRNAs) identified and characterized in mammals, plants and fungi have been found to play critical regulatory roles in biological processes. However, little is known about the role of lncRNAs in oomycete plant pathogens, which cause devastating damage to the economy and ecosystems. We used strand-specific RNA sequencing (RNA-seq) to generate a computational pipeline to identify lncRNAs in Phytophthora sojae, a model oomycete plant pathogen. In total, 940 lncRNAs with 1010 isoforms were identified from RNA-seq data obtained from four representative stages of P. sojae. The lncRNAs had shorter transcript lengths, longer exon lengths, fewer numbers of exons, lower GC content and higher minimum free energy values compared with protein-coding genes. lncRNAs in P. sojae exhibited low sequence conservation amongst oomycetes and P. sojae isolates. Transcriptional data indicated that P. sojae lncRNAs tended to be transcribed in a stage-specific manner; representative lncRNAs were validated by semi-quantitative reverse transcription-polymerase chain reaction. Phytophthora sojae lncRNAs were concentrated in gene-sparse regions, and lncRNAs were associated with secreted protein and effector coding genes. The neighbouring genes of lncRNAs encoded various effector family members, and RNA-seq data revealed a correlation between the transcription level of lncRNAs and their neighbouring genes. Our results provide the first comprehensive identification of lncRNAs in oomycetes and suggest a potential association between lncRNAs and effector genes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsu 210095China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingJiangsu 210095China
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsu 210095China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingJiangsu 210095China
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsu 210095China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingJiangsu 210095China
| |
Collapse
|
182
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
183
|
Luo Y, Qiu Y, Na R, Meerja F, Lu QS, Yang C, Tian L. A Golden Gate and Gateway double-compatible vector system for high throughput functional analysis of genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:117-126. [PMID: 29650149 DOI: 10.1016/j.plantsci.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
A major research topic nowadays is to study and understand the functions of the increasing number of predicted genes that have been discovered through the complete genome sequencing of many plant species. With the aim of developing tools for rapid and convenient gene function analysis, we have developed a set of "pGate" vectors based on the principle of Golden gate and Gateway cloning approaches. These vectors combine the positive aspects of both Golden gate and Gateway cloning strategies. pGate vectors can not only be used as Golden gate recipient vectors to assemble multiple DNA fragments in a pre-defined order, but they can also work as an entry vector to transfer the assembled DNA fragment(s) to a large number of already-existing, functionally diverse, Gateway compatible destination vectors without adding additional nucleotides during cloning. We show the pGate vectors are effective and convenient in several major aspects of gene function analyses, including BiFC (Bimolecular fluorescence complementation) to analyze protein-protein interaction, amiRNA (artificial microRNA) candidate screening and as assembly of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats, CRISPR-associated protein-9 nuclease) system elements together for genome editing. The pGate system is a practical and flexible tool which can facilitate plant gene function research.
Collapse
Affiliation(s)
- Yanjie Luo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Yang Qiu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Farida Meerja
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Department of Biology, Western University, London, ON, N6A5B7, Canada
| | - Qing Shi Lu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada.
| |
Collapse
|
184
|
Rasoolizadeh A, Labbé C, Sonah H, Deshmukh RK, Belzile F, Menzies JG, Bélanger RR. Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC PLANT BIOLOGY 2018; 18:97. [PMID: 29848307 PMCID: PMC5977513 DOI: 10.1186/s12870-018-1312-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/15/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Silicon (Si) is known to protect against biotrophic and hemibiotrophic plant pathogens; however, the mechanisms by which it exerts its prophylactic role remain unknown. In an attempt to obtain unique insights into the mode of action of Si, we conducted a full comparative transcriptomic analysis of soybean (Glycine max) plants and Phytophthora sojae, a hemibiotroph that relies heavily on effectors for its virulence. RESULTS Supplying Si to inoculated plants provided a strong protection against P. sojae over the course of the experiment (21 day). Our results showed that the response of Si-free (Si-) plants to inoculation was characterized early (4 dpi) by a high expression of defense-related genes, including plant receptors, which receded over time as the pathogen progressed into the roots. The infection was synchronized with a high expression of effectors by P. sojae, the nature of which changed over time. By contrast, the transcriptomic response of Si-fed (Si+) plants was remarkably unaffected by the presence of P. sojae, and the expression of effector-coding genes by the pathogen was significantly reduced. CONCLUSION Given that the apoplast is a key site of interaction between effectors and plant defenses and receptors in the soybean-P. sojae complex, as well as the site of amorphous-Si accumulation, our results indicate that Si likely interferes with the signaling network between P. sojae and the plant, preventing or decreasing the release of effectors reaching plant receptors, thus creating a form of incompatible interaction.
Collapse
Affiliation(s)
- Aliyeh Rasoolizadeh
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec City, Québec G1V 0A6 Canada
| | - Caroline Labbé
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec City, Québec G1V 0A6 Canada
| | - Humira Sonah
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec City, Québec G1V 0A6 Canada
| | - Rupesh K. Deshmukh
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec City, Québec G1V 0A6 Canada
| | - François Belzile
- Département de Phytologie and Institue de biologie intégrative et des systèmes, Université Laval, Québec City, Québec Canada
| | - James G. Menzies
- Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Richard R. Bélanger
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec City, Québec G1V 0A6 Canada
| |
Collapse
|
185
|
Zhang M, Feng H, Zhao Y, Song L, Gao C, Xu X, Huang L. Valsa mali Pathogenic Effector VmPxE1 Contributes to Full Virulence and Interacts With the Host Peroxidase MdAPX1 as a Potential Target. Front Microbiol 2018; 9:821. [PMID: 29922244 PMCID: PMC5996921 DOI: 10.3389/fmicb.2018.00821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 01/19/2023] Open
Abstract
The Valsa canker, caused by Valsa mali (V. mali), is a destructive disease of apple in Eastern Asia. Effector proteins are important for fungal pathogenicity. We studied a candidate effector VmPxE1 isolated based on the genome information of V. mali. By using the yeast invertase secretion assay system, VmPxE1 was shown to contain a signal peptide with secretory functions. VmPxE1 can suppress BCL-2-associated X protein (BAX)-induced cell death with a high efficacy of 92% in Nicotiana benthamiana. The expression of VmPxE1 was upregulated during the early infection stage and deletion of VmPxE1 led to significant reductions in virulence on both apple twigs and leaves. VmPxE1 was also shown to target an apple ascorbate peroxidase (MdAPX1) by the yeast two-hybrid screening, bimolecular fluorescence complementation and in vivo co-immunoprecipitation. Sequence phylogenetic analysis suggested that MdAPX1 was an ascorbate peroxidase belonging to a subgroup of heme-dependent peroxidases of the plant superfamily. The ectopic expression of MdAPX1 in the mutant of VmPxE1 significantly enhanced resistance to H2O2, while the presence of VmPxE1 seems to disturb MdAPX1 function. The present results provide insights into the functions of VmPxE1 as a candidate effector of V. mali in causing apple canker.
Collapse
Affiliation(s)
- Mian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuhuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Linlin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiangming Xu
- NIAB East Malling Research, East Malling, United Kingdom
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
186
|
Zhang L, Huang X, He C, Zhang QY, Zou X, Duan K, Gao Q. Novel Fungal Pathogenicity and Leaf Defense Strategies Are Revealed by Simultaneous Transcriptome Analysis of Colletotrichum fructicola and Strawberry Infected by This Fungus. FRONTIERS IN PLANT SCIENCE 2018; 9:434. [PMID: 29922301 PMCID: PMC5996897 DOI: 10.3389/fpls.2018.00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/21/2018] [Indexed: 05/29/2023]
Abstract
Colletotrichum fructicola, which is part of the C. gloeosporioides species complex, can cause anthracnose diseases in strawberries worldwide. However, the molecular interactions between C. fructicola and strawberry are largely unknown. A deep RNA-sequencing approach was applied to gain insights into the pathogenicity mechanisms of C. fructicola and the defense response of strawberry plants at different stages of infection. The transcriptome data showed stage-specific transcription accompanied by a step-by-step strawberry defense response and the evasion of this defense system by fungus. Fungal genes involved in plant cell wall degradation, secondary metabolism, and detoxification were up-regulated at different stage of infection. Most importantly, C. fructicola infection was accompanied by a large number of highly expressed effectors. Four new identified effectors function in the suppression of Bax-mediated programmed cell death. Strawberry utilizes pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity to prevent C. fructicola invasion, followed by the initiation of downstream innate immunity. The up-regulation of genes related to salicylic acid provided evidence that salicylic acid signaling may serve as the core defense signaling mechanism, while jasmonic acid and ethylene pathways were largely inhibited by C. fructicola. The necrotrophic stage displayed a significant up-regulation of genes involved in reactive oxygen species activation. Collectively, the transcriptomic data of both C. fructicola and strawberry shows that even though plants build a multilayered defense against infection, C. fructicola employs a series of escape or antagonizing mechanisms to successfully infect host cells.
Collapse
Affiliation(s)
- Liqing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin Huang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chengyong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Qing-Yu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaohua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Qinghua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
187
|
Tian L, Shi S, Nasir F, Chang C, Li W, Tran LSP, Tian C. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. RICE (NEW YORK, N.Y.) 2018; 11:26. [PMID: 29679239 PMCID: PMC5910329 DOI: 10.1186/s12284-018-0211-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Magnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae. RESULTS In this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively. CONCLUSIONS The response mechanisms to M. oryzae were more complex in wild rice than what was observed in cultivated rice. Therefore, this study may have practical implications for controlling M. oryzae in rice plantings and will provide useful information for incorporating and assessing disease resistance to M. oryzae in rice breeding programs.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weiqiang Li
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
188
|
Carella P, Gogleva A, Tomaselli M, Alfs C, Schornack S. Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc Natl Acad Sci U S A 2018; 115:E3846-E3855. [PMID: 29615512 DOI: 10.1101/188912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The expansion of plants onto land was a formative event that brought forth profound changes to the earth's geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Anna Gogleva
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Marta Tomaselli
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Carolin Alfs
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| |
Collapse
|
189
|
Liu Y, Lan X, Song S, Yin L, Dry IB, Qu J, Xiang J, Lu J. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire. FRONTIERS IN PLANT SCIENCE 2018; 9:286. [PMID: 29706971 PMCID: PMC5908963 DOI: 10.3389/fpls.2018.00286] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate "JL-7-2" genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Yunxiao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Lan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ian B. Dry
- CSIRO Agriculture & Food, Urrbrae, SA, Australia
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
190
|
Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc Natl Acad Sci U S A 2018; 115:E3846-E3855. [PMID: 29615512 PMCID: PMC5910834 DOI: 10.1073/pnas.1717900115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the importance of liverworts as the earliest diverging land plant lineage to support fungal symbiosis, it is unknown whether filamentous pathogens can establish intracellular interactions within living cells of these nonvascular plants. Here, we demonstrate that an oomycete pathogen invades Marchantia polymorpha and related liverworts to form intracellular infection structures inside cells of the photosynthetic layer. Plants lacking this tissue layer display enhanced resistance to infection, revealing an architectural susceptibility factor in complex thalloid liverworts. Moreover, we show that dedicated host cellular trafficking proteins are recruited to pathogen interfaces within liverwort cells, supporting the idea that intracellular responses to microbial invasion originated in nonvascular plants. The expansion of plants onto land was a formative event that brought forth profound changes to the earth’s geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.
Collapse
|
191
|
Dalio RJD, Maximo HJ, Oliveira TS, Dias RO, Breton MC, Felizatti H, Machado M. Phytophthora parasitica Effector PpRxLR2 Suppresses Nicotiana benthamiana Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:481-493. [PMID: 29165046 DOI: 10.1094/mpmi-07-17-0158-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.
Collapse
Affiliation(s)
- R J D Dalio
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H J Maximo
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - T S Oliveira
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - R O Dias
- 2 Instituto de Química, Universidade de São Paulo USP, São Paulo, SP, Brazil; and
| | - M C Breton
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H Felizatti
- 3 Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas Unicamp, Campinas, SP, Brazil
| | - M Machado
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| |
Collapse
|
192
|
Chen XR, Huang SX, Zhang Y, Sheng GL, Li YP, Zhu F. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Mol Genet Genomics 2018; 293:931-943. [PMID: 29572661 DOI: 10.1007/s00438-018-1432-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Phytophthora capsici is a hemibiotrophic, phytopathogenic oomycete that infects a wide range of crops, resulting in significant economic losses worldwide. By means of a diverse arsenal of secreted effector proteins, hemibiotrophic pathogens may manipulate plant cell death to establish a successful infection and colonization. In this study, we described the analysis of the gene family encoding necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) in P. capsici, and identified 39 real NLP genes and 26 NLP pseudogenes. Out of the 65 predicted NLP genes, 48 occur in groups with two or more genes, whereas the remainder appears to be singletons distributed randomly among the genome. Phylogenetic analysis of the 39 real NLPs delineated three groups. Key residues/motif important for the effector activities are degenerated in most NLPs, including the nlp24 peptide consisting of the conserved region I (11-aa immunogenic part) and conserved region II (the heptapeptide GHRHDWE motif) that is important for phytotoxic activity. Transcriptional profiling of eight selected NLP genes indicated that they were differentially expressed during the developmental and plant infection phases of P. capsici. Functional analysis of ten cloned NLPs demonstrated that Pc11951, Pc107869, Pc109174 and Pc118548 were capable of inducing cell death in the Solanaceae, including Nicotiana benthamiana and hot pepper. This study provides an overview of the P. capsici NLP gene family, laying a foundation for further elucidating the pathogenicity mechanism of this devastating pathogen.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China.
| | - Shen-Xin Huang
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China
| | - Ye Zhang
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China
| | - Gui-Lin Sheng
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China
| | - Yan-Peng Li
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, No. 48 Wenhui Eastern Road, Yangzhou, 225009, Jiangsu, China
| |
Collapse
|
193
|
Deb D, Anderson RG, How-Yew-Kin T, Tyler BM, McDowell JM. Conserved RxLR Effectors From Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:374-385. [PMID: 29106332 DOI: 10.1094/mpmi-07-17-0169-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effector proteins are exported to the interior of host cells by diverse plant pathogens. Many oomycete pathogens maintain large families of candidate effector genes, encoding proteins with a secretory leader followed by an RxLR motif. Although most of these genes are very divergent between oomycete species, several genes are conserved between Phytophthora species and Hyaloperonospora arabidopsidis, suggesting that they play important roles in pathogenicity. We describe a pair of conserved effector candidates, HaRxL23 and PsAvh73, from H. arabidopsidis and P. sojae respectively. We show that HaRxL23 is expressed early during infection of Arabidopsis. HaRxL23 triggers an ecotype-specific defense response in Arabidopsis, suggesting that it is recognized by a host surveillance protein. HaRxL23 and PsAvh73 can suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in Nicotiana benthamiana and effector-triggered immunity (ETI) in soybean. Transgenic Arabidopsis constitutively expressing HaRxL23 or PsAvh73 exhibit suppression of PTI and enhancement of bacterial and oomycete virulence. Together, our experiments demonstrate that these conserved oomycete RxLR effectors suppress PTI and ETI across diverse plant species.
Collapse
Affiliation(s)
- Devdutta Deb
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Ryan G Anderson
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Theresa How-Yew-Kin
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Brett M Tyler
- 2 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - John M McDowell
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| |
Collapse
|
194
|
Fouché S, Plissonneau C, Croll D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr Opin Microbiol 2018; 46:34-42. [PMID: 29455143 DOI: 10.1016/j.mib.2018.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
Plant pathogenic fungi and oomycetes are major risks to food security due to their evolutionary success in overcoming plant defences. Pathogens produce effectors to interfere with host defences and metabolism. These effectors are often encoded in rapidly evolving compartments of the genome. We review how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements. Some new effectors entered pathogen genomes via horizontal transfer or introgression. However, new effector functions also arose through gene duplication or from previously non-coding sequences. The evolutionary success of an effector is tightly linked to its transcriptional regulation during host colonization. Some effectors converged on an epigenetic control of expression imposed by genomic defences against transposable elements. Transposable elements were also drivers of effector diversification and loss that led to mosaics in effector presence-absence variation. Such effector mosaics within species was the foundation for rapid pathogen adaptation.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Bretignières, BP 01, Thiverval-Grignon F-78850, France
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
195
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
196
|
Luo X, Cao J, Huang J, Wang Z, Guo Z, Chen Y, Ma S, Liu J. Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean. DNA Res 2018; 25:25-37. [PMID: 28985305 PMCID: PMC5824798 DOI: 10.1093/dnares/dsx035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/16/2017] [Indexed: 01/10/2023] Open
Abstract
Frogeye leaf spot, caused by Cercospora sojina Hara, is a common disease of soybean in most soybean-growing countries of the world. In this study, we report a high-quality genome sequence of C. sojina by Single Molecule Real-Time sequencing method. The 40.8-Mb genome encodes 11,655 predicated genes, and 8,474 genes are revealed by RNA sequencing. Cercospora sojina genome contains large numbers of gene clusters that are involved in synthesis of secondary metabolites, including mycotoxins and pigments. However, much less carbohydrate-binding module protein encoding genes are identified in C. sojina genome, when compared with other phytopathogenic fungi. Bioinformatics analysis reveals that C. sojina harbours about 752 secreted proteins, and 233 of them are effectors. During early infection, the genes for metabolite biosynthesis and effectors are significantly enriched, suggesting that they may play essential roles in pathogenicity. We further identify 13 effectors that can inhibit BAX-induced cell death. Taken together, our results provide insights into the infection mechanisms of C. sojina on soybean.
Collapse
Affiliation(s)
- Xuming Luo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jidong Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junkai Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyi Wang
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing 102206, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shumei Ma
- Department of Plant Protection, College of Agriculture Resources and Environment, Heilongjiang University, Harbin 150080, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
197
|
Zhao M, Wang J, Ji S, Chen Z, Xu J, Tang C, Chen S, Kang Z, Wang X. Candidate Effector Pst_8713 Impairs the Plant Immunity and Contributes to Virulence of Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:1294. [PMID: 30254653 PMCID: PMC6141802 DOI: 10.3389/fpls.2018.01294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/17/2018] [Indexed: 05/20/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust, is an obligate biotrophic pathogen responsible for severe wheat disease epidemics worldwide. Pst and other rust fungi are acknowledged to deliver many effector proteins to the host, but little is known about the effectors' functions. Here, we report a candidate effector Pst_8713 isolated based on the genome data of CY32 and the expression of Pst_8713 is highly induced during the early infection stage. The Pst_8713 gene shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and its product was found in the host cytoplasm and nucleus. Co-infiltrations in Nicotiana benthamiana demonsrated that Pst_8713 was capable of suppressing cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. Overexpression of Pst_8713 in plants suppressed pattern-triggered immunity (PTI) -associated callose deposition and expression of PTI-associated marker genes and promoted bacterial growth in planta. Effector-triggered immunity (ETI) induced by an avirulent Pst isolate was weakened when we overexpressed Pst_8713 in wheat leaves which accompanied by reduction of reactive oxygen species (ROS) accumulation and hypersensitive response (HR). In addition, the host induced gene silencing (HIGS) experiment showed that knockdown of Pst_8713 weakened the virulence of Pst by producing fewer uredinia. These results indicated that candidate effector Pst_8713 is involved in plant defense suppression and contributes to enhancing the Pst virulence.
Collapse
|
198
|
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:268. [PMID: 29552023 PMCID: PMC5841092 DOI: 10.3389/fpls.2018.00268] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 05/19/2023]
Abstract
Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.
Collapse
Affiliation(s)
- Andrew S. Fister
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan
| |
Collapse
|
199
|
Dalio RJD, Herlihy J, Oliveira TS, McDowell JM, Machado M. Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:22-33. [PMID: 29023190 DOI: 10.1094/mpmi-07-17-0174-fi] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-pathogen interactions are controlled by a multilayered immune system, which is activated by pathogen recognition in the host. Pathogens secrete effector molecules to interfere with the immune recognition or signaling network and reprogram cell structure or metabolism. Understanding the effector repertoires of diverse pathogens will contribute to unraveling the molecular mechanism of virulence and developing sustainable disease-control strategies for crops and natural ecosystems. Effector functionality has been investigated extensively in only a small number of pathogen species. However, many more pathogen genomes are becoming available, and much can be learned from a broader view of effector biology in diverse pathosystems. The purpose of this review is to summarize methodology for computational prediction of protein effectors, functional characterization of effector proteins and their targets, and the use of effectors as probes to screen for new sources of host resistance. Although these techniques were generally developed in model pathosystems, many of the approaches are directly applicable for exploration and exploitation of effector biology in pathosystems that are less well studied. We hope to facilitate such exploration, which will broaden understanding of the mechanisms that underpin the biological diversity of plant-pathogen interactions, and maximize the impact of new approaches that leverage effector biology for disease control.
Collapse
Affiliation(s)
- Ronaldo J D Dalio
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| | - John Herlihy
- 2 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Tiago S Oliveira
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| | - John M McDowell
- 2 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Marcos Machado
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| |
Collapse
|
200
|
Yin J, Gu B, Huang G, Tian Y, Quan J, Lindqvist-Kreuze H, Shan W. Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense. FRONTIERS IN PLANT SCIENCE 2017; 8:2155. [PMID: 29312401 PMCID: PMC5742156 DOI: 10.3389/fpls.2017.02155] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/06/2017] [Indexed: 05/20/2023]
Abstract
Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation) and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI) or/and effector-triggered immunity (ETI). The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response) RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection.
Collapse
Affiliation(s)
- Junliang Yin
- College of Plant Protection, Northwest A&F University, Xianyang, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang, China
| | - Biao Gu
- College of Plant Protection, Northwest A&F University, Xianyang, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang, China
- College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Yuee Tian
- College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Junli Quan
- College of Plant Protection, Northwest A&F University, Xianyang, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang, China
| | | | - Weixing Shan
- College of Plant Protection, Northwest A&F University, Xianyang, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang, China
| |
Collapse
|