151
|
Rossato DO, Boligon D, Fornel R, Kronforst MR, Gonçalves GL, Moreira GRP. Subtle variation in size and shape of the whole forewing and the red band among co-mimics revealed by geometric morphometric analysis in Heliconius butterflies. Ecol Evol 2018; 8:3280-3295. [PMID: 29607024 PMCID: PMC5869215 DOI: 10.1002/ece3.3916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 11/08/2022] Open
Abstract
Heliconius are unpalatable butterflies that exhibit remarkable intra- and interspecific variation in wing color pattern, specifically warning coloration. Species that have converged on the same pattern are often clustered in Müllerian mimicry rings. Overall, wing color patterns are nearly identical among co-mimics. However, fine-scale differences exist, indicating that factors in addition to natural selection may underlie wing phenotype. Here, we investigate differences in shape and size of the forewing and the red band in the Heliconius postman mimicry ring (H. erato phyllis and the co-mimics H. besckei, H. melpomene burchelli, and H. melpomene nanna) using a landmark-based approach. If phenotypic evolution is driven entirely by predation pressure, we expect nonsignificant differences among co-mimics in terms of wing shape. Also, a reinforcement of wing pattern (i.e., greater similarity) could occur when co-mimics are in sympatry. We also examined variation in the red forewing band because this trait is critical for both mimicry and sexual communication. Morphometric results revealed significant but small differences among species, particularly in the shape of the forewing of co-mimics. Although we did not observe greater similarity when co-mimics were in sympatry, nearly identical patterns provided evidence of convergence for mimicry. In contrast, mimetic pairs could be distinguished based on the shape (but not the size) of the red band, suggesting an "advergence" process. In addition, sexual dimorphism in the red band shape (but not size) was found for all lineages. Thus, we infer that natural selection due to predation by birds might not be the only mechanism responsible for variation in color patterns, and sexual selection could be an important driver of wing phenotypic evolution in this mimicry ring.
Collapse
Affiliation(s)
- Dirleane O Rossato
- Programa de Pós-Graduação em Ecologia Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Danessa Boligon
- Programa de Pós-Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões Erechim Brazil
| | - Rodrigo Fornel
- Programa de Pós-Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões Erechim Brazil
| | - Marcus R Kronforst
- Department of Ecology and Evolution University of Chicago Chicago MI USA
| | - Gislene L Gonçalves
- Programa de Pós-Graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil.,Departamento de Recursos Ambientales Facultad de Ciencias Agronomicas Universidad de Tarapacá Arica Chile
| | - Gilson R P Moreira
- Programa de Pós-Graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
152
|
Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc Natl Acad Sci U S A 2018; 113:10613-8. [PMID: 27638206 DOI: 10.1073/pnas.1602575113] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.
Collapse
|
153
|
Kazemi B, Gamberale-Stille G, Wåtz T, Wiklund C, Leimar O. Learning of salient prey traits explains Batesian mimicry evolution. Evolution 2018; 72:531-539. [PMID: 29315519 DOI: 10.1111/evo.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
Batesian mimicry evolution involves an initial major mutation that produces a rough resemblance to the model, followed by smaller improving changes. To examine the learning psychology of this process, we applied established ideas about mimicry in Papilio polyxenes asterius of the model Battus philenor. We performed experiments with wild birds as predators and butterfly wings as semiartificial prey. Wings of hybrids of P. p. asterius and Papilio machaon were used to approximate the first mutant, with melanism as the hypothesized first mimetic trait. Based on previous results about learning psychology and imperfect mimicry, we predicted that: melanism should have high salience (i.e., being noticeable and prominent), meaning that predators readily discriminate a melanistic mutant from appearances similar to P. machaon; the difference between the first mutant and the model should have intermediate salience to allow further improvement of mimicry; and the final difference in appearance between P. p. asterius and B. philenor should have very low salience, causing improvement to level off. Our results supported both the traditional hypothesis and all our predictions about relative salience. We conclude that there is good agreement between long-held ideas about how Batesian mimicry evolves and recent insights from learning psychology about the role of salience in mimicry evolution.
Collapse
Affiliation(s)
- Baharan Kazemi
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Therese Wåtz
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christer Wiklund
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
154
|
Twyford AD, Caola AM, Choudhary P, Raina R, Friedman J. Loss of Color Pigmentation Is Maintained at High Frequency in a Monkey Flower Population. Am Nat 2018; 191:135-145. [DOI: 10.1086/694853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
155
|
Howes TR, Summers BR, Kingsley DM. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biol 2017; 15:115. [PMID: 29212540 PMCID: PMC5719529 DOI: 10.1186/s12915-017-0456-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dorsal spine reduction in threespine sticklebacks (Gasterosteus aculeatus) is a classic example of recurrent skeletal evolution in nature. Sticklebacks in marine environments typically have long spines that form part of their skeletal armor. Many derived freshwater populations have evolved shorter spines. Changes in spine length are controlled in part by a quantitative trait locus (QTL) previously mapped to chromosome 4, but the causative gene and mutations underlying the repeated evolution of this interesting skeletal trait have not been identified. RESULTS Refined mapping of the spine length QTL shows that it lies near the MSX2A transcription factor gene. MSX2A is expressed in developing spines. In F1 marine × freshwater fish, the marine allele is preferentially expressed. Differences in expression can be attributed to splicing regulation. Due to the use of an alternative 5 ' splice site within the first exon, the freshwater allele produces greater amounts of a shortened, non-functional transcript and makes less of the full-length transcript. Sequence changes in the MSX2A region are shared by many freshwater fish, suggesting that repeated evolution occurs by reuse of a spine-reduction variant. To demonstrate the effect of full-length MSX2A on spine length, we produced transgenic freshwater fish expressing a copy of marine MSX2A. The spines of the transgenic fish were significantly longer on average than those of their non-transgenic siblings, partially reversing the reduced spine lengths that have evolved in freshwater populations. CONCLUSIONS MSX2A is a major gene underlying dorsal spine reduction in freshwater sticklebacks. The gene is linked to a separate gene controlling bony plate loss, helping explain the concerted effects of chromosome 4 on multiple armor-reduction traits. The nature of the molecular changes provides an interesting example of morphological evolution occurring not through a simple amino acid change, nor through a change only in gene expression levels, but through a change in the ratio of splice products encoding both normal and truncated proteins.
Collapse
Affiliation(s)
- Timothy R Howes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian R Summers
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
156
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
157
|
Wilts BD, Vey AJM, Briscoe AD, Stavenga DG. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol Biol 2017; 17:226. [PMID: 29162029 PMCID: PMC5699198 DOI: 10.1186/s12862-017-1073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. RESULTS Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. CONCLUSIONS The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.
Collapse
Affiliation(s)
- Bodo D Wilts
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands.
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Aidan J M Vey
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Doekele G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| |
Collapse
|
158
|
Dalbosco Dell'Aglio D, Akkaynak D, McMillan WO, Jiggins CD. Estimating the age of Heliconius butterflies from calibrated photographs. PeerJ 2017; 5:e3821. [PMID: 28970967 PMCID: PMC5622606 DOI: 10.7717/peerj.3821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Mating behaviour and predation avoidance in Heliconius involve visual colour signals; however, there is considerable inter-individual phenotypic variation in the appearance of colours. In particular, the red pigment varies from bright crimson to faded red. It has been thought that this variation is primarily due to pigment fading with age, although this has not been explicitly tested. Previous studies have shown the importance of red patterns in mate choice and that birds and butterflies might perceive these small colour differences. Using digital photography and calibrated colour images, we investigated whether the hue variation in the forewing dorsal red band of Heliconius melpomene rosina corresponds with age. We found that the red hue and age were highly associated, suggesting that red colour can indeed be used as a proxy for age in the study of wild-caught butterflies.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Derya Akkaynak
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
159
|
Martins TR, Jiang P, Rausher MD. How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae). THE NEW PHYTOLOGIST 2017; 216:510-518. [PMID: 27597114 DOI: 10.1111/nph.14163] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/26/2016] [Indexed: 05/19/2023]
Abstract
A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F2 individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character.
Collapse
Affiliation(s)
- Talline R Martins
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, NV, 89557, USA
| | - Peng Jiang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
160
|
Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci U S A 2017; 114:10707-10712. [PMID: 28923944 DOI: 10.1073/pnas.1709058114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring "black and blue" wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development.
Collapse
|
161
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|
162
|
Al Khatib A, Siomava N, Iannini A, Posnien N, Casares F. Specific expression and function of the Six3 optix in Drosophila serially homologous organs. Biol Open 2017. [PMID: 28642242 PMCID: PMC5576073 DOI: 10.1242/bio.023606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor optix during Drosophila wing and haltere development. We find that in both organs, Dpp defines the expression domain of optix through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that optix expression in wing and haltere primordia is conserved beyond Drosophila in other higher diptera. In Drosophila, optix is necessary for the growth of wing and haltere. In the wing, optix is required for the growth of the most anterior/proximal region (the ‘marginal cell’) and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of optix mutants are also significantly reduced. In addition, in the haltere, optix is necessary for the suppression of sensory bristles. Summary: The position of the Six3 optix is regulated by the Dpp pathway during wing and haltere development, and controls the size of both serially homologous organs.
Collapse
Affiliation(s)
- Amer Al Khatib
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain.,Department of Biology, University of Florence, I-50019, Florence, Italy
| | - Natalia Siomava
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| | - Nico Posnien
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| |
Collapse
|
163
|
Van Belleghem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F, Jiggins CD, McMillan WO, Counterman BA. patternize: An R package for quantifying colour pattern variation. Methods Ecol Evol 2017; 9:390-398. [PMID: 29755717 DOI: 10.1111/2041-210x.12853] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The use of image data to quantify, study and compare variation in the colors and patterns of organisms requires the alignment of images to establish homology, followed by color-based segmentation of images. Here we describe an R package for image alignment and segmentation that has applications to quantify color patterns in a wide range of organisms. patternize is an R package that quantifies variation in color patterns obtained from image data. patternize first defines homology between pattern positions across specimens either through manually placed homologous landmarks or automated image registration. Pattern identification is performed by categorizing the distribution of colors using an RGB threshold, k-means clustering or watershed transformation.We demonstrate that patternize can be used for quantification of the color patterns in a variety of organisms by analyzing image data for butterflies, guppies, spiders and salamanders. Image data can be compared between sets of specimens, visualized as heatmaps and analyzed using principal component analysis (PCA). patternize has potential applications for fine scale quantification of color pattern phenotypes in population comparisons, genetic association studies and investigating the basis of color pattern variation across a wide range of organisms.
Collapse
Affiliation(s)
- Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras Campus, Puerto Rico.,Department of Biological Sciences, Mississippi State University, 295 Lee Boulevard, Mississippi State, MS 39762, USA
| | - Riccardo Papa
- Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras Campus, Puerto Rico.,Molecular Sciences and Research Center, University of Puerto Rico, San Juan, 00926, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, Puerto Rico
| | - Frederik Hendrickx
- Terrestrial Ecology Unit, Biology Department, Ghent University, Gent, Belgium.,Royal Belgian Institute of Natural Sciences, Brussel, Belgium
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, 295 Lee Boulevard, Mississippi State, MS 39762, USA
| |
Collapse
|
164
|
Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol Phylogenet Evol 2017; 112:230-243. [DOI: 10.1016/j.ympev.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
165
|
Lencer ES, Warren WC, Harrison R, McCune AR. The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species. BMC Genomics 2017; 18:424. [PMID: 28558659 PMCID: PMC5450241 DOI: 10.1186/s12864-017-3810-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Understanding the genetic and developmental origins of phenotypic novelty is central to the study of biological diversity. In this study we identify modifications to the expression of genes at four developmental stages that may underlie jaw morphological differences among three closely related species of pupfish (genus Cyprinodon) from San Salvador Island, Bahamas. Pupfishes on San Salvador Island are trophically differentiated and include two endemic species that have evolved jaw morphologies unlike that of any other species in the genus Cyprinodon. RESULTS We find that gene expression differs significantly across recently diverged species of pupfish. Genes such as Bmp4 and calmodulin, previously implicated in jaw diversification in African cichlid fishes and Galapagos finches, were not found to be differentially expressed among species of pupfish. Instead we find multiple growth factors and cytokine/chemokine genes to be differentially expressed among these pupfish taxa. These include both genes and pathways known to affect craniofacial development, such as Wnt signaling, as well as novel genes and pathways not previously implicated in craniofacial development. These data highlight both shared and potentially unique sources of jaw diversity in pupfish and those identified in other evolutionary model systems such as Galapagos finches and African cichlids. CONCLUSIONS We identify modifications to the expression of genes involved in Wnt signaling, Igf signaling, and the inflammation response as promising avenues for future research. Our project provides insight into the magnitude of gene expression changes contributing to the evolution of morphological novelties, such as jaw structure, in recently diverged pupfish species.
Collapse
Affiliation(s)
- Ezra S Lencer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA.
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Richard Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
166
|
McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith G, Llorente-Bousquets J, Andolfatto P, Briscoe AD. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Mol Biol Evol 2017; 34:2271-2284. [DOI: 10.1093/molbev/msx163] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
167
|
Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 2017; 26:2430-2448. [PMID: 28173627 DOI: 10.1111/mec.14051] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
Abstract
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005, Paris, France
| | - Annabel Whibley
- Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE), 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|
168
|
Abstract
Species co-occurrence in ecological communities is thought to be influenced by multiple ecological and evolutionary processes, especially colonization and competition. However, effects of other interspecific interactions and evolutionary relationships are less explored. We examined evolutionary histories of community members and roles of mutualistic and parasitic interactions (Müllerian and Batesian mimicry, respectively) in the assembly of mimetic butterfly communities called mimicry rings in tropical forests of the Western Ghats, India. We found that Müllerian mimics were phylogenetically clustered, sharing aposematic signals due to common ancestry. On the other hand, Batesian mimics joined mimicry rings through convergent evolution and random phylogenetic assembly. Since the Western Ghats are a habitat island, we compared species diversity and composition in its mimicry rings with those of habitat mainland to test effects of biogeographic connectivity. The Western Ghats consisted of fewer mimicry rings and an overall smaller number of aposematic species and mimics compared to habitat mainland. The depauperate mimicry rings in the Western Ghats could have resulted from stochastic processes, reflecting their long temporal and spatial isolation and trickling colonization by the mimetic butterfly communities. These results highlight how evolutionary history, biogeographic isolation, and stochastic colonization influence the evolutionary assembly and diversity of ecological communities.
Collapse
|
169
|
Robertson S, Bradley JE, MacColl ADC. Eda haplotypes in three-spined stickleback are associated with variation in immune gene expression. Sci Rep 2017; 7:42677. [PMID: 28195171 PMCID: PMC5307360 DOI: 10.1038/srep42677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Haplotypes underlying local adaptation and speciation are predicted to have numerous phenotypic effects, but few genes involved have been identified, with much work to date concentrating on visible, morphological, phenotypes. The link between genes controlling these adaptive morphological phenotypes and the immune system has seldom been investigated, even though changes in the immune system could have profound adaptive consequences. The Eda gene in three-spined stickleback is one of the best studied major adaptation genes; it directly controls bony plate architecture and has been associated with additional aspects of adaptation to freshwater. Here, we exposed F2 hybrids, used to separate Eda genotype from genetic background, to contrasting conditions in semi-natural enclosures. We demonstrate an association between the Eda haplotype block and the expression pattern of key immune system genes. Furthermore, low plated fish grew less and experienced higher burdens of a common ectoparasite with fitness consequences. Little is currently known about the role of the immune system in facilitating adaptation to novel environments, but this study provides an indication of its potential importance.
Collapse
Affiliation(s)
- Shaun Robertson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
170
|
Genetic Basis of Melanin Pigmentation in Butterfly Wings. Genetics 2017; 205:1537-1550. [PMID: 28193726 DOI: 10.1534/genetics.116.196451] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway.
Collapse
|
171
|
Arias M, le Poul Y, Chouteau M, Boisseau R, Rosser N, Théry M, Llaurens V. Crossing fitness valleys: empirical estimation of a fitness landscape associated with polymorphic mimicry. Proc Biol Sci 2017; 283:rspb.2016.0391. [PMID: 27122560 PMCID: PMC4855388 DOI: 10.1098/rspb.2016.0391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
Characterizing fitness landscapes associated with polymorphic adaptive traits enables investigation of mechanisms allowing transitions between fitness peaks. Here, we explore how natural selection can promote genetic mechanisms preventing heterozygous phenotypes from falling into non-adaptive valleys. Polymorphic mimicry is an ideal system to investigate such fitness landscapes, because the direction of selection acting on complex mimetic colour patterns can be predicted by the local mimetic community composition. Using more than 5000 artificial butterflies displaying colour patterns exhibited by the polymorphic Müllerian mimic Heliconius numata, we directly tested the role of wild predators in shaping fitness landscapes. We compared predation rates on mimetic phenotypes (homozygotes at the supergene controlling colour pattern), intermediate phenotypes (heterozygotes), exotic morphs (absent from the local community) and palatable cryptic phenotypes. Exotic morphs were significantly more attacked than local morphs, highlighting predators' discriminatory capacities. Overall, intermediates were attacked twice as much as local homozygotes, suggesting the existence of deep fitness valleys promoting strict dominance and reduced recombination between supergene alleles. By including information on predators' colour perception, we also showed that protection on intermediates strongly depends on their phenotypic similarity to homozygous phenotypes and that ridges exist between similar phenotypes, which may facilitate divergence in colour patterns.
Collapse
Affiliation(s)
- Mónica Arias
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC- Sorbonne universités, Muséum National d'Histoire Naturelle, Bâtiment d'entomologie, CP050, 57, rue Cuvier, 75005 Paris, France UMR CNRS 7179, CNRS-MNHN MECADEV, Muséum National d'Histoire Naturelle, 1, avenue du petit château, 91800 Brunoy, France
| | - Yann le Poul
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC- Sorbonne universités, Muséum National d'Histoire Naturelle, Bâtiment d'entomologie, CP050, 57, rue Cuvier, 75005 Paris, France
| | - Mathieu Chouteau
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC- Sorbonne universités, Muséum National d'Histoire Naturelle, Bâtiment d'entomologie, CP050, 57, rue Cuvier, 75005 Paris, France
| | - Romain Boisseau
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC- Sorbonne universités, Muséum National d'Histoire Naturelle, Bâtiment d'entomologie, CP050, 57, rue Cuvier, 75005 Paris, France Département de Biologie, Ecole Normale supérieure, 75 005 Paris, France
| | - Neil Rosser
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Marc Théry
- UMR CNRS 7179, CNRS-MNHN MECADEV, Muséum National d'Histoire Naturelle, 1, avenue du petit château, 91800 Brunoy, France
| | - Violaine Llaurens
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC- Sorbonne universités, Muséum National d'Histoire Naturelle, Bâtiment d'entomologie, CP050, 57, rue Cuvier, 75005 Paris, France
| |
Collapse
|
172
|
|
173
|
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing color patterns. Here, we used full genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around color pattern genes is highly modular, with narrow genomic intervals associated with specific differences in color and pattern. This modular architecture explains the diversity of color patterns and provides a flexible mechanism for rapid morphological diversification.
Collapse
|
174
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
175
|
Rodrigues ASB, Silva SE, Pina-Martins F, Loureiro J, Castro M, Gharbi K, Johnson KP, Dietrich CH, Borges PAV, Quartau JA, Jiggins CD, Paulo OS, Seabra SG. Assessing genotype-phenotype associations in three dorsal colour morphs in the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) using genomic and transcriptomic resources. BMC Genet 2016; 17:144. [PMID: 27846816 PMCID: PMC5111214 DOI: 10.1186/s12863-016-0455-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Colour polymorphisms are common among animal species. When combined with genetic and ecological data, these polymorphisms can be excellent systems in which to understand adaptation and the molecular changes underlying phenotypic evolution. The meadow spittlebug, Philaenus spumarius (L.) (Hemiptera, Aphrophoridae), a widespread insect species in the Holarctic region, exhibits a striking dorsal colour/pattern balanced polymorphism. Although experimental crosses have revealed the Mendelian inheritance of this trait, its genetic basis remains unknown. In this study we aimed to identify candidate genomic regions associated with the colour balanced polymorphism in this species. Results By using restriction site-associated DNA (RAD) sequencing we were able to obtain a set of 1,837 markers across 33 individuals to test for associations with three dorsal colour phenotypes (typicus, marginellus, and trilineatus). Single and multi-association analyses identified a total of 60 SNPs associated with dorsal colour morphs. The genome size of P. spumarius was estimated by flow cytometry, revealing a 5.3 Gb genome, amongst the largest found in insects. A partial genome assembly, representing 24% of the total size, and an 81.4 Mb transcriptome, were also obtained. From the SNPs found to be associated with colour, 35% aligned to the genome and 10% to the transcriptome. Our data suggested that major loci, consisting of multi-genomic regions, may be involved in dorsal colour variation among the three dorsal colour morphs analysed. However, no homology was found between the associated loci and candidate genes known to be responsible for coloration pattern in other insect species. The associated markers showed stronger differentiation of the trilineatus colour phenotype, which has been shown previously to be more differentiated in several life-history and physiological characteristics as well. It is possible that colour variation and these traits are linked in a complex genetic architecture. Conclusions The loci detected to have an association with colour and the genomic and transcriptomic resources developed here constitute a basis for further research on the genetic basis of colour pattern in the meadow spittlebug P. spumarius. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0455-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana S B Rodrigues
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal.
| | - Sara E Silva
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Francisco Pina-Martins
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal.,Centro de Estudos do Ambiente e do Mar (CESAM), DBA/FCUL, Lisbon, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King's Buildings, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Paulo A V Borges
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
| | - José A Quartau
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Sofia G Seabra
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| |
Collapse
|
176
|
Marchini M, Sommaggio D, Minelli A. Playing with Black and Yellow: The Evolvability of a Batesian Mimicry. Evol Biol 2016. [DOI: 10.1007/s11692-016-9397-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
177
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
178
|
Nadeau NJ. Genes controlling mimetic colour pattern variation in butterflies. CURRENT OPINION IN INSECT SCIENCE 2016; 17:24-31. [PMID: 27720070 DOI: 10.1016/j.cois.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.
Collapse
Affiliation(s)
- Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
179
|
Woronik A, Wheat CW. Advances in finding Alba: the locus affecting life history and color polymorphism in a Colias butterfly. J Evol Biol 2016; 30:26-39. [PMID: 27541292 DOI: 10.1111/jeb.12967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 11/30/2022]
Abstract
Although alternative life-history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco-evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex-limited wing colour polymorphism, called Alba, which is correlated with an alternative life-history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk-segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning ~ 5.7 Mbp at the 5' end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species.
Collapse
Affiliation(s)
- A Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - C W Wheat
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
180
|
Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol Ecol 2016; 25:5647-5662. [PMID: 27393073 DOI: 10.1111/mec.13753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2 = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.
Collapse
Affiliation(s)
- Margaret F Hendrick
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA.,Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA, 02215, USA
| | - Findley R Finseth
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Minna E Mathiasson
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME, 04469, USA
| | - Kristen A Palmer
- Department of Biology, Wheaton College, 26 E. Main St., Norton, MA, 02766, USA
| | - Emma M Broder
- Biology Department, Wesleyan University, 45 Wyllys Ave., Middletown, CT, 06259, USA
| | - Peter Breigenzer
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
181
|
Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, ffrench-Constant RH, Llaurens V, Joron M, McMillan WO, Jiggins CD. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 2016; 534:106-10. [PMID: 27251285 PMCID: PMC5094491 DOI: 10.1038/nature17961] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.
Collapse
Affiliation(s)
- Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK.,Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Annabel Whibley
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE, Sorbonne Université), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France.,Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Megan A Supple
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá,Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Suzanne V Saenko
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE, Sorbonne Université), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Richard W R Wallbank
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Grace C Wu
- Energy and Resources Group, University of California at Berkeley, California, 94720, USA
| | - Luana Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | - Laura Ferguson
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3PS, UK
| | - Joseph J Hanly
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Heather Hines
- Penn State University, 517 Mueller, University Park, Pennsylvania 16802, USA
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Richard M Merrill
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Andrea J Dowling
- School of Biosciences, University of Exeter in Cornwall, Penryn, Cornwall TR10 9FE, UK
| | | | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE, Sorbonne Université), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Mathieu Joron
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE, Sorbonne Université), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005 Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive (CEFE, UMR 5175 CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE), 1919 route de Mende, 34293 Montpellier, France
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá
| | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Apartado Postal 0843-00153, Panamá, República de Panamá,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
182
|
Singer A, Boucheron L, Dietze SH, Jensen KE, Vine D, McNulty I, Dufresne ER, Prum RO, Mochrie SGJ, Shpyrko OG. Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales. SCIENCE ADVANCES 2016; 2:e1600149. [PMID: 27386575 PMCID: PMC4928966 DOI: 10.1126/sciadv.1600149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/19/2016] [Indexed: 05/05/2023]
Abstract
Many organisms in nature have evolved sophisticated cellular mechanisms to produce photonic nanostructures and, in recent years, diverse crystalline symmetries have been identified and related to macroscopic optical properties. However, because we know little about the distributions of domain sizes, the orientations of photonic crystals, and the nature of defects in these structures, we are unable to make the connection between the nanostructure and its development and functionality. We report on nondestructive studies of the morphology of chitinous photonic crystals in butterfly wing scales. Using spatially and angularly resolved x-ray diffraction, we find that the domains are highly oriented with respect to the whole scale, indicating growth from scale boundaries. X-ray coherent diffractive imaging reveals two types of crystalline domain interfaces: abrupt changes between domains emerging from distinct nucleation sites and smooth transitions with edge dislocations presumably resulting from internal stresses during nanostructure development. Our study of the scale structure reveals new aspects of photonic crystal growth in butterfly wings and shows their similarity to block copolymer materials. It opens new avenues to exploration of fundamental processes underlying the growth of biological photonic nanostructures in a variety of species.
Collapse
Affiliation(s)
- Andrej Singer
- University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | - David Vine
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ian McNulty
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | - Oleg G. Shpyrko
- University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
183
|
Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need an integrative approach? Mol Ecol 2016; 26:277-290. [DOI: 10.1111/mec.13678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
184
|
He F, Arce AL, Schmitz G, Koornneef M, Novikova P, Beyer A, de Meaux J. The Footprint of Polygenic Adaptation on Stress-ResponsiveCis-Regulatory Divergence in theArabidopsis Genus. Mol Biol Evol 2016; 33:2088-101. [DOI: 10.1093/molbev/msw096] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
185
|
Ho WW, Smith SD. Molecular evolution of anthocyanin pigmentation genes following losses of flower color. BMC Evol Biol 2016; 16:98. [PMID: 27161359 PMCID: PMC4862180 DOI: 10.1186/s12862-016-0675-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/29/2016] [Indexed: 11/27/2022] Open
Abstract
Background Phenotypic transitions, such as trait gain or loss, are predicted to carry evolutionary consequences for the genes that control their development. For example, trait losses can result in molecular decay of the pathways underlying the trait. Focusing on the Iochrominae clade (Solanaceae), we examine how repeated losses of floral anthocyanin pigmentation associated with flower color transitions have affected the molecular evolution of three anthocyanin pathway genes (Chi, F3h, and Dfr). Results We recovered intact coding regions for the three genes in all of the lineages that have lost floral pigmentation, suggesting that molecular decay is not associated with these flower color transitions. However, two of the three genes (Chi, F3h) show significantly elevated dN/dS ratios in lineages without floral pigmentation. Maximum likelihood analyses suggest that this increase is due to relaxed constraint on anthocyanin genes in the unpigmented lineages as opposed to positive selection. Despite the increase, the values for dN/dS in both pigmented and unpigmented lineages were consistent overall with purifying selection acting on these loci. Conclusions The broad conservation of anthocyanin pathway genes across lineages with and without floral anthocyanins is consistent with the growing consensus that losses of pigmentation are largely achieved by changes in gene expression as opposed to structural mutations. Moreover, this conservation maintains the potential for regain of flower color, and indicates that evolutionary losses of floral pigmentation may be readily reversible. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0675-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Winnie W Ho
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
186
|
Mérot C, Le Poul Y, Théry M, Joron M. Refining mimicry: phenotypic variation tracks the local optimum. J Anim Ecol 2016; 85:1056-69. [PMID: 27003742 DOI: 10.1111/1365-2656.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/08/2016] [Indexed: 11/26/2022]
Abstract
Müllerian mimicry between chemically defended preys is a textbook example of natural selection favouring phenotypic convergence onto a shared warning signal. Studies of mimicry have concentrated on deciphering the ecological and genetic underpinnings of dramatic switches in mimicry association, producing a well-known mosaic distribution of mimicry patterns across geography. However, little is known about the accuracy of resemblance between natural comimics when the local phenotypic optimum varies. In this study, using analyses of wing shape, pattern and hue, we quantify multimodal phenotypic similarity between butterfly comimics sharing the so-called postman pattern in different localities with varying species composition. We show that subtle but consistent variation between populations of the localized species, Heliconius timareta thelxinoe, enhance resemblance to the abundant comimics which drive the mimicry in each locality. Those results suggest that rarer comimics track the changes in the phenotypic optimum caused by gradual changes in the composition of the mimicry community, providing insights into the process by which intraspecific diversity of mimetic pattern may arise. Furthermore, our results suggest a multimodal evolution of similarity, with coordinated convergence in different features of the phenotype such as wing outline, pattern and hue. Finally, multilocus genotyping allows estimating local hybridization rates between H. timareta and comimic H. melpomene in different populations, raising the hypothesis that mimicry refinement between closely related comimics may be enhanced by adaptive introgression at loci modifying the accuracy of resemblance.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France
| | - Yann Le Poul
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France
| | - Marc Théry
- Mécanismes Adaptatifs et Evolution, UMR 7179 CNRS, Museum National d'Histoire Naturelle, 1 avenue du petit château, 91800, Brunoy, France
| | - Mathieu Joron
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier 5, France
| |
Collapse
|
187
|
Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA. Coral snakes predict the evolution of mimicry across New World snakes. Nat Commun 2016; 7:11484. [PMID: 27146100 PMCID: PMC4858746 DOI: 10.1038/ncomms11484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Batesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry. We also find that bidirectional transitions between mimetic and cryptic coloration are unexpectedly frequent over both long- and short-time scales, challenging traditional views of mimicry as a stable evolutionary 'end point' and suggesting that insect and snake mimicry may have different evolutionary dynamics.
Collapse
Affiliation(s)
- Alison R. Davis Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, 3101 Valley Life Sciences, Berkeley, California 94720, USA
| | - Christian L. Cox
- Department of Biology, Georgia Southern University, PO Box 8042, Statesboro, Georgia 30460, USA
- Department of Biology, The University of Texas, Arlington, Texas 76019, USA
| | - Daniel L. Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Pascal O. Title
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Iris A. Holmes
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Anat Feldman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, 3101 Valley Life Sciences, Berkeley, California 94720, USA
| |
Collapse
|
188
|
Abstract
When transcription regulatory networks are compared among distantly related eukaryotes, a number of striking similarities are observed: a larger-than-expected number of genes, extensive overlapping connections, and an apparently high degree of functional redundancy. It is often assumed that the complexity of these networks represents optimized solutions, precisely sculpted by natural selection; their common features are often asserted to be adaptive. Here, we discuss support for an alternative hypothesis: the common structural features of transcription networks arise from evolutionary trajectories of "least resistance"--that is, the relative ease with which certain types of network structures are formed during their evolution.
Collapse
|
189
|
Lencer ES, Riccio ML, McCune AR. Changes in growth rates of oral jaw elements produce evolutionary novelty in bahamian pupfish. J Morphol 2016; 277:935-47. [DOI: 10.1002/jmor.20547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/11/2022]
|
190
|
Davis Rabosky AR, Cox CL, Rabosky DL. Unlinked Mendelian inheritance of red and black pigmentation in snakes: Implications for Batesian mimicry. Evolution 2016; 70:944-53. [PMID: 26959901 DOI: 10.1111/evo.12902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/24/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Identifying the genetic basis of mimetic signals is critical to understanding both the origin and dynamics of mimicry over time. For species not amenable to large laboratory breeding studies, widespread color polymorphism across natural populations offers a powerful way to assess the relative likelihood of different genetic systems given observed phenotypic frequencies. We classified color phenotype for 2175 ground snakes (Sonora semiannulata) across the continental United States to analyze morph ratios and test among competing hypotheses about the genetic architecture underlying red and black coloration in coral snake mimics. We found strong support for a two-locus model under simple Mendelian inheritance, with red and black pigmentation being controlled by separate loci. We found no evidence of either linkage disequilibrium between loci or sex linkage. In contrast to Batesian mimicry systems such as butterflies in which all color signal components are linked into a single "supergene," our results suggest that the mimetic signal in colubrid snakes can be disrupted through simple recombination and that color evolution is likely to involve discrete gains and losses of each signal component. Both outcomes are likely to contribute to the exponential increase in rates of color evolution seen in snake mimicry systems over insect systems.
Collapse
Affiliation(s)
- Alison R Davis Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan, 48109. .,Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, 94720.
| | - Christian L Cox
- Department of Biology, Georgia Southern University, PO Box 8042, Statesboro, Georgia 30460
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan, 48109
| |
Collapse
|
191
|
Connahs H, Rhen T, Simmons RB. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics 2016; 17:270. [PMID: 27030049 PMCID: PMC4815134 DOI: 10.1186/s12864-016-2586-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. RESULTS We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. CONCLUSIONS This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Collapse
Affiliation(s)
- Heidi Connahs
- Biology Department, University of North Dakota, Grand Forks, ND, USA. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Turk Rhen
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| | - Rebecca B Simmons
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
192
|
Ffrench-Constant RH. Butterfly gene flow goes berserk. Genome Biol 2016; 17:30. [PMID: 26921260 PMCID: PMC4769539 DOI: 10.1186/s13059-016-0898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new study shows that genomic introgression between two Heliconius butterfly species is not solely confined to color pattern loci. Please see related Research article: www.dx.doi.org/10.1186/s13059-016-0889-0
Collapse
|
193
|
Zhang W, Dasmahapatra KK, Mallet J, Moreira GRP, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol 2016; 17:25. [PMID: 26921238 PMCID: PMC4769579 DOI: 10.1186/s13059-016-0889-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Background Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. Results We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Conclusions Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0889-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | | | - James Mallet
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Gilson R P Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
194
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
195
|
Arias CF, Van Belleghem S, McMillan WO. Genomics at the evolving species boundary. CURRENT OPINION IN INSECT SCIENCE 2016; 13:7-15. [PMID: 27436548 DOI: 10.1016/j.cois.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/07/2015] [Indexed: 06/06/2023]
Abstract
Molecular studies on hybridization date back to Dobzhansky who compared chromosomal banding patterns to determine if interspecific gene flow occurred in nature [1]. Now, the advent of high-throughput sequencing provides increasingly fine insights into genomic differentiation between incipient taxa that are changing our view of adaptation and speciation and the links between the two. Empirical data from hybridizing taxa demonstrate highly heterogeneous patterns of genomic differentiation. Although underlining reasons for this heterogeneity are complex, studies of hybridizing taxa offers some of the best insights into the regions of the genome under divergent selection and the role these regions play in species boundaries. The challenge moving forward is to develop a better theoretical framework that fully leverages these powerful natural experiments.
Collapse
Affiliation(s)
- Carlos F Arias
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama; Biology Program, Faculty of Natural Science and Mathematics, Universidad del Rosario, Carrera 24 # 63c-69, Bogotá 111221, Colombia
| | - Steven Van Belleghem
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama.
| |
Collapse
|
196
|
Lesoway MP. The future of Evo-Devo: the inaugural meeting of the Pan American Society for evolutionary developmental biology. Evol Dev 2016; 18:71-7. [PMID: 26773456 DOI: 10.1111/ede.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
What is the future of evolutionary developmental biology? This question and more were discussed at the inaugural meeting for the Pan American Society for Evolutionary Developmental Biology, held August 5-9, 2015, in Berkeley, California, USA. More than 300 participants attended the first meeting of the new society, representing the current diversity of Evo-Devo. Speakers came from throughout the Americas, presenting work using an impressive range of study systems, techniques, and approaches. Current research draws from themes including the role of gene regulatory networks, plasticity and the role of the environment, novelty, population genetics, and regeneration, using new and emerging techniques as well as traditional tools. Multiple workshops and a discussion session covered subjects both practical and theoretical, providing an opportunity for members to discuss the current challenges and future directions for Evo-Devo. The excitement and discussion generated over the course of the meeting demonstrates the current dynamism of the field, suggesting that the future of Evo-Devo is bright indeed.
Collapse
Affiliation(s)
- Maryna P Lesoway
- Department of Biology, McGill University, 1205 Avenue Dr Penfield, Montreal, QC, Canada, H3A-1B1.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
197
|
Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, Merrill RM, Joron M, Mallet J, Dasmahapatra KK, Jiggins CD. Major Improvements to the Heliconius melpomene Genome Assembly Used to Confirm 10 Chromosome Fusion Events in 6 Million Years of Butterfly Evolution. G3 (BETHESDA, MD.) 2016; 6:695-708. [PMID: 26772750 PMCID: PMC4777131 DOI: 10.1534/g3.115.023655] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ∼20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr.
Collapse
Affiliation(s)
- John W Davey
- Department of Zoology, University of Cambridge, CB2 3EJ, United Kingdom
| | - Mathieu Chouteau
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - EPHE - Université de Montpellier - Université Paul Valéry, 34293 Montpellier 5, France
| | - Sarah L Barker
- Department of Zoology, University of Cambridge, CB2 3EJ, United Kingdom
| | - Luana Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267
| | - Simon W Baxter
- School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Fraser Simpson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, United Kingdom
| | | | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - EPHE - Université de Montpellier - Université Paul Valéry, 34293 Montpellier 5, France
| | - James Mallet
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, United Kingdom
| | - Kanchon K Dasmahapatra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, United Kingdom
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
198
|
Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins. Cell 2016; 164:45-56. [PMID: 26774823 DOI: 10.1016/j.cell.2015.12.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/03/2015] [Accepted: 11/24/2015] [Indexed: 02/01/2023]
Abstract
Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.
Collapse
|
199
|
Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, Dasmahapatra KK, Salazar C, Joron M, Nadeau N, McMillan WO, Jiggins CD. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biol 2016; 14:e1002353. [PMID: 26771987 PMCID: PMC4714872 DOI: 10.1371/journal.pbio.1002353] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
Abstract
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Collapse
Affiliation(s)
- Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Simon W. Baxter
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Carolina Pardo-Diaz
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, D.C., Colombia
| | - Joseph J. Hanly
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - James Mallet
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Organismic and Evolutionary Biology, Harvard University, Harvard, Massachusetts, United States of America
| | - Kanchon K. Dasmahapatra
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Department of Biology, University of York, York, United Kingdom
| | - Camilo Salazar
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, D.C., Colombia
| | - Mathieu Joron
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
- Institut de Systématique Evolution et Biodiversité, UMR 7205, CNRS MNHN UPMC EPHE, Muséum National d'Histoire Naturelle, CP50, Paris, France
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry–EPHE, Montpellier, France
| | - Nicola Nadeau
- Dept. of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - W. Owen McMillan
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institution, Balboa, Ancón, Panama
| |
Collapse
|
200
|
Springer SA, Manhart M, Morozov AV. Separating Spandrels from Phenotypic Targets of Selection in Adaptive Molecular Evolution. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|