151
|
Tam SKE, Bannerman DM, Peirson SN. Mechanisms mediating the effects of light on sleep and alertness: current challenges. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
152
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
153
|
Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol 2020; 432:3525-3546. [PMID: 32198116 PMCID: PMC7322537 DOI: 10.1016/j.jmb.2020.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented "lunar-rhythmic" terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings that start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads toward pathways, as well as molecular markers. However, for each interpretation, it is important to carefully consider the, partly substantially differing, conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
154
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
155
|
Salfer IJ, Harvatine KJ. Night-restricted feeding of dairy cows modifies daily rhythms of feed intake, milk synthesis and plasma metabolites compared with day-restricted feeding. Br J Nutr 2020; 123:849-858. [PMID: 31910910 PMCID: PMC7154010 DOI: 10.1017/s0007114520000057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The timing of feed intake can alter circadian rhythms of peripheral tissues. Milk synthesis displays a daily rhythm across several species, but the effect of feeding time on these rhythms is poorly characterised. The objective of this experiment was to determine if the time of feed intake modifies the daily patterns of milk synthesis, plasma metabolites and body temperature in dairy cows. Sixteen lactating Holstein dairy cows were randomly assigned to one of the two treatment sequences in a cross-over design with 17 d periods. Treatments included day-restricted feeding (DRF; feed available from 07.00 to 23.00 hours) and night-restricted feeding (NRF; feed available from 19.00 to 11.00 hours). Cows were milked every 6 h on the last 7 d of each period, and blood samples were collected to represent every 4 h over the day. Peak milk yield was shifted from morning in DRF to evening in NRF, while milk fat, protein and lactose concentration peaked in the evening in DRF and the morning in NRF. Plasma glucose, insulin, NEFA and urea nitrogen concentration fit daily rhythms in all treatments. Night feeding increased the amplitude of glucose, insulin and NEFA rhythms and shifted the daily rhythms by 8 to 12 h (P < 0·05). Night feeding also phase-delayed the rhythm of core body temperature and DRF increased its amplitude. Altering the time of feed availability shifts the daily rhythms of milk synthesis and plasma hormone and metabolite concentrations and body temperature, suggesting that these rhythms may be entrained by food intake.
Collapse
Affiliation(s)
- Isaac J. Salfer
- Department of Animal Science, The Pennsylvania State University, University Park, PA
- Current address: Department of Dairy and Food Science, South Dakota State University, Brookings SD, USA
| | - Kevin J. Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA
| |
Collapse
|
156
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
157
|
Kusumoto J, Takeo M, Hashikawa K, Komori T, Tsuji T, Terashi H, Sakakibara S. OPN4 belongs to the photosensitive system of the human skin. Genes Cells 2020; 25:215-225. [DOI: 10.1111/gtc.12751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Makoto Takeo
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Kazunobu Hashikawa
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Hiroto Terashi
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Shunsuke Sakakibara
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
158
|
Nayak G, Zhang KX, Vemaraju S, Odaka Y, Buhr ED, Holt-Jones A, Kernodle S, Smith AN, Upton BA, D'Souza S, Zhan JJ, Diaz N, Nguyen MT, Mukherjee R, Gordon SA, Wu G, Schmidt R, Mei X, Petts NT, Batie M, Rao S, Hogenesch JB, Nakamura T, Sweeney A, Seeley RJ, Van Gelder RN, Sanchez-Gurmaches J, Lang RA. Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. Cell Rep 2020; 30:672-686.e8. [PMID: 31968245 PMCID: PMC7341981 DOI: 10.1016/j.celrep.2019.12.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023] Open
Abstract
Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.
Collapse
Affiliation(s)
- Gowri Nayak
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kevin X Zhang
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shruti Vemaraju
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yoshinobu Odaka
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Amanda Holt-Jones
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - April N Smith
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brian A Upton
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shane D'Souza
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesse J Zhan
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nicolás Diaz
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Minh-Thanh Nguyen
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shannon A Gordon
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Gang Wu
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert Schmidt
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xue Mei
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sujata Rao
- The Cleveland Clinic, Ophthalmic Research, 9500 Euclid Avenue, OH 44195, USA
| | - John B Hogenesch
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takahisa Nakamura
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA; Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Alison Sweeney
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA 98104, USA; Department of Biological Structure, University of Washington Medical School, Seattle, WA 98104, USA; Department of Pathology, University of Washington Medical School, Seattle, WA 98104, USA
| | - Joan Sanchez-Gurmaches
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Richard A Lang
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
159
|
Wang Y, Lan Y, Lu H. Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes via Mitochondrial Pathway. Photochem Photobiol 2020; 96:83-93. [PMID: 31730232 PMCID: PMC7004086 DOI: 10.1111/php.13178] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
G protein‐coupled receptors (GPCRs) are core switches connecting excellular survival or death signals with cellular signaling pathways in a context‐dependent manner. Opsin 3 (OPN3) belongs to the GPCR superfamily. However, whether OPN3 can control the survival or death of human melanocytes is not known. Here, we try to investigate the inherent function of OPN3 on the survival of melanocytes. Our results demonstrate that OPN3 knockdown by RNAi‐OPN3 in human epidermal melanocytes leads to cell apoptosis. The downregulation of OPN3 markedly reduces intracellular calcium levels and decreases phosphorylation of BAD. Attenuated BAD phosphorylation and elevated BAD protein level alter mitochondria membrane permeability, which trigger activation of BAX and inhibition of BCL‐2 and raf‐1. Activated BAX results in the release of cytochrome c and the loss of mitochondrial membrane potential. Cytochrome c complexes associate with caspase 9, forming a postmitochondrial apoptosome that activate effector caspases including caspase 3 and caspase 7. The release of apoptotic molecules eventually promotes the occurrence of apoptosis. In conclusion, we hereby are the first to prove that OPN3 is a key signal responsible for cell survival through a calcium‐dependent G protein‐coupled signaling and mitochondrial pathway.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
160
|
Olinski LE, Lin EM, Oancea E. Illuminating insights into opsin 3 function in the skin. Adv Biol Regul 2020; 75:100668. [PMID: 31653550 PMCID: PMC7059126 DOI: 10.1016/j.jbior.2019.100668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Because sunlight is essential for human survival, we have developed complex mechanisms for detecting and responding to light stimuli. The eyes and skin are major organs for sensing light and express several light-sensitive opsin receptors. These opsins mediate cellular responses to spectrally-distinct wavelengths of visible and ultraviolet light. How the eyes mediate visual phototransduction is well understood, but less is known about how the skin detects light. Both human and murine skin express a wide array of opsins, with one of the most highly expressed being the functionally elusive opsin 3 (OPN3). In this review we explore light reception, opsin expression and signaling in skin cells; we compile data elucidating potential functions for human OPN3 in skin, with emphasis on recent studies investigating OPN3 regulation of melanin within epidermal melanocytes.
Collapse
Affiliation(s)
- Lauren E Olinski
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA.
| | - Erica M Lin
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA.
| |
Collapse
|
161
|
Postolache TT, Gulati A, Okusaga OO, Stiller JW. An Introduction to Circadian Endocrine Physiology: Implications for Exercise and Sports Performance. ENDOCRINOLOGY OF PHYSICAL ACTIVITY AND SPORT 2020. [DOI: 10.1007/978-3-030-33376-8_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
162
|
Mure LS, Hatori M, Ruda K, Benegiamo G, Demas J, Panda S. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment. Cell Rep 2019; 25:2497-2509.e4. [PMID: 30485815 PMCID: PMC6396282 DOI: 10.1016/j.celrep.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for β-arrestin 1 (βARR1) and β-arrestin 2. β-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, βαrr2–/–mice exhibit prolonged ipRGC responses after cessation of a light pulse. β-arrestin 1 primes melanopsin for regeneration. Therefore, βαrr1–/– ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either β-arrestin atten-uates ipRGC response under prolonged illumination, suggesting that β-arrestin 2-mediated deactivation and β-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which β-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination. The mechanism by which melanopsin-expressing retinal ganglion cells (mRGCs) tonically respond to continuous illumination is unknown. Mure et al. show that phosphorylation-dependent binding of β-arrestin 1 and 2 coordinately deactivate and regenerate melanopsin photopigment to enable sustained firing of mRGCs in response to prolonged illumination.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Keio University School of Medicine, Tokyo, Japan
| | - Kiersten Ruda
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Giorgia Benegiamo
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
163
|
Abnormal Photic Entrainment to Phase-Delaying Stimuli in the R6/2 Mouse Model of Huntington's Disease, despite Retinal Responsiveness to Light. eNeuro 2019; 6:ENEURO.0088-19.2019. [PMID: 31744839 PMCID: PMC6905640 DOI: 10.1523/eneuro.0088-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.
Collapse
|
164
|
Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MKH, Eiden LE, Jiang SZ, Gillette MU. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci 2019; 13:1281. [PMID: 31866806 PMCID: PMC6909886 DOI: 10.3389/fnins.2019.01281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Results from a variety of sources indicate a role for pituitary adenylate cyclase-activating polypeptide (PACAP) in light/glutamate-induced phase resetting of the circadian clock mediated by the retinohypothalamic tract (RHT). Attempts to block or remove PACAP’s contribution to clock-resetting have generated phenotypes that differ in their responses to light or glutamate. For example, previous studies of circadian behaviors found that period-maintenance and early-night phase delays are intact in PACAP-null mice, yet there is a consistent deficit in behavioral phase-resetting to light stimulation in the late night. Here we report rodent stimulus–response characteristics of PACAP release from the RHT, and map these to responses of the suprachiasmatic nucleus (SCN) in intact and PACAP-deficient mouse hypothalamus with regard to phase-resetting. SCN of PACAP-null mice exhibit normal circadian rhythms in neuronal activity, but are “blind” to glutamate stimulating phase-advance responses in late night, although not in early night, consistent with previously reported selective lack of late-night light behavioral responsiveness of these mice. Induction of CREB phosphorylation, a hallmark of the light/glutamate response of the SCN, also is absent in SCN-containing ex vivo slices from PACAP-deficient mouse hypothalamus. PACAP replacement to the SCN of PACAP-null mice restored wild-type phase-shifting of firing-rate patterns in response to glutamate applied to the SCN in late night. Likewise, ex vivo SCN of wild-type mice post-orbital enucleation are unresponsive to glutamate unless PACAP also is restored. Furthermore, we demonstrate that the period of efficacy of PACAP at SCN nerve terminals corresponds to waxing of PACAP mRNA expression in ipRGCs during the night, and waning during the day. These results validate the use of PACAP-deficient mice in defining the role and specificity of PACAP as a co-transmitter with glutamate in ipRGC-RHT projections to SCN in phase advancing the SCN circadian rhythm in late night.
Collapse
Affiliation(s)
- Peder T Lindberg
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jennifer W Mitchell
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Penny W Burgoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christian Beaulé
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology and Center of Mind, Brain and Behaviour, University of Marburg, Marburg, Germany
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, United States
| | - Martha U Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
165
|
Yamakawa M, Tachibana A, Tatsumoto M, Okajima K, Ueda S, Hirata K. Hemodynamic responses related to intrinsically photosensitive retinal ganglion cells in migraine. Neurosci Res 2019; 160:57-64. [PMID: 31790724 DOI: 10.1016/j.neures.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
To clarify whether photoreception of intrinsically photosensitive retinal ganglion cells (ipRGCs) is related to migraine, we investigated the relationship between hemodynamic responses related to neural activity and visual stimulation of ipRGCs. It has been established that photoreception in ipRGCs is associated with photophobia in migraine. However, the relationship between visual stimulation of ipRGCs and hemodynamic responses in the visual cortex has not been clarified. Hemodynamic responses in the visual cortex were measured using functional near-infrared spectroscopy (fNIRS) as signals reflecting changes in oxygenated and deoxygenated hemoglobin concentrations. Different types of visual stimulation generated by a metamerism method were applied to the peripheral field of the eye of patients with migraine (N = 20) and healthy participants (N = 21). The stimulation intensity on the retina was controlled using an artificial pupil. In the primary visual cortex of patients with migraine, statistically significant changes in fNIRS signals dependent on visual stimulation intensity applied to ipRGCs were observed (p < 0.01), while no such changes were observed in healthy participants. These results reveal that visual stimulation of ipRGCs projecting to the primary visual cortex is involved in hemodynamic responses in patients with migraine, suggesting that ipRGCs, in addition to photometric values related to cones, are associated with migraine.
Collapse
Affiliation(s)
- Masahiko Yamakawa
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan.
| | - Atsumichi Tachibana
- Department of Histology & Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Muneto Tatsumoto
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Katsunori Okajima
- Faculty of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan
| | - Shuichi Ueda
- Department of Histology & Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
166
|
del Río-Martín A, Pérez-Taboada I, Fernández-Pérez A, Moratalla R, de la Villa P, Vallejo M. Hypomorphic Expression of Pitx3 Disrupts Circadian Clocks and Prevents Metabolic Entrainment of Energy Expenditure. Cell Rep 2019; 29:3678-3692.e4. [DOI: 10.1016/j.celrep.2019.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/13/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
|
167
|
A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury. Neurobiol Dis 2019; 134:104679. [PMID: 31751607 DOI: 10.1016/j.nbd.2019.104679] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023] Open
Abstract
Sleep and circadian rhythms are among the most powerful but least understood contributors to cognitive performance and brain health. Here we capitalize on the circadian resetting effect of blue-wavelength light to phase shift the sleep patterns of adult patients (aged 18-48 years) recovering from mild traumatic brain injury (mTBI), with the aim of facilitating recovery of brain structure, connectivity, and cognitive performance. During a randomized, double-blind, placebo-controlled trial of 32 adults with a recent mTBI, we compared 6-weeks of daily 30-min pulses of blue light (peak λ = 469 nm) each morning versus amber placebo light (peak λ = 578 nm) on neurocognitive and neuroimaging outcomes, including gray matter volume (GMV), resting-state functional connectivity, directed connectivity using Granger causality, and white matter integrity using diffusion tensor imaging (DTI). Relative to placebo, morning blue light led to phase-advanced sleep timing, reduced daytime sleepiness, and improved executive functioning, and was associated with increased volume of the posterior thalamus (i.e., pulvinar), greater thalamo-cortical functional connectivity, and increased axonal integrity of these pathways. These findings provide insight into the contributions of the circadian and sleep systems in brain repair and lay the groundwork for interventions targeting the retinohypothalamic system to facilitate injury recovery.
Collapse
|
168
|
Xie X, Jin Y, Ma Z, Tang S, Peng H, Giesy JP, Liu H. Underlying mechanisms of reproductive toxicity caused by multigenerational exposure of 2, bromo-4, 6-dinitroaniline (BDNA) to Zebrafish (Danio rerio) at environmental relevant levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105285. [PMID: 31546070 DOI: 10.1016/j.aquatox.2019.105285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
2-bromo-4, 6-dinitroaniline (BDNA) is a mutagenic aromatic amine involved in the production and degradation of Disperse blue 79, one of the most extensively used brominated azo dyes. In our previous study, a multigenerational exposure of BDNA (0.5, 5, 50 and 500 μg/L) to zebrafish from F0 adult to F2 larvae including a recovery group in F2 larvae was conducted. The effects on apical points observed in individuals and the long-term effects predicted on population were all related to reproduction. In this study, we performed molecular analysis to elucidate the underlying mechanisms of the reproductive toxicity of BDNA. In F1 generation, measurement of vitellogenin and transcription levels of genes associated with hypothalamus-pituitary-gland (HPG) axis, estrogen receptor (ER) and androgen receptor (AR) were conducted. There was a decrease in VTG level in the blood of F1 female fish and transcription of genes related to ER was more affected than that of genes related to AR. These results were consistent with adverse effects that sexual differentiation was biased towards males and fecundity was impaired in a concentration-dependent manner in adults of F1 generation after 150 days exposure. In F2 generation, global gene transcriptions of F2 larvae were investigated. It was uncovered that processes related to apoptosis, development and DNA damage were strongly affected. Alterations to these biological pathways accounted for the irreversible parental influence on a significant decrease in hatchability and increase in abnormality of F2 larvae. All evidence suggested that the multigenerational exposure of BDNA posed lasting effects transmitted from parents to offspring that persisted after exposure ceased.
Collapse
Affiliation(s)
- Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Ontario, M5S 3H6, Canada
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SKS7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
169
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
170
|
Thompson S, Blodi FR, Larson DR, Anderson MG, Stasheff SF. The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice. Invest Ophthalmol Vis Sci 2019; 60:2110-2117. [PMID: 31095679 PMCID: PMC6735810 DOI: 10.1167/iovs.19-26881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice. Methods Responses to light were assessed by visual water task, circadian phase shifting, and negative masking behavior. The mechanism of abnormal responses was investigated by anterior eye exam, electroretinogram, melanopsin cell quantification, and multielectrode recording of retinal ganglion cell activity. Results Visual acuity was not different in Efemp1R345W mice. However, amplitudes of circadian phase shifting (P = 0.016) and negative masking (P < 0.0001) were increased in Efemp1R345W mice. This phenotype was not explained by anterior eye defects or amplified outer retina responses. Instead, we identified increased melanopsin-generated responses to light in the ganglion cell layer of the retina (P < 0.01). Conclusions Efemp1R345W increases the sensitivity to light of behavioral responses driven by detection of irradiance. An amplified response to light in melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) is consistent with this phenotype. The major concern with this effect of the malattia leventinese mutation is the potential for abnormal regulation of physiology by light to negatively affect health.
Collapse
Affiliation(s)
- Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, United States.,Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Demelza R Larson
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,Biology Department, College of St. Benedict & St. John's University, Collegeville, Minnesota, United States
| | - Michael G Anderson
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States.,Center for Neurosciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
171
|
Dumpala S, Zele AJ, Feigl B. Outer Retinal Structure and Function Deficits Contribute to Circadian Disruption in Patients With Type 2 Diabetes. Invest Ophthalmol Vis Sci 2019; 60:1870-1878. [PMID: 31042793 DOI: 10.1167/iovs.18-26297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Light transmitted by retinal photoreceptors provides the input for circadian photoentrainment. In diabetes, there is a high prevalence of circadian and sleep disruption but the underlying causes are not well understood. Patients with diabetes can exhibit dysfunctional photoreceptors but their role in circadian health is not known. Here we quantify photoreceptor function and contributions to circadian health and sleep in patients with diabetes without diabetic retinopathy and healthy controls. Methods Rod, cone, and melanopsin function was derived using chromatic pupillometry in 47 participants including 23 patients with type 2 diabetes and 24 age-matched healthy controls after an ophthalmic examination including retinal thickness assessment using optical coherence tomography. Circadian health was determined using dim light melatonin onset (DLMO) and sleep questionnaires; light exposure was measured using actigraphy. Results Compared with the control group, the patients with diabetes had a significantly earlier DLMO (1 hour) (P = 0.008), higher subjective sleep scores (P < 0.05), a reduction in pupil constriction amplitude for red stimuli (P = 0.039) and for the early postillumination pupil response (PIPR) for blue (P = 0.024) stimuli. There were no between-group differences in the light exposure pattern, activity levels, and intrinsic melanopsin-mediated PIPR amplitude (P > 0.05). A significant correlation was evident between outer retinal thickness and DLMO (r = -0.65, P = 0.03) and the pupil constriction amplitude (r = 0.63, P = 0.03); patients with thinner retina had earlier DLMO and lower pupil amplitudes. Conclusions We infer that the observed changes in circadian function in patients with no diabetic retinopathy are due to structural and functional outer retinal rod photoreceptor deficits at early stage of diabetic eye disease.
Collapse
Affiliation(s)
- Sunila Dumpala
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Optometry and Vision Sciences, Queensland University of Technology, Brisbane, Australia
| | - Andrew J Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Optometry and Vision Sciences, Queensland University of Technology, Brisbane, Australia
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Queensland Eye Institute, Brisbane, Australia
| |
Collapse
|
172
|
Nongenetic optical modulation of neural stem cell proliferation and neuronal/glial differentiation. Biomaterials 2019; 225:119539. [PMID: 31622821 DOI: 10.1016/j.biomaterials.2019.119539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Photostimulation has been widely used in neuromodulation. However, existing optogenetics techniques require genetic alternation of the targeted cell or tissue. Here, we report that neural stem cells (NSCs) constitutionally express blue/red light-sensitive photoreceptors. The proliferation and regulation of NSCs to neuronal or glial cells are wavelength-specific. Our results showed a 4.3-fold increase in proliferation and 2.7-fold increase in astrocyte differentiation for cells under low-power blue monochromatic light exposure (455 nm, 300 μW/cm2). The melanopsin (Opn4)/transient receptor potential channel 6 (TRPC6) non-visual opsin serves as a key photoreceptor response to blue light irradiation. Two-dimensional gel electrophoresis coupled with mass spectrometry further highlighted the Jun activation domain-binding protein 1 (Jab1) as a novel and specific modulator in phototransduction pathways induced by blue light exposure. Quiescent adult NSCs reside in specific regions of the mammalian brain. Therefore, we showed that melanopsin/TRPC6 expressed in these regions and blue light stimulation through optical fibers could directly stimulate the NSCs in vivo. Upconversion nanoparticles (UCNPs) converted deep-penetrating near-infrared (NIR) light into specific wavelengths of visible light. Accordingly, we demonstrated that UCNP-mediated NIR light could be used to modulate in vivo NSC differentiation in a less invasive manner. In the future, this light-triggered system of NSCs will enable nongenetic and noninvasive neuromodulation with therapeutic potential for central nervous system diseases.
Collapse
|
173
|
Kronauer RE, Hilaire MA, Rahman SA, Czeisler CA, Klerman EB. An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences. J Biol Rhythms 2019; 34:497-514. [PMID: 31368391 PMCID: PMC7363039 DOI: 10.1177/0748730419862702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a "dead zone" of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.
Collapse
Affiliation(s)
- Richard E. Kronauer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A. Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
174
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
175
|
Photopharmacologic Vision Restoration Reduces Pathological Rhythmic Field Potentials in Blind Mouse Retina. Sci Rep 2019; 9:13561. [PMID: 31537864 PMCID: PMC6753071 DOI: 10.1038/s41598-019-49999-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022] Open
Abstract
Photopharmacology has yielded compounds that have potential to restore impaired visual responses resulting from outer retinal degeneration diseases such as retinitis pigmentosa. Here we evaluate two photoswitchable azobenzene ion channel blockers, DAQ and DAA for vision restoration. DAQ exerts its effect primarily on RGCs, whereas DAA induces light-dependent spiking primarily through amacrine cell activation. Degeneration-induced local field potentials remain a major challenge common to all vision restoration approaches. These 5–10 Hz rhythmic potentials increase the background firing rate of retinal ganglion cells (RGCs) and overlay the stimulated response, thereby reducing signal-to-noise ratio. Along with the bipolar cell-selective photoswitch DAD and second-generation RGC-targeting photoswitch PhENAQ, we investigated the effects of DAA and DAQ on rhythmic local field potentials (LFPs) occurring in the degenerating retina. We found that photoswitches targeting neurons upstream of RGCs, DAA (amacrine cells) and DAD (bipolar cells) suppress the frequency of LFPs, while DAQ and PhENAQ (RGCs) had negligible effects on frequency or spectral power of LFPs. Taken together, these results demonstrate remarkable diversity of cell-type specificity of photoswitchable channel blockers in the retina and suggest that specific compounds may counter rhythmic LFPs to produce superior signal-to-noise characteristics in vision restoration.
Collapse
|
176
|
Gladanac B, Jonkman J, Shapiro CM, Brown TJ, Ralph MR, Casper RF, Rahman SA. Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats. Front Neurosci 2019; 13:954. [PMID: 31551702 PMCID: PMC6746919 DOI: 10.3389/fnins.2019.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Visible light is the principal stimulus for resetting the mammalian central circadian pacemaker. Circadian phase resetting is most sensitive to short-wavelength (blue) visible light. We examined the effects of removing short-wavelengths < 500 nm from polychromatic white light using optical filters on circadian phase resetting in rats. Under high irradiance conditions, both long- (7 h) and short- (1 h) duration short-wavelength filtered (< 500 nm) light exposure attenuated phase-delay shifts in locomotor activity rhythms by (∼40-50%) as compared to unfiltered light exposure. However, there was no attenuation in phase resetting under low irradiance conditions. Additionally, the reduction in phase-delay shifts corresponded to regionally specific attenuation in molecular markers of pacemaker activation in response to light exposure, including c-FOS, Per1 and Per2. These results demonstrate that removing short-wavelengths from polychromatic white light can attenuate circadian phase resetting in an irradiance dependent manner. These results have important implications for designing and optimizing lighting interventions to enhance circadian adaptation.
Collapse
Affiliation(s)
- Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - James Jonkman
- Advanced Optical Microscopy Facility, University Health Network, Toronto, ON, Canada
| | - Colin M Shapiro
- Department of Psychiatry and Ophthalmology, University of Toronto, Toronto, ON, Canada.,Youthdale Child and Adolescent Sleep Centre, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Robert F Casper
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
177
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
178
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
179
|
Milosavljevic N. How Does Light Regulate Mood and Behavioral State? Clocks Sleep 2019; 1:319-331. [PMID: 33089172 PMCID: PMC7445808 DOI: 10.3390/clockssleep1030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The idea that light affects mood and behavioral state is not new. However, not much is known about the particular mechanisms and circuits involved. To fully understand these, we need to know what properties of light are important for mediating changes in mood as well as what photoreceptors and pathways are responsible. Increasing evidence from both human and animal studies imply that a specialized class of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), plays an important role in the light-regulated effects on mood and behavioral state, which is in line with their well-established roles in other non-visual responses (pupillary light reflex and circadian photoentrainment). This paper reviews our current understanding on the mechanisms and paths by which the light information modulates behavioral state and mood.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
180
|
Carroll RG, Timmons GA, Cervantes-Silva MP, Kennedy OD, Curtis AM. Immunometabolism around the Clock. Trends Mol Med 2019; 25:612-625. [PMID: 31153819 DOI: 10.1016/j.molmed.2019.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
|
181
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
182
|
Slow shift of dead zone after an abrupt shift of the light-dark cycle. Brain Res 2019; 1714:73-80. [DOI: 10.1016/j.brainres.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
183
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
184
|
Fogo GM, Shuboni-Mulligan DD, Gall AJ. Melanopsin-Containing ipRGCs Are Resistant to Excitotoxic Injury and Maintain Functional Non-Image Forming Behaviors After Insult in a Diurnal Rodent Model. Neuroscience 2019; 412:105-115. [PMID: 31176702 DOI: 10.1016/j.neuroscience.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for the light signaling properties of non-image forming vision. Melanopsin-expressing ipRGCs project to retinorecipient brain regions involved in modulating circadian rhythms. Melanopsin has been shown to play an important role in how animals respond to light, including photoentrainment, masking (i.e., acute behavioral responses to light), and the pupillary light reflex (PLR). Importantly, ipRGCs are resistant to various forms of damage, including ocular hypertension, optic nerve crush, and excitotoxicity via N-methyl-D-aspartic acid (NMDA) administration. Although these cells are resistant to various forms of injury, the question still remains whether or not these cells remain functional following injury. Here we tested the hypothesis that ipRGCs would be resistant to excitotoxic damage in a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). In addition, we hypothesized that following insult, grass rats would maintain normal circadian entrainment and masking to light. In order to test these hypotheses, we injected NMDA intraocularly and examined its effect on the survivability of ipRGCs and RGCs, along with testing behavioral and functional consequences. Similar to findings in nocturnal rodents, ipRGCs were spared from significant damage but RGCs were not. Importantly, whereas image-forming vision was significantly impaired, non-image forming vision (i.e, photoentrainment, masking, and PLR) remained functional. The present study aims to characterize the resistance of ipRGCs to excitotoxicity in a diurnal rodent model.
Collapse
Affiliation(s)
- Garrett M Fogo
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Andrew J Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA.
| |
Collapse
|
185
|
A quantitative analysis of the contribution of melanopsin to brightness perception. Sci Rep 2019; 9:7568. [PMID: 31110303 PMCID: PMC6527610 DOI: 10.1038/s41598-019-44035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
In the retina, intrinsically photosensitive retinal ganglion cells (ipRGCs) which express photopigment melanopsin have been identified as photoreceptors which differ from cones and rods. It has been established that such melanopsin-expressing RGCs are involved in the circadian photo-entrainment and pupillary light reflexes. An additional projection from ipRGCs to the lateral geniculate nucleus has been identified, which indicates the association of ipRGCs with visual perception induced by the image-forming pathway. Reportedly, ipRGCs modulate brightness perception but quantitative analysis of brightness perception involving melanopsin and cones-based signals has not been elucidated. We conducted brightness perception experiments that involved melanopsin using a novel projector with six primary colors and formulated the results for melanopsin and cone stimuli. The white visual stimuli (5 degrees in size) that we used had a single xy-chromaticity values but melanopsin stimuli were modulated by designing different spectral distributions. Perceived brightness was measured using a magnitude estimation method at several luminance levels in the near periphery (7 degrees). Additionally, pupil diameter was measured for estimating the intensity of visual stimuli on the retina. The results showed that the perceived brightness of a white visual stimulus with different spectral distributions can be described by a summation of the nearly linear melanopsin response and the non-linear cone response with weighted coefficients, and the contribution ratio of melanopsin in brightness perception increased to 50% and more with increasing visual stimulus. These suggest that melanopsin signals play a crucial role in the estimation of the absolute intensity of the light environment by obtaining absolute brightness information even when cones are adapted by light.
Collapse
|
186
|
Gubin DG, Malishevskaya ТN, Astakhov YS, Astakhov SY, Cornelissen G, Kuznetsov VA, Weinert D. Progressive retinal ganglion cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep. Chronobiol Int 2019; 36:564-577. [PMID: 30663431 DOI: 10.1080/07420528.2019.1566741] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
Advanced primary open-angle glaucoma (POAG) is characterized by progressive retinal ganglion cell complex (RGCC) damage that may cause subsequent disruption of the circadian rhythms. Therefore, we evaluated circadian body temperature (BT) rhythm and sleep characteristics of 115 individuals (38 men and 77 women) diagnosed with POAG. GLV (global loss volume; %), a measure of RGCC damage, was estimated by high-definition optical coherence tomography, and RGC functional ability was assessed by pattern electroretinogram amplitude (PERGA). Depending on dynamics of POAG progression criteria, two groups were formed that were distinctively different in GLV: Stable POAG group (S-POAG; GLV = 5.95 ± 1.84, n = 65) and Progressive POAG group (P-POAG; GLV = 24.27 ± 5.09, n = 50). S-POAG and P-POAG groups were not different in mean age (67.61 ± 7.56 versus 69.98 ± 8.15) or body mass index (24.66 ± 3.03 versus 24.77 ± 2.90). All subjects performed 21 around-the-clock BT self-measurements during a 72-h period and kept activity/sleep diaries. Results showed pronounced disruption of circadian physiology in POAG and its progression with increasing severity of the disease. The daily mean of BT was unusually low, compared to age-matched controls. Moreover, our results revealed distinctive features of BT circadian rhythm alterations in POAG development and POAG progression. S-POAG is associated with lowered BT circadian rhythm robustness and inter-daily phase stability compared to controls. In the P-POAG group, the mean phase of the circadian BT rhythm was delayed by about 5 h and phases were highly scattered among individual patients, which led to reduced group mean amplitude. Circadian amplitudes of individuals were not different between the groups. Altogether, these results suggest that the body clock still works in POAG patients, but its entrainment to the 24-h environment is compromised. Probably because of the internal desynchronization, bedtime is delayed, and sleep duration is accordingly shortened by about 55 min in P-POAG compared to S-POAG patients. In the entire POAG cohort (both groups), later sleep phase and shorter mean sleep duration correlate with the delayed BT phase (r = 0.215; p = 0.021 and r = 0.322; p = 0.0004, respectively). An RGCC GLV of 15% apparently constitutes a threshold above which a delay of the circadian BT rhythm and a shortening of sleep duration occur.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Medical University , Tyumen , Russia
- b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - Т N Malishevskaya
- c Department of Organization of Medical Care , State Autonomous Health Care Institution Tyumen Regional Ophthalmological Dispensary , Tyumen , Russia
- d Department of Ophthalmology and Optometry , West-Siberian Institute of Postgraduate Medical Education , Tyumen , Russia
| | - Y S Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - S Y Astakhov
- e Department of Ophthalmology , Pavlov First Saint Petersburg State Medical University , St. Petersburg , Russia
| | - G Cornelissen
- f Halberg Chronobiology Center , University of Minnesota , Minneapolis , MN , USA
| | - V A Kuznetsov
- b Tyumen Cardiology Research Center , Tomsk National Research Medical Center, Russian Academy of Science , Tomsk , Russia
| | - D Weinert
- g Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| |
Collapse
|
187
|
Lax P, Kutsyr O, Esquiva G, Altavilla C, Maneu V, Cuenca N. Cannabinoid-mediated retinal rescue correlates with improved circadian parameters in retinal dystrophic rats. Exp Eye Res 2019; 180:192-199. [DOI: 10.1016/j.exer.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
|
188
|
Lin MS, Liao PY, Chen HM, Chang CP, Chen SK, Chern Y. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment. J Neurosci 2019; 39:1505-1524. [PMID: 30587542 PMCID: PMC6381252 DOI: 10.1523/jneurosci.0571-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are photosensitive neurons in the retina and are essential for non-image-forming functions, circadian photoentrainment, and pupillary light reflexes. Five subtypes of ipRGCs (M1-M5) have been identified in mice. Although ipRGCs are spared in several forms of inherited blindness, they are affected in Alzheimer's disease and aging, which are associated with impaired circadian rhythms. Huntington's disease (HD) is an autosomal neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin gene. In addition to motor function impairment, HD mice also show impaired circadian rhythms and loss of ipRGC. Here, we found that, in HD mouse models (R6/2 and N171-82Q male mice), the expression of melanopsin was reduced before the onset of motor deficits. The expression of retinal T-box brain 2, a transcription factor essential for ipRGCs, was associated with the survival of ipRGCs. The number of M1 ipRGCs in R6/2 male mice was reduced due to apoptosis, whereas non-M1 ipRGCs were relatively resilient to HD progression. Most importantly, the reduced innervations of M1 ipRGCs, which was assessed by X-gal staining in R6/2-OPN4Lacz/+ male mice, contributed to the diminished light-induced c-fos and vasoactive intestinal peptide in the suprachiasmatic nuclei (SCN), which may explain the impaired circadian photoentrainment in HD mice. Collectively, our results show that M1 ipRGCs were susceptible to the toxicity caused by mutant Huntingtin. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and disrupted circadian regulation during HD progression.SIGNIFICANCE STATEMENT Circadian disruption is a common nonmotor symptom of Huntington's disease (HD). In addition to the molecular defects in the suprachiasmatic nuclei (SCN), the cause of circadian disruption in HD remains to be further explored. We hypothesized that ipRGCs, by integrating light input to the SCN, participate in the circadian regulation in HD mice. We report early reductions in melanopsin in two mouse models of HD, R6/2, and N171-82Q. Suppression of retinal T-box brain 2, a transcription factor essential for ipRGCs, by mutant Huntingtin might mediate the reduced number of ipRGCs. Importantly, M1 ipRGCs showed higher susceptibility than non-M1 ipRGCs in R6/2 mice. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and the circadian abnormality during HD progression.
Collapse
Affiliation(s)
- Meng-Syuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Po-Yu Liao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| |
Collapse
|
189
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
190
|
Amengual-Gual M, Sánchez Fernández I, Loddenkemper T. Patterns of epileptic seizure occurrence. Brain Res 2019; 1703:3-12. [DOI: 10.1016/j.brainres.2018.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
|
191
|
Karatsoreos IN. Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. Curr Top Behav Neurosci 2019; 43:323-351. [PMID: 31586337 PMCID: PMC7594017 DOI: 10.1007/7854_2019_115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroendocrine systems are key regulators of brain and body functions, providing an important nexus between internal states and the external world, which then modulates appropriate behavioral outputs. Circadian (daily) rhythms are endogenously generated rhythms of approximately 24 h that help to synchronize internal physiological processes and behavioral states to the external environmental light-dark cycle. Given the importance of timing (hours, days, annual) in many different neuroendocrine axes, understanding how the circadian timing system regulates neuroendocrine function is particularly critical. Similarly, neuroendocrine signals can significantly affect circadian timing, and understanding these mechanisms can provide insights into general concepts of neuroendocrine regulation of brain circuits and behavior. This chapter will review the circadian timing system and its control of two key neuroendocrine systems: the hypothalamic-pituitary-gonadal (HPG) axis and the hypothalamic-pituitary-adrenal (HPA) axis. It will also discuss how outputs from these axes feedback to affect the circadian clock. Given that disruption of circadian timing is a central component of many mental and physical health conditions and that neuroendocrine function is similarly implicated in many of the same conditions, understanding these links will help illuminate potentially shared causality and perhaps lead to a better understanding of how to manipulate these systems when they begin to malfunction.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
192
|
Porter L, Porter A, Potter H, Alenciks E, Fraley S, Fraley G. Low light intensity in Pekin duck breeder barns has a greater impact on the fertility of drakes than hens. Poult Sci 2018; 97:4262-4271. [DOI: 10.3382/ps/pey289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
|
193
|
Photoreceptive retinal ganglion cells control the information rate of the optic nerve. Proc Natl Acad Sci U S A 2018; 115:E11817-E11826. [PMID: 30487225 PMCID: PMC6294960 DOI: 10.1073/pnas.1810701115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noise in the visual signal falls as ambient light increases, allowing the retina to extract more information from the scene. We show here that a measure of ambient light produced by the small number of inner retinal photoreceptors [intrinsically photosensitive retinal ganglion cells (ipRGCs)] regulates intrinsic rates of spike firing across the population of retinal ganglion cells that form the optic nerve. Increased firing at higher irradiance allows the ganglion cells to convey more information. Our findings reveal a potential mechanism for increasing visual performance at high ambient light and show that changes in maintained activity can be used to provide proactive control over rates of information flow in the CNS. Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.
Collapse
|
194
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
195
|
Ostrin LA, Strang CE, Chang K, Jnawali A, Hung LF, Arumugam B, Frishman LJ, Smith EL, Gamlin PD. Immunotoxin-Induced Ablation of the Intrinsically Photosensitive Retinal Ganglion Cells in Rhesus Monkeys. Front Neurol 2018; 9:1000. [PMID: 30542318 PMCID: PMC6277788 DOI: 10.3389/fneur.2018.01000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys. Methods: An immunotoxin for the macaque melanopsin gene (OPN4), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.316, 1, 3.16, 10, and 50 μg in vehicle, and delivered intravitreally to the right eye of six rhesus monkeys, respectively. Left eyes were injected with vehicle only. The pupillary light reflex (PLR), the ipRGC-driven post illumination pupil response (PIPR), and electroretinograms (ERGs) were recorded before and after injection. For pupil measurements, 1 and 5 s pulses of light were presented to the dilated right eye while the left pupil was imaged. Stimulation included 651 nm (133 cd/m2), and 4 intensities of 456 nm (16–500 cd/m2) light. Maximum pupil constriction and the 6 s PIPR were calculated. Retinal imaging was performed with optical coherence tomography (OCT), and eyes underwent OPN4 immunohistochemistry to evaluate immunotoxin specificity and ipRGC loss. Results: Before injection, animals showed robust pupil responses to 1 and 5 s blue light. After injection, baseline pupil size increased 12 ± 17%, maximum pupil constriction decreased, and the PIPR, a marker of ipRGC activity, was eliminated in all but the lowest immunotoxin concentration. For the highest concentrations, some inflammation and structural changes were observed with OCT, while eyes injected with lower concentrations appeared normal. ERG responses showed better preserved retinal function with lower concentrations. Immunohistochemistry showed 80–100% ipRGC elimination with the higher doses being more effective; however this could be partly due to inflammation that occurred at the higher concentrations. Conclusion: Findings demonstrated that the OPN4 macaque immunotoxin was specific for ipRGCs, and induced a graded reduction in the PLR, as well as, in ipRGC-driven pupil response with concentration. Further investigation of the effects of ipRGC ablation on ocular and systemic circadian rhythms and the pupil in rhesus monkeys will provide a better understanding of the role of ipRGCs in primates.
Collapse
Affiliation(s)
- Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| | - Christianne E Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin Chang
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashutosh Jnawali
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Laura J Frishman
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States
| | - Paul D Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
196
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
197
|
Palumaa T, Gilhooley MJ, Jagannath A, Hankins MW, Hughes S, Peirson SN. Melanopsin: photoreceptors, physiology and potential. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
198
|
Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med 2018; 51:370-382. [PMID: 30168605 DOI: 10.1002/lsm.23015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | | | - Charles Mignon
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Bianca Raafs
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - M Julie Thornton
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
199
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
200
|
Rodgers J, Hughes S, Pothecary CA, Brown LA, Hickey DG, Peirson SN, Hankins MW. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue. Hum Mol Genet 2018; 27:2589-2603. [PMID: 29718372 PMCID: PMC6048994 DOI: 10.1093/hmg/ddy150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|