151
|
Narad P, Anand L, Gupta R, Sengupta A. Construction of Discrete Model of Human Pluripotency in Predicting Lineage-Specific Outcomes and Targeted Knockdowns of Essential Genes. Sci Rep 2018; 8:11031. [PMID: 30038409 PMCID: PMC6056480 DOI: 10.1038/s41598-018-29480-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
A network consisting of 45 core genes was developed for the genes/proteins responsible for loss/gain of function in human pluripotent stem cells. The nodes were included on the basis of literature curation. The initial network topology was further refined by constructing an inferred Boolean model from time-series RNA-seq expression data. The final Boolean network was obtained by integration of the initial topology and the inferred topology into a refined model termed as the integrated model. Expression levels were observed to be bi-modular for most of the genes involved in the mechanism of human pluripotency. Thus, single and combinatorial perturbations/knockdowns were executed using an in silico approach. The model perturbations were validated with literature studies. A number of outcomes are predicted using the knockdowns of the core pluripotency circuit and we are able to establish the minimum requirement for maintenance of pluripotency in human. The network model is able to predict lineage-specific outcomes and targeted knockdowns of essential genes involved in human pluripotency which are challenging to perform due to ethical constraints surrounding human embryonic stem cells.
Collapse
Affiliation(s)
- Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India.
| | - Lakshay Anand
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Romasha Gupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| |
Collapse
|
152
|
Pfeffer PL. Building Principles for Constructing a Mammalian Blastocyst Embryo. BIOLOGY 2018; 7:biology7030041. [PMID: 30041494 PMCID: PMC6164496 DOI: 10.3390/biology7030041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
The self-organisation of a fertilised egg to form a blastocyst structure, which consists of three distinct cell lineages (trophoblast, epiblast and hypoblast) arranged around an off-centre cavity, is unique to mammals. While the starting point (the zygote) and endpoint (the blastocyst) are similar in all mammals, the intervening events have diverged. This review examines and compares the descriptive and functional data surrounding embryonic gene activation, symmetry-breaking, first and second lineage establishment, and fate commitment in a wide range of mammalian orders. The exquisite detail known from mouse embryogenesis, embryonic stem cell studies and the wealth of recent single cell transcriptomic experiments are used to highlight the building principles underlying early mammalian embryonic development.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
153
|
Konishi R, Nakano T, Yamaguchi S. Distinct requirements for the maintenance and establishment of mouse embryonic stem cells. Stem Cell Res 2018; 31:55-61. [PMID: 30015174 DOI: 10.1016/j.scr.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) that maintain a sustainable pluripotent state are derived from the inner cell mass (ICM) of blastocysts, in which pluripotency is lost during differentiation in vivo. It is unclear when and how the ability to maintain pluripotency is acquired during the derivation of ESCs. We analyzed the required culture condition for the maintenance and establishment of ESCs in detail. Even at low concentration of the GSK3β inhibitor and LIF (LowGiL), the expression levels of pluripotency markers and the chimera-producing ability of the cells were comparable with those of ESCs cultured in the presence of both inhibitors and LIF (2iL). However, blastocysts underwent spontaneous differentiation, and ESCs were not established under LowGiL condition. Time-course analysis showed that 2iL condition for three days from the initiation of culture was sufficient for the acquisition of permanent pluripotency. Although X chromosome-linked pluripotent genes were significantly up-regulated during the culture of both male and female blastocysts in 2iL condition, no such up-regulation was observed in LowGiL condition. In conclusion, 2iL-dependent activation of these X-linked genes at the earliest phase of ESC derivation is one of the molecular bases for the acquisition of permanent pluripotency.
Collapse
Affiliation(s)
- Riyo Konishi
- Department of Stem Cell Pathology, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan
| | - Toru Nakano
- Department of Stem Cell Pathology, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; Department of Pathology, Medical School, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; CREST, Japan Agency for Medical Research and Development (AMED), Japan
| | - Shinpei Yamaguchi
- Department of Pathology, Medical School, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), Japan.
| |
Collapse
|
154
|
Jiapaer Z, Li G, Ye D, Bai M, Li J, Guo X, Du Y, Su D, Jia W, Chen W, Wang G, Yu Y, Zhu F, Wan X, Kang J. LincU Preserves Naïve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports 2018; 11:395-409. [PMID: 30017820 PMCID: PMC6092693 DOI: 10.1016/j.stemcr.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Although the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state. Mechanistically, we demonstrate that LincU binds and stabilizes the DUSP9 protein, an ERK-specific phosphatase, and then constitutively inhibits the ERK1/2 signaling pathway, which critically contributes to maintenance of the naïve state. Importantly, we reveal the functional role of LincU to be evolutionarily conserved in human. Therefore, our findings unveil LincU as a conserved lncRNA that intrinsically restricts MAPK/ERK activity and maintains the naïve state of ESCs. LincU is integral and sufficient to maintain the naïve state of mESCs LincU binds and stabilizes DUSP9 protein to inhibit the ERK1/2 phosphorylation LincU is a direct target of NANOG in naïve-state mESCs The functional role of LincU is conserved in human ESCs
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanhua Du
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dingwen Su
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
155
|
Engel N. Sex Differences in Early Embryogenesis: Inter-Chromosomal Regulation Sets the Stage for Sex-Biased Gene Networks: The dialogue between the sex chromosomes and autosomes imposes sexual identity soon after fertilization. Bioessays 2018; 40:e1800073. [PMID: 29943439 DOI: 10.1002/bies.201800073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/02/2018] [Indexed: 12/23/2022]
Abstract
Sex-specific transcriptional and epigenomic profiles are detectable in the embryo very soon after fertilization. I propose that in male (XY) and female (XX) pre-implantation embryos sex chromosomes establish sexually dimorphic interactions with the autosomes, before overt differences become apparent and long before gonadogenesis. Lineage determination restricts expression biases between the sexes, but the epigenetic differences are less constrained and can be perpetuated, accounting for dimorphisms that arise later in life. In this way, sexual identity is registered in the epigenome very early in development. As development progresses, sex-specific regulatory modules are harbored within shared transcriptional networks that delineate common traits. In reviewing this field, I propose that analyzing the mechanisms for sexual dimorphisms at the molecular and biochemical level and incorporating developmental and environmental factors will lead to a greater understanding of sex differences in health and disease. Also see the video abstract here: https://youtu.be/9BPlbrHtkHQ.
Collapse
Affiliation(s)
- Nora Engel
- Lewis Katz School of Medicine at Temple University - Fels Institute for Cancer Research, 3400 North Broad St., AHB Room 201, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
156
|
Woodhouse S, Piterman N, Wintersteiger CM, Göttgens B, Fisher J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC SYSTEMS BIOLOGY 2018; 12:59. [PMID: 29801503 PMCID: PMC5970485 DOI: 10.1186/s12918-018-0581-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
Abstract
Background Reconstruction of executable mechanistic models from single-cell gene expression data represents a powerful approach to understanding developmental and disease processes. New ambitious efforts like the Human Cell Atlas will soon lead to an explosion of data with potential for uncovering and understanding the regulatory networks which underlie the behaviour of all human cells. In order to take advantage of this data, however, there is a need for general-purpose, user-friendly and efficient computational tools that can be readily used by biologists who do not have specialist computer science knowledge. Results The Single Cell Network Synthesis toolkit (SCNS) is a general-purpose computational tool for the reconstruction and analysis of executable models from single-cell gene expression data. Through a graphical user interface, SCNS takes single-cell qPCR or RNA-sequencing data taken across a time course, and searches for logical rules that drive transitions from early cell states towards late cell states. Because the resulting reconstructed models are executable, they can be used to make predictions about the effect of specific gene perturbations on the generation of specific lineages. Conclusions SCNS should be of broad interest to the growing number of researchers working in single-cell genomics and will help further facilitate the generation of valuable mechanistic insights into developmental, homeostatic and disease processes. Electronic supplementary material The online version of this article (10.1186/s12918-018-0581-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven Woodhouse
- Department of Hematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.,Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.,Microsoft Research Cambridge, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Nir Piterman
- Department of Informatics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK. .,Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Jasmin Fisher
- Microsoft Research Cambridge, 21 Station Road, Cambridge, CB1 2FB, UK. .,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
157
|
Du P, Pirouz M, Choi J, Huebner AJ, Clement K, Meissner A, Hochedlinger K, Gregory RI. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell 2018; 22:851-864.e5. [PMID: 29804889 DOI: 10.1016/j.stem.2018.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/14/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
The embryonic stem cell (ESC) transition from naive to primed pluripotency is marked by major changes in cellular properties and developmental potential. ISY1 regulates microRNA (miRNA) biogenesis, yet its role and relevance to ESC biology remain unknown. Here, we find that highly dynamic ISY1 expression during the naive-to-primed ESC transition defines a specific phase of "poised" pluripotency characterized by distinct miRNA and mRNA transcriptomes and widespread poised cell contribution to mouse chimeras. Loss- and gain-of-function experiments reveal that ISY1 promotes exit from the naive state and is necessary and sufficient to induce and maintain poised pluripotency, and that persistent ISY1 overexpression inhibits the transition from the naive to the primed state. We identify a large subset of ISY1-dependent miRNAs that can rescue the inability of miRNA-deficient ESCs to establish the poised state and transition to the primed state. Thus, dynamic ISY1 regulates poised pluripotency through miRNAs to control ESC fate.
Collapse
Affiliation(s)
- Peng Du
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Pirouz
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiho Choi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron J Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kendell Clement
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
158
|
Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 2018; 114:5792-5799. [PMID: 28584084 DOI: 10.1073/pnas.1610622114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blood cells are derived from a common set of hematopoietic stem cells, which differentiate into more specific progenitors of the myeloid and lymphoid lineages, ultimately leading to differentiated cells. This developmental process is controlled by a complex regulatory network involving cytokines and their receptors, transcription factors, and chromatin remodelers. Using public data and data from our own molecular genetic experiments (quantitative PCR, Western blot, EMSA) or genome-wide assays (RNA-sequencing, ChIP-sequencing), we have assembled a comprehensive regulatory network encompassing the main transcription factors and signaling components involved in myeloid and lymphoid development. Focusing on B-cell and macrophage development, we defined a qualitative dynamical model recapitulating cytokine-induced differentiation of common progenitors, the effect of various reported gene knockdowns, and the reprogramming of pre-B cells into macrophages induced by the ectopic expression of specific transcription factors. The resulting network model can be used as a template for the integration of new hematopoietic differentiation and transdifferentiation data to foster our understanding of lymphoid/myeloid cell-fate decisions.
Collapse
|
159
|
Slack JMW. What is a stem cell? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e323. [PMID: 29762894 DOI: 10.1002/wdev.323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
|
160
|
Papatsenko D, Waghray A, Lemischka IR. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Res 2018; 29:180-188. [DOI: 10.1016/j.scr.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
|
161
|
Olariu V, Peterson C. Kinetic models of hematopoietic differentiation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1424. [PMID: 29660842 PMCID: PMC6191385 DOI: 10.1002/wsbm.1424] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 01/02/2023]
Abstract
As cell and molecular biology is becoming increasingly quantitative, there is an upsurge of interest in mechanistic modeling at different levels of resolution. Such models mostly concern kinetics and include gene and protein interactions as well as cell population dynamics. The final goal of these models is to provide experimental predictions, which is now taking on. However, even without matured predictions, kinetic models serve the purpose of compressing a plurality of experimental results into something that can empower the data interpretation, and importantly, suggesting new experiments by turning "knobs" in silico. Once formulated, kinetic models can be executed in terms of molecular rate equations for concentrations or by stochastic simulations when only a limited number of copies are involved. Developmental processes, in particular those of stem and progenitor cell commitments, are not only topical but also particularly suitable for kinetic modeling due to the finite number of key genes involved in cellular decisions. Stem and progenitor cell commitment processes have been subject to intense experimental studies over the last decade with some emphasis on embryonic and hematopoietic stem cells. Gene and protein interactions governing these processes can be modeled by binary Boolean rules or by continuous-valued models with interactions set by binding strengths. Conceptual insights along with tested predictions have emerged from such kinetic models. Here we review kinetic modeling efforts applied to stem cell developmental systems with focus on hematopoiesis. We highlight the future challenges including multi-scale models integrating cell dynamical and transcriptional models. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Victor Olariu
- Department of Computational Biology, Lund University, Lund, Sweden
| | - Carsten Peterson
- Department of Computational Biology, Lund University, Lund, Sweden
| |
Collapse
|
162
|
Finley LWS, Vardhana SA, Carey BW, Alonso-Curbelo D, Koche R, Chen Y, Wen D, King B, Radler MR, Rafii S, Lowe SW, Allis CD, Thompson CB. Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity. Nat Cell Biol 2018; 20:565-574. [PMID: 29662175 PMCID: PMC5937285 DOI: 10.1038/s41556-018-0086-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
A robust network of transcription factors and an open chromatin landscape are hallmarks of the naïve pluripotent state. Recently, the acetyllysine reader Brd4 has been implicated in stem cell maintenance, but the relative contribution of Brd4 to pluripotency remains unclear. Here we show that Brd4 is dispensable for self-renewal and pluripotency of embryonic stem cells (ESCs). When maintained in their ground state, ESCs retain transcription factor binding and chromatin accessibility independent of Brd4 function or expression. In metastable ESCs, Brd4 independence can be achieved by increased expression of pluripotency transcription factors including STAT3, Nanog or Klf4 so long as the DNA methylcytosine oxidases, Tet1 and Tet2, are present. These data reveal that Brd4 is not essential for ESC self-renewal. Rather, the levels of pluripotency transcription factor abundance and Tet1/2 function determine the extent to which bromodomain recognition of protein acetylation contributes to the maintenance of gene expression and cell identity.
Collapse
Affiliation(s)
- Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A Vardhana
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bryce W Carey
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyang Chen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bryan King
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan R Radler
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute and Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
| | - Craig B Thompson
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
163
|
α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation. Int J Mol Sci 2018; 19:ijms19040943. [PMID: 29565299 PMCID: PMC5979286 DOI: 10.3390/ijms19040943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133- cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.
Collapse
|
164
|
Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez-Anguita N, Ganter K, Kosim K, Celen C, Itır Perçin G, Collier P, Baying B, Benes V, Hemberg M, Lancrin C. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. eLife 2018; 7:29312. [PMID: 29555020 PMCID: PMC5860872 DOI: 10.7554/elife.29312] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent advances in single-cell transcriptomics techniques have opened the door to the study of gene regulatory networks (GRNs) at the single-cell level. Here, we studied the GRNs controlling the emergence of hematopoietic stem and progenitor cells from mouse embryonic endothelium using a combination of single-cell transcriptome assays. We found that a heptad of transcription factors (Runx1, Gata2, Tal1, Fli1, Lyl1, Erg and Lmo2) is specifically co-expressed in an intermediate population expressing both endothelial and hematopoietic markers. Within the heptad, we identified two sets of factors of opposing functions: one (Erg/Fli1) promoting the endothelial cell fate, the other (Runx1/Gata2) promoting the hematopoietic fate. Surprisingly, our data suggest that even though Fli1 initially supports the endothelial cell fate, it acquires a pro-hematopoietic role when co-expressed with Runx1. This work demonstrates the power of single-cell RNA-sequencing for characterizing complex transcription factor dynamics.
Collapse
Affiliation(s)
- Isabelle Bergiers
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | | | - Andreas Buness
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Ewa Janosz
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Kinga Kosim
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Cemre Celen
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Gülce Itır Perçin
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
165
|
Abstract
Tissue-specific transcription factors primarily act to define the phenotype of the cell. The power of a single transcription factor to alter cell fate is often minimal, as seen in gain-of-function analyses, but when multiple transcription factors cooperate synergistically it potentiates their ability to induce changes in cell fate. By contrast, transcription factor function is often dispensable in the maintenance of cell phenotype, as is evident in loss-of-function assays. Why does this phenomenon, commonly known as redundancy, occur? Here, I discuss the role that transcription factor networks play in collaboratively regulating stem cell fate and differentiation by providing multiple explanations for their functional redundancy.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
166
|
Karemaker ID, Vermeulen M. ZBTB2 reads unmethylated CpG island promoters and regulates embryonic stem cell differentiation. EMBO Rep 2018; 19:embr.201744993. [PMID: 29437775 DOI: 10.15252/embr.201744993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Proteins that bind to DNA depending on its methylation status play an important role in methylation-mediated regulation of gene expression. Using a variety of genomics and proteomics approaches, we identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as a reader of unmethylated DNA in mouse embryonic stem cells. ZBTB2 preferentially binds to CpG island promoters, where it acts as a transcriptional activator. The binding of ZBTB2 to its targets is direct and independent of two other zinc finger proteins, ZBTB25 and ZNF639, which we show to interact with ZBTB2. Our data suggest an anticorrelation between ZBTB2 DNA binding and DNA methylation, indicating that ZBTB2-binding dynamics in vivo are sensitive to differential DNA methylation. ZBTB2 is intricately interwoven with DNA methylation, as we find not only that its binding to DNA is methylation sensitive, but also that ZBTB2 regulates the turnover of methylated DNA In ZBTB2 knockout cells, several pluripotency factors are upregulated, inducing a delay in differentiation. We propose that ZBTB2 is a novel DNA methylation-sensitive transcription factor that regulates cellular differentiation.
Collapse
Affiliation(s)
- Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
167
|
Lin YT, Hufton PG, Lee EJ, Potoyan DA. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells. PLoS Comput Biol 2018; 14:e1006000. [PMID: 29451874 PMCID: PMC5833290 DOI: 10.1371/journal.pcbi.1006000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/01/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Peter G. Hufton
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Esther J. Lee
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
168
|
Hackett JA, Kobayashi T, Dietmann S, Surani MA. Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum. Stem Cell Reports 2018; 8:1645-1658. [PMID: 28591649 PMCID: PMC5470235 DOI: 10.1016/j.stemcr.2017.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs), which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF) conditions, and marks a dynamic primordial germ cell (PGC)-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE. Diverse culture parameters establish a spectrum of ESC pluripotency Activation of distinct transposable elements in each pluripotent state ESC conditions influence DNA methylation and response to differentiation cues Distinct heterogeneities including a PGC-like state regulated by LIF and KLF4
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; European Molecular Biology Laboratory (EMBL) - Monterotondo, via Ramarini 32, 00015, Rome, Italy
| | - Toshihiro Kobayashi
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
169
|
Ying QL, Smith A. The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports 2018; 8:1457-1464. [PMID: 28591647 PMCID: PMC5470336 DOI: 10.1016/j.stemcr.2017.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) are a unique tool for genetic perturbation of mammalian cellular and organismal processes additionally in humans offer unprecedented opportunities for disease modeling and cell therapy. Furthermore, ESCs are a powerful system for exploring the fundamental biology of pluripotency. Indeed understanding the control of self-renewal and differentiation is key to realizing the potential of ESCs. Building on previous observations, we found that mouse ESCs can be derived and maintained with high efficiency through insulation from differentiation cues combined with consolidation of an innate cell proliferation program. This finding of a pluripotent ground state has led to conceptual and practical advances, including the establishment of germline-competent ESCs from recalcitrant mouse strains and for the first time from the rat. Here, we summarize historical and recent progress in defining the signaling environment that supports self-renewal. We compare the contrasting requirements of two types of pluripotent stem cell, naive ESCs and primed post-implantation epiblast stem cells (EpiSCs), and consider the outstanding challenge of generating naive pluripotent stem cells from different mammals.
Collapse
Affiliation(s)
- Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
170
|
Yachie-Kinoshita A, Onishi K, Ostblom J, Langley MA, Posfai E, Rossant J, Zandstra PW. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions. Mol Syst Biol 2018; 14:e7952. [PMID: 29378814 PMCID: PMC5787708 DOI: 10.15252/msb.20177952] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cells (PSCs) exist in multiple stable states, each with specific cellular properties and molecular signatures. The mechanisms that maintain pluripotency, or that cause its destabilization to initiate development, are complex and incompletely understood. We have developed a model to predict stabilized PSC gene regulatory network (GRN) states in response to input signals. Our strategy used random asynchronous Boolean simulations (R-ABS) to simulate single-cell fate transitions and strongly connected components (SCCs) strategy to represent population heterogeneity. This framework was applied to a reverse-engineered and curated core GRN for mouse embryonic stem cells (mESCs) and used to simulate cellular responses to combinations of five signaling pathways. Our simulations predicted experimentally verified cell population compositions and input signal combinations controlling specific cell fate transitions. Extending the model to PSC differentiation, we predicted a combination of signaling activators and inhibitors that efficiently and robustly generated a Cdx2+Oct4- cells from naïve mESCs. Overall, this platform provides new strategies to simulate cell fate transitions and the heterogeneity that typically occurs during development and differentiation.
Collapse
Affiliation(s)
- Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,The Systems Biology Institute, Minato, Tokyo, Japan
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Matthew A Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada .,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Medicine by Design, A Canada First Research Excellence Program at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
171
|
Kinoshita M, Smith A. Pluripotency Deconstructed. Dev Growth Differ 2018; 60:44-52. [PMID: 29359419 DOI: 10.1111/dgd.12419] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Pluripotency denotes the flexible capacity of single cells to give rise to all somatic lineages and typically also the germline. Mouse ES cells and post-implantation epiblast-derived stem cells (EpiSC) are widely used pluripotent cell culture systems. These two in vitro stem cell types have divergent characteristics. They are considered as representative of distinct developmental stages, distinguished by using the terms "naïve" and "primed". A binary description is an over-simplification, however. Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
172
|
Pfeuty B, Kress C, Pain B. Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophys J 2018; 114:237-248. [PMID: 29320691 PMCID: PMC5773751 DOI: 10.1016/j.bpj.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Although the broad and unique differentiation potential of pluripotent stem cells relies on a complex transcriptional network centered around Oct4, Sox2, and Nanog, two well-distinct pluripotent states, called "naive" and "primed", have been described in vitro and markedly differ in their developmental potential, their expression profiles, their signaling requirements, and their reciprocal conversion. Aiming to determine the key features that segregate and coordinate these two states, data-driven optimization of network models is performed to identify relevant parameter regimes and reduce network complexity to its core structure. Decision dynamics of optimized networks is characterized by signal-dependent multistability and strongly asymmetric transitions among naive, primed, and nonpluripotent states. Further model perturbation and reduction approaches reveal that such a dynamical landscape of pluripotency involves a functional partitioning of the regulatory network. Specifically, two overlapping positive feedback modules, Klf4/Esrrb/Nanog and Oct4/Nanog, stabilize the naive or the primed state, respectively. In turn, their incoherent feedforward and negative feedback coupling mediated by the Erk/Gsk3 module is critical for robust segregation and sequential progression between naive and primed states before irreversible exit from pluripotency.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes et Molécules, Université de Lille, CNRS, Villeneuve d'Ascq, France.
| | - Clémence Kress
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| |
Collapse
|
173
|
Theunissen TW, Jaenisch R. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 2018; 144:4496-4509. [PMID: 29254992 DOI: 10.1242/dev.157404] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells have broad utility in biomedical research and their molecular regulation has thus garnered substantial interest. While the principles that establish and regulate pluripotency have been well defined in the mouse, it has been difficult to extrapolate these insights to the human system due to species-specific differences and the distinct developmental identities of mouse versus human embryonic stem cells. In this Review, we examine genome-wide approaches to elucidate the regulatory principles of pluripotency in human embryos and stem cells, and highlight where differences exist in the regulation of pluripotency in mice and humans. We review recent insights into the nature of human pluripotent cells in vivo, obtained by the deep sequencing of pre-implantation embryos. We also present an integrated overview of the principal layers of global gene regulation in human pluripotent stem cells. Finally, we discuss the transcriptional and epigenomic remodeling events associated with cell fate transitions into and out of human pluripotency.
Collapse
Affiliation(s)
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
174
|
Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, Jedrusik A, Devito LG, Noli L, Macaulay IC, Buecker C, Khalaf Y, Ilic D, Voet T, Marioni JC, Zernicka-Goetz M. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 2017; 552:239-243. [PMID: 29186120 PMCID: PMC5768241 DOI: 10.1038/nature24675] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
Abstract
The foundations of mammalian development lie in a cluster of embryonic epiblast stem cells. In response to extracellular matrix signalling, these cells undergo epithelialization and create an apical surface in contact with a cavity, a fundamental event for all subsequent development. Concomitantly, epiblast cells transit through distinct pluripotent states, before lineage commitment at gastrulation. These pluripotent states have been characterized at the molecular level, but their biological importance remains unclear. Here we show that exit from an unrestricted naive pluripotent state is required for epiblast epithelialization and generation of the pro-amniotic cavity in mouse embryos. Embryonic stem cells locked in the naive state are able to initiate polarization but fail to undergo lumenogenesis. Mechanistically, exit from naive pluripotency activates an Oct4-governed transcriptional program that results in expression of glycosylated sialomucin proteins and the vesicle tethering and fusion events of lumenogenesis. Similarly, exit of epiblasts from naive pluripotency in cultured human post-implantation embryos triggers amniotic cavity formation and developmental progression. Our results add tissue-level architecture as a new criterion for the characterization of different pluripotent states, and show the relevance of transitions between these states during development of the mammalian embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Natalia Skorupska
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Gaelle Recher
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Meng Zhu
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Agnieszka Jedrusik
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - Liani G Devito
- Faculty of Life Sciences and Medicine, King's College London, Women's Health Academic Centre, Assisted Conception Unit, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Laila Noli
- Faculty of Life Sciences and Medicine, King's College London, Women's Health Academic Centre, Assisted Conception Unit, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Christa Buecker
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yakoub Khalaf
- Faculty of Life Sciences and Medicine, King's College London, Women's Health Academic Centre, Assisted Conception Unit, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Dusko Ilic
- Faculty of Life Sciences and Medicine, King's College London, Women's Health Academic Centre, Assisted Conception Unit, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
175
|
Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol 2017; 84:118-126. [PMID: 29233752 DOI: 10.1016/j.semcdb.2017.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Zygotic genome activation (ZGA) denotes the initiation of gene expression after fertilization. It is part of the complex oocyte-to-embryo transition (OET) in which a highly specialized cell - the oocyte - is fertilized and transformed into a zygote that gives rise to an embryo that will develop into a newborn. From the perspective of gene expression, the OET reflects reprogramming of germ cell gene expression into the new developmental program of the zygote. This reprogramming occurs at transcriptional and post-transcriptional levels. This review will discuss selected aspects of mammalian ZGA, highlighting shared features and evolved differences observed in commonly investigated mammals and non-mammalian model animals.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
176
|
Zhu B, Ueda A, Song X, Horike SI, Yokota T, Akagi T. Baf53a is involved in survival of mouse ES cells, which can be compensated by Baf53b. Sci Rep 2017; 7:14059. [PMID: 29070872 PMCID: PMC5656580 DOI: 10.1038/s41598-017-14362-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
The human Baf (Brg1/Brm associated factor) complex, also known as the mammalian SWI/SNF chromatin-remodeling complex, is involved in a variety of cellular processes. The pluripotency and self-renewal abilities are major characteristics of embryonic stem (ES) cells and are regulated by the ES cell-specific BAF (esBAF) complex. Baf53a is one of the subunits of the esBAF complex. Here, we found that Baf53a was expressed in undifferentiated ES cells and that it interacted with Oct3/4. Analyses of tetracycline-inducible Baf53a conditional knockout ES cells revealed that the undifferentiated markers, including Nanog and Oct3/4, were expressed in Baf53a-deficient ES cells; however, growth of the cells was repressed, and expression of p53, p21, and cleaved Caspase 3 was increased. Cell death of Baf53a-deficient ES cells was rescued by overexpression of Baf53a, but not by the Baf53a M3 mutant (E388A/R389A/R390A). Interestingly, Baf53b, a homologue of Baf53a, rescued cell death of Baf53a-deficient ES cells. Baf53a-deficient ES cells overexpressing exogenous Baf53a or Baf53b remained in the undifferentiated state, proliferated, and repressed expression of p21. In summary, our findings suggest that Baf53a is involved in the survival of ES cells by regulating p53 and Caspase3, and that Baf53b is able to compensate for this functional aspect of Baf53a.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University., 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Atsushi Ueda
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University., 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Xiaohong Song
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University., 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University. 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University., 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University., 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
177
|
Wilkinson AC, Nakauchi H, Göttgens B. Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell Syst 2017; 5:319-331. [PMID: 29073372 PMCID: PMC5928788 DOI: 10.1016/j.cels.2017.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Transcription factor (TF) networks are a key determinant of cell fate decisions in mammalian development and adult tissue homeostasis and are frequently corrupted in disease. However, our inability to experimentally resolve and interrogate the complexity of mammalian TF networks has hampered the progress in this field. Recent technological advances, in particular large-scale genome-wide approaches, single-cell methodologies, live-cell imaging, and genome editing, are emerging as important technologies in TF network biology. Several recent studies even suggest a need to re-evaluate established models of mammalian TF networks. Here, we provide a brief overview of current and emerging methods to define mammalian TF networks. We also discuss how these emerging technologies facilitate new ways to interrogate complex TF networks, consider the current open questions in the field, and comment on potential future directions and biomedical applications.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
178
|
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat Commun 2017; 8:1096. [PMID: 29061959 PMCID: PMC5653659 DOI: 10.1038/s41467-017-01076-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression heterogeneity in the pluripotent state of mouse
embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast,
exit from pluripotency and lineage commitment have not been studied systematically
at the single-cell level. Here we measure the gene expression dynamics of retinoic
acid driven mESC differentiation from pluripotency to lineage commitment, using an
unbiased single-cell transcriptomics approach. We find that the exit from
pluripotency marks the start of a lineage transition as well as a transient phase of
increased susceptibility to lineage specifying signals. Our study reveals several
transcriptional signatures of this phase, including a sharp increase of gene
expression variability and sequential expression of two classes of transcriptional
regulators. In summary, we provide a comprehensive analysis of the exit from
pluripotency and lineage commitment at the single cell level, a potential stepping
stone to improved lineage manipulation through timing of differentiation
cues. Commitment to different fates by differentiating pluripotent cells
depends upon integration of external and internal signals. Here the authors analyse
the entry of mouse embryonic stem cells into retinoic acid-mediated differentiation
using single cell transcriptomics with high temporal resolution.
Collapse
|
179
|
Mishra A, Oulès B, Pisco AO, Ly T, Liakath-Ali K, Walko G, Viswanathan P, Tihy M, Nijjher J, Dunn SJ, Lamond AI, Watt FM. A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis. eLife 2017; 6:27356. [PMID: 29043977 PMCID: PMC5667932 DOI: 10.7554/elife.27356] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here, we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment.
Collapse
Affiliation(s)
- Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.,Department of Chemical Engineering and Biotechnology, Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bénédicte Oulès
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Angela Oliveira Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | | | - Matthieu Tihy
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.,Laboratory of Cerebral Physiology, Université Paris Descartes, Paris, France
| | - Jagdeesh Nijjher
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Sara-Jane Dunn
- Microsoft Research, Cambridge, United Kingdom.,Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| |
Collapse
|
180
|
Totonchi M, Hassani SN, Sharifi-Zarchi A, Tapia N, Adachi K, Arand J, Greber B, Sabour D, Araúzo-Bravo MJ, Walter J, Pakzad M, Gourabi H, Schöler HR, Baharvand H. Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports 2017; 9:1275-1290. [PMID: 28919260 PMCID: PMC5639184 DOI: 10.1016/j.stemcr.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-β pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.
Collapse
Affiliation(s)
- Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Chitsaz Lab, Department of Computer Science, Colorado State University, Fort Collins 80523, CO, USA
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Julia Arand
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmung, Germany
| | - Davood Sabour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Jörn Walter
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
181
|
Moody JD, Levy S, Mathieu J, Xing Y, Kim W, Dong C, Tempel W, Robitaille AM, Dang LT, Ferreccio A, Detraux D, Sidhu S, Zhu L, Carter L, Xu C, Valensisi C, Wang Y, Hawkins RD, Min J, Moon RT, Orkin SH, Baker D, Ruohola-Baker H. First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proc Natl Acad Sci U S A 2017; 114:10125-10130. [PMID: 28864533 PMCID: PMC5617284 DOI: 10.1073/pnas.1706907114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.
Collapse
Affiliation(s)
- James D Moody
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Shiri Levy
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Yalan Xing
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Woojin Kim
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA 02215
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Department of Pharmacology, University of Washington, Seattle, WA 98105
| | - Luke T Dang
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Amy Ferreccio
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Damien Detraux
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Sonia Sidhu
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| | - Licheng Zhu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
- School of Life Sciences in Jinggangshan University, Jiangxi Province, People's Republic of China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Cristina Valensisi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Genome Sciences, University of Washington, Seattle, WA 98195
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195
| | - R David Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Genome Sciences, University of Washington, Seattle, WA 98195
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
- Department of Pharmacology, University of Washington, Seattle, WA 98105
- Howard Hughes Medical institute, Seattle, WA 98195
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA 02215
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical institute, Boston, MA 02115
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195;
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Howard Hughes Medical institute, Seattle, WA 98195
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
182
|
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett 2017; 592:852-877. [DOI: 10.1002/1873-3468.12826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Nick Owens
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Pablo Navarro
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| |
Collapse
|
183
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
184
|
Greaves RB, Dietmann S, Smith A, Stepney S, Halley JD. A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells. PLoS Comput Biol 2017; 13:e1005713. [PMID: 28863148 PMCID: PMC5599049 DOI: 10.1371/journal.pcbi.1005713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/14/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
The capacity of pluripotent embryonic stem cells to differentiate into any cell type in the body makes them invaluable in the field of regenerative medicine. However, because of the complexity of both the core pluripotency network and the process of cell fate computation it is not yet possible to control the fate of stem cells. We present a theoretical model of stem cell fate computation that is based on Halley and Winkler’s Branching Process Theory (BPT) and on Greaves et al.’s agent-based computer simulation derived from that theoretical model. BPT abstracts the complex production and action of a Transcription Factor (TF) into a single critical branching process that may dissipate, maintain, or become supercritical. Here we take the single TF model and extend it to multiple interacting TFs, and build an agent-based simulation of multiple TFs to investigate the dynamics of such coupled systems. We have developed the simulation and the theoretical model together, in an iterative manner, with the aim of obtaining a deeper understanding of stem cell fate computation, in order to influence experimental efforts, which may in turn influence the outcome of cellular differentiation. The model used is an example of self-organization and could be more widely applicable to the modelling of other complex systems. The simulation based on this model, though currently limited in scope in terms of the biology it represents, supports the utility of the Halley and Winkler branching process model in describing the behaviour of stem cell gene regulatory networks. Our simulation demonstrates three key features: (i) the existence of a critical value of the branching process parameter, dependent on the details of the cistrome in question; (ii) the ability of an active cistrome to “ignite” an otherwise fully dissipated cistrome, and drive it to criticality; (iii) how coupling cistromes together can reduce their critical branching parameter values needed to drive them to criticality. Pluripotent stem cells possess the capacity both to renew themselves indefinitely and to differentiate to any cell type in the body. Thus the ability to direct stem cell differentiation would have immense potential in regenerative medicine. There is a massive amount of biological data relevant to stem cells; here we exploit data relating to stem cell differentiation to help understand cell behaviour and complexity. These cells contain a dynamic, non-equilibrium network of genes regulated in part by transcription factors expressed by the network itself. Here we take an existing theoretical framework, Transcription Factor Branching Processes, which explains how these genetic networks can have critical behaviour, and can tip between low and full expression. We use this theory as the basis for the design and implementation of a computational simulation platform, which we then use to run a variety of simulation experiments, to gain a better understanding how these various transcription factors can combine, interact, and influence each other. The simulation parameters are derived from experimental data relating to the core factors in pluripotent stem cell differentiation. The simulation results determine the critical values of branching process parameters, and how these are modulated by the various interacting transcription factors.
Collapse
Affiliation(s)
- Richard B. Greaves
- York Centre for Complex Systems Analysis, University of York, York, United Kingdom
| | - Sabine Dietmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Susan Stepney
- York Centre for Complex Systems Analysis, University of York, York, United Kingdom
- * E-mail:
| | - Julianne D. Halley
- York Centre for Complex Systems Analysis, University of York, York, United Kingdom
| |
Collapse
|
185
|
Li MA, Amaral PP, Cheung P, Bergmann JH, Kinoshita M, Kalkan T, Ralser M, Robson S, von Meyenn F, Paramor M, Yang F, Chen C, Nichols J, Spector DL, Kouzarides T, He L, Smith A. A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. eLife 2017; 6:e23468. [PMID: 28820723 PMCID: PMC5562443 DOI: 10.7554/elife.23468] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 07/24/2017] [Indexed: 12/24/2022] Open
Abstract
Execution of pluripotency requires progression from the naïve status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naïve pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naïve pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations.
Collapse
Affiliation(s)
- Meng Amy Li
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cellular and Developmental Biology, Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, United States
| | - Paulo P Amaral
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Priscilla Cheung
- Division of Cellular and Developmental Biology, Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, United States
| | - Jan H Bergmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Masaki Kinoshita
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tüzer Kalkan
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Meryem Ralser
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sam Robson
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Maike Paramor
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Caifu Chen
- Integrated DNA Technologies, Redwood, United States
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, United States
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
186
|
Mzoughi S, Zhang J, Hequet D, Teo SX, Fang H, Xing QR, Bezzi M, Seah MKY, Ong SLM, Shin EM, Wollmann H, Wong ESM, Al-Haddawi M, Stewart CL, Tergaonkar V, Loh YH, Dunn NR, Messerschmidt DM, Guccione E. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat Genet 2017; 49:1354-1363. [PMID: 28740264 DOI: 10.1038/ng.3922] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022]
Abstract
The transcriptional network acting downstream of LIF, WNT and MAPK-ERK to stabilize mouse embryonic stem cells (ESCs) in their naive state has been extensively characterized. However, the upstream factors regulating these three signaling pathways remain largely uncharted. PR-domain-containing proteins (PRDMs) are zinc-finger sequence-specific chromatin factors that have essential roles in embryonic development and cell fate decisions. Here we characterize the transcriptional regulator PRDM15, which acts independently of PRDM14 to regulate the naive state of mouse ESCs. Mechanistically, PRDM15 modulates WNT and MAPK-ERK signaling by directly promoting the expression of Rspo1 (R-spondin1) and Spry1 (Sprouty1). Consistent with these findings, CRISPR-Cas9-mediated disruption of PRDM15-binding sites in the Rspo1 and Spry1 promoters recapitulates PRDM15 depletion, both in terms of local chromatin organization and the transcriptional modulation of these genes. Collectively, our findings uncover an essential role for PRDM15 as a chromatin factor that modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency.
Collapse
Affiliation(s)
- Slim Mzoughi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxian Zhang
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Delphine Hequet
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shun Xie Teo
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Haitong Fang
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiao Rui Xing
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Marco Bezzi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michelle Kay Yi Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sheena L M Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heike Wollmann
- DNA Sequencing Facility NGS Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Esther S M Wong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Colin L Stewart
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinay Tergaonkar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,National Cancer Centre Singapore, Singapore.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - N Ray Dunn
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel M Messerschmidt
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,National Cancer Centre Singapore, Singapore.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
187
|
Guo M, Liu X, Zheng X, Huang Y, Chen X. m 6A RNA Modification Determines Cell Fate by Regulating mRNA Degradation. Cell Reprogram 2017; 19:225-231. [PMID: 28682669 DOI: 10.1089/cell.2016.0041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that epitranscriptional modifications influence multiple cellular processes. N6-methyladenosine (m6A), as the most abundant reversible methylation of mRNA, has also been reported to play critical roles in modulating embryonic stem cell differentiation and somatic cell reprogramming by regulating gene expression. This review examined the characteristics of m6A, including the distribution profile and currently discovered "writer," "eraser," and "reader" proteins. Moreover, the hypothesis is proposed that m6A could influence cell fate determination, and the underlying mechanisms are due to the related mRNA degradation, causing weakening of previous cell characteristics and eventually leading them to develop into the reverse direction (pluripotency or differentiation state). Accordingly, m6A modifications presented its potential role in cell fate determination, which provides new insights into understanding the mechanisms of various diseases.
Collapse
Affiliation(s)
- Minjun Guo
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, China
| | - Xiaotong Zheng
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, China
| |
Collapse
|
188
|
Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State. Stem Cell Reports 2017; 9:77-91. [PMID: 28669603 PMCID: PMC5511111 DOI: 10.1016/j.stemcr.2017.05.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Naive mouse embryonic stem cells (ESCs) can develop multiple fates, but the cellular and molecular processes that enable lineage competence are poorly characterized. Here, we investigated progression from the ESC ground state in defined culture. We utilized downregulation of Rex1::GFPd2 to track the loss of ESC identity. We found that cells that have newly downregulated this reporter have acquired capacity for germline induction. They can also be efficiently specified for different somatic lineages, responding more rapidly than naive cells to inductive cues. Inhibition of autocrine NODAL signaling did not alter kinetics of exit from the ESC state but compromised both germline and somatic lineage specification. Transient inhibition prior to loss of ESC identity was sufficient for this effect. Genetic ablation of Nodal reduced viability during early differentiation, consistent with defective lineage specification. These results suggest that NODAL promotes acquisition of multi-lineage competence in cells departing naive pluripotency.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tüzer Kalkan
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
189
|
Smith RCG, Stumpf PS, Ridden SJ, Sim A, Filippi S, Harrington HA, MacArthur BD. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophys J 2017; 112:2641-2652. [PMID: 28636920 PMCID: PMC5479053 DOI: 10.1016/j.bpj.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight the problem of measurement in live cells.
Collapse
Affiliation(s)
- Rosanna C G Smith
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sonya J Ridden
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aaron Sim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | - Ben D MacArthur
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Mathematical Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
190
|
Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches. Stem Cells Int 2017; 2017:7160419. [PMID: 28684962 PMCID: PMC5480057 DOI: 10.1155/2017/7160419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs), derived from the inner cell mass of the blastocyst, are pluripotent stem cells having self-renewal capability and the potential of differentiating into every cell type under the appropriate culture conditions. An increasing number of reports have been published to uncover the molecular mechanisms that orchestrate pluripotency and cell fate specification using combined computational and experimental methodologies. Here, we review recent systems biology approaches to describe the causes and functions of gene expression heterogeneity and complex temporal dynamics of pluripotency markers in mESCs under uniform culture conditions. In particular, we focus on the dynamics of Nanog, a key regulator of the core pluripotency network and of mESC fate. We summarize the strengths and limitations of different experimental and modeling approaches and discuss how various strategies could be used.
Collapse
|
191
|
Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci U S A 2017; 114:5822-5829. [PMID: 28584094 PMCID: PMC5468644 DOI: 10.1073/pnas.1610609114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adult blood contains a mixture of mature cell types, each with specialized functions. Single hematopoietic stem cells (HSCs) have been functionally shown to generate all mature cell types for the lifetime of the organism. Differentiation of HSCs toward alternative lineages must be balanced at the population level by the fate decisions made by individual cells. Transcription factors play a key role in regulating these decisions and operate within organized regulatory programs that can be modeled as transcriptional regulatory networks. As dysregulation of single HSC fate decisions is linked to fatal malignancies such as leukemia, it is important to understand how these decisions are controlled on a cell-by-cell basis. Here we developed and applied a network inference method, exploiting the ability to infer dynamic information from single-cell snapshot expression data based on expression profiles of 48 genes in 2,167 blood stem and progenitor cells. This approach allowed us to infer transcriptional regulatory network models that recapitulated differentiation of HSCs into progenitor cell types, focusing on trajectories toward megakaryocyte-erythrocyte progenitors and lymphoid-primed multipotent progenitors. By comparing these two models, we identified and subsequently experimentally validated a difference in the regulation of nuclear factor, erythroid 2 (Nfe2) and core-binding factor, runt domain, alpha subunit 2, translocated to, 3 homolog (Cbfa2t3h) by the transcription factor Gata2. Our approach confirms known aspects of hematopoiesis, provides hypotheses about regulation of HSC differentiation, and is widely applicable to other hierarchical biological systems to uncover regulatory relationships.
Collapse
Affiliation(s)
- Fiona K Hamey
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sonia Nestorowa
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - David G Kent
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
192
|
Abstract
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, , Kawaguchi, Saitama 332-0012 Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| |
Collapse
|
193
|
Werth M, Schmidt-Ott KM, Leete T, Qiu A, Hinze C, Viltard M, Paragas N, Shawber CJ, Yu W, Lee P, Chen X, Sarkar A, Mu W, Rittenberg A, Lin CS, Kitajewski J, Al-Awqati Q, Barasch J. Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. eLife 2017; 6. [PMID: 28577314 PMCID: PMC5484618 DOI: 10.7554/elife.24265] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments. DOI:http://dx.doi.org/10.7554/eLife.24265.001
Collapse
Affiliation(s)
- Max Werth
- Columbia University, New York, United States
| | - Kai M Schmidt-Ott
- Columbia University, New York, United States.,Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology and Intensive Care Medicine, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Andong Qiu
- Columbia University, New York, United States.,Tongji University, Shanghai, China
| | | | - Melanie Viltard
- Columbia University, New York, United States.,Institute for European Expertise in Physiology, Paris, France
| | - Neal Paragas
- Columbia University, New York, United States.,University of Washington, Seattle, United States
| | | | - Wenqiang Yu
- Columbia University, New York, United States.,Fudan University, Shanghai, China
| | - Peter Lee
- Columbia University, New York, United States
| | - Xia Chen
- Columbia University, New York, United States
| | - Abby Sarkar
- Columbia University, New York, United States
| | - Weiyi Mu
- Columbia University, New York, United States
| | | | | | - Jan Kitajewski
- Columbia University, New York, United States.,University of Illinois at Chicago, Chicago, United States
| | | | | |
Collapse
|
194
|
Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation. ZYGOTE 2017; 25:265-278. [PMID: 28534463 DOI: 10.1017/s0967199417000090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation.
Collapse
|
195
|
Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 2017; 74:1805-1817. [PMID: 27999898 PMCID: PMC11107721 DOI: 10.1007/s00018-016-2438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Christopher Y T Yen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.
- Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University and Hospital, Taipei, 100, Taiwan.
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
196
|
Chasman D, Roy S. Inference of cell type specific regulatory networks on mammalian lineages. ACTA ACUST UNITED AC 2017; 2:130-139. [PMID: 29082337 DOI: 10.1016/j.coisb.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional regulatory networks are at the core of establishing cell type specific gene expression programs. In mammalian systems, such regulatory networks are determined by multiple levels of regulation, including by transcription factors, chromatin environment, and three-dimensional organization of the genome. Recent efforts to measure diverse regulatory genomic datasets across multiple cell types and tissues offer unprecedented opportunities to examine the context-specificity and dynamics of regulatory networks at a greater resolution and scale than before. In parallel, numerous computational approaches to analyze these data have emerged that serve as important tools for understanding mammalian cell type specific regulation. In this article, we review recent computational approaches to predict the expression and sequence-based regulators of a gene's expression level and examine long-range gene regulation. We highlight promising approaches, insights gained, and open challenges that need to be overcome to build a comprehensive picture of cell type specific transcriptional regulatory networks.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715
| | - Sushmita Roy
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715.,Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
197
|
Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O'Shaughnessy-Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 2017; 544:59-64. [PMID: 28289288 PMCID: PMC5385134 DOI: 10.1038/nature21429] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 01/26/2017] [Indexed: 12/19/2022]
Abstract
The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.
Collapse
Affiliation(s)
- Tim J Stevens
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - David Lando
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Liam P Atkinson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Yang Cao
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Martin Leeb
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Kai J Wohlfahrt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Aoife O'Shaughnessy-Kirwan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Julie Cramard
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Andre J Faure
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Meryem Ralser
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Enrique Blanco
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Lluis Morey
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Miriam Sansó
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Matthieu G S Palayret
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ben Lehner
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Luciano Di Croce
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Anton Wutz
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Brian Hendrich
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Dave Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
198
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
199
|
Abstract
Signaling networks mediate environmental information to the cell nucleus. To perform this task effectively they must be able to integrate multiple stimuli and distinguish persistent signals from transient environmental fluctuations. However, the ways in which signaling networks process environmental noise are not well understood. Here we outline a mathematical framework that relates a network’s structure to its capacity to process noise, and use this framework to dissect the noise-processing ability of signaling networks. We find that complex networks that are dense in directed paths are poor noise processors, while those that are sparse and strongly directional process noise well. These results suggest that while cross-talk between signaling pathways may increase the ability of signaling networks to integrate multiple stimuli, too much cross-talk may compromise the ability of the network to distinguish signal from noise. To illustrate these general results we consider the structure of the signalling network that maintains pluripotency in mouse embryonic stem cells, and find an incoherent feedforward loop structure involving Stat3, Tfcp2l1, Esrrb, Klf2 and Klf4 is particularly important for noise-processing. Taken together these results suggest that noise-processing is an important function of signaling networks and they may be structured in part to optimize this task.
Collapse
|
200
|
Yuan R, Zhu X, Wang G, Li S, Ao P. Cancer as robust intrinsic state shaped by evolution: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:042701. [PMID: 28212112 DOI: 10.1088/1361-6633/aa538e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players-genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large 'omics' data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular-cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.
Collapse
Affiliation(s)
- Ruoshi Yuan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|