151
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
152
|
Yang Y, Peng W, Su X, Yue B, Shu S, Wang J, Fu C, Zhong J, Wang H. Epigenomics Analysis of the Suppression Role of SIRT1 via H3K9 Deacetylation in Preadipocyte Differentiation. Int J Mol Sci 2023; 24:11281. [PMID: 37511041 PMCID: PMC10379189 DOI: 10.3390/ijms241411281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Sirtuin 1 (SIRT1) overexpression significantly inhibits lipid deposition during yak intramuscular preadipocyte (YIMA) differentiation; however, the regulatory mechanism remains unknown. We elucidated the role of SIRT1 in YIMA differentiation using lentivirus-mediated downregulation technology and conducted mRNA-seq and ChIP-seq assays using H3K9ac antibodies after SIRT1 overexpression in order to reveal SIRT1 targets during YIMA adipogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed in order to identify the functional annotation of common genes. In addition, a potential target of SIRT1 was selected to verify its effects on the differentiation and proliferation of YIMAs. SIRT1 interfered with lipid deposition and promoted YIMA differentiation. In total, 143,518 specific peaks were identified after SIRT1 overexpression, where genes associated with downregulation peaks were enriched in transcription, gene expression, lipid-related processes, and classical lipid-related pathways. The H3K9ac signal in the whole genome promoter region (2 kb upstream and downstream of the transcription start site (TSS)) was weakened, and the peaks were distributed across all gene functional regions. Genes that lost signals in their TSS region or gene body region were enriched in both biological processes and pathways associated with lipogenesis. The ChIP-seq results revealed 714 common differential genes in mRNA-seq, which were enriched in "MAPK signaling", "lipid and atherosclerosis", "mTOR signaling", and "FoxO signaling" pathways. A total of 445 genes were downregulated in both their H3K9ac signals and mRNA expression, and one of their most significantly enriched pathways was FoxO signaling. Nine genes (FBP2, FPGT, HSD17B11, KCNJ15, MAP3K20, SLC5A3, TRIM23, ZCCHC10, and ZMYM1) lost the H3K9ac signal in their TSS regions and had low mRNA expression, and three genes (KCNJ15, TGM3, and TRIM54) had low expression but lost their H3K9ac signal in the gene body region. The interference of TRIM23 significantly inhibited fat deposition during preadipocyte differentiation and promoted cell proliferation by increasing S-phase cell numbers. The present study provides new insights into the molecular mechanism of intramuscular fat content deposition and the epigenetic role of SIRT1 in adipocyte differentiation.
Collapse
Affiliation(s)
- Youzhualamu Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Xiaolong Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
153
|
Wesolowski LT, Simons JL, Semanchik PL, Othman MA, Kim JH, Lawler JM, Kamal KY, White-Springer SH. The Impact of SRT2104 on Skeletal Muscle Mitochondrial Function, Redox Biology, and Loss of Muscle Mass in Hindlimb Unloaded Rats. Int J Mol Sci 2023; 24:11135. [PMID: 37446313 DOI: 10.3390/ijms241311135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanical unloading during microgravity causes skeletal muscle atrophy and impairs mitochondrial energetics. The elevated production of reactive oxygen species (ROS) by mitochondria and Nox2, coupled with impairment of stress protection (e.g., SIRT1, antioxidant enzymes), contribute to atrophy. We tested the hypothesis that the SIRT1 activator, SRT2104 would rescue unloading-induced mitochondrial dysfunction. Mitochondrial function in rat gastrocnemius and soleus muscles were evaluated under three conditions (10 days): ambulatory control (CON), hindlimb unloaded (HU), and hindlimb-unloaded-treated with SRT2104 (SIRT). Oxidative phosphorylation, electron transfer capacities, H2O2 production, and oxidative and antioxidant enzymes were quantified using high-resolution respirometry and colorimetry. In the gastrocnemius, (1) integrative (per mg tissue) proton LEAK was lesser in SIRT than in HU or CON; (2) intrinsic (relative to citrate synthase) maximal noncoupled electron transfer capacity (ECI+II) was lesser, while complex I-supported oxidative phosphorylation to ECI+II was greater in HU than CON; (3) the contribution of LEAK to ECI+II was greatest, but cytochrome c oxidase activity was lowest in HU. In both muscles, H2O2 production and concentration was greatest in SIRT, as was gastrocnemius superoxide dismutase activity. In the soleus, H2O2 concentration was greater in HU compared to CON. These results indicate that SRT2104 preserves mitochondrial function in unloaded skeletal muscle, suggesting its potential to support healthy muscle cells in microgravity by promoting necessary energy production in mitochondria.
Collapse
Affiliation(s)
- Lauren T Wesolowski
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jessica L Simons
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Pier L Semanchik
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Mariam A Othman
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - Joo-Hyun Kim
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - John M Lawler
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Khaled Y Kamal
- Department of Kinesiology & Sport Management, School of Education and Human Development, Texas A&M University, College Station, TX 77843, USA
| | - Sarah H White-Springer
- Department of Animal Science, College of Agriculture and Life Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
154
|
Mizani S, Keshavarz A, Vazifeh Shiran N, Bashash D, Allahbakhshian Farsani M. Expression Changes of SIRT1 and FOXO3a Significantly Correlate with Oxidative Stress Resistance Genes in AML Patients. Indian J Hematol Blood Transfus 2023; 39:392-401. [PMID: 37304466 PMCID: PMC10247606 DOI: 10.1007/s12288-022-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The increased metabolism in acute myeloid leukemia (AML) malignant cells resulted in the production of high levels of free radicals, called oxidative stress conditions. To avoid this situation, malignant cells produce a considerable amount of antioxidant agents, which will lead to the release of a continuous low level of reactive oxygen species (ROS), causing genomic damage and subsequent clonal evolution. SIRT1 has a key role in driving the adaptation to this condition, mainly through the deacetylation of FOXO3a that affects the expression of oxidative stress resistance target genes such as Catalase and Manganese superoxide dismutase (MnSOD). The aim of this study is to simultaneously investigate the expression of SIRT1, FOXO3a, and free radical-neutralizing enzymes such as Catalase and MnSOD in AML patients and measure their simultaneous change in relation to each other. The gene expression was analyzed using Real Time-PCR in 65 AML patients and 10 healthy controls. Our finding revealed that expression of SIRT1, FOXO3a, MnSOD and Catalase was significantly higher in AML patients in comparison to healthy controls. Also, there was a significant correlation between the expression of SIRT1 and FOXO3a, as well as among the expression of FOXO3a, MnSOD and Catalase genes in patients. According to the results, the expression of genes involved in oxidative stress resistance was higher in AML patients, which possibly contributed to the development of malignant clones. Also, the correlation between the expression of SIRT1 and FOXO3a gene reflects the importance of these two genes in increased oxidative stress resistance of cancer cells.
Collapse
Affiliation(s)
- Sharareh Mizani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 15468-15514, Tehran, Iran
| |
Collapse
|
155
|
Ali EA, Tayel SG, Abbas MA. Sitagliptin ameliorates busulfan-induced pulmonary and testicular injury in rats through antioxidant, anti-inflammatory, antifibrotic, and antiapoptotic effects. Sci Rep 2023; 13:9794. [PMID: 37328499 PMCID: PMC10275920 DOI: 10.1038/s41598-023-36829-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
Busulfan (BUS) is an anticancer agent with serious adverse effects on various body organs, including the lung and testis. Sitagliptin was proven to have antioxidant, anti-inflammatory, antifibrotic, and antiapoptotic effects. This study aims to evaluate whether sitagliptin, a DPP4I, ameliorates BUS-induced pulmonary and testicular injury in rats. Male Wistar rats were split into control, sitagliptin (10 mg/kg), BUS (30 mg/kg), and sitagliptin + BUS groups. Weight change, lung and testis indices, serum testosterone, sperm parameters, markers of oxidative stress [malondialdehyde (MDA) and reduced glutathione (GSH)], inflammation [tumor necrosis factor-alpha (TNF-α)], and relative expression of sirtuin1 (SIRT1) and forkhead box protein type O1 (FOXO1) genes were estimated. Histopathological examination of lung and testicular tissues was done to detect architectural changes [Hematoxylin & Eosin (H&E)], fibrosis (Masson's trichrome), and apoptosis (caspase-3). Sitagliptin treatment reduced body weight loss, lung index, lung and testis MDA, serum TNF-α and sperm abnormal morphology, and increased testis index, lung and testis GSH, serum testosterone, sperm count, viability and motility. SIRT1/FOXO1 balance was restored. Also, sitagliptin attenuated fibrosis and apoptosis in lung and testicular tissues via reducing collagen deposition and caspase-3 expression. Accordingly, sitagliptin ameliorated BUS-induced pulmonary and testicular damage in rats via attenuating oxidative stress, inflammation, fibrosis, and apoptosis.
Collapse
Affiliation(s)
- Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mona A Abbas
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
156
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
157
|
Zhang L, Wang L, Huang J, Jin Z, Guan J, Yu H, Zhang M, Yu M, Jiang H, Qiao Z. Effects of Aeromonas hydrophila infection on the intestinal microbiota, transcriptome, and metabolomic of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023:108876. [PMID: 37271325 DOI: 10.1016/j.fsi.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Aeromonas hydrophila frequently has harmful effects on aquatic organisms. The intestine is an important defense against stress. In this study, we investigated the intestinal microbiota and transcriptomic and metabolomic responses of Cyprinus carpio subjected to A. hydrophila infection. The results showed that obvious variation in the intestinal microbiota was observed after infection, with increased levels of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Several genera of putatively beneficial microbiota (Cetobacterium, Bacteroides, and Lactobacillus) were abundant, while Demequina, Roseomonas, Rhodobacter, Pseudoxanthomonas, and Cellvibrio were decreased; pathogenic bacteria of the genus Vibrio were increased after microbiota infection. The intestinal transcriptome revealed several immune-related differentially expressed genes associated with the cytokines and oxidative stress. The metabolomic analysis showed that microbiota infection disturbed the metabolic processes of the carp, particularly amino acid metabolism. This study provides insight into the underlying mechanisms associated with the intestinal microbiota, immunity, and metabolism of carp response to A. hydrophila infection; eleven stress-related metabolite markers were identified, including N-acetylglutamic acid, capsidiol, sedoheptulose 7-phosphate, prostaglandin B1, 8,9-DiHETrE, 12,13-DHOME, ADP, cellobiose, 1H-Indole-3-carboxaldehyde, sinapic acid and 5,7-dihydroxyflavone.
Collapse
Affiliation(s)
- Lan Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China.
| | - Jintai Huang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zhan Jin
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Junxiang Guan
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hang Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Miao Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| |
Collapse
|
158
|
Martínez-Chacón G, Paredes-Barquero M, Yakhine-Diop SM, Uribe-Carretero E, Bargiela A, Sabater-Arcis M, Morales-García J, Alarcón-Gil J, Alegre-Cortés E, Canales-Cortés S, Rodríguez-Arribas M, Camello PJ, Pedro JMBS, Perez-Castillo A, Artero R, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M. Neuroprotective properties of queen bee acid by autophagy induction. Cell Biol Toxicol 2023; 39:751-770. [PMID: 34448959 PMCID: PMC10406658 DOI: 10.1007/s10565-021-09625-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sokhna M.S Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - María Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - José Morales-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Jesús Alarcón-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Pedro Javier Camello
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Instituto Universitario de Biomarcadores de Patologías Metabólicas, Cáceres, Spain
| | - José Manuel Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Rosa A. Gonzalez-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
159
|
Jain A, Jain T, Mishra GK, Chandrakar K, Mukherjee K, Tiwari SP. Molecular characterization, putative structure and function, and expression profile of OAS1 gene in the endometrium of goats (Capra hircus). Reprod Biol 2023; 23:100760. [PMID: 37023663 DOI: 10.1016/j.repbio.2023.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
An interferon-inducible gene, 2'-5'-oligoadenylate synthetase-1 (OAS1), plays an essential role in uterine receptivity and conceptus development by controlling cell growth and differentiation in addition to anti-viral activities. As OAS1 gene has not yet been studied in caprine (cp), so present study was designed with the aim to amplify, sequence, characterize and in-silico analyze the coding sequence of the cpOAS1. Further, expression profile of cpOAS1 was performed by quantitative real-time PCR and western blot in the endometrium of pregnant and cyclic does. An 890 bp fragment of the cpOAS1 was amplified and sequenced. Nucleotide and deduced amino acid sequences revealed 99.6-72.3% identities with that of ruminants and non-ruminants. A constructed phylogenetic tree revealed that Ovis aries and Capra hircus differ from large ungulates. Various post-translational modifications (PTMs), 21 phosphorylation, two sumoylation, eight cysteines and 14 immunogenic sites were found in the cpOAS1. The domain, OAS1_C, is found in the cpOAS1 which carries anti-viral enzymatic activity, cell growth, and differentiation. Among the interacted proteins with cpOAS1, Mx1 and ISG17 well-known proteins are found that have anti-viral activity and play an important role during early pregnancy in ruminants. CpOAS1 protein (42/46 kDa and/or 69/71 kDa) was detected in the endometrium of pregnant and cyclic does. Both cpOAS1 mRNA and protein were expressed maximally (P<0.05) in the endometrium during pregnancy as compared to cyclic does. In conclusion, the cpOAS1 sequence is almost similar in structure and probably in function also to other species along with its higher expression during early pregnancy.
Collapse
Affiliation(s)
- Asit Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India.
| | - Tripti Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Girish Kumar Mishra
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Khushboo Chandrakar
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Kishore Mukherjee
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Sita Prasad Tiwari
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| |
Collapse
|
160
|
Jacome Burbano MS, Robin JD, Bauwens S, Martin M, Donati E, Martínez L, Lin P, Sacconi S, Magdinier F, Gilson E. Non-canonical telomere protection role of FOXO3a of human skeletal muscle cells regulated by the TRF2-redox axis. Commun Biol 2023; 6:561. [PMID: 37231173 DOI: 10.1038/s42003-023-04903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) binds to telomeres and protects chromosome ends against the DNA damage response and senescence. Although the expression of TRF2 is downregulated upon cellular senescence and in various aging tissues, including skeletal muscle tissues, very little is known about the contribution of this decline to aging. We previously showed that TRF2 loss in myofibers does not trigger telomere deprotection but mitochondrial dysfunction leading to an increased level of reactive oxygen species. We show here that this oxidative stress triggers the binding of FOXO3a to telomeres where it protects against ATM activation, revealing a previously unrecognized telomere protective function of FOXO3a, to the best of our knowledge. We further showed in transformed fibroblasts and myotubes that the telomere properties of FOXO3a are dependent on the C-terminal segment of its CR2 domain (CR2C) but independent of its Forkhead DNA binding domain and of its CR3 transactivation domain. We propose that these non-canonical properties of FOXO3a at telomeres play a role downstream of the mitochondrial signaling induced by TRF2 downregulation to regulate skeletal muscle homeostasis and aging.
Collapse
Affiliation(s)
| | - Jérôme D Robin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Marjorie Martin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Emma Donati
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Lucia Martínez
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Peipei Lin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China
| | - Sabrina Sacconi
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Center of Reference, FHU Oncoage, Nice University Hospital, Pasteur 2, Nice, France
| | | | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France.
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China.
- Department of Genetics, CHU; FHU OncoAge, Nice, France.
| |
Collapse
|
161
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
162
|
Xiu Z, Tang S, Kong P, Yan M, Tong X, Liu X, Liang X, Li R, Duan Y. The effect and mechanism of Zigui-Yichong-Fang on improving ovarian reserve in premature ovarian insufficiency by activating SIRT1/Foxo3a pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116608. [PMID: 37150421 DOI: 10.1016/j.jep.2023.116608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zigui-Yichong-Fang (ZGYCF) is a traditional Chinese medicine prescription for the treatment of infertility. It is clinically used to regulate the hormone level of patients, improve ovarian reserve function and increase pregnancy rate. However, the exact mechanism of action is not yet clear. AIMS OF THE STUDY This study aims to explore the potential impact of ZGYCF on POI and its mechanism. MATERIALS AND METHODS Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to identify the main compounds of ZGYCF. After confirming the therapeutic effect of ZGYCF on cyclophosphamide-induced POI mice, RNA sequencing (RNA-seq) analysis was carried out to explore the mechanism. Then, the effects of ZGYCF on SIRT1 deacetylated Foxo3a and apoptosis were verified from multiple perspectives by serum hormone level, mRNA validation, histomorphology and protein expression, acetylation modification and other experiments. RESULTS ZGYCF can improve the morphological changes of ovarian tissue in POI model mice, reduce the damage of primordial follicles and other follicles at all stages, and protect ovarian reserve. The results of transcriptome sequencing showed that the genes expression of PI3K signal and apoptosis signal pathway were increased in POI model mice; ZGYCF can up-regulate the expression of SIRT1 gene and the expression of estradiol, apoptosis inhibition and other signal pathway genes. In addition, ZGYCF can reduce follicular damage and ovarian cell apoptosis in POI model mice through activating the deacetylation of Foxo3a by SIRT1, and improve ovarian reserve function. CONCLUSIONS ZGYCF may improve ovarian reserve function of CTX-induced POI mice by activating SIRT1-mediated deacetylation of Foxo3a, and play a role in the treatment of POI.
Collapse
Affiliation(s)
- Zi Xiu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Siling Tang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xue Tong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xueping Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xiao Liang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Rongxia Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yancang Duan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
163
|
Barangi S, Hayes AW, Karimi G. The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury. Cell Cycle 2023; 22:1062-1073. [PMID: 36703306 PMCID: PMC10081082 DOI: 10.1080/15384101.2023.2172265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
In recent years, researchers have begun to realize the importance of the role of non-coding RNAs in the treatment of cancer and cardiovascular and neurological diseases. LncRNAs and miRNAs are important non-coding RNAs, which regulate gene expression and activate mRNA translation through binding to diverse target sites. Their involvement in the regulation of protein function and the modulation of physiological and pathological conditions continues to be investigated. Sirtuins, especially Sirt1, have a critical function in regulating a variety of physiological processes such as oxidative stress, inflammation, apoptosis, and autophagy. The lncRNAs/miRNAs/Sirt1 axis may be a novel regulatory mechanism, which is involved in the progression and/or prevention of numerous diseases. This review focuses on recent findings on the crosstalk between non-coding RNAs and Sirt1 in myocardial and cerebral injuries and may provide some insight into the development of novel approaches in the treatment of these disorders.Abbreviation: BMECs, brain microvascular endothelial cells; C2dat1, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D)-associated transcript 1; EPCs, endothelial progenitor cells; FOXOs, forkhead transcription factors; GAS5, growth arrest-specific 5; HAECs, human aortic endothelial cells; HAND2-AS1, HAND2 Antisense RNA 1; HIF-1α, hypoxia-inducible factor-1α; ILF3-AS1, interleukin enhancer-binding factor 3-antisense RNA 1; KLF3-AS1, KLF3 antisense RNA 1; LncRNA, long noncoding RNA; LUADT1, Lung Adenocarcinoma Associated Transcript 1; MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; miRNA, microRNA; NEAT1, nuclear enriched abundant transcript 1; NF-κB, nuclear factor kappa B; OIP5-AS1, Opa-interacting protein 5-antisense transcript 1; Sirt1-AS, Sirt1 Antisense RNA; SNHG7, small nucleolar RNA host gene 7; SNHG8, small nucleolar RNA host gene 8; SNHG12, small nucleolar RNA host gene 12; SNHG15, small nucleolar RNA host gene 15; STAT3, signal transducers and activators of transcription 3; TUG1, taurine up-regulated gene 1; VSMCs, vascular smooth muscle cells; XIST, X inactive specific transcript; ZFAS1, ZNFX1 Antisense RNA 1.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Michigan State University, East Lansing, MI, USA
- University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
164
|
Yan D, Yang Y, Lang J, Wang X, Huang Y, Meng J, Wu J, Zeng X, Li H, Ma H, Gao L. SIRT1/FOXO3-mediated autophagy signaling involved in manganese-induced neuroinflammation in microglia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114872. [PMID: 37027942 DOI: 10.1016/j.ecoenv.2023.114872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Manganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1β, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance. This is due to Mn-induced the downregulation of SIRT1. Upregulation of SIRT1 in vivo and in vitro could alleviate Mn-induced autophagy dysfunction and neuroinflammation, yet these beneficial effects were abolished following 3-MA administration. Furthermore, we found that Mn interfered with the acetylation of FOXO3 by SIRT1 in BV2 cells, leading to a decrease in the nuclear translocation of FOXO3, and its binding of LC3B promoter and transcription activity. This could be antagonized by the upregulation of SIRT1. Finally, it is proved that SIRT1/FOXO3-LC3B autophagy signaling involves in Mn-induced neuroinflammation impairment.
Collapse
Affiliation(s)
- Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jing Lang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xinning Zeng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Honglin Ma
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China.
| |
Collapse
|
165
|
Niu XJ, Sun YH, Wang LJ, Huang YY, Wang Y, Guo XQ, Xu BH, Wang C. Fox transcription factor AccGRF1 in response to glyphosate stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105419. [PMID: 37105625 DOI: 10.1016/j.pestbp.2023.105419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yun-Hao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuan-Yuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
166
|
Tuncay E, Gando I, Huo JY, Yepuri G, Samper N, Turan B, Yang HQ, Ramasamy R, Coetzee WA. The cardioprotective role of sirtuins is mediated in part by regulating K ATP channel surface expression. Am J Physiol Cell Physiol 2023; 324:C1017-C1027. [PMID: 36878847 PMCID: PMC10110703 DOI: 10.1152/ajpcell.00459.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ivan Gando
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Jian-Yi Huo
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Gautham Yepuri
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
| | - Natalie Samper
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | - Ravichandran Ramasamy
- Department of Medicine, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| | - William A Coetzee
- Department of Pathology, New York University Grossman Medical Center, New York, New York, United States
- Department of Physiology & Neuroscience, New York University Grossman Medical Center, New York, New York, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman Medical Center, New York, New York, United States
| |
Collapse
|
167
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
168
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
169
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
170
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
171
|
Park JW, Roh E, Kang GM, Gil SY, Kim HK, Lee CH, Jang WH, Park SE, Moon SY, Kim SJ, Jeong SY, Park CB, Lim HS, Oh YR, Jung HN, Kwon O, Youn BS, Son GH, Min SH, Kim MS. Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure. Nat Commun 2023; 14:1994. [PMID: 37031230 PMCID: PMC10082796 DOI: 10.1038/s41467-023-37517-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 14068, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Hyun Kyong Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, 24252, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang Yun Moon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - So Yeon Jeong
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Han Na Jung
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | | | - Gi Hoon Son
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Korea
| | - Se Hee Min
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
172
|
Rimal S, Tantray I, Li Y, Pal Khaket T, Li Y, Bhurtel S, Li W, Zeng C, Lu B. Reverse electron transfer is activated during aging and contributes to aging and age-related disease. EMBO Rep 2023; 24:e55548. [PMID: 36794623 PMCID: PMC10074108 DOI: 10.15252/embr.202255548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.
Collapse
Affiliation(s)
- Suman Rimal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Ishaq Tantray
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yu Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Yanping Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Sunil Bhurtel
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Wen Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Bingwei Lu
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
173
|
Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov 2023; 9:115. [PMID: 37019879 PMCID: PMC10076300 DOI: 10.1038/s41420-023-01387-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver resection or liver transplantation that can seriously affect patient's prognosis. There is currently no definitive and effective treatment strategy for HIRI. Autophagy is an intracellular self-digestion pathway initiated to remove damaged organelles and proteins, which maintains cell survival, differentiation, and homeostasis. Recent studies have shown that autophagy is involved in the regulation of HIRI. Numerous drugs and treatments can change the outcome of HIRI by controlling the pathways of autophagy. This review mainly discusses the occurrence and development of autophagy, the selection of experimental models for HIRI, and the specific regulatory pathways of autophagy in HIRI. Autophagy has considerable potential in the treatment of HIRI.
Collapse
Affiliation(s)
- Benliang Mao
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Bailin Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China.
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China.
| |
Collapse
|
174
|
Friedman B, Larranaga‐Vera A, Castro CM, Corciulo C, Rabbani P, Cronstein BN. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J 2023; 37:e22838. [PMID: 36884388 PMCID: PMC11977601 DOI: 10.1096/fj.202201212rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Osteoarthritis (OA) pathogenesis is associated with reduced chondrocyte homeostasis and increased levels of cartilage cellular senescence. Chondrosenescence is the development of cartilage senescence that increases with aging joints and disrupts chondrocyte homeostasis and is associated with OA. Adenosine A2A receptor (A2AR) activation in cartilage via intra-articular injection of liposomal A2AR agonist, liposomal-CGS21680, leads to cartilage regeneration in vivo and chondrocyte homeostasis. A2AR knockout mice develop early OA isolated chondrocytes demonstrate upregulated expression of cellular senescence and aging-associated genes. Based on these observations, we hypothesized that A2AR activation would ameliorate cartilage senescence. We found that A2AR stimulation of chondrocytes reduced beta-galactosidase staining and regulated levels and cell localization of common senescence mediators p21 and p16 in vitro in the human TC28a2 chondrocyte cell line. In vivo analysis similarly showed A2AR activation reduced nuclear p21 and p16 in obesity-induced OA mice injected with liposomal-CGS21680 and increased nuclear p21 and p16 in A2AR knockout mouse chondrocytes compared to wild-type mice. A2AR agonism also increased activity of the chondrocyte Sirt1/AMPK energy-sensing pathway by enhancing nuclear Sirt1 localization and upregulating T172-phosphorylated (active) AMPK protein levels. Lastly, A2AR activation in TC28a2 and primary human chondrocytes reduced wild-type p53 and concomitantly increased p53 alternative splicing leading to increase in an anti-senescent p53 variant, Δ133p53α. The results reported here indicate that A2AR signaling promotes chondrocyte homeostasis in vitro and reduces OA cartilage development in vivo by reducing chondrocyte senescence.
Collapse
Affiliation(s)
- Benjamin Friedman
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ane Larranaga‐Vera
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Cristina M. Castro
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Carmen Corciulo
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Piul Rabbani
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Hansjorg Wyss Department of Plastic SurgeryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Bruce N. Cronstein
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
175
|
Rezaeian AH, Phan LM, Zhou X, Wei W, Inuzuka H. Pharmacological inhibition of the SKP2/p300 signaling axis restricts castration-resistant prostate cancer. Neoplasia 2023; 38:100890. [PMID: 36871351 PMCID: PMC10006859 DOI: 10.1016/j.neo.2023.100890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
SKP2, an F-box protein of the SCF type of the E3 ubiquitin ligase complex, plays an important function in driving tumorigenesis through the destruction of numerous tumor-suppressive proteins. Besides its critical role in cell cycle regulation, proto-oncogenic functions of SKP2 have also been shown in a cell cycle regulation-independent manner. Therefore, uncovering novel physiological upstream regulators of SKP2 signaling pathways would be essential to retard aggressive malignancies. Here, we report that elevation of SKP2 and EP300 transcriptomic expression is a hallmark of castration-resistant prostate cancer. We also found that SKP2 acetylation is likely a critical driven event in castration-resistant prostate cancer cells. Mechanistically, SKP2-acetylation is mediated by the p300 acetyltransferase enzyme for post-translational modification (PTM) event that is induced upon stimulation with dihydrotestosterone (DHT) in prostate cancer cells. Moreover, ectopic expression of acetylation-mimetic K68/71Q mutant of SKP2 in LNCaP cells could confer resistance to androgen withdrawal-induced growth arrest and promotes prostate cancer stem cell (CSC)-like traits including survival, proliferation, stemness formation, lactate production, migration, and invasion. Furthermore, inhibition of p300-mediated SKP2 acetylation or SKP2-mediated p27-degradation by pharmacological inhibition of p300 or SKP2 could attenuate epithelial-mesenchymal transition (EMT) and the proto-oncogenic activities of the SKP2/p300 and androgen receptor (AR) signaling pathways. Therefore, our study identifies the SKP2/p300 axis as a possible molecular mechanism driving castration-resistant prostate cancers, which provides pharmaceutical insight into inactivation of the SKP2/p300 axis for restriction of CSC-like properties, thereby benefiting clinical diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Liem Minh Phan
- David Grant USAF Medical Center, Clinical Investigation Facility, 60th Medical Group, Travis Air Force Base, CA 94535, United States of America
| | - Xiaobo Zhou
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, United States of America
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, United States of America
| |
Collapse
|
176
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
177
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
178
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
179
|
Rani M, Kumari R, Singh SP, Devi A, Bansal P, Siddiqi A, Alsahli MA, Almatroodi SA, Rahmani AH, Rizvi MMA. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sci 2023; 321:121535. [PMID: 36906255 DOI: 10.1016/j.lfs.2023.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.
Collapse
Affiliation(s)
- Madhu Rani
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashmi Kumari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Centre for Pharmacology and Therapeutics, Rosewell Park Comprehensive Care Centre, 665 Elm Street, Buffalo, NY, USA 14203
| | - Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Bansal
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aisha Siddiqi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
180
|
Lasick KA, Jose E, Samayoa AM, Shanks L, Pond KW, Thorne CA, Paek AL. FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Mol Biol Cell 2023; 34:ar21. [PMID: 36735481 PMCID: PMC10011729 DOI: 10.1091/mbc.e22-05-0193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
FOXO transcription factors are regulators of cellular homeostasis linked to increased lifespan and tumor suppression. FOXOs are activated by diverse cell stresses including serum starvation and oxidative stress. FOXO activity is regulated through posttranslational modifications that control shuttling of FOXO proteins to the nucleus. In the nucleus, FOXOs up-regulate genes in multiple, often conflicting pathways, including cell-cycle arrest and apoptosis. How cells control FOXO activity to ensure the proper response for a given stress is an open question. Using quantitative immunofluorescence and live-cell imaging, we found that the dynamics of FOXO nuclear shuttling is stimulus-dependent and corresponds with cell fate. H2O2 treatment leads to an all-or-none response where some cells show no nuclear FOXO accumulation, while other cells show a strong nuclear FOXO signal. The time that FOXO remains in the nucleus increases with the dose and is linked with cell death. In contrast, serum starvation causes low-amplitude pulses of nuclear FOXO and predominantly results in cell-cycle arrest. The accumulation of FOXO in the nucleus is linked with low AKT activity for both H2O2 and serum starvation. Our findings suggest the dynamics of FOXO nuclear shuttling is one way in which the FOXO pathway dictates different cellular outcomes.
Collapse
Affiliation(s)
- Kathleen A. Lasick
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Elizabeth Jose
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Allison M. Samayoa
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719
| | - Lisa Shanks
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Kelvin W. Pond
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| | - Andrew L. Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| |
Collapse
|
181
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
182
|
Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2023; 99:292-307. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Activation of some signaling pathways can promote cell survival and have a negative impact on tumor response to radiotherapy. Here, the role of differences in expression levels of genes related to the poly(ADP-ribose) polymerase-1 (PARP-1), heat shock protein 90 (Hsp90), B-cell lymphoma 2 (Bcl-2), and phosphoinositide 3-kinase (PI3K) pathways in the survival or death of cells following X-ray exposure was investigated. METHODS Eight human cell cultures (MCF-7 and MDA-MB-231: breast cancers; MCF-12A: apparently normal breast; A549: lung cancer; L132: normal lung; G28, G44 and G112: glial cancers) were irradiated with X-rays. The colony-forming and real-time PCR based on a custom human pathway RT2 Profiler PCR Array assays were used to evaluate cell survival and gene expression, respectively. RESULTS The surviving fractions at 2 Gy for the cell lines, in order of increasing radioresistance, were found to be as follows: MCF-7 (0.200 ± 0.011), G44 (0.277 ± 0.065), L132 (0.367 ± 0.023), MDA-MB-231 (0.391 ± 0.057), G112 (0.397 ± 0.113), A549 (0.490 ± 0.048), MCF-12A (0.526 ± 0.004), and G28 (0.633 ± 0.094). The rank order of radioresistance at 6 Gy was: MCF-7 < L132 < G44 < MDA-MB-231 < A549 < G28 < G112 < MCF-12A. PCR array data analysis revealed that several genes were differentially expressed between irradiated and unirradiated cell cultures. The following genes, with fold changes: BCL2A1 (21.91), TP53 (8743.75), RAD51 (11.66), FOX1 (65.86), TCP1 (141.32), DNAJB1 (3283.64), RAD51 (51.52), and HSPE1 (12887.29) were highly overexpressed, and BAX (-127.21), FOX1 (-81.79), PDPK1 (-1241.78), BRCA1 (-8.70), MLH1 (-12143.95), BCL2 (-18.69), CCND1 (-46475.98), and GJA1 (-2832.70) were highly underexpressed in the MDA-MB-231, MCF-7, MCF-12A, A549, L132, G28, G44, and G112 cell lines, respectively. The radioresistance in the malignant A549 and G28 cells was linked to upregulation in the apoptotic, DNA repair, PI3K, and Hsp90 pathway genes BAG1, MGMT, FOXO1, and DNAJA1, respectively, and inhibition of these genes resulted in significant radiosensitization. CONCLUSIONS Targeting BAG1, MGMT, FOXO1, and DNAJA1 with specific inhibitors might effectively sensitize radioresistant tumors to radiotherapy.
Collapse
Affiliation(s)
- Bayanika Manunu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
183
|
Bernardo VS, Torres FF, da Silva DGH. FoxO3 and oxidative stress: a multifaceted role in cellular adaptation. J Mol Med (Berl) 2023; 101:83-99. [PMID: 36598531 DOI: 10.1007/s00109-022-02281-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.
Collapse
Affiliation(s)
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil.
- Campus de Três Lagoas, Universidade Federal de Mato Grosso Do Sul (CPTL/UFMS), Avenida Ranulpho Marques Leal, 3484, Três Lagoas, Mato Grosso Do Sul, Distrito Industrial-Post code 79613-000, Brazil.
| |
Collapse
|
184
|
Li Y, Anand-Srivastava MB. Role of Gi proteins in the regulation of blood pressure and vascular remodeling. Biochem Pharmacol 2023; 208:115384. [PMID: 36549460 DOI: 10.1016/j.bcp.2022.115384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Heterotrimeric guanine nucleotide regulatory proteins (G-proteins) through the activation of several signaling mechanisms including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover. regulate a variety of cellular functions, including vascular reactivity, proliferation and hypertrophy of VSMC. Activity of adenylyl cyclase is regulated by two G proteins, stimulatory (Gsα) and inhibitory (Giα). Gsα stimulates adenylyl cyclase activity and increases the levels of cAMP, whereas Giα inhibits the activity of adenylyl cyclase and results in the reduction of cAMP levels. Abnormalities in Giα protein expression and associated adenylyl cyclase\cAMP levels result in the impaired cellular functions and contribute to various pathological states including hypertension. The expression of Giα proteins is enhanced in various tissues including heart, kidney, aorta and vascular smooth muscle cells (VSMC) from genetic (spontaneously hypertensive rats (SHR)) and experimentally - induced hypertensive rats and contribute to the pathogenesis of hypertension. In addition, the enhanced expression of Giα proteins exhibited by VSMC from SHR is also implicated in the hyperproliferation and hypertrophy, the two key players contributing to vascular remodelling in hypertension. The enhanced levels of endogenous vasoactive peptides including angiotensin II (Ang II), endothelin-1 (ET-1) and growth factors contribute to the overexpression of Giα proteins in VSMC from SHR. In addition, enhanced oxidative stress, activation of c-Src, growth factor receptor transactivation and MAP kinase/PI3kinase signaling also contribute to the augmented expression of Giα proteins in VSMC from SHR. This review summarizes the role of Giα proteins, and the underlying molecular mechanisms implicated in the regulation of high blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
185
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
186
|
Anwar M, Pradhan R, Dey S, Kumar R. The Role of Sirtuins in Sarcopenia and Frailty. Aging Dis 2023; 14:25-32. [PMID: 36818553 PMCID: PMC9937701 DOI: 10.14336/ad.2022.0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
The population of older individuals is increasing rapidly, but only a small fraction among them is able to experiences a healthy life. Due to lack of physical exercise and oxidative stress, aging leads to sarcopenia and finally end up with frailty. Sarcopenia is a component of the frailty and described as age related degenerative changes in the skeletal muscle mass, strength and quality. Though the loss of muscle strength and mass gradually seem inevitable during aging, it can be partially prevented or overcome by a deeper insight into the pathogenesis. Sirtuin protein leads to longevity across different organisms ranging from worms to mammals. Expression of sirtuin protein increases during physical exercise and thus strengthens muscle mass. Satellite cells leads to muscle repair in a SIRT1 dependent manner. In addition, SIRT1 improves insulin sensitivity and induces autophagy in the aged mice. The current paper discussed the putative role of sirtuins in sarcopenia and frailty. Moreover, it highlighted the pathways by which sirtuins can inhibit ROS production, inflammation and mitochondrial dysfunctions and therefore confers a protective role against frailty and sarcopenia. The critical role of sirtuins in the sarcopenia and frailty pathogenesis can eventually fuel the development of novel interventions by targeting sirtuins.
Collapse
Affiliation(s)
- Masroor Anwar
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India,Correspondence should be addressed to: Dr. Rahul Kumar, GITAM Institiute of Sciences, GITAM (Deemed to be) University, Gandhi Nagar, Rushikonda, Andhra Pradesh-53004, India.; Dr. Sharmitha Dey, All India Institute of Medical Sciences, New Delhi-110059, India.
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India,Correspondence should be addressed to: Dr. Rahul Kumar, GITAM Institiute of Sciences, GITAM (Deemed to be) University, Gandhi Nagar, Rushikonda, Andhra Pradesh-53004, India.; Dr. Sharmitha Dey, All India Institute of Medical Sciences, New Delhi-110059, India.
| |
Collapse
|
187
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
188
|
Saffar H, Nili F, Sarmadi S, Barazandeh E, Saffar H. Evaluation of Sirtuin1 Overexpression by Immunohistochemistry in Cervical Intraepithelial Lesions and Invasive Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:128-131. [PMID: 36730441 DOI: 10.1097/pai.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
Cervical cancer is one of the most common genital cancers in the woman with approximately half a million new cases per year. Development of invasive squamous cell carcinoma (SCC) is the result of persistent and frequent human papilloma virus infection in premalignant lesions of cervix. Thereby identification of biomarkers that could predict progression of dysplastic mucosa to invasive cancer is of great clinical significance. Overexpression of SIRT1 has been reported to induce tumorogenesis in several organs. We evaluated SIRT1 expression in normal squamous epithelium of cervix, low-grade and high-grade cervical intraepithelial lesions and invasive SCC. A total of 104 cases were selected including 34 low-grade cervical intraepithelial lesions (CINs), 37 high-grade CINs, and 35 cases of invasive SCC. The normal cervical epithelium showed negative or weak SIRT1 positivity only in basal layers. SIRT1 cytoplasmic expression was found in 13 of 34 (38.2%) of low-grade CINs, 31 of 37 (83.8%) of high-grade CINs and all 35 (100%) cases of invasive SCC. Expression between 2 groups of CIN was statistically significant ( P =0.001). Thus, SIRT1 appears to be a promising biomarker for predicting the progression of CIN to invasive SCC.
Collapse
Affiliation(s)
| | | | | | | | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
189
|
Xue Y, Fu W, Yu P, Li Y, Yu X, Xu H, Sui D. Ginsenoside Rc Alleviates Myocardial Ischemia-Reperfusion Injury by Reducing Mitochondrial Oxidative Stress and Apoptosis: Role of SIRT1 Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1547-1561. [PMID: 36626267 DOI: 10.1021/acs.jafc.2c06926] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Myocardial ischemia-reperfusion (MI/R) injury occurs when coronary blood supply is impaired and then re-established, leading to additional injury to the myocardial tissue, including mitochondria oxidative stress and apoptosis. Ginsenoside Rc is one of the main protopanaxadiol-type saponins, and there has been relatively little research on it. Despite research confirming that ginsenoside Rc regulates mitochondrial functions, its potential benefits against MI/R injury have not been explored. In this study, we examined the protective effects of ginsenoside Rc in MI/R injury, along with its underlying mechanisms, using an in vitro H9c2 cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) and an in vivo rat model of MI/R injury. Prior to this, the H9c2 cells or rats were exposed to ginsenoside Rc with or without SIRT1 small interfering RNA (siRNA) or the selective SIRT1 inhibitor EX527. The results showed that after MI/R (or OGD/R) injury, ginsenoside Rc had a cardioprotective effect; improved cardiac function (or cell survival); reduced myocardial infarct size; decreased levels of creatine kinase-MB, cardiac troponin I, and lactate dehydrogenase (LDH) in the serum (or LDH release into culture medium); reduced cardiomyocyte apoptosis; and attenuated mitochondrial oxidative damage. Ginsenoside Rc pre-treatment also upregulated the anti-apoptotic protein Bcl-2 while downregulating the pro-apoptotic proteins Bax and cleaved caspase-3. Furthermore, the cardioprotective effect of ginsenoside Rc was concomitant with upregulated SIRT1 expression and downregulated Ac-FOXO1 expression. SIRT1 siRNA or SIRT1 inhibitor EX527 abolished the cardioprotective effects of ginsenoside Rc by inhibiting the SIRT1 signaling pathway. In conclusion, our findings demonstrate that ginsenoside Rc ameliorated MI/R injury by reducing mitochondrial oxidative stress and apoptosis, at least in part, by activating SIRT1.
Collapse
Affiliation(s)
- Yan Xue
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
190
|
Hardiany NS, Remifta Putra MA, Penantian RM, Antarianto RD. Effects of fasting on FOXO3 expression as an anti-aging biomarker in the liver. Heliyon 2023; 9:e13144. [PMID: 36718153 PMCID: PMC9883274 DOI: 10.1016/j.heliyon.2023.e13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Background Aging is a multifactorial degenerative process that can be modulated by fasting through activation of the Fork-head transcription factor of the O class 3 (FOXO3), which plays an important role in increasing lifespans. However, the effects of different fasting durations on the expression of FOXO3 in the liver has not yet been reported. Objective This study analyzed the effects of different fasting durations on the FOXO3 expression and its pathway by measuring sirtuin1 (SIRT1), insulin-like growth factor-1 (IGF-1), and superoxide dismutase (SOD) activity in the liver. Methods New Zealand white rabbits were used to mimic the effects of fasting on humans. The rabbits were divided into the control, intermittent fasting (IF), and prolonged fasting (PF) groups. Both fasting groups were interspersed with the non-fasting phase for 8 h. This treatment was conducted for 6 days. On Day 7, all the rabbits were sacrificed, and their livers were taken to measure the FOXO3 and SIRT1 mRNA expressions, the IGF-1 protein level, and the SOD activity level. ANOVA, multiple comparison, and Pearson's correlation were performed for statistical analysis. Results The FOXO3 and SIRT1 mRNA expressions were significantly higher in the IF group than in the control group. The FOXO3 expression was also 2.5 times higher in the IF group than in the PF group. There was a positive correlation between the FOXO3 and SIRT1 mRNA expressions. The IGF-1 protein level was significantly lower in the IF and PF groups than in the control group. The SOD-specific activity level was significantly higher in the IF group than in the control and PF groups. Conclusions Intermittent fasting significantly increased the FOXO3 and SIRT1 mRNA expressions and the SOD activity level in the livers of the rabbits and significantly decreased the circulating and hepatic IGF-1. Therefore, intermittent fasting may give a protective intervention effect towards aging.
Collapse
Affiliation(s)
- Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia,Corresponding author.
| | | | | | | |
Collapse
|
191
|
Rivas-Chacón LDM, Yanes-Díaz J, de Lucas B, Riestra-Ayora JI, Madrid-García R, Sanz-Fernández R, Sánchez-Rodríguez C. Cocoa Polyphenol Extract Inhibits Cellular Senescence via Modulation of SIRT1 and SIRT3 in Auditory Cells. Nutrients 2023; 15:544. [PMID: 36771251 PMCID: PMC9921725 DOI: 10.3390/nu15030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cocoa, rich in polyphenols, has been reported to provide many health benefits due to its antioxidant properties. In this study, we investigated the effect of Cocoa polyphenols extract (CPE) against oxidative stress-induced cellular senescence using a hydrogen peroxide (H2O2)-induced cellular senescence model in three auditory cells lines derived from the auditory organ of a transgenic mouse: House Ear Institute-Organ of Corti 1 (HEI-OC1), Organ of Corti-3 (OC-k3), and Stria Vascularis (SV-k1) cells. Our results showed that CPE attenuated senescent phenotypes, including senescence-associated β-galactosidase expression, cell proliferation, alterations of morphology, oxidative DNA damage, mitochondrial dysfunction by inhibiting mitochondrial reactive oxygen species (mtROS) generation, and related molecules expressions such as forkhead box O3 (FOXO3) and p53. In addition, we determined that CPE induces expression of sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), and it has a protective role against cellular senescence by upregulation of SIRT1 and SIRT3. These data indicate that CPE protects against senescence through SIRT1, SIRT3, FOXO3, and p53 in auditory cells. In conclusion, these results suggest that Cocoa has therapeutic potential against age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Luz del Mar Rivas-Chacón
- Department Clinical Analysis, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Joaquín Yanes-Díaz
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Beatriz de Lucas
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Juan Ignacio Riestra-Ayora
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Raquel Madrid-García
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Ricardo Sanz-Fernández
- Department Otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain
| | - Carolina Sánchez-Rodríguez
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
192
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
193
|
Zhai J, Kongsberg WH, Pan Y, Hao C, Wang X, Sun J. Caloric restriction induced epigenetic effects on aging. Front Cell Dev Biol 2023; 10:1079920. [PMID: 36712965 PMCID: PMC9880295 DOI: 10.3389/fcell.2022.1079920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Aging is the subject of many studies, facilitating the discovery of many interventions. Epigenetic influences numerous life processes by regulating gene expression and also plays a crucial role in aging regulation. Increasing data suggests that dietary changes can alter epigenetic marks associated with aging. Caloric restriction (CR)is considered an intervention to regulate aging and prolong life span. At present, CR has made some progress by regulating signaling pathways associated with aging as well as the mechanism of action of intercellular signaling molecules against aging. In this review, we will focus on autophagy and epigenetic modifications to elaborate the molecular mechanisms by which CR delays aging by triggering autophagy, epigenetic modifications, and the interaction between the two in caloric restriction. In order to provide new ideas for the study of the mechanism of aging and delaying aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Sun
- *Correspondence: Xiaojing Wang, ; Jie Sun,
| |
Collapse
|
194
|
Dong W, Zhang K, Gong Z, Luo T, Li J, Wang X, Zou H, Song R, Zhu J, Ma Y, Liu G, Liu Z. N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chem Biol Interact 2023; 369:110299. [PMID: 36493885 DOI: 10.1016/j.cbi.2022.110299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
With the development of modern industrial civilization, cadmium (Cd), a known nephrotoxic metal, has become a growing public safety issue due to its ability to induce various types of kidney disease. Maladaptive proximal tubule repair is a significant cause of Cd-induced chronic kidney disease (CKD), which is characterized by premature senescence and pro-fibrosis. Previously, we demonstrated that cadmium causes DNA damage and cycle arrest in renal tubular epithelial cells, which may be relevant to premature senescence regulated by sirtuin 1 (SIRT1). In this study, in vivo and in vitro studies were conducted to elucidate the role of SIRT1-mediated premature renal senescence in Cd-induced CKD. As oxidative stress is a significant cause of aging, we evaluated whether N-acetylcysteine (NAC) would inhibit Cd-induced premature aging and dysfunction in rat renal tubular epithelial cells. Cadmium induced premature renal senescence and fibrosis, and NAC inhibited premature renal senescence and fibrosis through the SIRT1-P53 pathway and delayed CKD progression. Overall, the results suggested that the SIRT1-P53 pathway mediates oxidative stress, premature renal senescence, and renal fibrosis during cadmium exposure, which may be a potential therapeutic target for Cd-induced CKD.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Tongwang Luo
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
195
|
El-Sheikh MM, Abdel-Naby DH, El-Hazek RM, El-Ghazaly MA. Regulation of radiation-induced liver damage by modulation of SIRT-1 activity: In vivo rat model. Cell Biochem Funct 2023; 41:67-77. [PMID: 36259113 DOI: 10.1002/cbf.3762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Silent information regulator 1 (SIRT-1), a nicotinamide adenine dinucleotide-dependent deacetylase, was found to regulate cell apoptosis, inflammation, and oxidative stress response in living organisms. Therefore, the role of SIRT-1 in regulating forkhead box O/poly ADP-ribose polymerase-1 (FOXO-1/PARP-1) signaling could provide the necessary validation for developing new pharmacological targets for the promotion or inhibition of SIRT-1 activity toward radiation sensitivity. In the present study, the SIRT-1 signaling pathway is being investigated to study the possible modulatory effect of resveratrol (RSV, SIRT-1 activator) versus nicotinamide (NAM, SIRT-1 inhibitor) in case of liver damage induced by whole-body gamma irradiation. Rats were exposed to 6 Gy gamma radiation after being pretreated with either RSV (10 mg/kg/day) or NAM (100 mg/kg/day) for 5 days, and subsequent examining hepatic morphological changes and apoptotic markers were assessed. The expression of SIRT-1, FOXO-1, and cleaved PARP-1 in the liver was analyzed. RSV improved radiation-induced apoptosis, mitochondrial dysfunction, and inflammation signified by low expression of caspase-3, lactate dehydrogenase, complex-I activity, myeloperoxidase, and total nitric oxide content. RSV increased the expression of SIRT-1, whereas cleaved PARP-1 and FOXO-1 were suppressed. These protective effects were suppressed by inhibition of SIRT-1 activity using NAM. These findings suggest that RSV can attenuate radiation-induced hepatic injury by reducing apoptosis and inflammation via SIRT-1 activity modulation.
Collapse
Affiliation(s)
- Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
196
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
197
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
198
|
Pang S, Zhang Z, Zhou Y, Zhang J, Yan B. Genetic Variants of SIRT1 Gene Promoter in Type 2 Diabetes. Int J Endocrinol 2023; 2023:6919275. [PMID: 36747995 PMCID: PMC9899147 DOI: 10.1155/2023/6919275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a highly heterogeneous and polygenic disease. To date, genetic causes and underlying mechanisms for T2D remain unclear. SIRT1, one member of highly conserved NAD-dependent class III deacetylases, has been implicated in many human diseases. Accumulating evidence indicates that SIRT1 is involved in insulin resistance and impaired pancreatic β-cell function, the two hallmarks of T2D. Thus, we speculated that altered SIRT1 levels, resulting from the genetic variants within its regulatory region of SIRT1 gene, may contribute to the T2D development. In this study, the SIRT1 gene promoter was genetically analyzed in T2D patients (n = 218) and healthy controls (n = 358). A total of 20 genetic variants, including 7 single-nucleotide polymorphisms (SNPs), were identified. Five heterozygous genetic variants (g.4114-15InsA, g.4801G > A, g.4816G > C, g.4934G > T, and g.4963_64Ins17bp) and one SNP (g.4198A > C (rs35706870)) were identified in T2D patients, but in none of the controls. The frequencies of two SNPs (g.4540A > G (rs3740051) (OR: 1.75, 95% CI: 1.24-2.47, P < 0.001 in dominant genetic model) and g.4821G > T (rs35995735)) (OR: 3.58, 95% CI: 1.94-6.60, P < 0.001 in dominant genetic model) were significantly higher in T2D patients. Further association and haplotype analyses confirmed that these two SNPs were strongly linked, contributing to the T2D (OR: 1.442, 95% CI: 1.080-1.927, P < 0.05). Moreover, most of the genetic variants identified in T2D were disease-specific. Taken together, the genetic variants within SIRT1 gene promoter might contribute to the T2D development by altering SIRT1 levels. Underlying molecular mechanism needs to be further explored.
Collapse
Affiliation(s)
- Shuchao Pang
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Zhengjun Zhang
- Division of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yu Zhou
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Dongcheng, Beijing 100730, China
| | - Bo Yan
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
199
|
Eckhardt CM, Gambazza S, Bloomquist TR, De Hoff P, Vuppala A, Vokonas PS, Litonjua AA, Sparrow D, Parvez F, Laurent LC, Schwartz J, Baccarelli AA, Wu H. Extracellular Vesicle-Encapsulated microRNAs as Novel Biomarkers of Lung Health. Am J Respir Crit Care Med 2023; 207:50-59. [PMID: 35943330 PMCID: PMC9952856 DOI: 10.1164/rccm.202109-2208oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/08/2022] [Indexed: 02/03/2023] Open
Abstract
Rationale: Early detection of respiratory diseases is critical to facilitate delivery of disease-modifying interventions. Extracellular vesicle-enriched microRNAs (EV-miRNAs) may represent reliable markers of early lung injury. Objectives: Evaluate associations of plasma EV-miRNAs with lung function. Methods: The prospective NAS (Normative Aging Study) collected plasma EV-miRNA measurements from 1996-2015 and spirometry every 3-5 years through 2019. Associations of EV-miRNAs with baseline lung function were modeled using linear regression. To complement the individual miRNA approach, unsupervised machine learning was used to identify clusters of participants with distinct EV-miRNA profiles. Associations of EV-miRNA profiles with multivariate latent longitudinal lung function trajectories were modeled using log binomial regression. Biological functions of significant EV-miRNAs were explored using pathway analyses. Results were replicated in an independent sample of NAS participants and in the HEALS (Health Effects of Arsenic Longitudinal Study). Measurements and Main Results: In the main cohort of 656 participants, 51 plasma EV-miRNAs were associated with baseline lung function (false discovery rate-adjusted P value < 0.05), 28 of which were replicated in the independent NAS sample and/or in the HEALS cohort. A subset of participants with distinct EV-miRNA expression patterns had increased risk of declining lung function over time, which was replicated in the independent NAS sample. Significant EV-miRNAs were shown in pathway analyses to target biological pathways that regulate respiratory cellular immunity, the lung inflammatory response, and airway structural integrity. Conclusions: Plasma EV-miRNAs may represent a robust biomarker of subclinical lung injury and may facilitate early identification and treatment of patients at risk of developing overt lung disease.
Collapse
Affiliation(s)
- Christina M. Eckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Irving Medical Center, New York, New York
| | - Simone Gambazza
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Healthcare Professions Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Aishwarya Vuppala
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Pantel S. Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Augusto A. Litonjua
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - David Sparrow
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Joel Schwartz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
200
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|