151
|
Chen C, Zhang Y, Xu Z, Luan A, Mao Q, Feng J, Xie T, Gong X, Wang X, Chen H, He Y. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance. PLoS One 2016; 11:e0163315. [PMID: 27656892 PMCID: PMC5033252 DOI: 10.1371/journal.pone.0163315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple's response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar 'Shenwan' before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance.
Collapse
Affiliation(s)
- Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yafeng Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Zhiqiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Aiping Luan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Qi Mao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Junting Feng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Tao Xie
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xue Gong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xiaoshuang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Hao Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| |
Collapse
|
152
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
153
|
Yoon EK, Dhar S, Lee MH, Song JH, Lee SA, Kim G, Jang S, Choi JW, Choe JE, Kim JH, Lee MM, Lim J. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots. MOLECULAR PLANT 2016; 9:1197-1209. [PMID: 27353361 DOI: 10.1016/j.molp.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.
Collapse
Affiliation(s)
- Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Mi-Hyun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Hyo Song
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu 41566, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
154
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:673-89. [PMID: 27086135 DOI: 10.1007/s11103-016-0480-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/09/2016] [Indexed: 05/20/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
155
|
Abstract
Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.
Collapse
|
156
|
Lee SA, Jang S, Yoon EK, Heo JO, Chang KS, Choi JW, Dhar S, Kim G, Choe JE, Heo JB, Kwon C, Ko JH, Hwang YS, Lim J. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue. MOLECULAR PLANT 2016; 9:870-84. [PMID: 26970019 DOI: 10.1016/j.molp.2016.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 05/21/2023]
Abstract
In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.
Collapse
Affiliation(s)
- Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kwang Suk Chang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 49201, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
157
|
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| |
Collapse
|
158
|
Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:234-248. [PMID: 26996980 DOI: 10.1111/tpj.13171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Sporamin is a tuberous storage protein with trypsin inhibitory activity in sweet potato (Ipomoea batatas Lam.), which accounts for 85% of the soluble protein in tubers. It is constitutively expressed in tuberous roots but is expressed in leaves only after wounding. Thus far, its wound-inducible signal transduction mechanisms remain unclear. In the present work, a 53-bp DNA region, sporamin wound-response cis-element (SWRE), was identified in the sporamin promoter and was determined to be responsible for the wounding response. Using yeast one-hybrid screening, a NAC domain protein, IbNAC1, that specifically bound to the 5'-TACAATATC-3' sequence in SWRE was isolated from a cDNA library from wounded leaves. IbNAC1 was constitutively expressed in root tissues and was induced earlier than sporamin following the wounding of leaves. Transgenic sweet potato plants overexpressing IbNAC1 had greatly increased sporamin expression, increased trypsin inhibitory activity, and elevated resistance against Spodoptera litura. We further demonstrated that IbNAC1 has multiple biological functions in the jasmonic acid (JA) response, including the inhibition of root formation, accumulation of anthocyanin, regulation of aging processes, reduction of abiotic tolerance, and overproduction of reactive oxygen species (ROS). Thus, IbNAC1 is a core transcription factor that reprograms the transcriptional response to wounding via the JA-mediated pathway in sweet potato.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - I Winnie Lin
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xuanyang Chen
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yin-Hao Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shiao-Chi Chang
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Shan Lo
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hseuh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
159
|
Xu Q, Truong TT, Barrero JM, Jacobsen JV, Hocart CH, Gubler F. A role for jasmonates in the release of dormancy by cold stratification in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3497-508. [PMID: 27140440 PMCID: PMC4892733 DOI: 10.1093/jxb/erw172] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.
Collapse
Affiliation(s)
- Qian Xu
- Shandong Agricultural University, College of Agronomy, Taian, Shandong, China CSIRO Agriculture, Canberra ACT 2601, Australia
| | - Thy T Truong
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | | | | | - Charles H Hocart
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | | |
Collapse
|
160
|
Chung K, Nakano T, Fujiwara S, Mitsuda N, Otsuki N, Tsujimoto-Inui Y, Naito Y, Ohme-Takagi M, Suzuki K. The ERF transcription factor EPI1 is a negative regulator of dark-induced and jasmonate-stimulated senescence in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:235-243. [PMID: 31367181 PMCID: PMC6637254 DOI: 10.5511/plantbiotechnology.16.0127a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 05/30/2023]
Abstract
Identification of the factors involved in the regulation of senescence and the analysis of their function are important for both a biological understanding of the senescence mechanism and the improvement of agricultural productivity. In this study, we identified an ERF gene termed "ERF gene conferring Postharvest longevity Improvement 1" (EPI1) as a possible regulator of senescence in Arabidopsis. We found that EPI1 possesses transcriptional repression activity and that the transgenic plants overexpressing EPI1 and expressing its chimeric repressor, EPI1-SRDX, commonly suppressed the darkness-induced senescence in their excised aerial parts. These transgenic plants additionally maintained a high level of chlorophyll, even after the methyl jasmonate (MeJA) treatment, which stimulated senescence in the dark. In addition, we found that senescence-induced and -reduced genes are down- and upregulated, respectively, in the MeJA-treated transgenic plants under darkness. Our results suggest that EPI1 functions as a negative regulator of the dark-induced and JA-stimulated senescence.
Collapse
Affiliation(s)
- KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Toshitsugu Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama 338–8570, Japan
| | - Namie Otsuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Yayoi Tsujimoto-Inui
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Yuki Naito
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama 338–8570, Japan
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305–8566, Japan
| |
Collapse
|
161
|
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2367-86. [PMID: 26896849 PMCID: PMC4809290 DOI: 10.1093/jxb/erw040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Murray Grant
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Bing Zhai
- College of Biological Sciences, China Agricultural University, Beijing 100093, China
| | | | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia The Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland 4072, Australia
| |
Collapse
|
162
|
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2519-2532. [PMID: 26931169 PMCID: PMC4809300 DOI: 10.1093/jxb/erw071] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
163
|
Sharma KD, Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:402. [PMID: 27066044 PMCID: PMC4814731 DOI: 10.3389/fpls.2016.00402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Cold stress modifies anthers' metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA) metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs), GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here, we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.
Collapse
Affiliation(s)
- Kamal D. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
164
|
Chung K, Sakamoto S, Mitsuda N, Suzuki K, Ohme-Takagi M, Fujiwara S. WUSCHEL-RELATED HOMEOBOX 2 is a transcriptional repressor involved in lateral organ formation and separation in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:245-253. [PMID: 31274988 PMCID: PMC6565944 DOI: 10.5511/plantbiotechnology.16.0202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/02/2016] [Indexed: 05/25/2023]
Abstract
In this study, we characterized the function of WUSCHEL-RELATED HOMEOBOX 2 (WOX2) using overexpression, CRES-T, and VP16 fusion techniques. Although the function of WOX2 has been described mainly in embryogenesis, it was unclear whether it also plays a role in the post-embryogenic developmental stage. We found that WOX2 has transcriptional repression activity and that either overexpression of WOX2 or expression of its chimeric repressor causes severe growth defects and other morphological phenotypes by impairing plant organ formation and separation. By contrast, VP16-fused WOX2-expressing plants did not display such severe phenotypic defects. In addition, some of them displayed phenotypic defects such as fusion of organs and induction of undifferentiated cells in the boundary regions of organs where GUS staining was clearly observed in the proWOX2:GUS transgenic plants. We suggest that WOX2 is involved in regulation of lateral organ formation and separation during the post-embryogenic development processes.
Collapse
Affiliation(s)
- KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338–8570, Japan
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338–8570, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| |
Collapse
|
165
|
Poudel AN, Zhang T, Kwasniewski M, Nakabayashi R, Saito K, Koo AJ. Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1396-1408. [PMID: 26968098 DOI: 10.1016/j.bbalip.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 03/06/2016] [Indexed: 12/17/2022]
Abstract
Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Arati N Poudel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Misha Kwasniewski
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
166
|
Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. PLANT CELL REPORTS 2016; 35:655-66. [PMID: 26687967 DOI: 10.1007/s00299-015-1910-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.
Collapse
Affiliation(s)
- Yangyang Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Sospeter Karanja Karungo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Yingying Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Beijing Key Laboratory of Grape Sciences and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
167
|
Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2107-20. [PMID: 26672615 PMCID: PMC4793799 DOI: 10.1093/jxb/erv521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized three IAH members, ILR1, ILL6, and IAR3, for their function in JA and IAA metabolism and signaling. Expression of all three genes in leaves was up-regulated by wounding or JA, but not by IAA. Purified recombinant proteins showed overlapping but distinct substrate specificities for diverse amino acid conjugates of JA and IAA. Perturbed patterns of the endogenous JA profile in plants overexpressing or knocked-out for the three genes were consistent with ILL6 and IAR3, but not ILR1, being the JA amidohydrolases. Increased turnover of JA-Ile in the ILL6- and IAR3-overexpressing plants created symptoms of JA deficiency whereas increased free IAA by overexpression of ILR1 and IAR3 made plants hypersensitive to exogenous IAA conjugates. Surprisingly, ILL6 overexpression rendered plants highly resistant to exogenous IAA conjugates, indicating its interference with IAA conjugate hydrolysis. Fluorescent protein-tagged IAR3 and ILL6 co-localized with the endoplasmic reticulum-localized JA-Ile 12-hydroxylase, CYP94B3. Together, these results demonstrate that in wounded leaves JA-inducible amidohydrolases contribute to regulate active IAA and JA-Ile levels, promoting auxin signaling while attenuating JA signaling. This mechanism represents an example of a metabolic-level crosstalk between the auxin and JA signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Arati N Poudel
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68521, USA
| | - Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
168
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
169
|
Ji X, Nie X, Liu Y, Zheng L, Zhao H, Zhang B, Huo L, Wang Y. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. TREE PHYSIOLOGY 2016; 36:193-207. [PMID: 26786541 DOI: 10.1093/treephys/tpv139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/03/2015] [Indexed: 05/20/2023]
Abstract
Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, Xinjiang, China
| | - Xianguang Nie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040 Harbin, China
| | - Yujia Liu
- College of Food Engineering, Harbin University of Commerce, 1 Xuehai Street, 150028 Harbin, China
| | - Lei Zheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040 Harbin, China
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040 Harbin, China
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040 Harbin, China
| | - Lin Huo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, Xinjiang, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, Xinjiang, China
| |
Collapse
|
170
|
Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, Wang S. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Sci Rep 2015; 5:17587. [PMID: 26625868 PMCID: PMC4667245 DOI: 10.1038/srep17587] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/02/2015] [Indexed: 11/15/2022] Open
Abstract
Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
171
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
172
|
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N Biotechnol 2015; 33:604-613. [PMID: 26581489 DOI: 10.1016/j.nbt.2015.11.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| |
Collapse
|
173
|
Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2015; 15:268. [PMID: 26536863 PMCID: PMC4632686 DOI: 10.1186/s12870-015-0644-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. METHODS TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and catalase (CAT) activities under high salinity and/or dehydration stress. CONCLUSIONS Our results demonstrate that TaNAC29 plays important roles in the senescence process and response to salt and drought stresses. ABA signal pathway and antioxidant enzyme systems are involved in TaNAC29-mediated stress tolerance mechanisms.
Collapse
Affiliation(s)
- Quanjun Huang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Yan Wang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Bin Li
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Kexiu Li
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
174
|
Zhang M, Li S, Nie L, Chen Q, Xu X, Yu L, Fu C. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. PLANT MOLECULAR BIOLOGY 2015; 89:463-473. [PMID: 26445975 DOI: 10.1007/s11103-015-0382-382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/19/2015] [Indexed: 05/26/2023]
Abstract
Methyl jasmonate (MeJA) is one of the most effective inducers of taxol biosynthetic genes, particularly the tasy gene. However, the mechanism underlying the regulation of tasy by MeJA is still unknown. In this study, a 550-bp 5'-flanking sequence was obtained and confirmed as the promoter of the tasy gene. Deletion analysis revealed that the fragment containing a GCC-box from -150 to -131 was the crucial jasmonate (JA)-responsive element, designated as JRE. Using JRE as bait, two binding proteins, namely TcERF12 and TcERF15, were discovered. Sequence alignment and phylogenetic analysis showed that TcERF12 was related to the repressor AtERF3, while TcERF15 was more related to the activator ORA59; these are typical GCC-box-binding ethylene-responsive factors. Both could significantly respond to MeJA for 10 and 4.5 times, respectively, in 0.5 h. When the two TcERFs were overexpressed in Taxus cells, tasy gene expression decreased by 2.1 times in TcERF12-overexpressing cells, but increased by 2.5 times in TcERF15-overexpressing cells. Results indicated that TcERF12 and TcERF15 were negative and positive regulators, respectively, in the JA signal transduction to the tasy gene by binding the GCC-box in the JRE of the tasy promoter. Our results promote further research on regulatory mechanisms of taxol biosynthesis.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Shutao Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Lin Nie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Qingpu Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Xiangping Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
175
|
Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. THE PLANT CELL 2015; 27:3160-74. [PMID: 26530088 PMCID: PMC4682293 DOI: 10.1105/tpc.15.00220] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
The plant hormone jasmonate (JA) plays an important role in regulating growth, development, and immunity. Activation of the JA-signaling pathway is based on the hormone-triggered ubiquitination and removal of transcriptional repressors (JASMONATE-ZIM DOMAIN [JAZ] proteins) by an SCF receptor complex (SCF(COI1)/JAZ). This removal allows the rapid activation of transcription factors (TFs) triggering a multitude of downstream responses. Identification of TFs bound by the JAZ proteins is essential to better understand how the JA-signaling pathway modulates and integrates different responses. In this study, we found that the JAZ3 repressor physically interacts with the YABBY (YAB) family transcription factor FILAMENTOUS FLOWER (FIL)/YAB1. In Arabidopsis thaliana, FIL regulates developmental processes such as axial patterning and growth of lateral organs, shoot apical meristem activity, and inflorescence phyllotaxy. Phenotypic analysis of JA-regulated responses in loss- and gain-of-function FIL lines suggested that YABs function as transcriptional activators of JA-triggered responses. Moreover, we show that MYB75, a component of the WD-repeat/bHLH/MYB complex regulating anthocyanin production, is a direct transcriptional target of FIL. We propose that JAZ3 interacts with YABs to attenuate their transcriptional function. Upon perception of JA signal, degradation of JAZ3 by the SCF(COI1) complex releases YABs to activate a subset of JA-regulated genes in leaves leading to anthocyanin accumulation, chlorophyll loss, and reduced bacterial defense.
Collapse
Affiliation(s)
- Marta Boter
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - John F Golz
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Selena Giménez-Ibañez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
176
|
Zhang M, Li S, Nie L, Chen Q, Xu X, Yu L, Fu C. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. PLANT MOLECULAR BIOLOGY 2015; 89:463-73. [PMID: 26445975 DOI: 10.1007/s11103-015-0382-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/19/2015] [Indexed: 05/10/2023]
Abstract
Methyl jasmonate (MeJA) is one of the most effective inducers of taxol biosynthetic genes, particularly the tasy gene. However, the mechanism underlying the regulation of tasy by MeJA is still unknown. In this study, a 550-bp 5'-flanking sequence was obtained and confirmed as the promoter of the tasy gene. Deletion analysis revealed that the fragment containing a GCC-box from -150 to -131 was the crucial jasmonate (JA)-responsive element, designated as JRE. Using JRE as bait, two binding proteins, namely TcERF12 and TcERF15, were discovered. Sequence alignment and phylogenetic analysis showed that TcERF12 was related to the repressor AtERF3, while TcERF15 was more related to the activator ORA59; these are typical GCC-box-binding ethylene-responsive factors. Both could significantly respond to MeJA for 10 and 4.5 times, respectively, in 0.5 h. When the two TcERFs were overexpressed in Taxus cells, tasy gene expression decreased by 2.1 times in TcERF12-overexpressing cells, but increased by 2.5 times in TcERF15-overexpressing cells. Results indicated that TcERF12 and TcERF15 were negative and positive regulators, respectively, in the JA signal transduction to the tasy gene by binding the GCC-box in the JRE of the tasy promoter. Our results promote further research on regulatory mechanisms of taxol biosynthesis.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Shutao Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Lin Nie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Qingpu Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Xiangping Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
177
|
Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes RW, Callis J, Goossens A. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. PLANT PHYSIOLOGY 2015; 169:1405-17. [PMID: 26320228 PMCID: PMC4587444 DOI: 10.1104/pp.15.00479] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.
Collapse
Affiliation(s)
- Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Hongxia Liu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Yangnan Gu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jan Geerinck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Marta Boter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roberto Solano
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Sophia Stone
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roger W Innes
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Judy Callis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| |
Collapse
|
178
|
Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:44-51. [PMID: 26125498 DOI: 10.1016/j.pbi.2015.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development.
Collapse
Affiliation(s)
- Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China.
| |
Collapse
|
179
|
Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 25903915 DOI: 10.1093/jxb/erv190.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.
Collapse
Affiliation(s)
- Yann Aubert
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177 Université de Strasbourg-Centre National de la Recherche Scientifique, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| |
Collapse
|
180
|
Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3879-92. [PMID: 25903915 PMCID: PMC4473988 DOI: 10.1093/jxb/erv190] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.
Collapse
Affiliation(s)
- Yann Aubert
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177 Université de Strasbourg-Centre National de la Recherche Scientifique, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| |
Collapse
|
181
|
Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. THE PLANT CELL 2015; 27:1634-49. [PMID: 26071420 PMCID: PMC4498205 DOI: 10.1105/tpc.15.00110] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 05/20/2023]
Abstract
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plant development, serves as an important endogenous signal to activate senescence-associated gene expression and induce leaf senescence. This study revealed one of the mechanisms underlying JA-induced leaf senescence: antagonistic interactions of the bHLH subgroup IIIe factors MYC2, MYC3, and MYC4 with the bHLH subgroup IIId factors bHLH03, bHLH13, bHLH14, and bHLH17. We showed that MYC2, MYC3, and MYC4 function redundantly to activate JA-induced leaf senescence. MYC2 binds to and activates the promoter of its target gene SAG29 (SENESCENCE-ASSOCIATED GENE29) to activate JA-induced leaf senescence. Interestingly, plants have evolved an elaborate feedback regulation mechanism to modulate JA-induced leaf senescence: The bHLH subgroup IIId factors (bHLH03, bHLH13, bHLH14, and bHLH17) bind to the promoter of SAG29 and repress its expression to attenuate MYC2/MYC3/MYC4-activated JA-induced leaf senescence. The antagonistic regulation by activators and repressors would mediate JA-induced leaf senescence at proper level suitable for plant survival in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hua Gao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yule Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
182
|
Thireault C, Shyu C, Yoshida Y, St Aubin B, Campos ML, Howe GA. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:669-79. [PMID: 25846245 DOI: 10.1111/tpj.12841] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 05/22/2023]
Abstract
JAsmonate ZIM-domain (JAZ) proteins repress the activity of transcription factors that execute responses to the plant hormone jasmonoyl-L-isoleucine (JA-Ile). The ZIM protein domain recruits the co-repressors NINJA and TOPLESS to JAZ-bound transcription factors, and contains a highly conserved TIF[F/Y]XG motif that defines the larger family of TIFY proteins to which JAZs belong. Here, we report that diverse plant species contain genes encoding putative non-TIFY JAZ proteins, including a previously unrecognized JAZ repressor in Arabidopsis (JAZ13, encoded by At3g22275). JAZ13 is most closely related to JAZ8 and includes divergent EAR, TIFY/ZIM, and Jas motifs. Unlike JAZ8, however, JAZ13 contains a Ser-rich C-terminal tail that is a site for phosphorylation. Overexpression of JAZ13 resulted in reduced sensitivity to JA, attenuation of wound-induced expression of JA-response genes, and decreased resistance to insect herbivory. JAZ13 interacts with the bHLH transcription factor MYC2 and the co-repressor TOPLESS but, consistent with the absence of a TIFY motif, neither NINJA nor other JAZs. Analysis of single and higher-order T-DNA insertion jaz null mutants provided further evidence that JAZ13 is a repressor JA signaling. Our results demonstrate that proteins outside the TIFY family are functional JAZ repressors and further suggest that this expansion of the JAZ family allows fine-tuning of JA-mediated transcriptional responses.
Collapse
Affiliation(s)
- Caitlin Thireault
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christine Shyu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuki Yoshida
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Brian St Aubin
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
183
|
Tsuda K, Somssich IE. Transcriptional networks in plant immunity. THE NEW PHYTOLOGIST 2015; 206:932-947. [PMID: 25623163 DOI: 10.1111/nph.13286] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| |
Collapse
|
184
|
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. TRENDS IN PLANT SCIENCE 2015; 20:219-29. [PMID: 25731753 DOI: 10.1016/j.tplants.2015.02.001] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, Australia; The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland, Australia.
| |
Collapse
|
185
|
Adal AM, Demissie ZA, Mahmoud SS. Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. PLANTA 2015; 241:987-1004. [PMID: 25534945 DOI: 10.1007/s00425-014-2226-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
186
|
Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:170. [PMID: 25859250 PMCID: PMC4373269 DOI: 10.3389/fpls.2015.00170] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.
Collapse
Affiliation(s)
| | | | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
187
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|
188
|
Zhu Z, Lee B. Friends or foes: new insights in jasmonate and ethylene co-actions. PLANT & CELL PHYSIOLOGY 2015; 56:414-20. [PMID: 25435545 DOI: 10.1093/pcp/pcu171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One strategy for sessile plants to adapt to their surrounding environment involves the modulation of their various internal phytohormone signaling and distributions when the plants sense environmental change. There are currently dozens of identified phytohormones in plant cells and they act in concert to regulate plant growth, development, metabolism and defense. It has been determined that phytohormones often act together to achieve certain physiological functions. Thus, the study of hormone-hormone interactions is becoming a competitive research field for deciphering the underlying regulatory mechanisms. Among phytohormones, jasmonate and ethylene present a fascinating case of synergism and antagonism. They are commonly recognized as defense hormones that act synergistically. Plants impaired in jasmonate and/or ethylene signaling are susceptible to infections by necrotrophic fungi, suggesting that these two hormones are both required for defense. Moreover, jasmonate and ethylene also act antagonistically, such as in the regulation of apical hook development and wounding responses. Here, we highlight the recent breakthroughs in the understanding of jasmonate-ethylene co-actions and point out the potential power of studying protein-protein interactions for systematically exploring signal cross-talk.
Collapse
Affiliation(s)
- Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Benjamin Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
189
|
Wu H, Ye H, Yao R, Zhang T, Xiong L. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:1-12. [PMID: 25617318 DOI: 10.1016/j.plantsci.2014.12.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/21/2023]
Abstract
The basic functions of plant-specific TIFY proteins as transcriptional regulators have been reported in plants. Some TIFY genes are responsive to abiotic stresses, but the functions of these genes in stress tolerance have seldom been reported. OsJAZ9 is a member of the JAZ subfamily which belongs to the TIFY gene family in rice (Oryza sativa). Suppression of OsJAZ9 resulted in reduced salt tolerance. The altered salt tolerance was mainly due to changes in ion (especially K(+)) homeostasis, which was supported by the altered expression levels of several ion transporter genes. The OsJAZ9-suppression rice plants showed increased sensitivity to jasmonic acid (JA) treatment. OsJAZ9 interacts with OsCOI1a, a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner, suggesting that OsJAZ9 is involved in the regulation of JA signaling. OsJAZ9 interacts with several bHLH transcription factors including OsbHLH062 via the Jas domain. OsbHLH062 can bind to an E-box in the promoters of the ion transporter genes such as OsHAK21, and most of these ion transporter genes are responsive to JA treatment. We found that OsJAZ9 can also interact with OsNINJA, a rice homolog of the Arabidopsis thaliana transcriptional repressor NINJA in JA signaling. Both OsJAZ9 and OsNINJA (Novel Interactor of JAZ) repressed OsbHLH062-mediated transcription activation. These results together suggest that OsJAZ9 acts as a transcriptional regulator by forming a transcriptional regulation complex with OsNINJA and OsbHLH to fine tune the expression of JA-responsive genes involved in salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
190
|
Figueroa P, Browse J. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:849-60. [PMID: 25627909 DOI: 10.1111/tpj.12776] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 05/11/2023]
Abstract
Jasmonate hormone (JA) plays critical roles in both plant defense and reproductive development. Arabidopsis thaliana plants deficient in JA-biosynthesis or -signaling are male-sterile, with defects in stamen and pollen development. MYC2, MYC3 and MYC4 are JAZ-interacting bHLH transcription factors that play a major role in controlling JA responses in vegetative tissue, but are not likely to play a role in reproductive tissue. We found that a closely related transcription factor, MYC5 (bHLH28), was able to induce JAZ promoters that control some of the early JA-responsive genes in a Daucus carota (carrot) protoplast expression system. A G-box sequence in the JAZ2 promoter was necessary and sufficient for induction by MYC5 (as it is for MYC2, MYC3 and MYC4), and induction of JAZ genes was repressed by co-expression of a stabilized, JAZ1ΔJas repressor. Two allelic myc5 mutants exhibited no overt phenotype; however, transgenic lines expressing MYC5 fused to an SRDX (SUPERMAN repressive domain X) motif phenocopied mutants defective in JA signaling. In particular, MYC5-SRDX plants were male-sterile, with defects in stamen filament elongation, anther dehiscence and pollen viability. Importantly, expression of MYB21 and other transcription factors required for stamen and pollen maturation was strongly reduced in stamens of MYC5-SRDX plants relative to the wild type. Taken together, these results indicate that MYC5, probably together with other, redundant transcription factors, may be activated by JA signaling to induce the expression of MYB21 and components required for male fertility.
Collapse
Affiliation(s)
- Pablo Figueroa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | | |
Collapse
|
191
|
Vermeirssen V, De Clercq I, Van Parys T, Van Breusegem F, Van de Peer Y. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress. THE PLANT CELL 2014; 26:4656-79. [PMID: 25549671 PMCID: PMC4311199 DOI: 10.1105/tpc.114.131417] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 05/19/2023]
Abstract
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation.
Collapse
Affiliation(s)
- Vanessa Vermeirssen
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Thomas Van Parys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
192
|
Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ. Promoter-based integration in plant defense regulation. PLANT PHYSIOLOGY 2014; 166:1803-20. [PMID: 25352272 PMCID: PMC4256871 DOI: 10.1104/pp.114.248716] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 05/18/2023]
Abstract
A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive glucosinolate metabolites in Arabidopsis (Arabidopsis thaliana). A systematic yeast one-hybrid study was used to identify hundreds of unique potential regulatory interactions with a nearly complete complement of 21 promoters for the aliphatic glucosinolate pathway. Conducting high-throughput phenotypic validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses to the local environment. Furthermore, the pattern of TF/promoter interactions could partially explain mutant phenotypes. This work shows that defense chemistry within Arabidopsis has a highly intricate transcriptional regulatory system that may allow for the optimization of defense metabolite accumulation across a broad array of environments.
Collapse
Affiliation(s)
- Baohua Li
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Allison Gaudinier
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Michelle Tang
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Mallorie Taylor-Teeples
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Ngoc T Nham
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Cyrus Ghaffari
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Darik Scott Benson
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Margaret Steinmann
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Jennifer A Gray
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Siobhan M Brady
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Daniel J Kliebenstein
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| |
Collapse
|
193
|
Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 2014; 289:29728-38. [PMID: 25210037 PMCID: PMC4207986 DOI: 10.1074/jbc.m114.603084] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Indexed: 01/13/2023] Open
Abstract
The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-L-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses.
Collapse
Affiliation(s)
- Abraham J Koo
- From the Department of Energy-Plant Research Laboratory and the Division of Biochemistry, Interdisciplinary Plant Group, and
| | | | - Starla Zemelis
- From the Department of Energy-Plant Research Laboratory and
| | - Arati N Poudel
- the Division of Biochemistry, Interdisciplinary Plant Group, and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Tong Zhang
- the Division of Biochemistry, Interdisciplinary Plant Group, and
| | - Naoki Kitaoka
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | | | - Hideyuki Matsuura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and
| | - Gregg A Howe
- From the Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
194
|
Song S, Qi T, Wasternack C, Xie D. Jasmonate signaling and crosstalk with gibberellin and ethylene. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:112-119. [PMID: 25064075 DOI: 10.1016/j.pbi.2014.07.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, D-06120 Halle (Saale), Germany
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
195
|
Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:349-69. [PMID: 25049362 PMCID: PMC4149720 DOI: 10.1104/pp.114.240887] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/20/2014] [Indexed: 05/18/2023]
Abstract
By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Bettina Berger
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| |
Collapse
|
196
|
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 2014; 15:702. [PMID: 25149281 PMCID: PMC4161901 DOI: 10.1186/1471-2164-15-702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 μM iron(III) nitrate nonahydrate) with iron deficient media (50 μM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.
Collapse
Affiliation(s)
- Adrienne N Moran Lauter
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Gregory A Peiffer
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Tengfei Yin
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Steven A Whitham
- />Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 USA
| | - Dianne Cook
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Randy C Shoemaker
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| | - Michelle A Graham
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
197
|
Xu F, Kapos P, Cheng YT, Li M, Zhang Y, Li X. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 2014; 10:e1004312. [PMID: 25144198 PMCID: PMC4140859 DOI: 10.1371/journal.ppat.1004312] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022] Open
Abstract
In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. In plants and animals, NLR immune receptors are utilized to detect pathogen-derived molecules and activate immunity. However, the mechanisms of plant NLR activation remain unclear. Here, we report on bHLH84, which functions as a transcriptional activator. Simultaneously knocking out three closely related bHLH paralogs partially suppresses the autoimmunity of snc1 and compromises RPS4-mediated defense, while overexpression of these close paralogs renders strong autoimmunity, suggesting functional redundancy in the gene family. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4. Therefore bHLH84 family transcription factors associate with these NLRs to activate defense responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition.
Collapse
Affiliation(s)
- Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
198
|
Phytochrome regulation of plant immunity in vegetation canopies. J Chem Ecol 2014; 40:848-57. [PMID: 25063023 DOI: 10.1007/s10886-014-0471-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/05/2023]
Abstract
Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.
Collapse
|
199
|
Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 2014; 109:290-308. [PMID: 25065648 DOI: 10.1016/j.jprot.2014.07.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Drought is a major form of abiotic stress that significantly affects plant growth and development. In this study, we performed the first phosphoproteome analysis of seedling leaves from two bread wheat cultivars (Hanxuan 10 and Ningchun 47) subjected to drought stress. As a result, a total of 191 and 251 unique phosphopeptides, representing 173 and 227 phosphoproteins in two cultivars, respectively, were identified as being significant changes in phosphorylation level (SCPL) under drought stress. Through the comparison of SCPL phosphoproteins between two cultivars, 31 common SCPL phosphoproteins were found in both cultivars. Function analysis showed that the SCPL phosphoproteins in the two cultivars are mainly involved in three biological processes: RNA transcription/processing, stress/detoxification/defense, and signal transduction. Further analyses revealed that some SCPL phosphoproteins may play key roles in signal transduction and the signaling cascade under drought stress. Furthermore, some phosphoproteins related to drought tolerance and osmotic regulation exhibited significant phosphorylation changes. This study used a series of bioinformatics tools to profile the phosphorylation status of wheat seedling leaves under drought stress with greater accuracy. BIOLOGICAL SIGNIFICANCE Drought is of the most studied abiotic stresses, because it severely restricts the development and yield of plants. In this study, large numbers of stress-related phosphoproteins are identified from the two bread wheat cultivars. These phosphoproteins contribute to signal transduction, osmotic regulation and ROS scavenging under water stress. This work provides a detailed insight into the mechanisms of drought response and defense in bread wheat from the perspective of phosphoproteomics, and identifies some important drought-tolerant candidates for further transgenosis study and incorporation into the breeding of resistant cultivars.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Dongwen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Pei Ge
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Guanxing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| |
Collapse
|
200
|
Rational design of a ligand-based antagonist of jasmonate perception. Nat Chem Biol 2014; 10:671-6. [PMID: 24997606 DOI: 10.1038/nchembio.1575] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/21/2014] [Indexed: 01/30/2023]
Abstract
(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) regulates developmental and stress responses in plants. Its perception involves the formation of a ternary complex with the F-box COI1 and a member of the JAZ family of co-repressors and leads to JAZ degradation. Coronatine (COR) is a bacterial phytotoxin that functionally mimics JA-Ile and interacts with the COI1-JAZ co-receptor with higher affinity than JA-Ile. On the basis of the co-receptor structure, we designed ligand derivatives that spatially impede the interaction of the co-receptor proteins and, therefore, should act as competitive antagonists. One derivative, coronatine-O-methyloxime (COR-MO), has strong activity in preventing the COI1-JAZ interaction, JAZ degradation and the effects of JA-Ile or COR on several JA-mediated responses in Arabidopsis thaliana. Moreover, it potentiates plant resistance, preventing the effect of bacterially produced COR during Pseudomonas syringae infections in different plant species. In addition to the utility of COR-MO for plant biology research, our results underscore its biotechnological potential for safer and sustainable agriculture.
Collapse
|