151
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
152
|
Kim CK, Saxena M, Maharjan K, Song JJ, Shroyer KR, Bialkowska AB, Shivdasani RA, Yang VW. Krüppel-like Factor 5 Regulates Stemness, Lineage Specification, and Regeneration of Intestinal Epithelial Stem Cells. Cell Mol Gastroenterol Hepatol 2019; 9:587-609. [PMID: 31778829 PMCID: PMC7078555 DOI: 10.1016/j.jcmgh.2019.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Self-renewal and multipotent differentiation are cardinal properties of intestinal stem cells (ISCs), mediated in part by WNT and NOTCH signaling. Although these pathways are well characterized, the molecular mechanisms that control the 'stemness' of ISCs are still not well defined. Here, we investigated the role of Krüppel-like factor 5 (KLF5) in regulating ISC functions. METHODS We performed studies in adult Lgr5EGFP-IRES-creERT2;Rosa26LSLtdTomato (Lgr5Ctrl) and Lgr5EGFP-IRES-creERT2;Klf5fl/fl;Rosa26LSLtdTomato (Lgr5ΔKlf5) mice. Mice were injected with tamoxifen to activate Cre recombinase, which deletes Klf5 from the intestinal epithelium in Lgr5ΔKlf5 but not Lgr5Crtl mice. In experiments involving irradiation, mice were subjected to 12 Gy total body irradiation (TBI). Tissues were collected for immunofluorescence (IF) analysis and next generation sequencing. Oganoids were derived from fluoresecence activated cell sorted- (FACS-) single cells from tamoxifen-treated Lgr5ΔKlf5 or Lgr5Crtl mice and examined by immunofluorescence stain. RESULTS Lgr5+ ISCs lacking KLF5 proliferate faster than control ISCs but fail to self-renew, resulting in a depleted ISC compartment. Transcriptome analysis revealed that Klf5-null Lgr5+ cells lose ISC identity and prematurely differentiate. Following irradiation injury, which depletes Lgr5+ ISCs, reserve Klf5-null progenitor cells fail to dedifferentiate and regenerate the epithelium. Absence of KLF5 inactivates numerous selected enhancer elements and direct transcriptional targets including canonical WNT- and NOTCH-responsive genes. Analysis of human intestinal tissues showed increased levels of KLF5 in the regenerating epithelium as compared to those of healthy controls. CONCLUSION We conclude that ISC self-renewal, lineage specification, and precursor dedifferentiation require KLF5, by its ability to regulate epigenetic and transcriptional activities of ISC-specific gene sets. These findings have the potential for modulating ISC functions by targeting KLF5 in the intestinal epithelium.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Madhurima Saxena
- Department of Medical Oncology and Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kasmika Maharjan
- Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jane J. Song
- Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Kenneth R. Shroyer
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Ramesh A. Shivdasani
- Department of Medical Oncology and Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York,Department of Physiology and Biophysics, Stony Brook University Renaissance School of Medicine, Stony Brook, New York,Correspondence Address correspondence to: Vincent W. Yang, MD, PhD, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Room 020, Stony Brook, New York, 11794. fax: (631) 444-3144.
| |
Collapse
|
153
|
Baker AM, Gabbutt C, Williams MJ, Cereser B, Jawad N, Rodriguez-Justo M, Jansen M, Barnes CP, Simons BD, McDonald SA, Graham TA, Wright NA. Crypt fusion as a homeostatic mechanism in the human colon. Gut 2019; 68:1986-1993. [PMID: 30872394 PMCID: PMC6839731 DOI: 10.1136/gutjnl-2018-317540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The crypt population in the human intestine is dynamic: crypts can divide to produce two new daughter crypts through a process termed crypt fission, but whether this is balanced by a second process to remove crypts, as recently shown in mouse models, is uncertain. We examined whether crypt fusion (the process of two neighbouring crypts fusing into a single daughter crypt) occurs in the human colon. DESIGN We used somatic alterations in the gene cytochrome c oxidase (CCO) as lineage tracing markers to assess the clonality of bifurcating colon crypts (n=309 bifurcating crypts from 13 patients). Mathematical modelling was used to determine whether the existence of crypt fusion can explain the experimental data, and how the process of fusion influences the rate of crypt fission. RESULTS In 55% (21/38) of bifurcating crypts in which clonality could be assessed, we observed perfect segregation of clonal lineages to the respective crypt arms. Mathematical modelling showed that this frequency of perfect segregation could not be explained by fission alone (p<10-20). With the rates of fission and fusion taken to be approximately equal, we then used the distribution of CCO-deficient patch size to estimate the rate of crypt fission, finding a value of around 0.011 divisions/crypt/year. CONCLUSIONS We have provided the evidence that human colonic crypts undergo fusion, a potential homeostatic process to regulate total crypt number. The existence of crypt fusion in the human colon adds a new facet to our understanding of the highly dynamic and plastic phenotype of the colonic epithelium.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Calum Gabbutt
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Marc J Williams
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Biancastella Cereser
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Noor Jawad
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Marnix Jansen
- Histopathology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
154
|
Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, Georgakopoulos N, Torrente F, Noorani A, Goddard M, Robinson P, Coorens THH, O'Neill L, Alder C, Wang J, Fitzgerald RC, Zilbauer M, Coleman N, Saeb-Parsy K, Martincorena I, Campbell PJ, Stratton MR. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019; 574:532-537. [PMID: 31645730 DOI: 10.1038/s41586-019-1672-7] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Nikitas Georgakopoulos
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Franco Torrente
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge, UK
| | - Ayesha Noorani
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin Goddard
- Department of Pathology, Papworth Hospital NHS Trust, Cambridge, UK
| | | | | | | | | | | | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | |
Collapse
|
155
|
Han S, Fink J, Jörg DJ, Lee E, Yum MK, Chatzeli L, Merker SR, Josserand M, Trendafilova T, Andersson-Rolf A, Dabrowska C, Kim H, Naumann R, Lee JH, Sasaki N, Mort RL, Basak O, Clevers H, Stange DE, Philpott A, Kim JK, Simons BD, Koo BK. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell 2019; 25:342-356.e7. [PMID: 31422913 PMCID: PMC6739486 DOI: 10.1016/j.stem.2019.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/11/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.
Collapse
Affiliation(s)
- Seungmin Han
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Juergen Fink
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Min Kyu Yum
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Lemonia Chatzeli
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sebastian R Merker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Manon Josserand
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Teodora Trendafilova
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Amanda Andersson-Rolf
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Catherine Dabrowska
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Hyunki Kim
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nobuo Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Richard Lester Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness Building, Lancaster University, Bailrigg, Lancaster LA1 4YG, UK
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anna Philpott
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
156
|
Iyer DN, Sin WY, Ng L. Linking stemness with colorectal cancer initiation, progression, and therapy. World J Stem Cells 2019; 11:519-534. [PMID: 31523371 PMCID: PMC6716088 DOI: 10.4252/wjsc.v11.i8.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
The discovery of cancer stem cells caused a paradigm shift in the concepts of origin and development of colorectal cancer. Several unresolved questions remain in this field though. Are colorectal cancer stem cells the cause or an effect of the disease? How do cancer stem cells assist in colorectal tumor dissemination to distant organs? What are the molecular or environmental factors affecting the roles of these cells in colorectal cancer? Through this review, we investigate the key findings until now and attempt to elucidate the origins, physical properties, microenvironmental niches, as well as the molecular signaling network that support the existence, self-renewal, plasticity, quiescence, and the overall maintenance of cancer stem cells in colorectal cancer. Increasing data show that the cancer stem cells play a crucial role not only in the establishment of the primary colorectal tumor but also in the distant spread of the disease. Hence, we will also look at the mechanisms adopted by cancer stem cells to influence the development of metastasis and evade therapeutic targeting and its role in the overall disease prognosis. Finally, we will illustrate the importance of understanding the biology of these cells to develop improved clinical strategies to tackle colorectal cancer.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
157
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
158
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
159
|
Christopher J, Thorsen AS, Abujudeh S, Lourenço FC, Kemp R, Potter PK, Morrissey E, Hazelwood L, Winton DJ. Quantifying Microsatellite Mutation Rates from Intestinal Stem Cell Dynamics in Msh2-Deficient Murine Epithelium. Genetics 2019; 212:655-665. [PMID: 31126976 PMCID: PMC6614890 DOI: 10.1534/genetics.119.302268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Microsatellite sequences have an enhanced susceptibility to mutation, and can act as sentinels indicating elevated mutation rates and increased risk of cancer. The probability of mutant fixation within the intestinal epithelium is dictated by a combination of stem cell dynamics and mutation rate. Here, we exploit this relationship to infer microsatellite mutation rates. First a sensitive, multiplexed, and quantitative method for detecting somatic changes in microsatellite length was developed that allowed the parallel detection of mutant [CA]n sequences from hundreds of low-input tissue samples at up to 14 loci. The method was applied to colonic crypts in Mus musculus, and enabled detection of mutant subclones down to 20% of the cellularity of the crypt (∼50 of 250 cells). By quantifying age-related increases in clone frequencies for multiple loci, microsatellite mutation rates in wild-type and Msh2-deficient epithelium were established. An average 388-fold increase in mutation per mitosis rate was observed in Msh2-deficient epithelium (2.4 × 10-2) compared to wild-type epithelium (6.2 × 10-5).
Collapse
Affiliation(s)
- Joseph Christopher
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Ann-Sofie Thorsen
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Sam Abujudeh
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Filipe C Lourenço
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Richard Kemp
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Paul K Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, United Kingdom
| | - Lee Hazelwood
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Douglas J Winton
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
160
|
van Neerven SM, Vermeulen L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation 2019; 108:17-23. [PMID: 30799131 PMCID: PMC6717105 DOI: 10.1016/j.diff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
The intestinal epithelial layer is the fastest renewing tissue in the human body. Due to its incredible turnover rate, the intestine is especially prone to develop cancer, in particular in the colon. Colorectal cancer (CRC) development is characterized by the stepwise accumulation of mutations over time, of which mutations in the tumor suppressor APC are often very early to occur. Generally, mutations in this gene lead to truncated APC proteins that cannot bind to β-catenin to promote its degradation, resulting in a constant overstimulation of the Wnt pathway. The level of intrinsic Wnt activation is dependent on the number of functional β-catenin binding sites remaining within the APC proteins, and the right amount of Wnt signaling is rate-limiting in the formation of polyps. In addition, the intestinal niche provides an extensive spectrum of Wnt ligands, amplifiers and antagonists that locally regulate basal Wnt levels and consequently influence polyp formation propensity. Here we will discuss the crosstalk between transforming epithelial cells and their regional niche in the development of intestinal cancer.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands.
| |
Collapse
|
161
|
Lou Y, Chen A, Yoshida E, Chen Y. Homeostasis and systematic ageing as non-equilibrium phase transitions in computational multicellular organizations. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190012. [PMID: 31417709 PMCID: PMC6689615 DOI: 10.1098/rsos.190012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 05/15/2023]
Abstract
Being a fatal threat to life, the breakdown of homeostasis in tissues is believed to involve multiscale factors ranging from the accumulation of genetic damages to the deregulation of metabolic processes. Here, we present a prototypical multicellular homeostasis model in the form of a two-dimensional stochastic cellular automaton with three cellular states, cell division, cell death and cell cycle arrest, of which the state-updating rules are based on fundamental cell biology. Despite the simplicity, this model illustrates how multicellular organizations can develop into diverse homeostatic patterns with distinct morphologies, turnover rates and lifespans without considering genetic, metabolic or other exogenous variations. Through mean-field analysis and Monte-Carlo simulations, those homeostatic states are found to be classified into extinctive, proliferative and degenerative phases, whereas healthy multicellular organizations evolve from proliferative to degenerative phases over a long time, undergoing a systematic ageing akin to a transition into an absorbing state in non-equilibrium physical systems. It is suggested that the collapse of homeostasis at the multicellular level may originate from the fundamental nature of cell biology regarding the physics of some non-equilibrium processes instead of subcellular details.
Collapse
Affiliation(s)
- Yuting Lou
- SCS Laboratory, Department of Human and Environmental Engineering, Graduate School of Frontier Sciences, The University of Tokyo, 277-8561 Chiba, Japan
- Author for correspondence: Yuting Lou e-mail:
| | - Ao Chen
- Department of Physics, Fudan University, Shanghai, People’s Republic of China
| | - Erika Yoshida
- Department of Systems Innovation, Faculty of Engineering, The University of Tokyo, 111-8564 Tokyo, Japan
| | - Yu Chen
- SCS Laboratory, Department of Human and Environmental Engineering, Graduate School of Frontier Sciences, The University of Tokyo, 277-8561 Chiba, Japan
| |
Collapse
|
162
|
Jilkine A. Mathematical Models of Stem Cell Differentiation and Dedifferentiation. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00156-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
163
|
Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 2019; 25:275-297. [DOI: 10.1093/humupd/dmz006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
164
|
Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell 2019; 24:592-607.e7. [PMID: 30853556 PMCID: PMC6459002 DOI: 10.1016/j.stem.2019.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.
Collapse
Affiliation(s)
- Joel Johansson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mate Naszai
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Bryan W Miller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Yachuan Yu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | | | - Julia B Cordero
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
165
|
Özbek M, Bayraktaroğlu AG. Developmental study on the ileal Peyer's patches of sheep, and cytokeratin-18 as a possible marker for M cells in follicle associated epithelium. Acta Histochem 2019; 121:311-322. [PMID: 30745250 DOI: 10.1016/j.acthis.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Peyer's patches are known as the immune sensors of the intestine because of their ability to transport luminal antigens. The objective of this study was both to assess the prenatal and postnatal development of sheep ileal Peyer's patches with respect to histomorphology, distribution of CD4+ and CD8+ cells, and localization of proliferating and apoptotic cells, and to examine the morphology of M cells and expression of CK18 in follicle associated epithelium (FAE). We also hypothesized that CK18 could be a potential marker for M cell. Peyer's patches completed their histomorphological development in prenatal period and involuted in the postnatal period. The distribution of the CD4+ and CD8+ cells was similar in the last trimester of pregnancy (days 120-150) and the postnatal period, but differed in the early stages of foetal development (days 70-120). In the prenatal period, the follicular area displayed high levels of proliferation and apoptosis. We observed CK18 immunoreaction only in FAE. While M cells were devoid of microfolds in the early stages of the prenatal period, these cells acquired a prismatic shape and bore distinct apical microfolds in the late prenatal period and postnatal period. As a result, it was determined that, in sheep, the development of the ileal Peyer's patches occurred in the prenatal period, independent of exogenous antigenic stimulation, and in association with high levels of lymphopoiesis and apoptosis in the follicles. We found, for the first time, that CK18 is a novel and reliable marker for FAE in sheep ileal Peyer's patches. We suggest that CK18 positive cells in FAE are M cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Burdur, Turkey.
| | - Alev Gürol Bayraktaroğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
166
|
van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer 2019; 18:66. [PMID: 30927915 PMCID: PMC6441158 DOI: 10.1186/s12943-019-0962-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelial lining is one of the most rapidly renewing cell populations in the body. As a result, the gut has been an attractive model to resolve key mechanisms in epithelial homeostasis. In particular the role of intestinal stem cells (ISCs) in the renewal process has been intensely studied. Interestingly, as opposed to the traditional stem cell theory, the ISC is not a static population but displays significant plasticity and in situations of tissue regeneration more differentiated cells can revert back to a stem cell state upon exposure to extracellular signals. Importantly, normal intestinal homeostasis provides important insight into mechanisms that drive colorectal cancer (CRC) development and growth. Specifically, the dynamics of cancer stem cells bear important resemblance to ISC functionality. In this review we present an overview of the current knowledge on ISCs in homeostasis and their role in malignant transformation. Also, we discuss the existence of stem cells in intestinal adenomas and CRC and how these cells contribute to (pre-)malignant growth. Furthermore, we will focus on new paradigms in the field of dynamical cellular hierarchies in CRC and the intimate relationship between tumor cells and their niche.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands.
| |
Collapse
|
167
|
Gay DM, Ridgway RA, Müller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ, Campbell AD, Bird TG, Sansom OJ. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat Commun 2019; 10:723. [PMID: 30760720 PMCID: PMC6374445 DOI: 10.1038/s41467-019-08586-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regeneration, differentiation and cancer. However, the principle that oncogenic Wnt signalling could be specifically targeted remains controversial. Here we examine the requirement of BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Furthermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocellular transformation. We speculate these results support the just-right hypothesis of Wnt-driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at blocking colonic tumourigenesis and mutations that most resemble those that occur in human cancer.
Collapse
Affiliation(s)
- David M Gay
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Joshua D Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David J Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
168
|
Shibata D. Evolutionary Stem Cell Poker and Cancer Risks: The Paradox of The Large And Small Intestines. CURRENT PATHOBIOLOGY REPORTS 2019; 6:193-198. [PMID: 30713810 DOI: 10.1007/s40139-018-0176-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose of review Recent studies demonstrate that normal human tissues accumulate substantial numbers of somatic mutations with aging, to levels comparable to their corresponding cancers. If mutations cause cancer, how do tissues avoid cancer when mutations are unavoidable? Recent findings The small intestines (SI) and colon accumulate similar numbers of replication errors, but SI adenocarcinoma is much rarer than colorectal cancer. Both the small and large intestines are subdivided into millions of small neighborhoods (crypts) that are maintained by small numbers of stem cells. To explain the SI cancer paradox, four fundamental evolution parameters (mutation, drift, selection, and population size) are translated to crypts. Summary The accumulations of driver mutations in a single stem cell may be analogous to an evolutionary poker game. The rarity of SI cancer may reflect that SI crypts are smaller and have fewer stem cells than the colon, which reduces the numbers of cells at risk for mutation and perhaps selection efficiency. Tissue microarchitecture may physically modulate cancer evolution by controlling the numbers of directly competing neighboring cells. A better understanding of the SI cancer paradox may illuminate how tissues naturally avoid cancers when mutations are unavoidable.
Collapse
Affiliation(s)
- Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine,
| |
Collapse
|
169
|
Cockrell C, Axelrod DE. Optimization of Dose Schedules for Chemotherapy of Early Colon Cancer Determined by High-Performance Computer Simulations. Cancer Inform 2019; 18:1176935118822804. [PMID: 30675100 PMCID: PMC6330731 DOI: 10.1177/1176935118822804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer chemotherapy dose schedules are conventionally applied intermittently, with dose duration of the order of hours, intervals between doses of days or weeks, and cycles repeated for weeks. The large number of possible combinations of values of duration, interval, and lethality has been an impediment to empirically determine the optimal set of treatment conditions. The purpose of this project was to determine the set of parameters for duration, interval, and lethality that would be most effective for treating early colon cancer. An agent-based computer model that simulated cell proliferation kinetics in normal human colon crypts was calibrated with measurements of human biopsy specimens. Mutant cells were simulated as proliferating and forming an adenoma, or dying if treated with cytotoxic chemotherapy. Using a high-performance computer, a total of 28 800 different parameter sets of duration, interval, and lethality were simulated. The effect of each parameter set on the stability of colon crypts, the time to cure a crypt of mutant cells, and the accumulated dose was determined. Of the 28 800 parameter sets, 434 parameter sets were effective in curing the crypts of mutant cells before they could form an adenoma and allowed the crypt normal cell dynamics to recover to pretreatment levels. A group of 14 similar parameter sets produced a minimal time to cure mutant cells. A different group of nine similar parameter sets produced the least accumulated dose. These parameter sets may be considered as candidate dose schedules to guide clinical trials for early colon cancer.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery and Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT, USA
| | - David E Axelrod
- Department of Genetics and Cancer of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
170
|
Hormoz S, Singer ZS, Linton JM, Antebi YE, Shraiman BI, Elowitz MB. Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint Single-Cell Measurements. Cell Syst 2019; 3:419-433.e8. [PMID: 27883889 DOI: 10.1016/j.cels.2016.10.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/01/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
As they proliferate, living cells undergo transitions between specific molecularly and developmentally distinct states. Despite the functional centrality of these transitions in multicellular organisms, it has remained challenging to determine which transitions occur and at what rates without perturbations and cell engineering. Here, we introduce kin correlation analysis (KCA) and show that quantitative cell-state transition dynamics can be inferred, without direct observation, from the clustering of cell states on pedigrees (lineage trees). Combining KCA with pedigrees obtained from time-lapse imaging and endpoint single-molecule RNA-fluorescence in situ hybridization (RNA-FISH) measurements of gene expression, we determined the cell-state transition network of mouse embryonic stem (ES) cells. This analysis revealed that mouse ES cells exhibit stochastic and reversible transitions along a linear chain of states ranging from 2C-like to epiblast-like. Our approach is broadly applicable and may be applied to systems with irreversible transitions and non-stationary dynamics, such as in cancer and development.
Collapse
Affiliation(s)
- Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Zakary S Singer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute (HHMI) and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
171
|
Abstract
Studying cell fate dynamics is complicated by the fact that direct in vivo observation of individual cell fate outcomes is usually not possible and only multicellular data of cell clones can be obtained. In this situation, experimental data alone is not sufficient to validate biological models because the hypotheses and the data cannot be directly compared and thus standard statistical tests cannot be leveraged. On the other hand, mathematical modelling can bridge the scales between a hypothesis and measured data via quantitative predictions from a mathematical model. Here, we describe how to implement the rules behind a hypothesis (cell fate outcomes) one-to-one as a stochastic model, how to evaluate such a rule-based model mathematically via analytical calculation or stochastic simulations of the model's Master equation, and to predict the outcomes of clonal statistics for respective hypotheses. We also illustrate two approaches to compare these predictions directly with the clonal data to assess the models.
Collapse
Affiliation(s)
- Philip Greulich
- Mathematical Sciences, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
172
|
Abstract
The intestinal epithelium withstands continuous mechanical, chemical and biological insults despite its single-layered, simple epithelial structure. The crypt-villus tissue architecture in combination with rapid cell turnover enables the intestine to act both as a barrier and as the primary site of nutrient uptake. Constant tissue replenishment is fuelled by continuously dividing stem cells that reside at the bottom of crypts. These cells are nurtured and protected by specialized epithelial and mesenchymal cells, and together constitute the intestinal stem cell niche. Intestinal stem cells and early progenitor cells compete for limited niche space and, therefore, the ability to retain or regain stemness. Those cells unable to do so differentiate to one of six different mature cell types and move upwards towards the villus, where they are shed into the intestinal lumen after 3-5 days. In this Review, we discuss the signals, cell types and mechanisms that control homeostasis and regeneration in the intestinal epithelium. We investigate how the niche protects and instructs intestinal stem cells, which processes drive differentiation of mature cells and how imbalance in key signalling pathways can cause human disease.
Collapse
|
173
|
Sei Y, Feng J, Chow CC, Wank SA. Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G64-G74. [PMID: 30359083 PMCID: PMC6383375 DOI: 10.1152/ajpgi.00242.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The normal intestinal epithelium is continuously regenerated at a rapid rate from actively cycling Lgr5-expressing intestinal stem cells (ISCs) that reside at the crypt base. Recent mathematical modeling based on several lineage-tracing studies in mice shows that the symmetric cell division-dominant neutral drift model fits well with the observed in vivo growth of ISC clones and suggests that symmetric divisions are central to ISC homeostasis. However, other studies suggest a critical role for asymmetric cell division in the maintenance of ISC homeostasis in vivo. Here, we show that the stochastic branching and Moran process models with both a symmetric and asymmetric division mode not only simulate the stochastic growth of the ISC clone in silico but also closely fit the in vivo stem cell dynamics observed in lineage-tracing studies. In addition, the proposed model with highest probability for asymmetric division is more consistent with in vivo observations reported here and by others. Our in vivo studies of mitotic spindle orientations and lineage-traced progeny pairs indicate that asymmetric cell division is a dominant mode used by ISCs under normal homeostasis. Therefore, we propose the asymmetric cell division-dominant neutral drift model for normal ISC homeostasis. NEW & NOTEWORTHY The prevailing mathematical model suggests that intestinal stem cells (ISCs) divide symmetrically. The present study provides evidence that asymmetric cell division is the major contributor to ISC maintenance and thus proposes an asymmetric cell division-dominant neutral drift model. Consistent with this model, in vivo studies of mitotic spindle orientation and lineage-traced progeny pairs indicate that asymmetric cell division is the dominant mode used by ISCs under normal homeostasis.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carson C. Chow
- 2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
174
|
Yoshida S. Heterogeneous, dynamic, and stochastic nature of mammalian spermatogenic stem cells. Curr Top Dev Biol 2019; 135:245-285. [DOI: 10.1016/bs.ctdb.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
175
|
Abstract
The intestinal epithelium is one the fastest renewing tissues in mammals and is endowed with extensive adaptability. The more traditional view of a hierarchical organization of the gut has recently given way to a more dynamic model in which various cell types within the intestinal epithelium can de-differentiate and function as an alternative source of stem cells upon tissue damage and stress conditions such as inflammation and tumorigenesis. Here, we will review the mechanistic principles and key players involved in intestinal plasticity and discuss potential therapeutic implications of cellular plasticity in regenerative medicine and cancer.
Collapse
|
176
|
Hannezo E, Simons BD. Statistical theory of branching morphogenesis. Dev Growth Differ 2018; 60:512-521. [PMID: 30357803 PMCID: PMC6334508 DOI: 10.1111/dgd.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Branching morphogenesis remains a subject of abiding interest. Although much is known about the gene regulatory programs and signaling pathways that operate at the cellular scale, it has remained unclear how the macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Lately, it has been proposed that, these features can be explained quantitatively in several organs within a single unifying framework. Based on large-scale organ reconstructions and cell lineage tracing, it has been argued that morphogenesis follows from the collective dynamics of sublineage-restricted self-renewing progenitor cells, localized at ductal tips, that act cooperatively to drive a serial process of ductal elongation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit with proximity to maturing ducts, this dynamic results in the specification of a complex network of defined density and statistical organization. These results suggest that, for several mammalian tissues, branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple, but generic, set of local rules, without recourse to a rigid and deterministic sequence of genetically programmed events. Here, we review the basis of these findings and discuss their implications.
Collapse
Affiliation(s)
| | - Benjamin D. Simons
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeUK
| |
Collapse
|
177
|
Xavier da Silveira Dos Santos A, Liberali P. From single cells to tissue self-organization. FEBS J 2018; 286:1495-1513. [PMID: 30390414 PMCID: PMC6519261 DOI: 10.1111/febs.14694] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Self-organization is a process by which interacting cells organize and arrange themselves in higher order structures and patterns. To achieve this, cells must have molecular mechanisms to sense their complex local environment and interpret it to respond accordingly. A combination of cell-intrinsic and cell-extrinsic cues are decoded by the single cells dictating their behaviour, their differentiation and symmetry-breaking potential driving development, tissue remodeling and regenerative processes. A unifying property of these self-organized pattern-forming systems is the importance of fluctuations, cell-to-cell variability, or noise. Cell-to-cell variability is an inherent and emergent property of populations of cells that maximize the population performance instead of the individual cell, providing tissues the flexibility to develop and maintain homeostasis in diverse environments. In this review, we will explore the role of self-organization and cell-to-cell variability as fundamental properties of multicellularity-and the requisite of single-cell resolution for its understanding. Moreover, we will analyze how single cells generate emergent multicellular dynamics observed at the tissue level 'travelling' across different scales: spatial, temporal and functional.
Collapse
Affiliation(s)
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
178
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
179
|
Stefanson AL, Bakovic M. Falcarinol Is a Potent Inducer of Heme Oxygenase-1 and Was More Effective than Sulforaphane in Attenuating Intestinal Inflammation at Diet-Achievable Doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3153527. [PMID: 30420908 PMCID: PMC6215554 DOI: 10.1155/2018/3153527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.
Collapse
Affiliation(s)
- Amanda L. Stefanson
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
180
|
Sei Y, Feng J, Samsel L, White A, Zhao X, Yun S, Citrin D, McCoy JP, Sundaresan S, Hayes MM, Merchant JL, Leiter A, Wank SA. Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G495-G510. [PMID: 29848020 PMCID: PMC6230697 DOI: 10.1152/ajpgi.00036.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Leigh Samsel
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ayla White
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sajung Yun
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Deborah Citrin
- 3Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J. Philip McCoy
- 2Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sinju Sundaresan
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Michael M. Hayes
- 4Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Juanita L. Merchant
- 5Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Andrew Leiter
- 6Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
181
|
Zhao S, Fortier TM, Baehrecke EH. Autophagy Promotes Tumor-like Stem Cell Niche Occupancy. Curr Biol 2018; 28:3056-3064.e3. [PMID: 30270184 DOI: 10.1016/j.cub.2018.07.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Adult stem cells usually reside in specialized niche microenvironments. Accumulating evidence indicates that competitive niche occupancy favors stem cells with oncogenic mutations, also known as tumor-like stem cells. However, the mechanisms that regulate tumor-like stem cell niche occupancy are largely unknown. Here, we use Drosophila ovarian germline stem cells as a model and use bam mutant cells as tumor-like stem cells. Interestingly, we find that autophagy is low in wild-type stem cells but elevated in bam mutant stem cells. Significantly, autophagy is required for niche occupancy by bam mutant stem cells. Although loss of either atg6 or Fip200 alone in stem cells does not impact their competitiveness, loss of these conserved regulators of autophagy decreases bam mutant stem cell niche occupancy. In addition, starvation enhances the competition of bam mutant stem cells for niche occupancy in an autophagy-dependent manner. Of note, loss of autophagy slows the cell cycle of bam mutant stem cells and does not influence stem cell death. In contrast to canonical epithelial cell competition, loss of regulators of tissue growth, either the insulin receptor or cyclin-dependent kinase 2 function, influences the competition of bam mutant stem cells for niche occupancy. Additionally, autophagy promotes the tumor-like growth of bam mutant ovaries. Autophagy is known to be induced in a wide variety of tumors. Therefore, these results suggest that specifically targeting autophagy in tumor-like stem cells has potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Shaowei Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
182
|
Shibata D. Somatic cell evolution: how to improve with age. J Pathol 2018; 247:3-5. [PMID: 30246391 DOI: 10.1002/path.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/09/2022]
Abstract
A recent article published in this journal illuminates a rare example of somatic evolution where cells improve rather than deteriorate with age. In mitotic intestinal crypts, stem cells with higher levels of a deleterious heteroplasmic germline mitochondrial mutation are purged through time, leading to crypts without the mutation. Similar somatic mitochondrial mutations are not purged from crypts, indicating that special conditions are needed to improve with age. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Darryl Shibata
- Department of Pathology, University of Southern California - Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
183
|
Tomic G, Morrissey E, Kozar S, Ben-Moshe S, Hoyle A, Azzarelli R, Kemp R, Chilamakuri CSR, Itzkovitz S, Philpott A, Winton DJ. Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration. Cell Stem Cell 2018; 23:436-443.e7. [PMID: 30100168 PMCID: PMC6138952 DOI: 10.1016/j.stem.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.
Collapse
Affiliation(s)
- Goran Tomic
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sarah Kozar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Hoyle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Roberta Azzarelli
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Philpott
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.
| |
Collapse
|
184
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 2018; 11:11/9/dmm035071. [PMID: 30171151 PMCID: PMC6177008 DOI: 10.1242/dmm.035071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have identified and begun to characterize the roles of regenerative cellular plasticity in many organs. In Part I of our two-part Review, we discussed how cells reprogram following injury to the stomach and pancreas. We introduced the concept of a conserved cellular program, much like those governing division and death, which may allow mature cells to become regenerative. This program, paligenosis, is likely necessary to help organs repair the numerous injuries they face over the lifetime of an organism; however, we also postulated that rounds of paligenosis and redifferentiation may allow long-lived cells to accumulate and store oncogenic mutations, and could thereby contribute to tumorigenesis. We have termed the model wherein differentiated cells can store mutations and then unmask them upon cell cycle re-entry the ‘cyclical hit’ model of tumorigenesis. In the present Review (Part II), we discuss these concepts, and cell plasticity as a whole, in the skin and intestine. Although differentiation and repair are arguably more thoroughly studied in skin and intestine than in stomach and pancreas, it is less clear how mature skin and intestinal cells contribute to tumorigenesis. Moreover, we conclude our Review by discussing plasticity in all four organs, and look for conserved mechanisms and concepts that might help advance our knowledge of tumor formation and advance the development of therapies for treating or preventing cancers that might be shared across multiple organs. Summary: This final installment of a two-part Review discusses how cycles of dedifferentiation and redifferentiation can promote tumorigenesis in the skin and intestine, showing how plasticity in these continuously renewing tissues might contribute to tumorigenesis.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
185
|
Abstract
Dietary composition and calorie intake are major determinants of health and disease. Calorie restriction promotes metabolic changes that favor tissue regeneration and is arguably the most successful and best-conserved antiaging intervention. Obesity, in contrast, impairs tissue homeostasis and is a major risk factor for the development of diseases including cancer. Stem cells, the central mediators of tissue regeneration, integrate dietary and energy cues via nutrient-sensing pathways to maintain growth or respond to stress. We discuss emerging data on the effects of diet and nutrient-sensing pathways on intestinal stem cells, as well as their potential application in the development of regenerative and therapeutic interventions.
Collapse
Affiliation(s)
- Salvador Alonso
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
186
|
Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018; 53:223-231. [PMID: 30130664 DOI: 10.1016/j.semcancer.2018.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a median overall survival of 6-12 months and a 5-year survival of less than 7%. While PDAC currently represents the 4th most frequent cause of death due to cancer worldwide, it is expected to become the second leading cause of cancer-related death by 2030. These alarming statistics are primarily due to both the inherent chemoresistant and metastatic nature of this tumor, and the existence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). Since their discovery in PDAC in 2007, we have come to realize that pancreatic CSCs have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. More importantly, the concept of the CSC as a fixed entity within the tumor has also evolved, and current data suggest that CSCs are states rather than defined entities. Consequently, current treatments for the majority of PDAC patients are not effective, and do not significantly impact overall patient survival, as they do not adequately target the plastic CSC sub-population nor the transient/hybrid cells that can replenish the CSC pool. Thus, it is necessary that we improve our understanding of the characteristics and signals that maintain and drive the pancreatic CSC population in order to develop new therapies to target these cells. Herein, we will provide the latest updates and knowledge on the inherent characteristics of pancreatic CSCs and the CSC niche, specifically the cross-talk that exists between CSCs and niche resident cells. Lastly, we will address the question of whether a CSC is a state or an entity and discuss how the answer to this question can impact treatment approaches.
Collapse
|
187
|
Bahn E, van Heerden M, Gueulette J, Slabbert JP, Shaw W, Debus J, Alber M. Reserve stem cell population in intestinal crypts found to be consistently small by analysis of in vivo clonogenic assays with a biomathematical dynamic model. Radiother Oncol 2018; 129:595-599. [PMID: 30100258 DOI: 10.1016/j.radonc.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE The high plasticity of the intestinal epithelium is maintained by a resilient reserve stem cell population, whose extent and biology are a matter of ongoing debate. The in vivo clonogenic assay (IVCA), presents a well established and efficient analysis of radiation insult to the intestinal crypts. However, we found that inadequate mathematical analysis over the last four decades led to systematic errors and contradictory results in estimates of radio-sensitivity and size of the reserve stem cell pool. MATERIAL AND METHODS We devised a refinement of the IVCA via development of a biomathematical model that delivers a full statistical dynamic description of epithelial radiation injury and subsequent regeneration. We validated the model against cellular and crypt distribution statistics obtained from IVCA experiments and through systematic re-analysis of experimental data from 27 publications. RESULTS A full dynamic description of the evolution of stem cell niche population statistics is obtained. A systematic re-analysis reveals a consistent clonogenic content of the crypt of 31±6 cells. The stem cell reserve manifests to be, contrary to prior predictions, radio-resistant: α=(0.22±0.04) Gy-1. CONCLUSION We established a precision tool for the quantitative analysis of radiation insult to the intestinal crypts, which we employ to show that the reserve stem cell population is small, radio-resistant, and remarkably immutable against a large variety of interventions. The increased resolution of the model allows not only a reduction of the number of animals by about 75%, but also to quantify experimentally the influence of additional agents on damage and on regeneration of the stem cell niche.
Collapse
Affiliation(s)
- Emanuel Bahn
- Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Germany.
| | - Michelle van Heerden
- University of the Free State, Department of Medical Physics (G68), Bloemfontein, South Africa
| | - John Gueulette
- Universit Catholique de Louvain, Radiobiology Laboratory, Brussels, Belgium
| | | | - William Shaw
- University of the Free State, Department of Medical Physics (G68), Bloemfontein, South Africa
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Germany
| | - Markus Alber
- Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Germany
| |
Collapse
|
188
|
Chacón-Martínez CA, Koester J, Wickström SA. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 2018; 145:145/15/dev165399. [PMID: 30068689 DOI: 10.1242/dev.165399] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have the ability to self-renew and differentiate along multiple lineages, driving tissue homeostasis and regeneration. Paradigms of unidirectional, hierarchical differentiation trajectories observed in embryonic and hematopoietic stem cells have traditionally been applied to tissue-resident stem cells. However, accumulating evidence implicates stemness as a bidirectional, dynamic state that is largely governed by the niche, which facilitates plasticity and adaptability to changing conditions. In this Review, we discuss mechanisms of cell fate regulation through niche-derived cues, with a particular focus on epithelial stem cells of the mammalian skin, intestine and lung. We discuss a spectrum of niche-derived biochemical, mechanical and architectural inputs that define stem cell states during morphogenesis, homeostasis and regeneration, and highlight how these diverse inputs influence stem cell plasticity.
Collapse
Affiliation(s)
- Carlos Andrés Chacón-Martínez
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Janis Koester
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany .,Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
189
|
Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H. Stem Cells in Repair of Gastrointestinal Epithelia. Physiology (Bethesda) 2018; 32:278-289. [PMID: 28615312 DOI: 10.1152/physiol.00005.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Among the endodermal tissues of adult mammals, the gastrointestinal (GI) epithelium exhibits the highest turnover rate. As the ingested food moves along the GI tract, gastric acid, digestive enzymes, and gut resident microbes aid digestion as well as nutrient and mineral absorption. Due to the harsh luminal environment, replenishment of new epithelial cells is essential to maintain organ structure and function during routine turnover and injury repair. Tissue-specific adult stem cells in the GI tract serve as a continuous source for this immense regenerative activity. Tissue homeostasis is achieved by a delicate balance between gain and loss of cells. In homeostasis, temporal tissue damage is rapidly restored by well-balanced tissue regeneration, whereas prolonged imbalance may result in diverse pathologies of homeostasis and injury repair. Starting with a summary of the current knowledge of GI tract homeostasis, we continue with providing models of acute injury and chronic diseases. Finally, we will discuss how primary organoid cultures allow new insights into the mechanisms of homeostasis, injury repair, and disease, and how this novel 3D culture system has the potential to translate into the clinic.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands; and.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
190
|
Affiliation(s)
- Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
191
|
Burclaff J, Mills JC. Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas. Dis Model Mech 2018; 11:dmm033373. [PMID: 30037967 PMCID: PMC6078397 DOI: 10.1242/dmm.033373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For the last century or so, the mature, differentiated cells throughout the body have been regarded as largely inert with respect to their regenerative potential, yet recent research shows that they can become progenitor-like and re-enter the cell cycle. Indeed, we recently proposed that mature cells can become regenerative via a conserved set of molecular mechanisms ('paligenosis'), suggesting that a program for regeneration exists alongside programs for death (apoptosis) and division (mitosis). In two Reviews describing how emerging concepts of cellular plasticity are changing how the field views regeneration and tumorigenesis, we present the commonalities in the molecular and cellular features of plasticity at homeostasis and in response to injury in multiple organs. Here, in part 1, we discuss these advances in the stomach and pancreas. Understanding the extent of cell plasticity and uncovering its underlying mechanisms may help us refine important theories about the origin and progression of cancer, such as the cancer stem cell model, as well as the multi-hit model of tumorigenesis. Ultimately, we hope that the new concepts and perspectives on inherent cellular programs for regeneration and plasticity may open novel avenues for treating or preventing cancers.
Collapse
Affiliation(s)
- Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St Louis, MO 63110, USA
| |
Collapse
|
192
|
Luhur A, Buddika K, Ariyapala IS, Chen S, Sokol NS. Opposing Post-transcriptional Control of InR by FMRP and LIN-28 Adjusts Stem Cell-Based Tissue Growth. Cell Rep 2018; 21:2671-2677. [PMID: 29212015 DOI: 10.1016/j.celrep.2017.11.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Although the intrinsic mechanisms that control whether stem cells divide symmetrically or asymmetrically underlie tissue growth and homeostasis, they remain poorly defined. We report that the RNA-binding protein fragile X mental retardation protein (FMRP) limits the symmetric division, and resulting expansion, of the stem cell population during adaptive intestinal growth in Drosophila. The elevated insulin sensitivity that FMRP-deficient progenitor cells display contributes to their accelerated expansion, which is suppressed by the depletion of insulin-signaling components. This FMRP activity is mediated solely via a second conserved RNA-binding protein, LIN-28, known to boost insulin signaling in stem cells. Via LIN-28, FMRP controls progenitor cell behavior by post-transcriptionally repressing the level of insulin receptor (InR). This study identifies the stem cell-based mechanism by which FMRP controls tissue adaptation, and it raises the possibility that defective adaptive growth underlies the accelerated growth, gastrointestinal, and other symptoms that affect fragile X syndrome patients.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Shengyao Chen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
193
|
Parker A, Lawson MAE, Vaux L, Pin C. Host-microbe interaction in the gastrointestinal tract. Environ Microbiol 2018; 20:2337-2353. [PMID: 28892253 PMCID: PMC6175405 DOI: 10.1111/1462-2920.13926] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in-vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.
Collapse
Affiliation(s)
- Aimée Parker
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | | | - Laura Vaux
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | - Carmen Pin
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| |
Collapse
|
194
|
Nicholson AM, Olpe C, Hoyle A, Thorsen AS, Rus T, Colombé M, Brunton-Sim R, Kemp R, Marks K, Quirke P, Malhotra S, Ten Hoopen R, Ibrahim A, Lindskog C, Myers MB, Parsons B, Tavaré S, Wilkinson M, Morrissey E, Winton DJ. Fixation and Spread of Somatic Mutations in Adult Human Colonic Epithelium. Cell Stem Cell 2018; 22:909-918.e8. [PMID: 29779891 PMCID: PMC5989058 DOI: 10.1016/j.stem.2018.04.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/16/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.
Collapse
Affiliation(s)
- Anna M Nicholson
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Cora Olpe
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge, UK
| | - Alice Hoyle
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ann-Sofie Thorsen
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Teja Rus
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Richard Kemp
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Kate Marks
- Pathology and Tumour Biology, Level 4, Wellcome Trust Brenner Building, St. James University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Phil Quirke
- Pathology and Tumour Biology, Level 4, Wellcome Trust Brenner Building, St. James University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | - Ashraf Ibrahim
- Department of Histopathology, Box 235, CUHFT, Cambridge, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Barbara Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Simon Tavaré
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mark Wilkinson
- Norwich Research Park BioRepository, James Watson Road, Norwich NR4 7UQ, UK
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | - Douglas J Winton
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
195
|
West JD, Mort RL, Hill RE, Morley SD, Collinson JM. Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice. Stem Cell Res 2018; 30:1-11. [PMID: 29777801 PMCID: PMC6049397 DOI: 10.1016/j.scr.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023] Open
Abstract
The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed. Age-related reduction of corneal stripes in mosaic mice was simulated. Stem cell loss and/or stem cell replacement reduced simulated stripe numbers. Stem cell replacement, without reducing stem cell numbers, caused neutral drift. Clumping of stem cells into larger groups caused slower decline in stripe numbers. Replacement rarely caused loss of mosaicism unless there were few stem cells.
Collapse
Affiliation(s)
- John D West
- Centre for Integrative Physiology, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YG, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Steven D Morley
- Division of Health Sciences, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
196
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
197
|
Stamp C, Zupanic A, Sachdeva A, Stoll EA, Shanley DP, Mathers JC, Kirkwood TBL, Heer R, Simons BD, Turnbull DM, Greaves LC. Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine 2018; 31:166-173. [PMID: 29748033 PMCID: PMC6013780 DOI: 10.1016/j.ebiom.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Craig Stamp
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf, Switzerland
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daryl P Shanley
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - John C Mathers
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas B L Kirkwood
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council SC Institute, Cambridge CB2 1QR, UK
| | - Doug M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura C Greaves
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
198
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
199
|
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 2018; 6:E31. [PMID: 29652830 PMCID: PMC6024750 DOI: 10.3390/medsci6020031] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
200
|
Sutcu HH, Ricchetti M. Loss of heterogeneity, quiescence, and differentiation in muscle stem cells. Stem Cell Investig 2018; 5:9. [PMID: 29780813 DOI: 10.21037/sci.2018.03.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022]
Abstract
Skeletal muscle stem cells in the adult display heterogeneity that has been functionally linked to their behavior, self-renewal capacity, and resistance to stress in hostile environments. Behavioral heterogeneity emerges also during developmental myogenesis. Muscle stem cell diversity may be functionally linked to the changing needs of skeletal muscle regeneration. Intriguingly, dramatic reduction of stem cell diversity, the "clonal drift", that implies loss of stem cells and related expansion of clonally related stem cells has been reported for tissue replacement in several adult tissues and suggested in the zebrafish embryo. A recent study shows clonal drift of muscle stem cells in the zebrafish embryo caused by inhibition of the cell cycle and directed by the homeobox protein Meox1. Although stem cell quiescence is associated with inhibition of the transition phase G0/G1 of the cell cycle, Meox1 triggers the muscle stem cell fate by an arrest in G2 phase. Why efficient muscle growth in the zebrafish embryo requires sacrificing stem cell heterogeneity in favor of a small number of dominant clones has not been elucidated. The significance of G2-halted stem cells, which are generally associated with robust regeneration capacity, is also intriguing. These processes are relevant for understanding organ growth and the mechanisms that govern stem cell quiescence.
Collapse
Affiliation(s)
- Haser Hasan Sutcu
- Stem Cells and Development, Team "Stability of Nuclear and Mitochondrial DNA", Institut Pasteur, Paris, France.,CNRS UMR3738, Paris, France.,University Pierre and Marie Curie (Sorbonne Universities, ED515), Paris, France
| | - Miria Ricchetti
- Stem Cells and Development, Team "Stability of Nuclear and Mitochondrial DNA", Institut Pasteur, Paris, France.,CNRS UMR3738, Paris, France
| |
Collapse
|