151
|
Even-Or O, Samira S, Ellis R, Kedar E, Barenholz Y. Adjuvanted influenza vaccines. Expert Rev Vaccines 2014; 12:1095-108. [PMID: 24053401 DOI: 10.1586/14760584.2013.825445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza is one of the most common causes of human morbidity and mortality that is preventable by vaccination. Immunization with available vaccines provides incomplete protection against illness caused by influenza virus, especially in high-risk groups such as the elderly and young children. Thus, more efficacious vaccines are needed for the entire population, and all the more so for high-risk groups. One way to improve immune responses and protection is to formulate the vaccine with antigen carriers and/or adjuvants, which can play an important role in improving immune responses and delivery to antigen-presenting cells, especially for a vaccine like influenza that is based on protein antigens usually administered without a carrier or adjuvant. In this review, the authors present an overview of available vaccines, focusing on research and development of new adjuvants used in influenza vaccines, as well as adjuvanted influenza vaccines aimed to improve immune responses, protection and breadth of coverage for influenza.
Collapse
Affiliation(s)
- Orli Even-Or
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
152
|
Lin SC, Liu WC, Jan JT, Wu SC. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One 2014; 9:e92822. [PMID: 24671139 PMCID: PMC3966833 DOI: 10.1371/journal.pone.0092822] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus, a known trigger of diseases in poultry and humans, is perceived as a serious threat to public health. There is a clear need for a broadly protective H5N1 vaccine or vaccines for inducing neutralizing antibodies against multiple clades/subclades. We constructed single, double, and triple mutants of glycan-masked hemagglutiinin (HA) antigens at residues 83, 127 and 138 (i.e., g83, g127, g138, g83+g127, g127+g138, g83+g138 and g83+g127+g138), and then obtained their corresponding HA-expressing adenovirus vectors and recombinant HA proteins using a prime-boost immunization strategy. Our results indicate that the glycan-masked g127+g138 double mutant induced more potent HA-inhibition, virus neutralization antibodies, cross-clade protection against heterologous H5N1 clades, correlated with the enhanced bindings to the receptor binding sites and the highly conserved stem region of HA. The immune refocusing stem-specific antibodies elicited by the glycan-masked H5HA g127+g138 and g83+g127+g138 mutants overlapped with broadly neutralizing epitopes of the CR6261 monoclonal antibody that neutralizes most group 1 subtypes. These findings may provide useful information in the development of a broadly protective H5N1 influenza vaccine.
Collapse
Affiliation(s)
- Shih-Chang Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
153
|
|
154
|
Comparison of host immune responses to homologous and heterologous type II porcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:416727. [PMID: 24719862 PMCID: PMC3955659 DOI: 10.1155/2014/416727] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a high-consequence animal disease with current vaccines providing limited protection from infection due to the high degree of genetic variation of field PRRS virus. Therefore, understanding host immune responses elicited by different PRRSV strains will facilitate the development of more effective vaccines. Using IngelVac modified live PRRSV vaccine (MLV), its parental strain VR-2332, and the heterologous KS-06-72109 strain (a Kansas isolate of PRRSV), we compared immune responses induced by vaccination and/or PRRSV infection. Our results showed that MLV can provide complete protection from homologous virus (VR-2332) and partial protection from heterologous (KS-06) challenge. The protection was associated with the levels of PRRSV neutralizing antibodies at the time of challenge, with vaccinated pigs having higher titers to VR-2332 compared to KS-06 strain. Challenge strain did not alter the cytokine expression profiles in the serum of vaccinated pigs or subpopulations of T cells. However, higher frequencies of IFN-γ-secreting PBMCs were generated from pigs challenged with heterologous PRRSV in a recall response when PBMCs were re-stimulated with PRRSV. Thus, this study indicates that serum neutralizing antibody titers are associated with PRRSV vaccination-induced protection against homologous and heterologous challenge.
Collapse
|
155
|
Ferreira HL, Rauw F, Pirlot JF, Reynard F, van den Berg T, Bublot M, Lambrecht B. Comparison of single 1-day-old chick vaccination using a Newcastle disease virus vector with a prime/boost vaccination scheme against a highly pathogenic avian influenza H5N1 challenge. Avian Pathol 2014; 43:68-77. [PMID: 24320551 DOI: 10.1080/03079457.2013.873111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Avian influenza (AI) vaccines should be used as part of a whole comprehensive AI control programme. Vectored vaccines based on Newcastle disease virus (NDV) are very promising, but are so far licensed in only a few countries. In the present study, the immunogenicity and protection against a highly pathogenic H5N1 influenza challenge were evaluated after vaccination with an enterotropic NDV vector expressing an H5 haemagglutinin (rNDV-H5) in 1-day-old specific pathogen free chickens inoculated once, twice or once followed by a heterologous boost with an inactivated H5N9 vaccine (iH5N9). The heterologous prime/boost rNDV-H5/iH5N9 combination afforded the best level of protection against the H5N1 challenge performed at 6 weeks of age. Two rNDV-H5 administrations conferred a good level of protection after challenge, although only a cellular H5-specific response could be detected. Interestingly, a single administration of rNDV-H5 gave the same level of protection as the double administration but without any detectable H5-specific immune response. In contrast to AI immunity, a high humoral, mucosal and cellular NDV-specific immunity could be detected up to 6 weeks post vaccination after using the three different vaccination schedules. NDV-specific mucosal and cellular immune responses were slightly higher after double rNDV-H5 vaccination when compared with single inoculation. Finally, the heterologous prime/boost rNDV-H5/iH5N9 combination induced a broader detectable immunity including systemic, mucosal and cellular AI and NDV-specific responses.
Collapse
Affiliation(s)
- Helena Lage Ferreira
- a FZEA-USP , Av. Duque de Caxias Norte, 225, Pirassununga - SP, CEP 13635-900 , Brazil
| | | | | | | | | | | | | |
Collapse
|
156
|
Development of a high density hemagglutinin protein microarray to determine the breadth of influenza antibody responses. Biotechniques 2014; 54:345-8. [PMID: 23750544 DOI: 10.2144/000114041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/13/2013] [Indexed: 11/23/2022] Open
Abstract
We have developed an influenza hemagglutinin protein microarray to assess humoral recognition of diverse influenza strains induced by vaccination and infection. Each array consists of controls and 127 hemagglutinin antigens from 60 viruses, spotted in replicates to generate a single array of 1296 spots. Six arrays are configured on a single slide, which in the following analysis was probed simultaneously with 2 isotype-specific fluorescent secondary antibodies yielding over 15,000 data points per slide. Here we report the use of this system to evaluate mouse, ferret, and human sera. The array allows simultaneous examination of the magnitude of antibody responses, the isotype of such antibodies, and the breadth of influenza strain recognition. We are advancing this technology as a platform for rapid, simple, high-throughput assessment of homologous and heterologous antibody responses to influenza disease and vaccination.
Collapse
|
157
|
Zhang J, Tarbet EB, Toro H, Tang DCC. Adenovirus-vectored drug–vaccine duo as a potential driver for conferring mass protection against infectious diseases. Expert Rev Vaccines 2014; 10:1539-52. [DOI: 10.1586/erv.11.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
158
|
Tan YC, Blum LK, Kongpachith S, Ju CH, Cai X, Lindstrom TM, Sokolove J, Robinson WH. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol 2014; 151:55-65. [PMID: 24525048 DOI: 10.1016/j.clim.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022]
Abstract
We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Hemagglutinins, Viral/immunology
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/biosynthesis
- Immunoglobulin Light Chains/immunology
- Immunologic Memory
- Influenza A Virus, H1N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Molecular Sequence Data
- Molecular Typing
- Vaccination
- Vaccines, Subunit
Collapse
Affiliation(s)
- Yann-Chong Tan
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa K Blum
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chia-Hsin Ju
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Xiaoyong Cai
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Tamsin M Lindstrom
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
159
|
Abstract
UNLABELLED Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model. IMPORTANCE Influenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.
Collapse
|
160
|
Chiu C, Ellebedy AH, Wrammert J, Ahmed R. B cell responses to influenza infection and vaccination. Curr Top Microbiol Immunol 2014; 386:381-98. [PMID: 25193634 DOI: 10.1007/82_2014_425] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Although vaccines against influenza are widely available, control of the disease remains elusive. In part, this is due to the inability of current vaccines to induce durable, broadly protective immune responses. Prevention of influenza depends primarily on effective antibody responses that block virus entry. Following infection, high-affinity IgA antibodies are generated in the respiratory tract that lead to immune exclusion, while IgG prevents systemic spread. These are effective and long-lasting but also exert immune pressure. Mutation of the antigenic determinants of influenza therefore rapidly leads to emergence of novel variants that evade previously generated protective responses. Not only do vaccines suffer from this strain-specific limitation, but also they are suboptimal in their ability to induce durable immunity. However, recent evidence has demonstrated the possibility of inducing broadly cross-reactive antibody responses. Further understanding of the ways in which high-titer, long-lived antibody responses directed against such cross-reactive epitopes can be induced would lead to the development of novel vaccines that may remove the requirement for recurrent vaccination.
Collapse
Affiliation(s)
- Christopher Chiu
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, W2 1PG, UK
| | | | | | | |
Collapse
|
161
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
162
|
Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr Top Microbiol Immunol 2014; 386:301-21. [PMID: 25007847 DOI: 10.1007/82_2014_408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The threat of novel influenza viruses emerging into the human population from animal reservoirs, as well as the short duration of protection conferred by licensed vaccines against human seasonal strains has spurred research efforts to improve upon current vaccines and develop novel therapeutics against influenza viruses. In recent years these efforts have resulted in the identification of novel, highly conserved epitopes for neutralizing antibodies on the influenza virus hemagglutinin protein, which are present in both the stalk and globular head domains of the molecule. The existence of such epitopes may allow for generation of novel therapeutic antibodies, in addition to serving as attractive targets of novel vaccine design. The aims of developing improved vaccines include eliciting broader protection from drifted strains, inducing long-lived immunity against seasonal strains, and allowing for the rational design of vaccines that can be stockpiled for use as pre-pandemic vaccines. In addition, an increased focus on influenza virus vaccine research has prompted an improved understanding of how the immune system responds to influenza virus infection.
Collapse
|
163
|
Daftarian MP, Vosoughi A, Lemmon V. Gene-based vaccination and screening methods to develop monoclonal antibodies. Methods Mol Biol 2014; 1121:337-346. [PMID: 24510837 DOI: 10.1007/978-1-4614-9632-8_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gene-based in vivo electroporation has the potential to be used as a "protein-free" method to elicit immune responses and to generate monoclonal antibodies (mAb) against proteins/peptides in hosts. However, the method is very useful to raise mAbs against proteins and peptides and not for carbohydrates, lipids, or haptens. Nevertheless, making mAb using this potent method faces a few challenges: the parameters of the electroporation needs further standardized, the final boost still needs protein antigens, and the primary screening of the clones requires purified protein. We present methods to overcome these challenges by an optimized electroporation framework and a method to use transiently transfected cells for the final boost, as well as for screening of the resulting clones via the use of an "In-Cell Western" method.
Collapse
Affiliation(s)
- M Pirouz Daftarian
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
164
|
Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 2013; 111:125-30. [PMID: 24344259 DOI: 10.1073/pnas.1308701110] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rapid dissemination of the 2009 pandemic H1N1 influenza virus emphasizes the need for universal influenza vaccines that would broadly protect against multiple mutated strains. Recent efforts have focused on the highly conserved hemagglutinin (HA) stem domain, which must undergo a significant conformational change for effective viral infection. Although the production of isolated domains of multimeric ectodomain proteins has proven difficult, we report a method to rapidly produce the properly folded HA stem domain protein from influenza virus A/California/05/2009 (H1N1) by using Escherichia coli-based cell-free protein synthesis and a simple refolding protocol. The T4 bacteriophage fibritin foldon placed at the C terminus of the HA stem domain induces trimer formation. Placing emphasis on newly exposed protein surfaces, several hydrophobic residues were mutated, two polypeptide segments were deleted, and the number of disulfide bonds in each monomer was reduced from four to two. High pH and Brij 35 detergent emerged as the most beneficial factors for improving the refolding yield. To stabilize the trimer of the HA stem-foldon fusion, new intermolecular disulfide bonds were finally introduced between foldon monomers and between stem domain monomers. The correct immunogenic conformation of the stabilized HA stem domain trimer was confirmed by using antibodies CR6261, C179, and FI6 that block influenza infection by binding to the HA stem domain trimer. These results suggest great promise for a broadly protective vaccine and also demonstrate a unique approach for producing individual domains of complex multimeric proteins.
Collapse
|
165
|
Kim YC, Yoo DG, Compans RW, Kang SM, Prausnitz MR. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release 2013; 172:579-88. [PMID: 23643528 PMCID: PMC3815987 DOI: 10.1016/j.jconrel.2013.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
The need for annual revaccination against influenza is a burden on the healthcare system, leads to low vaccination rates and makes timely vaccination difficult against pandemic strains, such as during the 2009 H1N1 influenza pandemic. In an effort toward achieving a broadly protective vaccine that provides cross-protection against multiple strains of influenza, this study developed a microneedle patch to co-immunize with A/PR8 influenza hemagglutinin DNA and A/PR8 inactivated virus vaccine. We hypothesize that this dual component vaccination strategy administered to the skin using microneedles will provide cross-protection against other strains of influenza. To test this hypothesis, we developed a novel coating formulation that did not require additional excipients to increase coating solution viscosity by using the DNA vaccine itself to increase viscosity and thereby enable thick coatings of DNA vaccine and inactivated virus vaccine on metal microneedles. Co-immunization in this way not only generated robust antibody responses against A/PR8 influenza but also generated robust heterologous antibody responses against pandemic 2009 H1N1 influenza in mice. Challenge studies showed complete cross-protection against lethal challenge with live pandemic 2009 H1N1 virus. Control experiments using A/PR8 inactivated influenza virus vaccine with placebo DNA coated onto microneedles produced lower antibody titers and provided incomplete protection against challenge. Overall, this is the first study showing DNA solution as a microneedle coating agent and demonstrating cross-protection by co-immunization with inactivated virus and DNA vaccine using coated microneedles.
Collapse
MESH Headings
- Animals
- Antibody Formation
- Drug Delivery Systems/instrumentation
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Injections, Intradermal
- Mice
- Mice, Inbred BALB C
- Needles
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dae-Goon Yoo
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Richard W. Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA30303, USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
166
|
New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J Virol 2013; 88:1447-60. [PMID: 24198411 DOI: 10.1128/jvi.01225-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC(50)] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM(2) % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.
Collapse
|
167
|
Koellhoffer JF, Higgins CD, Lai JR. Protein engineering strategies for the development of viral vaccines and immunotherapeutics. FEBS Lett 2013; 588:298-307. [PMID: 24157357 DOI: 10.1016/j.febslet.2013.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/12/2023]
Abstract
Vaccines that elicit a protective broadly neutralizing antibody (bNAb) response and monoclonal antibody therapies are critical for the treatment and prevention of viral infections. However, isolation of protective neutralizing antibodies has been challenging for some viruses, notably those with high antigenic diversity or those that do not elicit a bNAb response in the course of natural infection. Here, we discuss recent work that employs protein engineering strategies to design immunogens that elicit bNAbs or engineer novel bNAbs. We highlight the use of rational, computational, and combinatorial strategies and assess the potential of these approaches for the development of new vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Jayne F Koellhoffer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Chelsea D Higgins
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
168
|
Skibinski DAG, Hanson BJ, Lin Y, von Messling V, Jegerlehner A, Tee JBS, Chye DH, Wong SKK, Ng AAP, Lee HY, Au B, Lee BTK, Santoso L, Poidinger M, Fairhurst AM, Matter A, Bachmann MF, Saudan P, Connolly JE. Enhanced neutralizing antibody titers and Th1 polarization from a novel Escherichia coli derived pandemic influenza vaccine. PLoS One 2013; 8:e76571. [PMID: 24204639 PMCID: PMC3799843 DOI: 10.1371/journal.pone.0076571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/25/2013] [Indexed: 01/19/2023] Open
Abstract
Influenza pandemics can spread quickly and cost millions of lives; the 2009 H1N1 pandemic highlighted the shortfall in the current vaccine strategy and the need for an improved global response in terms of shortening the time required to manufacture the vaccine and increasing production capacity. Here we describe the pre-clinical assessment of a novel 2009 H1N1 pandemic influenza vaccine based on the E. coli-produced HA globular head domain covalently linked to virus-like particles derived from the bacteriophage Qβ. When formulated with alum adjuvant and used to immunize mice, dose finding studies found that a 10 µg dose of this vaccine (3.7 µg globular HA content) induced antibody titers comparable to a 1.5 µg dose (0.7 µg globular HA content) of the licensed 2009 H1N1 pandemic vaccine Panvax, and significantly reduced viral titers in the lung following challenge with 2009 H1N1 pandemic influenza A/California/07/2009 virus. While Panvax failed to induce marked T cell responses, the novel vaccine stimulated substantial antigen-specific interferon-γ production in splenocytes from immunized mice, alongside enhanced IgG2a antibody production. In ferrets the vaccine elicited neutralizing antibodies, and following challenge with influenza A/California/07/2009 virus reduced morbidity and lowered viral titers in nasal lavages.
Collapse
Affiliation(s)
- David A. G. Skibinski
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | | | - Yufang Lin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Veronika von Messling
- Institut National de la Recherche Scientifique (INRS)- Institut Armand-Frappier, University of Quebec, Quebec, Canada
| | | | | | - De Hoe Chye
- Defence Science Organisation (DSO) National Laboratories, Singapore
| | | | - Amanda A. P. Ng
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Hui Yin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Bijin Au
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Bernett T. K. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Lucia Santoso
- Experimental Therapeutics Centre (ETC), Agency for Science, Technology and Research, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| | - Alex Matter
- Experimental Therapeutics Centre (ETC), Agency for Science, Technology and Research, Singapore
| | | | | | - John E. Connolly
- A*STAR Program in Translational Research on Infectious Disease, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore
| |
Collapse
|
169
|
Mastelic B, Garçon N, Del Giudice G, Golding H, Gruber M, Neels P, Fritzell B. Predictive markers of safety and immunogenicity of adjuvanted vaccines. Biologicals 2013; 41:458-68. [PMID: 24071553 DOI: 10.1016/j.biologicals.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/08/2023] Open
Abstract
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.
Collapse
Affiliation(s)
- Beatris Mastelic
- WHO Center for Vaccinology and Neonatal Immunology, University of Geneva, CMU, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
170
|
Chen J, Yan B, Chen Q, Yao Y, Wang H, Liu Q, Zhang S, Wang H, Chen Z. Evaluation of neutralizing efficacy of monoclonal antibodies specific for 2009 pandemic H1N1 influenza A virus in vitro and in vivo. Arch Virol 2013; 159:471-83. [PMID: 24057757 DOI: 10.1007/s00705-013-1852-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/07/2013] [Indexed: 12/20/2022]
Abstract
Pandemic influenza A virus (H1N1) 2009 poses a serious public-health challenge worldwide. To characterize the neutralizing epitopes of this virus, we generated a panel of eight monoclonal antibodies (mAbs) against the HA of the A/California/07/2009 virus. The antibodies were specific for the 2009 pdm H1N1 HA, as the antibodies displayed HA-specific ELISA, hemagglutination inhibition (HAI) and neutralization activity. One mAb (mAb12) showed significantly higher HAI and neutralizing titers than the other mAbs. We mapped the antigenic epitopes of the HA by characterizing escape mutants of a 2009 H1N1 vaccine strain (NYMC X-179A). The amino acid changes suggested that these eight mAbs recognized HA antigenic epitopes located in the Sa, Sb, Ca1 and Ca2 sites. Passive immunization with mAbs showed that mAb12 displayed more efficient neutralizing activity in vivo than the other mAbs. mAb12 was also found to be protective, both prophylactically and therapeutically, against a lethal viral challenge in mice. In addition, a single injection of 10 mg/kg mAb12 outperformed a 5-day course of treatment with oseltamivir (10 mg/kg/day by gavage) with respect to both prophylaxis and treatment of lethal viral infection. Taken together, our results showed that mouse-origin mAbs displayed neutralizing effectiveness in vitro and in vivo. One mAb in particular (mAb12) recognized an epitope within the Sb site and demonstrated outstanding neutralizing effectiveness.
Collapse
Affiliation(s)
- Jianjun Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high-throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats.
Collapse
Affiliation(s)
- Barney S Graham
- NIAID, NIH, Vaccine Research Center, Bethesda, MD 20892-3017, USA.
| |
Collapse
|
172
|
Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol 2013; 3:521-30. [PMID: 23978327 DOI: 10.1016/j.coviro.2013.07.007] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/22/2022]
Abstract
Antibodies against the conserved stalk domain of the hemagglutinin are currently being discussed as promising therapeutic tools against influenza virus infections. Because of the conservation of the stalk domain these antibodies are able to broadly neutralize a wide spectrum of influenza virus strains and subtypes. Broadly protective vaccine candidates based on the epitopes of these antibodies, for example, chimeric and headless hemagglutinin structures, are currently under development and show promising results in animals models. These candidates could be developed into universal influenza virus vaccines that protect from infection with drifted seasonal as well as novel pandemic influenza virus strains therefore obviating the need for annual vaccination, and enhancing our pandemic preparedness.
Collapse
|
173
|
Dukhovlinov I, Al-Shekhadat R, Fedorova E, Stepanova L, Potapchuk M, Repko I, Rusova O, Orlov A, Tsybalova L, Kiselev O. Study of immunogenicity of recombinant proteins based on hemagglutinin and neuraminidase conservative epitopes of influenza A virus. Med Sci Monit Basic Res 2013; 19:221-7. [PMID: 23969554 PMCID: PMC3762522 DOI: 10.12659/msmbr.884002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Recombinant hemagglutinin (rHA) and neurominidase (rNA) developed in our investigation are amino acid sequence consensus variants of H1N1 2009 subtype influenza virus strain, also including immunogenic epitopes typical for other influenza virus subtypes (H3N1 and H5N1). Substitutions were made: typical for Russian virus isolates (in HA – S220T, NA – D248N) and in active centers of molecules – R118L, R293L, R368L; C92S, C417S to increase recombinant proteins stability in E. coli. The aim of the present work was to study immunogenicity of the obtained rHA and rNA. Material/Methods Fragments aa 83–469 of NA and aa 61–287 of HA were chosen because they include the main B-cell epitopes and are the minimal structures for correct folding of target proteins. The designed nucleotide sequences were synthesized and purified and the expression of rNA and rNA were analyzed. For immunization and virus challenge we used influenza viruses A/California/04/2009 (H1N1), A/PR/8/34 (H1N1), A/Perth/16/2009 (H3N2), A/Chicken/Kurgan/05/2005 R.G. (H5N1), and B/Florida/04/2006. Specific IgG levels were determined by ELISA in 96-well ELISA plates. Significant differences of survival in mouse groups were analyzed by Mantel-Cox (log-rank) and Gehan-Breslow-Wilcoxon tests. Results The obtained results demonstrate the high immunogenicity and ability of indicated proteins mixture to provide similar cross-protection against influenza viruses of the H1N1 subtype. Conclusions The data obtained suggest efficient pluripotent vaccine creation based on HA and NA conservative regions.
Collapse
|
174
|
Cayabyab MJ, Qin L, Kashino SS, Izzo A, Campos-Neto A. An unbiased peptide-wide discovery approach to select Mycobacterium tuberculosis antigens that target CD8+ T cell response during infection. Vaccine 2013; 31:4834-40. [PMID: 23933335 DOI: 10.1016/j.vaccine.2013.07.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022]
Abstract
Accruing data strongly support the possible role of CD8+ T cells in immunity against tuberculosis (TB). Multivalent vaccines against Mycobacterium tuberculosis (Mtb) that incorporate CD8+ T cell antigens with those that elicit CD4+ T cells are therefore highly desirable. To screen for potential CD8+ T cell antigens that are produced by Mtb during infection, we isolated pathogen-derived peptides that bound to MHC Class I molecules expressed in adherent splenocytes obtained from Mtb-infected mice. Mass spectroscopy analysis revealed the following four nonamer peptides that had 100% homology with Mtb proteins: DGYVGAPAH (MT_0401), TTMPLFAD (MT_1164), RSGAATPVR (MT_2160.1) and LAAVVGVVL (MT_0078). The gene MT_0401 codes the protein 5'-phosphoribosylglycinamide transformylase 2 and the other three genes code for hypothetical proteins with unknown function. The NCBI/Blast analysis showed that among the four peptides DGYVGAPAH had the highest maximum alignment score and lowest E value (number of alignments expected by chance). Therefore, we assessed whether MT_0401 expressed in two genetic vaccine formulations was capable of stimulating CD8+ T cell response that is specific to DGYVGAPAH peptide. When mice were immunized with a recombinant plasmid DNA and an E1/E3-deleted Adenovirus 5 expressing MT0401 protein, using both homologous and heterologous prime-boost protocols, they developed strong DGYVGAPAH-specific CD8+ T cell response as well as antibody and CD4+ specific T cell response to the full length MT0401 protein. Equally important was the observation that mice infected with Mtb developed DGYVGAPAH-specific CD8+ T cell responses in both spleen and lungs. These results demonstrate that Mtb antigens that are processed and presented via MHC Class I machinery can be readily identified by the described approach and may be useful candidate antigens to stimulate specific CD8+ T cell responses in vaccine development programs.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Global Infectious Disease Research Center, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
175
|
Wang G, Zhou F, Buchy P, Zuo T, Hu H, Liu J, Song Y, Ding H, Tsai C, Chen Z, Zhang L, Deubel V, Zhou P. DNA Prime and Virus-like Particle Boost From a Single H5N1 Strain Elicits Broadly Neutralizing Antibody Responses Against Head Region of H5 Hemagglutinin. J Infect Dis 2013; 209:676-85. [DOI: 10.1093/infdis/jit414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
176
|
Lin SC, Liu WC, Lin YF, Huang YH, Liu JH, Wu SC. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses. Biotechnol J 2013; 8:1315-22. [DOI: 10.1002/biot.201300116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022]
|
177
|
Terajima M, Babon JAB, Co MDT, Ennis FA. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses. Virol J 2013; 10:244. [PMID: 23886073 PMCID: PMC3726517 DOI: 10.1186/1743-422x-10-244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023] Open
Abstract
Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal experiments, which is consistent with the low homology in viral proteins common to both viruses except for one of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes conserved between the two genera were identified in humans. A protective antibody epitope was located in the stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein, neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits. Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard vaccination may not be high enough to provide cross protection in humans, it might be possible to develop immunization strategies to induce these cross-reactive responses more efficiently.
Collapse
Affiliation(s)
- Masanori Terajima
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
178
|
Almansour I, Chen H, Wang S, Lu S. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years. Hum Vaccin Immunother 2013; 9:2049-59. [PMID: 23884239 DOI: 10.4161/hv.25735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.
Collapse
Affiliation(s)
- Iman Almansour
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Huaiqing Chen
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
179
|
Abstract
Current influenza virus vaccines are annually reformulated to elicit protection by generating an immune response toward the virus strains that are predicted to circulate in the upcoming influenza season. These vaccines provide limited protection in cases of antigenic mismatch, when the vaccine and the circulating viral strains differ. The emergence of unexpected pandemic viruses presents an additional challenge to vaccine production. To increase influenza virus preparedness, much work has been dedicated to the development of a universal vaccine. Focusing on regions of viral proteins that are highly conserved across virus subtypes, vaccine strategies involving the matrix 2 protein, stalk domain of the hemagglutinin, and multivalent approaches have provided broad-based protection in animal models and show much promise. This review summarizes the most encouraging advances in the field with a focus on novel vaccine designs that have yielded promising preclinical and clinical data.
Collapse
Affiliation(s)
- Natalie Pica
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
180
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
181
|
Kulp DW, Schief WR. Advances in structure-based vaccine design. Curr Opin Virol 2013; 3:322-31. [PMID: 23806515 DOI: 10.1016/j.coviro.2013.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens.
Collapse
Affiliation(s)
- Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
182
|
Meng W, Pan W, Zhang AJX, Li Z, Wei G, Feng L, Dong Z, Li C, Hu X, Sun C, Luo Q, Yuen KY, Zhong N, Chen L. Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases. PLoS One 2013; 8:e66276. [PMID: 23824680 PMCID: PMC3688872 DOI: 10.1371/journal.pone.0066276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/03/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). METHODOLOGY/PRINCIPAL FINDINGS The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. CONCLUSIONS/SIGNIFICANCE Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/immunology
- Communicable Diseases, Emerging/therapy
- Disease Outbreaks
- Humans
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/therapy
- Macaca mulatta
- Mice
Collapse
Affiliation(s)
- Weixu Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anna J. X. Zhang
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guowei Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenyuan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chufang Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinfang Luo
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwok-Yung Yuen
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
183
|
Mullarkey CE, Boyd A, van Laarhoven A, Lefevre EA, Veronica Carr B, Baratelli M, Molesti E, Temperton NJ, Butter C, Charleston B, Lambe T, Gilbert SC. Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of MVA-NP+M1 coadministration with inactivated influenza vaccine. Eur J Immunol 2013; 43:1940-52. [DOI: 10.1002/eji.201242922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/26/2013] [Accepted: 04/10/2013] [Indexed: 12/28/2022]
Affiliation(s)
| | - Amy Boyd
- Jenner Institute, Old Road Campus Research Building; Oxford; UK
| | | | - Eric A. Lefevre
- Pirbright Institute, Compton laboratory; Compton; near Newbury; UK
| | - B. Veronica Carr
- Pirbright Institute, Compton laboratory; Compton; near Newbury; UK
| | | | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy; University of Kent; Chatham Maritime; Kent; UK
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy; University of Kent; Chatham Maritime; Kent; UK
| | - Colin Butter
- Pirbright Institute, Compton laboratory; Compton; near Newbury; UK
| | - Bryan Charleston
- Pirbright Institute, Compton laboratory; Compton; near Newbury; UK
| | - Teresa Lambe
- Jenner Institute, Old Road Campus Research Building; Oxford; UK
| | | |
Collapse
|
184
|
Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol 2013; 31:647-52. [PMID: 23728362 DOI: 10.1038/nbt.2618] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/21/2013] [Indexed: 12/17/2022]
Abstract
Neutralizing antibodies that target epitopes conserved among many strains of influenza virus have been recently isolated from humans. Here we demonstrate that adeno-associated viruses (AAV) encoding two such broadly neutralizing antibodies are protective against diverse influenza strains. Serum from mice that received a single intramuscular AAV injection efficiently neutralized all H1, H2 and H5 influenza strains tested. After infection with diverse strains of H1N1 influenza, treated mice showed minimal weight loss and lung inflammation. Protection lasted for at least 11 months after AAV injection. Notably, even immunodeficient and older mice were protected by this method, suggesting that expression of a monoclonal antibody alone is sufficient to protect mice from illness. If translated to humans, this prophylactic approach may be uniquely capable of protecting immunocompromised or elderly patient populations not reliably protected by existing vaccines.
Collapse
Affiliation(s)
- Alejandro B Balazs
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | |
Collapse
|
185
|
McKinstry KK, Dutton RW, Swain SL, Strutt TM. Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful. Arch Immunol Ther Exp (Warsz) 2013; 61:341-53. [PMID: 23708562 DOI: 10.1007/s00005-013-0236-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Recent observations have uncovered multiple pathways whereby CD4 T cells can contribute to protective immune responses against microbial threats. Incorporating the generation of memory CD4 T cells into vaccine strategies thus presents an attractive approach toward improving immunity against several important human pathogens, especially those against which antibody responses alone are inadequate to confer long-term immunity. Here, we review how memory CD4 T cells provide protection against influenza viruses. We discuss the complexities of protective memory CD4 T cell responses observed in animal models and the potential challenges of translating these observations into the clinic. Specifically, we concentrate on how better understanding of organ-specific heterogeneity of responding cells and defining multiple correlates of protection might improve vaccine-generated memory CD4 T cells to better protect against seasonal, and more importantly, pandemic influenza.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01583, USA,
| | | | | | | |
Collapse
|
186
|
Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong WP, Wang L, Nabel GJ. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013; 499:102-6. [PMID: 23698367 DOI: 10.1038/nature12202] [Citation(s) in RCA: 686] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/18/2013] [Indexed: 12/18/2022]
Abstract
Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Subbarao K, Matsuoka Y. The prospects and challenges of universal vaccines for influenza. Trends Microbiol 2013; 21:350-8. [PMID: 23685068 DOI: 10.1016/j.tim.2013.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/04/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
Abstract
Vaccination is the most effective way to reduce the impact of epidemic as well as pandemic influenza. However, the licensed inactivated influenza vaccine induces strain-specific immunity and must be updated annually. When novel viruses appear, matched vaccines are not likely to be available in time for the first wave of a pandemic. Yet, the enormous diversity of influenza A viruses in nature makes it impossible to predict which subtype or strain will cause the next pandemic. Several recent scientific advances have generated renewed enthusiasm and hope for universal vaccines that will induce broad protection from a range of influenza viruses.
Collapse
Affiliation(s)
- Kanta Subbarao
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
188
|
Wei CJ, Yassine HM, McTamney PM, Gall JGD, Whittle JRR, Boyington JC, Nabel GJ. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci Transl Med 2013; 4:147ra114. [PMID: 22896678 DOI: 10.1126/scitranslmed.3004273] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem-directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem-directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Ledgerwood JE, Zephir K, Hu Z, Wei CJ, Chang L, Enama ME, Hendel CS, Sitar S, Bailer RT, Koup RA, Mascola JR, Nabel GJ, Graham BS. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 2013; 208:418-22. [PMID: 23633407 DOI: 10.1093/infdis/jit180] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND H5 DNA priming was previously shown to improve the antibody response to influenza A(H5N1) monovalent inactivated vaccine (MIV) among individuals for whom there was a 24-week interval between prime and boost receipt. This study defines the shortest prime-boost interval associated with an improved response to MIV. METHODS We administered H5 DNA followed by MIV at intervals of 4, 8, 12, 16, or 24 weeks and compared responses to that of 2 doses of MIV (prime-boost interval, 24 weeks). RESULTS H5 DNA priming with an MIV boost ≥12 weeks later showed an improved response, with a positive hemagglutination inhibition (HAI) titer in 91% of recipients (geometric mean titer [GMT], 141-206), compared with 55%-70% of recipients with an H5 DNA and MIV prime-boost interval of ≤8 weeks (GMT, 51-70) and 44% with an MIV-MIV prime-boost interval of 24 weeks (GMT, 27). CONCLUSION H5 DNA priming enhances antibody responses after an MIV boost when the prime-boost interval is 12-24 weeks. Clinical Trials Registration. NCT01086657.
Collapse
Affiliation(s)
- Julie E Ledgerwood
- Vaccine Research Center, National Institute ofAllergy and Infectious Diseases, National Institutes of Health, Bethesda,MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Khurana S, Wu J, Dimitrova M, King LR, Manischewitz J, Graham BS, Ledgerwood JE, Golding H. DNA priming prior to inactivated influenza A(H5N1) vaccination expands the antibody epitope repertoire and increases affinity maturation in a boost-interval-dependent manner in adults. J Infect Dis 2013; 208:413-7. [PMID: 23633404 DOI: 10.1093/infdis/jit178] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA priming improves the response to inactivated influenza A(H5N1) vaccination. We compared the immunogenicity of an H5 DNA prime (using strain A/Indonesia/5/2005) followed by an H5N1 monovalent inactivated vaccine boost at 4, 8, 12, 16, or 24 weeks to that of 2 doses of H5N1 monovalent inactivated vaccine in adults. Antibody epitope repertoires were elucidated by genome-fragment phage-display library analysis, and antibody avidities for HA1 and HA2 domains were measured by surface plasmon resonance. H5 DNA priming expanded the H5-specific antibody epitope repertoire and enhanced antibody avidity to the HA1 (but not the HA2) domain in an interval-dependent manner. Enhanced HA1 binding and avidity after an interval of ≥12 weeks between prime and boost correlated with improved neutralization of homologous and heterologous H5N1 strains. Clinical trials registration NCT01086657.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products,National Institute of Allergyand Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013; 8:e62496. [PMID: 23638099 PMCID: PMC3640067 DOI: 10.1371/journal.pone.0062496] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.
Collapse
Affiliation(s)
- Sai V. Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yadvinder S. Ahi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Anne-Marie Swaim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SM); (SS)
| |
Collapse
|
192
|
Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 2013; 442:67-73. [PMID: 23618102 DOI: 10.1016/j.virol.2013.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Avian influenza H5, H7 and H9 viruses top the World Health Organization's (WHO) list of subtypes with the greatest pandemic potential. Here we describe a recombinant virus-like particle (VLP) that co-localizes hemagglutinin (HA) proteins derived from H5N1, H7N2, and H9N2 viruses as an experimental vaccine against these viruses. A baculovirus vector was configured to co-express the H5, H7, and H9 genes from A/Viet Nam/1203/2004 (H5N1), A/New York/107/2003 (H7N2) and A/Hong Kong/33982/2009 (H9N2) viruses, respectively, as well as neuraminidase (NA) and matrix (M1) genes from A/Puerto Rico/8/1934 (H1N1) virus. Co-expression of these genes in Sf9 cells resulted in production of triple-subtype VLPs containing HA molecules derived from the three influenza viruses. The triple-subtype VLPs exhibited hemagglutination and neuraminidase activities and morphologically resembled influenza virions. Intranasal vaccination of ferrets with the VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with H5N1, H7N2, and H9N2 viruses.
Collapse
|
193
|
MacLeod MKL, David A, Jin N, Noges L, Wang J, Kappler JW, Marrack P. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 2013; 8:e61775. [PMID: 23613928 PMCID: PMC3629017 DOI: 10.1371/journal.pone.0061775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes.
Collapse
Affiliation(s)
- Megan K. L. MacLeod
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| | - Alexandria David
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Niyun Jin
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Laura Noges
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - John W. Kappler
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
| | - Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| |
Collapse
|
194
|
Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 2013; 87:6542-50. [PMID: 23576508 DOI: 10.1128/jvi.00641-13] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current influenza virus vaccine strategies stimulate immune responses toward the globular head domain of the hemagglutinin protein in order to inhibit key steps of the virus life cycle. Because this domain is highly variable across strains, new vaccine formulations are required in most years. Here we demonstrate a novel vaccine strategy that generates immunity to the highly conserved stalk domain by using chimeric hemagglutinin constructs that express unique head and stalk combinations. By repeatedly immunizing mice with constructs that expressed the same stalk but an irrelevant head, we specifically stimulated a stalk-directed response that provided broad-based heterologous and heterosubtypic immunity in mice. Notably, our vaccination scheme provides a universal vaccine approach that protects against challenge with an H5 subtype virus. Furthermore, through in vivo studies using passively transferred antibodies or depletion of CD8(+) T cells, we demonstrated the critical role that humoral mechanisms of immunity play in the protection observed. The present data suggest that a vaccine strategy based on the stalk domain of the hemagglutinin protein could be used in humans to broadly protect against a variety of influenza virus subtypes.
Collapse
|
195
|
Laursen NS, Wilson IA. Broadly neutralizing antibodies against influenza viruses. Antiviral Res 2013; 98:476-83. [PMID: 23583287 DOI: 10.1016/j.antiviral.2013.03.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022]
Abstract
Despite available antivirals and vaccines, influenza continues to be a major cause of mortality worldwide. Vaccination generally induces an effective, but strain-specific antibody response. As the virus continually evolves, new vaccines have to be administered almost annually when a novel strain becomes dominant. Furthermore, the sporadic emerging resistance to neuraminidase inhibitors among circulating strains suggests an urgent need for new therapeutic agents. Recently, several cross-reactive antibodies have been described, which neutralize an unprecedented spectrum of influenza viruses. These broadly neutralizing antibodies generally target conserved functional regions on the major influenza surface glycoprotein hemagglutinin (HA). The characterization of their neutralization breadth and epitopes on HA could stimulate the development of new antibody-based antivirals and broader influenza vaccines. This article forms part of a symposium in Antiviral Research on "Treatment of influenza: targeting the virus or the host."
Collapse
Affiliation(s)
- Nick S Laursen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
196
|
Bethell D, Saunders D, Jongkaewwattana A, Kramyu J, Thitithayanont A, Wiboon-ut S, Yongvanitchit K, Limsalakpetch A, Kum-Arb U, Uthaimongkol N, Garcia JM, Timmermans AE, Peiris M, Thomas S, Engering A, Jarman RG, Mongkolsirichaikul D, Mason C, Khemnu N, Tyner SD, Fukuda MM, Walsh DS, Pichyangkul S. Evaluation of in vitro cross-reactivity to avian H5N1 and pandemic H1N1 2009 influenza following prime boost regimens of seasonal influenza vaccination in healthy human subjects: a randomised trial. PLoS One 2013; 8:e59674. [PMID: 23555741 PMCID: PMC3608534 DOI: 10.1371/journal.pone.0059674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/16/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses. Methods In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose. Results Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated. Conclusion Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed. Trial Registration ClinicalTrials.gov NCT01044095
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Birds
- Cross Reactions
- Feasibility Studies
- Female
- Health
- Humans
- Immunization, Secondary/adverse effects
- Immunization, Secondary/methods
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Male
- Middle Aged
- Orthomyxoviridae/immunology
- Orthomyxoviridae/physiology
- Pandemics/prevention & control
- Pilot Projects
- Safety
- Seasons
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccination/adverse effects
- Vaccination/methods
- Viral Vaccines/adverse effects
- Viral Vaccines/immunology
- Young Adult
Collapse
Affiliation(s)
- Delia Bethell
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Laidlaw BJ, Decman V, Ali MAA, Abt MC, Wolf AI, Monticelli LA, Mozdzanowska K, Angelosanto JM, Artis D, Erikson J, Wherry EJ. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog 2013; 9:e1003207. [PMID: 23516357 PMCID: PMC3597515 DOI: 10.1371/journal.ppat.1003207] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. Influenza virus continues to pose a significant risk to global health and is responsible for thousands of deaths each year in the United States. This threat is largely due to the ability of the influenza virus to undergo rapid changes, allowing it to escape from immune responses elicited by previous infections or vaccinations. Certain internal determinants of the influenza virus are largely conserved across different viral strains and represent attractive targets for potential “universal” influenza vaccines. Here, we demonstrated that cross-subtype protection against the influenza virus could be obtained through simultaneous priming of multiple arms of the immune response against conserved elements of the influenza virus. These results suggest a novel strategy that could potentially form a primary component of a universal influenza vaccine capable of providing long-lasting protection.
Collapse
Affiliation(s)
- Brian J. Laidlaw
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vilma Decman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Mohammed-Alkhatim A. Ali
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael C. Abt
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amaya I. Wolf
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurel A. Monticelli
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Jill M. Angelosanto
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David Artis
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jan Erikson
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - E. John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
198
|
Bragstad K, Vinner L, Hansen MS, Nielsen J, Fomsgaard A. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 2013; 31:2281-8. [PMID: 23499598 DOI: 10.1016/j.vaccine.2013.02.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve.
Collapse
Affiliation(s)
- Karoline Bragstad
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | | | | | | | | |
Collapse
|
199
|
Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, Fridman A, Fabregas JC, Marshall J, Scarselli E, La Monica N, Ciliberto G, Montero AJ. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 2013; 11:62. [PMID: 23497415 PMCID: PMC3599587 DOI: 10.1186/1479-5876-11-62] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/03/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND DNA electroporation has been demonstrated in preclinical models to be a promising strategy to improve cancer immunity, especially when combined with other genetic vaccines in heterologous prime-boost protocols. We report the results of 2 multicenter phase 1 trials involving adult cancer patients (n=33) with stage II-IV disease. METHODS Patients were vaccinated with V930 alone, a DNA vaccine containing equal amounts of plasmids expressing the extracellular and trans-membrane domains of human HER2, and a plasmid expressing CEA fused to the B subunit of Escherichia coli heat labile toxin (Study 1), or a heterologous prime-boost vaccination approach with V930 followed by V932, a dicistronic adenovirus subtype-6 viral vector vaccine coding for the same antigens (Study 2). RESULTS The use of the V930 vaccination with electroporation alone or in combination with V932 was well-tolerated without any serious adverse events. In both studies, the most common vaccine-related side effects were injection site reactions and arthralgias. No measurable cell-mediated immune response (CMI) to CEA or HER2 was detected in patients by ELISPOT; however, a significant increase of both cell-mediated immunity and antibody titer against the bacterial heat labile toxin were observed upon vaccination. CONCLUSION V930 vaccination alone or in combination with V932 was well tolerated without any vaccine-related serious adverse effects, and was able to induce measurable immune responses against bacterial antigen. However, the prime-boost strategy did not appear to augment any detectable CMI responses against either CEA or HER2. TRIAL REGISTRATION Study 1 - ClinicalTrials.gov, NCT00250419; Study 2 - ClinicalTrials.gov, NCT00647114.
Collapse
|
200
|
Grimm SK, Ackerman ME. Vaccine design: emerging concepts and renewed optimism. Curr Opin Biotechnol 2013; 24:1078-88. [PMID: 23474232 DOI: 10.1016/j.copbio.2013.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 01/15/2023]
Abstract
Arguably, vaccination represents the single most effective medical intervention ever developed. Yet, vaccines have failed to provide any or adequate protection against some of the most significant global diseases. The pathogens responsible for these vaccine-recalcitrant diseases have properties that allow them to evade immune surveillance and misdirect or eliminate the immune response. However, genomic and systems biology tools, novel adjuvants and delivery systems, and refined molecular insight into protective immunity have started to redefine the landscape, and results from recent efficacy trials of HIV and malaria vaccines have instilled hope that another golden age of vaccines may be on the horizon.
Collapse
|