151
|
Egusa SF, Inoue YU, Asami J, Terakawa YW, Hoshino M, Inoue T. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area. Neurosci Res 2016; 105:49-64. [DOI: 10.1016/j.neures.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022]
|
152
|
Chen F, Becker A, LoTurco J. Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery. ACTA ACUST UNITED AC 2016; 72:14.37.1-14.37.12. [PMID: 26995546 DOI: 10.1002/0471141755.ph1437s72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many animal models have been developed to investigate the sources of central nervous system (CNS) tumor heterogeneity. Reviewed in this unit is a recently developed CNS tumor model using the piggyBac transposon system delivered by in utero electroporation, in which sources of tumor heterogeneity can be conveniently studied. Their applications for studying CNS tumors and drug discovery are also reviewed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn.,Current address: Department of Neurology, Yale School of Medicine, New Haven, Conn
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Conn
| |
Collapse
|
153
|
Abstract
An "organizer" is formally defined as a region, or group of cells in an embryo that can both induce (change the fate) and pattern (generate an organized set of structures) adjacent embryonic cells. To date, about four such regions have been demonstrated: the primary or Spemann organizer (Hensen's node in amniotes), the notochord, the zone of polarizing activity of the limb bud, and the mid-hindbrain boundary. Here we review the evidence for these and compare them with a few other regions which have been proposed to represent other organizers and we speculate on why so few such regions have been discovered.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Claudio D Stern
- Department of Cell & Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
154
|
CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep 2016; 6:20611. [PMID: 26857612 PMCID: PMC4746659 DOI: 10.1038/srep20611] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/08/2016] [Indexed: 01/23/2023] Open
Abstract
The CRISPR/Cas9 system has recently been adapted for generating knockout mice to investigate physiological functions and pathological mechanisms. Here, we report a highly efficient procedure for brain-specific disruption of genes of interest in vivo. We constructed pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor and is responsible for callosal axon projections in the developing mouse brain. We first confirmed that these constructs efficiently induced double-strand breaks (DSBs) in target sites of exogenous plasmids both in vitro and in vivo. We then found that the introduction of pX330-Satb2 into the developing mouse brain using in utero electroporation led to a dramatic reduction of Satb2 expression in the transfected cerebral cortex, suggesting DSBs had occurred in the Satb2 gene with high efficiency. Furthermore, we found that Cas9-mediated targeting of the Satb2 gene induced abnormalities in axonal projection patterns, which is consistent with the phenotypes previously observed in Satb2 mutant mice. Introduction of pX330-NeuN using our procedure also resulted in the efficient disruption of the NeuN gene. Thus, our procedure combining the CRISPR/Cas9 system and in utero electroporation is an effective and rapid approach to achieve brain-specific gene knockout in vivo.
Collapse
|
155
|
Szczurkowska J, Cwetsch AW, dal Maschio M, Ghezzi D, Ratto GM, Cancedda L. Targeted in vivo genetic manipulation of the mouse or rat brain by in utero electroporation with a triple-electrode probe. Nat Protoc 2016; 11:399-412. [DOI: 10.1038/nprot.2016.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
156
|
Rash BG, Ackman JB, Rakic P. Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation. SCIENCE ADVANCES 2016; 2:e1501733. [PMID: 26933693 PMCID: PMC4771444 DOI: 10.1126/sciadv.1501733] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 05/06/2023]
Abstract
Cortical columns are basic cellular and functional units of the cerebral cortex that are malformed in many brain disorders, but how they initially develop is not well understood. Using an optogenetic sensor in the mouse embryonic forebrain, we demonstrate that Ca(2+) fluxes propagate bidirectionally within the elongated fibers of radial glial cells (RGCs), providing a novel communication mechanism linking the proliferative and postmitotic zones before the onset of synaptogenesis. Our results indicate that Ca(2+) activity along RGC fibers provides feedback information along the radial migratory pathway, influencing neurogenesis and migration during early column development. Furthermore, we find that this columnar Ca(2+) propagation is induced by Notch and fibroblast growth factor activities classically implicated in cortical expansion and patterning. Thus, cortical morphogens and growth factors may influence cortical column assembly in part by regulating long-distance Ca(2+) communication along the radial axis of cortical development.
Collapse
Affiliation(s)
- Brian G. Rash
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - James B. Ackman
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA
- Corresponding author. E-mail:
| |
Collapse
|
157
|
Krienen FM, Yeo BTT, Ge T, Buckner RL, Sherwood CC. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci U S A 2016; 113:E469-78. [PMID: 26739559 PMCID: PMC4739529 DOI: 10.1073/pnas.1510903113] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.
Collapse
Affiliation(s)
- Fenna M Krienen
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052;
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, Singapore Institute for Neurotechnology & Memory Networks Program, National University of Singapore, Singapore 117583; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Tian Ge
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052
| |
Collapse
|
158
|
Baumgart J, Baumgart N. Cortex-, Hippocampus-, Thalamus-, Hypothalamus-, Lateral Septal Nucleus- and Striatum-specific In Utero Electroporation in the C57BL/6 Mouse. J Vis Exp 2016:e53303. [PMID: 26862715 DOI: 10.3791/53303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In utero electroporation is a widely used technique for fast and efficient spatiotemporal manipulation of various genes in the rodent central nervous system. Overexpression of desired genes is just as possible as shRNA mediated loss-of-function studies. Therefore it offers a wide range of applications. The feasibility to target particular cells in a distinct area further increases the range of potential applications of this very useful method. For efficiently targeting specific regions knowledge about the subtleties, such as the embryonic stage, the voltage to apply and most importantly the position of the electrodes, is indispensable. Here, we provide a detailed protocol that allows for specific and efficient in utero electroporation of several regions of the C57BL/6 mouse central nervous system. In particular it is shown how to transfect regions the develop into the retrosplenial cortex, the motor cortex, the somatosensory cortex, the piriform cortex, the cornu ammonis 1-3, the dentate gyrus, the striatum, the lateral septal nucleus, the thalamus and the hypothalamus. For this information about the appropriate embryonic stage, the appropriate voltage for the corresponding embryonic stage is provided. Most importantly an angle-map, which indicates the appropriate position of the positive pole, is depicted. This standardized protocol helps to facilitate efficient in utero electroporation, which might also lead to a reduced number of animals.
Collapse
Affiliation(s)
- Jan Baumgart
- TARC (Translational Animal Research Center), University Medical Center, JGU Mainz
| | - Nadine Baumgart
- TARC (Translational Animal Research Center), University Medical Center, JGU Mainz;
| |
Collapse
|
159
|
Golonzhka O, Nord A, Tang PLF, Lindtner S, Ypsilanti AR, Ferretti E, Visel A, Selleri L, Rubenstein JLR. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 2015; 88:1192-1207. [PMID: 26671461 DOI: 10.1016/j.neuron.2015.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate.
Collapse
Affiliation(s)
- Olga Golonzhka
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA; Acetylon Pharmaceuticals, 70 Fargo Street, Suite 205, Boston, MA 02210, USA.
| | - Alex Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Paul L F Tang
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA; The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
160
|
Montiel JF, Aboitiz F. Pallial patterning and the origin of the isocortex. Front Neurosci 2015; 9:377. [PMID: 26512233 PMCID: PMC4604247 DOI: 10.3389/fnins.2015.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Together with a complex variety of behavioral, physiological, morphological, and neurobiological innovations, mammals are characterized by the development of an extensive isocortex (also called neocortex) that is both laminated and radially organized, as opposed to the brain of birds and reptiles. In this article, we will advance a developmental hypothesis in which the mechanisms of evolutionary brain growth remain partly conserved across amniotes (mammals, reptiles and birds), all based on Pax6 signaling or related morphogens. Despite this conservatism, only in mammals there is an additional upregulation of dorsal and anterior signaling centers (the cortical hem and the anterior forebrain, respectively) that promoted a laminar and a columnar structure into the neocortex. It is possible that independently, some birds also developed an upregulated dorsal pallium.
Collapse
Affiliation(s)
- Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
161
|
Mechanisms of FGF gradient formation during embryogenesis. Semin Cell Dev Biol 2015; 53:94-100. [PMID: 26454099 DOI: 10.1016/j.semcdb.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Collapse
|
162
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
163
|
Rubinov M, Ypma RJF, Watson C, Bullmore ET. Wiring cost and topological participation of the mouse brain connectome. Proc Natl Acad Sci U S A 2015; 112:10032-7. [PMID: 26216962 PMCID: PMC4538676 DOI: 10.1073/pnas.1420315112] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of "wiring cost" explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions.
Collapse
Affiliation(s)
- Mikail Rubinov
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Churchill College, University of Cambridge, Cambridge CB3 0DS, United Kingdom;
| | - Rolf J F Ypma
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Hughes Hall, University of Cambridge, Cambridge CB1 2EW, United Kingdom
| | - Charles Watson
- Neuroscience Research Australia, University of New South Wales, Sydney NSW 2031, Australia; Faculty of Health Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon PE29 3RJ, United Kingdom; Alternative Discovery and Development, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
164
|
Hoch RV, Lindtner S, Price JD, Rubenstein JLR. OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 2015; 12:482-94. [PMID: 26166575 DOI: 10.1016/j.celrep.2015.06.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022] Open
Abstract
The Otx2 homeodomain transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after neurulation (approximately embryonic day 9.0). We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used chromatin immunoprecipitation sequencing to identify enhancer elements, the OTX2 binding motif, and de-regulated genes that are likely direct targets of OTX2 transcriptional regulation. We found that Otx2 was essential in septum specification, regulation of Fgf signaling in the rostral telencephalon, and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral, but not dorsal, identity, thus controlling the production of specific MGE derivatives.
Collapse
Affiliation(s)
- Renée V Hoch
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James D Price
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
165
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
166
|
Lim JS, Lee JH. Molecular genetic decoding of malformations of cortical development. ACTA ACUST UNITED AC 2015. [DOI: 10.5734/jgm.2015.12.1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jae Seok Lim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
167
|
Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G, Walsh K, Miller R, Arias F, Semanek D, Perera F. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015; 72:531-40. [PMID: 25807066 PMCID: PMC4456286 DOI: 10.1001/jamapsychiatry.2015.57] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and neurotoxic environmental contaminants. Prenatal PAH exposure is associated with subsequent cognitive and behavioral disturbances in childhood. OBJECTIVES To identify the effects of prenatal PAH exposure on brain structure and to assess the cognitive and behavioral correlates of those abnormalities in school-age children. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional imaging study in a representative community-based cohort followed up prospectively from the fetal period to ages 7 to 9 years. The setting was urban community residences and an academic imaging center. Participants included a sample of 40 minority urban youth born to Latina (Dominican) or African American women. They were recruited between February 2, 1998, and March 17, 2006. MAIN OUTCOMES AND MEASURES Morphological measures that index local volumes of the surface of the brain and of the white matter surface after cortical gray matter was removed. RESULTS We detected a dose-response relationship between increased prenatal PAH exposure (measured in the third trimester but thought to index exposure for all of gestation) and reductions of the white matter surface in later childhood that were confined almost exclusively to the left hemisphere of the brain and that involved almost its entire surface. Reduced left hemisphere white matter was associated with slower information processing speed during intelligence testing and with more severe externalizing behavioral problems, including attention-deficit/hyperactivity disorder symptoms and conduct disorder problems. The magnitude of left hemisphere white matter disturbances mediated the significant association of PAH exposure with slower processing speed. In addition, measures of postnatal PAH exposure correlated with white matter surface measures in dorsal prefrontal regions bilaterally when controlling for prenatal PAH. CONCLUSIONS AND RELEVANCE Our findings suggest that prenatal exposure to PAH air pollutants contributes to slower processing speed, attention-deficit/hyperactivity disorder symptoms, and externalizing problems in urban youth by disrupting the development of left hemisphere white matter, whereas postnatal PAH exposure contributes to additional disturbances in the development of white matter in dorsal prefrontal regions.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Institute for the Developing Mind, Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles California
| | - Virginia A. Rauh
- Heilbrunn Center for Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York 10032
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Ravi Bansal
- Institute for the Developing Mind, Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles California
| | - Xuejun Hao
- Department of Psychiatry, Columbia College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York
| | - Zachary Toth
- Department of Psychiatry, Columbia College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York
| | - Giancarlo Nati
- Institute for the Developing Mind, Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles California
| | - Kirwan Walsh
- Department of Psychiatry, Columbia College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York
| | - Rachel Miller
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York 10032
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia College of Physicians and Surgeons
| | - Franchesca Arias
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - David Semanek
- Department of Psychiatry, Columbia College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York
| | - Frederica Perera
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
168
|
Bullmann T, Arendt T, Frey U, Hanashima C. A transportable, inexpensive electroporator for in utero electroporation. Dev Growth Differ 2015; 57:369-377. [PMID: 25988525 DOI: 10.1111/dgd.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/14/2023]
Abstract
Electroporation is a useful technique to study gene function during development but its broad application is hampered due to the expensive equipment needed. We describe the construction of a transportable, simple and inexpensive electroporator delivering square pulses with varying length and amplitude. The device was successfully used for in utero electroporation in mouse with a performance comparable to that of commercial products.
Collapse
Affiliation(s)
- Torsten Bullmann
- Frey Initiative Research Unit, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstraβe 19, 04103, Leipzig, Germany
| | - Thomas Arendt
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstraβe 19, 04103, Leipzig, Germany
| | - Urs Frey
- Frey Initiative Research Unit, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
169
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1461] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
170
|
Tabata H. Diverse subtypes of astrocytes and their development during corticogenesis. Front Neurosci 2015; 9:114. [PMID: 25904839 PMCID: PMC4387540 DOI: 10.3389/fnins.2015.00114] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian central nervous system, and are known to have a wide variety of physiological functions, including maintenance of neurons, formation of the blood brain barrier, and regulation of synapse functions. Although the migration and positioning of neurons has been extensively studied over the last several decades and many aspects have been uncovered, the process underlying glial development was largely unknown until recently due to the existence of multiple subtypes of glia and the sustained proliferative ability of these cells through adulthood. To overcome these difficulties, new gene transfer techniques and genetically modified mice were developed, and have been gradually revealing when and how astrocytes develop during corticogenesis. In this paper, I review the diversity of astrocytes and summarize our knowledge about their production and migration.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Aichi Human Service Center, Institute for Developmental Research Kasugai, Japan
| |
Collapse
|
171
|
Hoch RV, Clarke JA, Rubenstein JLR. Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev 2015; 10:8. [PMID: 25889070 PMCID: PMC4416298 DOI: 10.1186/s13064-015-0037-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/06/2015] [Indexed: 01/17/2023] Open
Abstract
Background The rostral patterning center (RPC) secretes multiple fibroblast growth factors (Fgfs) essential for telencephalon growth and patterning. Fgf expression patterns suggest that they mark functionally distinct RPC subdomains. We generated Fgf8CreER and Fgf17CreER mice and used them to analyze the lineages of Fgf8- versus Fgf17-expressing RPC cells. Results Both lineages contributed to medial structures of the rostroventral telencephalon structures including the septum and medial prefrontral cortex. In addition, RPC-derived progenitors were observed in other regions of the early telencephalic neuroepithelium and generated neurons in the olfactory bulb, neocortex, and basal ganglia. Surprisingly, Fgf8+ RPC progenitors generated the majority of basal ganglia cholinergic neurons. Compared to the Fgf8 lineage, the Fgf17 lineage was more restricted in its early dispersion and its contributions to the telencephalon. Mutant studies suggested that Fgf8 and Fgf17 restrict spread of RPC progenitor subpopulations. Conclusions We identified the RPC as an important source of progenitors that contribute broadly to the telencephalon and found that two molecularly distinct progenitor subtypes in the RPC make different contributions to the developing forebrain. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0037-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée V Hoch
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA. .,Current address: PLOS, 1160 Battery Street, San Francisco, CA, 94111, USA.
| | - Jeffrey A Clarke
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA.
| | - John L R Rubenstein
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA.
| |
Collapse
|
172
|
Abstract
Genetically encoded voltage indicators (GEVIs) promise to reveal the membrane potential of genetically targeted neuronal populations through noninvasive, chronic imaging of large portions of cortical space. Here we test a promising GEVI in mouse cortex during wakefulness, a challenging condition due to large hemodynamic activity, and we introduce a straightforward projection method to separate a signal dominated by membrane voltage from a signal dominated by hemodynamic activity. We expressed VSFP-Butterfly 1.2 plasmid in layer 2/3 pyramidal cells of visual cortex through electroporation in utero. We then used wide-field imaging with two cameras to measure both fluorophores of the indicator in response to visual stimuli. By taking weighted sums and differences of the two measurements, we obtained clear separation of hemodynamic and voltage signals. The hemodynamic signal showed strong heartbeat oscillations, superimposed on slow dynamics similar to blood oxygen level-dependent (BOLD) or "intrinsic" signals. The voltage signal had fast dynamics similar to neural responses measured electrically, and showed an orderly retinotopic mapping. We compared this voltage signal with calcium signals imaged in transgenic mice that express a calcium indicator (GCaMP3) throughout cortex. The voltage signal from VSFP had similar signal-to-noise ratios as the calcium signal, it was more immune to vascular artifacts, and it integrated over larger regions of visual space, which was consistent with its reporting mostly subthreshold activity rather than the spiking activity revealed by calcium signals. These results demonstrate that GEVIs provide a powerful tool to study the dynamics of neural populations at mesoscopic spatial scales in the awake cortex.
Collapse
|
173
|
Kim TG, Yao R, Monnell T, Cho JH, Vasudevan A, Koh A, Peeyush KT, Moon M, Datta D, Bolshakov VY, Kim KS, Chung S. Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Stem Cells 2015; 32:1789-804. [PMID: 24648391 DOI: 10.1002/stem.1704] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 02/14/2014] [Indexed: 12/14/2022]
Abstract
GABAergic interneurons regulate cortical neural networks by providing inhibitory inputs, and their malfunction, resulting in failure to intricately regulate neural circuit balance, is implicated in brain diseases such as Schizophrenia, Autism, and Epilepsy. During early development, GABAergic interneuron progenitors arise from the ventral telencephalic area such as medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) by the actions of secreted signaling molecules from nearby organizers, and migrate to their target sites where they form local synaptic connections. In this study, using combinatorial and temporal modulation of developmentally relevant dorsoventral and rostrocaudal signaling pathways (SHH, Wnt, and FGF8), we efficiently generated MGE cells from multiple human pluripotent stem cells. Most importantly, modulation of FGF8/FGF19 signaling efficiently directed MGE versus CGE differentiation. Human MGE cells spontaneously differentiated into Lhx6-expressing GABAergic interneurons and showed migratory properties. These human MGE-derived neurons generated GABA, fired action potentials, and displayed robust GABAergic postsynaptic activity. Transplantation into rodent brains results in well-contained neural grafts enriched with GABAergic interneurons that migrate in the host and mature to express somatostatin or parvalbumin. Thus, we propose that signaling modulation recapitulating normal developmental patterns efficiently generate human GABAergic interneurons. This strategy represents a novel tool in regenerative medicine, developmental studies, disease modeling, bioassay, and drug screening.
Collapse
Affiliation(s)
- Tae-Gon Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA; Harvard Stem Cell Institute, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Azzarelli R, Hardwick LJA, Philpott A. Emergence of neuronal diversity from patterning of telencephalic progenitors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:197-214. [PMID: 25619507 DOI: 10.1002/wdev.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | |
Collapse
|
175
|
Hayano Y, Zhao H, Kobayashi H, Takeuchi K, Norioka S, Yamamoto N. The role of T-cadherin in axonal pathway formation in neocortical circuits. Development 2014; 141:4784-93. [DOI: 10.1242/dev.108290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex.
Collapse
Affiliation(s)
- Yuki Hayano
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hong Zhao
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Kobayashi
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosei Takeuchi
- Department of Biology, Aichi Medical University, Karimata-Yazako, Nagakute, Aichi 480-1195, Japan
| | - Shigemi Norioka
- Laboratories of Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
176
|
C57BL/6-specific conditions for efficient in utero electroporation of the central nervous system. J Neurosci Methods 2014; 240:116-24. [PMID: 25445056 DOI: 10.1016/j.jneumeth.2014.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 11/05/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND In utero electroporation is a fast an efficient tool to specifically address gene expression in the murine central nervous system. This technique was originally established in ICR/CD-1 outbred mice. Neuroanatomical differences between the different mouse strains and variations in gestation length require the optimization of the conditions for each strain to avoid severe complications. Furthermore the relevant position information is currently only scarcely standardized and not always easy to transfer to C57BL/6 mice. NEW METHOD In this study we present an improved method for in utero electroporation of C57BL/6 including a detailed atlas that allows for specific and efficient in vivo transfection. Further we introduce histogram analysis as a tool for neural migration assays. RESULTS We report individually adapted conditions for in utero electroporation in C57BL/6 mice that differ from the previously published data for ICR/CD-1 mice. Furthermore, this article outlines a detailed angle-map that allows for the specific and efficient in vivo transfection of different regions of the C57BL/6 mouse central nervous system. We also show that histogram analysis is a valuable tool for objectifying and accelerating postmitotic neural migration assays. COMPARISON WITH EXISTING METHODS Until now, conditions for in utero electroporation of C57BL/6 mice are sparsely defined. Further, compared with time-consuming cell body counting histogram analysis allows objectified and accelerated postmitotic neural migration assays. CONCLUSION Together, our results provide a manual for the in utero electroporation of specific regions of the central nervous systems C57BL/6 mice and objectified data analysis.
Collapse
|
177
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
178
|
Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS One 2014; 9:e103696. [PMID: 25116473 PMCID: PMC4130531 DOI: 10.1371/journal.pone.0103696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (Fgfs) and their receptors (Fgfr) are expressed in the developing and adult CNS. Previous studies demonstrated a decrease in cortical interneurons and locomotor hyperactivity in mice with a conditional Fgfr1 deletion generated in radial glial cells during midneurogenesis (Fgfr1f/f;hGfapCre+). Here, we report earlier and more extensive inactivation of Fgfr1 in neuroepithelial cells of the CNS (Fgfr1f/f;NesCre+). Similar to findings in Fgfr1f/f;hGfapCre+ mice, parvalbumin positive (PV+) cortical interneurons are also decreased in the neocortex of Fgfr1f/f;NesCre+ mice when compared to control littermates (Fgfr1f/f). Fgfr1f/f;NesCre+ embryos do not differ from controls in the initial specification of GABAergic cells in the ganglionic eminence (GE) as assessed by in situ hybridization for Dlx2, Mash1 and Nkx2. Equal numbers of GABAergic neuron precursors genetically labeled with green fluorescent protein (GFP) were observed at P0 in Fgfr1f/f;hGfapCre+;Gad1-GFP mutant mice. However, fewer GFP+ and GFP+/PV+ interneurons were observed in these mutants at adulthood, indicating that a decrease in cortical interneuron markers is occurring postnatally. Fgfr1 is expressed in cortical astrocytes in the postnatal brain. To test whether the astrocytes of mice lacking Fgfr1 are less capable of supporting interneurons, we co-cultured wild type Gad1-GFP+ interneuron precursors isolated from the medial GE (MGE) with astrocytes from Fgfr1f/f control or Fgfr1f/f;hGfapCre+ mice. Interneurons grown on Fgfr1 deficient astrocytes had small soma size and fewer neurites per cell, but no differences in cell survival. Decreased soma size of Gad67 immunopositive interneurons was also observed in the cortex of adult Fgfr1f/f;NesCre+ mice. Our data indicate that astrocytes from Fgfr1 mutants are impaired in supporting the maturation of cortical GABAergic neurons in the postnatal period. This model may elucidate potential mechanisms of impaired PV interneuron maturation relevant to neuropsychiatric disorders that develop in childhood and adolescence.
Collapse
Affiliation(s)
- Karen Müller Smith
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | | | - Pooja M. Phull
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Kathy May Tran
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Lisha Choubey
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University, New Haven, Connecticut, United States of America
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
179
|
Takahashi M, Makino S, Kikkawa T, Osumi N. Preparation of rat serum suitable for mammalian whole embryo culture. J Vis Exp 2014:e51969. [PMID: 25145996 DOI: 10.3791/51969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian whole embryo culture (WEC) is a widely used technique for examining pharmacological toxicity in developing mouse and rat embryos and for investigating the mechanisms of developmental processes. Immediately centrifuged (IC) rat serum is commonly used for WEC and is essential for the growth and development of cultured mouse and rat embryos ex vivo. For the culture of midgestation embryos (i.e., E8.0-12.5 for the mouse, and E10.0-14.5 for the rat), 100% rat serum is the best media for supporting the growth of the embryo ex vivo. To prepare rat serum suitable for WEC, the collected blood should be centrifuged immediately to separate the blood cells from the plasma fraction. After centrifugation, the fibrin clot forms in the upper layer; this clot should be squeezed gently using a pair of sterile forceps and subsequently centrifuged to completely separate the blood cells from the serum. In this video article, we demonstrate our standard protocol for the preparation of optimal IC rat serum, including blood collection from the abdominal aorta of male rats and extraction of the serum by centrifugation.
Collapse
Affiliation(s)
- Masanori Takahashi
- Graduate School of Medicine, Jichi Medical University; Division of Biology, Center for Molecular Medicine, Jichi Medical University
| | - Sayaka Makino
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine;
| |
Collapse
|
180
|
Ito H, Morishita R, Iwamoto I, Nagata KI. Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 2014; 24:1449-57. [DOI: 10.1002/hipo.22325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology; Institute for Developmental Research; Aichi Human Service Center, 713-8 Kamiya Kasugai Aichi 480-0392 Japan
| | - Rika Morishita
- Department of Molecular Neurobiology; Institute for Developmental Research; Aichi Human Service Center, 713-8 Kamiya Kasugai Aichi 480-0392 Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology; Institute for Developmental Research; Aichi Human Service Center, 713-8 Kamiya Kasugai Aichi 480-0392 Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology; Institute for Developmental Research; Aichi Human Service Center, 713-8 Kamiya Kasugai Aichi 480-0392 Japan
| |
Collapse
|
181
|
Kawasaki H. Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets. Neurosci Res 2014; 86:59-65. [PMID: 24983876 DOI: 10.1016/j.neures.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/17/2022]
Abstract
The brains of mammals such as carnivores and primates contain developed structures not found in the brains of mice. Uncovering the physiological importance, developmental mechanisms and evolution of these structures using carnivores and primates would greatly contribute to our understanding of the human brain and its diseases. Although the anatomical and physiological properties of the brains of carnivores and primates have been intensively examined, molecular investigations are still limited. Recently, genetic techniques that can be applied to carnivores and primates have been explored, and molecules whose expression patterns correspond to these structures were reported. Furthermore, to investigate the functional importance of these molecules, rapid and efficient genetic manipulation methods were established by applying electroporation to gyrencephalic carnivore ferrets. In this article, I review recent advances in molecular investigations of the brains of carnivores and primates, mainly focusing on ferrets (Mustela putorius furo).
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan.
| |
Collapse
|
182
|
Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA. The cortical hem regulates the size and patterning of neocortex. Development 2014; 141:2855-65. [PMID: 24948604 DOI: 10.1242/dev.106914] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cortical hem, a source of Wingless-related (WNT) and bone morphogenetic protein (BMP) signaling in the dorsomedial telencephalon, is the embryonic organizer for the hippocampus. Whether the hem is a major regulator of cortical patterning outside the hippocampus has not been investigated. We examined regional organization across the entire cerebral cortex in mice genetically engineered to lack the hem. Indicating that the hem regulates dorsoventral patterning in the cortical hemisphere, the neocortex, particularly dorsomedial neocortex, was reduced in size in late-stage hem-ablated embryos, whereas cortex ventrolateral to the neocortex expanded dorsally. Unexpectedly, hem ablation also perturbed regional patterning along the rostrocaudal axis of neocortex. Rostral neocortical domains identified by characteristic gene expression were expanded, and caudal domains diminished. A similar shift occurs when fibroblast growth factor (FGF) 8 is increased at the rostral telencephalic organizer, yet the FGF8 source was unchanged in hem-ablated brains. Rather we found that hem WNT or BMP signals, or both, have opposite effects to those of FGF8 in regulating transcription factors that control the size and position of neocortical areas. When the hem is ablated a necessary balance is perturbed, and cerebral cortex is rostralized. Our findings reveal a much broader role for the hem in cortical development than previously recognized, and emphasize that two major signaling centers interact antagonistically to pattern cerebral cortex.
Collapse
Affiliation(s)
| | - Michio Yoshida
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA RIKEN Center for Developmental Biology, Kobe, Japan
| | - Forrest Gulden
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
183
|
Xiang C, Arends JJA, Jacquin MF. Whisker-related circuitry in the trigeminal nucleus principalis: ultrastructure. Somatosens Mot Res 2014; 31:141-51. [PMID: 24738912 DOI: 10.3109/08990220.2014.905469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Trigeminal (V) nucleus principalis (PrV) is the requisite brainstem nucleus in the whisker-to-barrel cortex model system that is widely used to reveal mechanisms of map formation and information processing. Yet, little is known of the actual PrV circuitry. In the ventral "barrelette" portion of the adult mouse PrV, relationships between V primary afferent terminals, thalamic-projecting PrV neurons, and gamma-aminobutyric acid (GABA)-ergic terminals were analyzed in the electron microscope. Primary afferents, thalamic-projecting cells, and GABAergic terminals were labeled, respectively, by Neurobiotin injections in the V ganglion, horseradish peroxidase injections in the thalamus, and postembedding immunogold histochemistry. Primary afferent terminals (Neurobiotin- and glutamate-immunoreactive) display asymmetric and multiple synapses predominantly upon the distal dendrites and spines of PrV cells that project to the thalamus. Primary afferents also synapse upon GABAergic terminals. GABAergic terminals display symmetric synapses onto primary afferent terminals, the somata and dendrites (distal, mostly) of thalamic-projecting neurons, and GABAergic dendrites. Thus, primary afferent inputs through the PrV are subject to pre- and postsynaptic GABAergic influences. As such, circuitry exists in PrV "barrelettes" for primary afferents to directly activate thalamic-projecting and inhibitory local circuit cells. The latter are synaptically associated with themselves, the primary afferents, and with the thalamic-projecting neurons. Thus, whisker-related primary afferent inputs through PrV projection neurons are pre- and postsynaptically modulated by local circuits.
Collapse
Affiliation(s)
- Chuanxi Xiang
- Department of Neurology, Washington University School of Medicine , St Louis, MO , USA
| | | | | |
Collapse
|
184
|
Ji XW, Wu CL, Wang XC, Liu J, Bi JZ, Wang DY. Monoamine neurotransmitters and fibroblast growth factor-2 in the brains of rats with post-stroke depression. Exp Ther Med 2014; 8:159-164. [PMID: 24944615 PMCID: PMC4061212 DOI: 10.3892/etm.2014.1674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate the changes in the levels of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and fibroblast growth factor-2 (FGF-2) in the brains of rats with post-stroke depression (PSD). A rat model of stroke was established by middle cerebral artery occlusion and the rats were randomly divided into two groups: Control and modification groups. The rats in the modification group had PSD, while the rats in the control group had experienced a stroke only. The PSD model was established by applying chronic mild stress to the individually housed rats. High-performance liquid chromatography was used to detect the levels of 5-HT, DA and NE, while western blotting was used to detect the FGF-2 protein expression levels in the frontal lobe and hippocampus. Quantitative polymerase chain reaction was also used to determine the mRNA expression levels of FGF-2 in the frontal lobes of the two groups. The levels of 5-HT, DA and NE in the frontal lobe and hippocampus of the rats in the PSD group were significantly lower than the levels observed in the rats in the stroke group (P<0.01). In addition, protein expression levels of FGF-2 in the frontal lobe of the rats in the PSD group were significantly lower when compared with the control group rats (P<0.01), however, the protein expression levels of FGF-2 in the hippocampus did not exhibit a statistically significant difference (P>0.05). The mRNA expression levels of FGF-2 in the frontal lobe of the rats in the modification group were significantly lower than the levels in the control group rats (P<0.01). Therefore, reduced levels of monoamine neurotransmitters and FGF-2 expression in the brains of rats with PSD are associated with the incidence of PSD.
Collapse
Affiliation(s)
- Xiao-Wei Ji
- Department of Neurology, Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Chun-Ling Wu
- Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xing-Chen Wang
- Department of Neurology, Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Jie Liu
- Department of Neurology, Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Jian-Zhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dian-Yun Wang
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
185
|
Boeckx C, Benítez-Burraco A. The shape of the human language-ready brain. Front Psychol 2014; 5:282. [PMID: 24772099 PMCID: PMC3983487 DOI: 10.3389/fpsyg.2014.00282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
186
|
Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci Biobehav Rev 2014; 41:64-77. [DOI: 10.1016/j.neubiorev.2013.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/13/2013] [Accepted: 10/03/2013] [Indexed: 11/20/2022]
|
187
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
188
|
Rash BG, Rakic P. Neuroscience. Genetic resolutions of brain convolutions. Science 2014; 343:744-5. [PMID: 24531964 DOI: 10.1126/science.1250246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Brian G Rash
- Department of Neurobiology, Yale University, New Haven, CT 06510, USA
| | | |
Collapse
|
189
|
A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain. PLoS Comput Biol 2014; 10:e1003463. [PMID: 24550718 PMCID: PMC3923663 DOI: 10.1371/journal.pcbi.1003463] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or "toggle switch", which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems.
Collapse
|
190
|
Sakai D, Trainor PA. Gene transfer techniques in whole embryo cultured post-implantation mouse embryos. Methods Mol Biol 2014; 1092:227-234. [PMID: 24318824 DOI: 10.1007/978-1-60327-292-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gene transfer techniques such as electroporation and lipofection are powerful systems for investigating gene function. In this chapter we focus on the methods and applications of gene transfer into specific cells and tissues of post-implantation mouse embryos.
Collapse
Affiliation(s)
- Daisuke Sakai
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
191
|
Abstract
In utero electroporation is a rapid and powerful technique to study the development of many brain regions. This approach presents several advantages over other methods to study specific steps of brain development in vivo, from proliferation to synaptic integration. Here, we describe in detail the individual steps necessary to carry out the technique. We also highlight the variations that can be implemented to target different cerebral structures and to study specific steps of development.
Collapse
|
192
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
193
|
Analyzing gene function in whole mouse embryo and fetal organ in vitro. Methods Mol Biol 2013. [PMID: 24318831 DOI: 10.1007/978-1-60327-292-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A well-established experimental paradigm to analyze gene function in development is to elucidate the impact of gain and loss of gene activity on cell differentiation, tissue modelling, organogenesis, and morphogenesis. This chapter describes the experimental protocols to study gene function by means of electroporation and lipofection to manipulate genetic activity in whole embryos and fetal organs in vitro. These techniques allow for more precise control of the timing, with reference to developmental age or stage, and the cell/tissue-specificity of the changes in gene activity. They provide an alternative strategy that can expedite the analysis of gene function before resorting to the conventional means of transgenesis and gene targeting in the whole organism.
Collapse
|
194
|
Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M. Local Apoptosis Modulates Early Mammalian Brain Development through the Elimination of Morphogen-Producing Cells. Dev Cell 2013; 27:621-34. [DOI: 10.1016/j.devcel.2013.11.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
|
195
|
Buckner RL, Krienen FM. The evolution of distributed association networks in the human brain. Trends Cogn Sci 2013; 17:648-65. [DOI: 10.1016/j.tics.2013.09.017] [Citation(s) in RCA: 459] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 01/25/2023]
|
196
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
197
|
Meechan DW, Rutz HLH, Fralish MS, Maynard TM, Rothblat LA, LaMantia AS. Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS. Cereb Cortex 2013; 25:1143-51. [PMID: 24217989 DOI: 10.1093/cercor/bht308] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We established a relationship between cognitive deficits and cortical circuits in the LgDel model of 22q11 Deletion Syndrome (22q11DS)-a genetic syndrome with one of the most significant risks for schizophrenia and autism. In the LgDel mouse, optimal acquisition, execution, and reversal of a visually guided discrimination task, comparable to executive function tasks in primates including humans, are compromised; however, there is significant individual variation in degree of impairment. The task relies critically on the integrity of circuits in medial anterior frontal cortical regions. Accordingly, we analyzed neuronal changes that reflect previously defined 22q11DS-related alterations of cortical development in the medial anterior frontal cortex of the behaviorally characterized LgDel mice. Interneuron placement, synapse distribution, and projection neuron frequency are altered in this region. The magnitude of one of these changes, layer 2/3 projection neuron frequency, is a robust predictor of behavioral performance: it is substantially and selectively lower in animals with the most significant behavioral deficits. These results parallel correlations of volume reduction and altered connectivity in comparable cortical regions with diminished executive function in 22q11DS patients. Apparently, 22q11 deletion alters behaviorally relevant circuits in a distinct cortical region that are essential for cognitive function.
Collapse
Affiliation(s)
- D W Meechan
- Department of Pharmacology and Physiology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - H L H Rutz
- Department of Psychology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - M S Fralish
- Department of Pharmacology and Physiology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - T M Maynard
- Department of Pharmacology and Physiology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - L A Rothblat
- Department of Psychology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - A-S LaMantia
- Department of Pharmacology and Physiology GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
198
|
Matsui A, Tran M, Yoshida AC, Kikuchi SS, U M, Ogawa M, Shimogori T. BTBD3 Controls Dendrite Orientation Toward Active Axons in Mammalian Neocortex. Science 2013; 342:1114-8. [DOI: 10.1126/science.1244505] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
199
|
Herculano-Houzel S, Watson C, Paxinos G. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat 2013; 7:35. [PMID: 24155697 PMCID: PMC3800983 DOI: 10.3389/fnana.2013.00035] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/30/2013] [Indexed: 11/13/2022] Open
Abstract
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional, MCT/CNPq São Paulo, Brazil
| | | | | |
Collapse
|
200
|
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013; 14:755-69. [PMID: 24105342 DOI: 10.1038/nrn3586] [Citation(s) in RCA: 635] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sophisticated circuitry of the neocortex is assembled from a diverse repertoire of neuronal subtypes generated during development under precise molecular regulation. In recent years, several key controls over the specification and differentiation of neocortical projection neurons have been identified. This work provides substantial insight into the 'molecular logic' underlying cortical development and increasingly supports a model in which individual progenitor-stage and postmitotic regulators are embedded within highly interconnected networks that gate sequential developmental decisions. Here, we provide an integrative account of the molecular controls that direct the progressive development and delineation of subtype and area identity of neocortical projection neurons.
Collapse
|