151
|
Farmer MK, Robbins MJ, Medhurst AD, Campbell DA, Ellington K, Duckworth M, Brown AM, Middlemiss DN, Price GW, Pangalos MN. Cloning and characterization of human NTT5 and v7-3: two orphan transporters of the Na+/Cl- -dependent neurotransmitter transporter gene family. Genomics 2000; 70:241-52. [PMID: 11112352 DOI: 10.1006/geno.2000.6387] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orphan transporters form a growing subfamily of genes related by sequence similarity to the Na+/Cl- -dependent neurotransmitter superfamily. Using a combination of database similarity searching and cloning methods, we have identified and characterized two novel human orphan transporter genes, v7-3 and NTT5. Similar to other known orphan transporters, v7-3 and NTT5 contain 12 predicted transmembrane domains, intracellular N- and C-terminal domains, and large extracellular loops between transmembrane (TM) domains 3 and 4 and between TM domains 7 and 8. Residues within the extracellular loops are also predicted to contain sites for N-linked glycosylation. Human v7-3, the species orthologue of rat v7-3, contains an open reading frame (ORF) of 730 amino acids. Human NTT5 is a new member of the orphan transporter family and has an ORF of 736 amino acids. The amino acid sequences of human v7-3 and NTT5 are greater than 50% similar to other known orphan neurotransmitter transporters and also show sequence similarity to the human serotonin and dopamine transporters. Radiation hybrid mapping located the human v7-3 and NTT5 genes on chromosomes 12q21.3-q21.4 and 19q13.1-q13.4, respectively. Human mRNA distribution analysis by TaqMan reverse transcription-polymerase chain reaction showed that v7-3 mRNA is predominantly expressed in neuronal tissues, particularly amygdala, putamen, and corpus callosum, with low-level expression in peripheral tissues. In contrast, NTT5 mRNA was highly expressed in peripheral tissues, particularly in testis, pancreas, and prostate. Transient transfection with epitope-tagged transporter constructs demonstrated v7-3 to be expressed at the cell surface, whereas NTT5 was predominantly intracellular, suggestive of a vesicular location. Although the substrates transported by these transporters remain unknown, their specific but widespread distribution suggests that they may mediate distinct and important functions within the brain and the periphery.
Collapse
Affiliation(s)
- M K Farmer
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Lin Z, Wang W, Uhl GR. Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains. Mol Pharmacol 2000; 58:1581-92. [PMID: 11093799 DOI: 10.1124/mol.58.6.1581] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling and in restricting its spatial spread through molecular interactions that remain largely obscure. Cocaine analog structure-activity studies suggest roles for cationic and hydrophobic interactions between DAT, dopamine, cocaine, and the sodium and chloride ions whose gradients power uptake processes. Tryptophan residues lying in putative DAT transmembrane domains could contribute to both aromatic and cationic interactions between DAT and dopamine or cocaine. We thus produced mutant DATs with alanine substitutions for tryptophans lying in or near putative DAT transmembrane domains. We have focused analyses on mutations that exert selective influences on affinities for dopamine or the cocaine analog CFT [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane]. Substitutions W162A, W255A, and W310A reduced dopamine uptake affinities. 5W266A, 12W555A, and 12W561A each reduced dopamine superficial recognition affinities by more than 3-fold and all retained affinity for CFT. W406A, W496A and W523A each reduced CFT affinity, and W84A increased CFT affinity. None of these four mutations decreased dopamine uptake affinity. These data, current provisional DAT structural models, and results from parallel studies of other mutants identify candidate dopamine-selective DAT domains for transmembrane dopamine permeation and regions in which mutations selectively lower CFT affinities. Tryptophan residues may contribute more extensively to these selective domains than other previously studied DAT amino acids. These sites provide tempting targets for selective blockers of cocaine recognition by DAT.
Collapse
Affiliation(s)
- Z Lin
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|
153
|
Arroyo M, Baker WA, Everitt BJ. Cocaine self-administration in rats differentially alters mRNA levels of the monoamine transporters and striatal neuropeptides. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 83:107-20. [PMID: 11072100 DOI: 10.1016/s0169-328x(00)00205-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential neuroadaptations to cocaine self-administration (SA) were evaluated using quantitative in situ hybridisation histochemistry. Levels of mRNAs of the monoamine transporters, i.e. the primary molecular targets of cocaine, and the striatal neuropeptides substance P and enkephalin, which predominantly exist in different populations of dopaminoceptive striatal neurons, were quantified in rats which had reached different stages of acquisition of cocaine SA. Thus, animals were killed 1 h after completing a self-administration session (i) early in or after acquisition of cocaine SA (ii) after various regimes of chronic cocaine SA, and (iii) a 10-day period of withdrawal from chronic cocaine intake. Control mRNA levels of all molecules under study were those quantified in animals receiving i.v. saline yoked to rats self-administering cocaine (1.5 or 0.75 mg/kg per infusion, depending on the experiment). Monoamine transporter expression was differentially altered by cocaine; dopamine transporter mRNA levels in the ventral tegmental area, but not in the substantia nigra, were increased following withdrawal from cocaine, suggesting a role for the upregulated mesolimbic dopamine transporter in the mechanisms underlying relapse to cocaine taking. By contrast, serotonin transporter mRNA in the dorsal raphé and noradrenaline transporter mRNA in the locus coeruleus remained unaltered under all experimental conditions. In addition, the expression of the striatal neuropeptides was also differentially altered; substance P mRNA levels were transiently increased in the shell of the nucleus accumbens by prolonged cocaine self-administration, but enkephalin mRNA levels in the dorsal and ventral striatum remained unaltered under all conditions.
Collapse
Affiliation(s)
- M Arroyo
- Department of Experimental Psychology, Cambridge University, Downing Street, CB2 3EB, Cambridge, UK
| | | | | |
Collapse
|
154
|
Abstract
The dopamine transporter mediates uptake of dopamine into neurons and is a major target for various pharmacologically active drugs and environmental toxins. Since its cloning, much information has been obtained regarding its structure and function. Binding domains for dopamine and various blocking drugs including cocaine are likely formed by interactions with multiple amino acid residues, some of which are separate in the primary structure but lie close together in the still unknown tertiary structure. Chimera and site-directed mutagenesis studies suggest the involvement of both overlapping and separate domains in the interaction with substrates and blockers, whereas recent findings with sulfhydryl reagents selectively targeting cysteine residues support a role for conformational changes in the binding of blockers such as cocaine. The dopamine transporter can also operate in reverse, i.e. in an efflux mode, and recent mutagenesis experiments show different structural requirements for inward and outward transport. Strong evidence for dopamine transporter domains selectively influencing binding of dopamine or cocaine analogs has not yet emerged, although the development of a cocaine antagonist at the level of the transporter remains a possibility.
Collapse
Affiliation(s)
- N Chen
- Department of Biomedical and Therapeutic Sciences, College of Medicine, University of Illinois, Box 1649, Peoria, IL 61656, USA
| | | |
Collapse
|
155
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
156
|
Olivier B, Soudijn W, van Wijngaarden I. Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2000; 54:59-119. [PMID: 10857386 DOI: 10.1007/978-3-0348-8391-7_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An overview is presented on progress made in the research on neuronal transporters of serotonin, dopamine and norepinephrine in the central nervous system. Tools developed by molecular biology, such as expression of cloned transporters, their mutants and chimera in non-neuronal cells offered the opportunity to study the putative domains for binding of substrates and uptake inhibitors and discover factors in the regulation of the transporter function. The study of the distribution of monoamine transporters in human brain became possible by the development of selective radiolabelled transport inhibitors. The relationships between the chemical structure of the uptake inhibitors and the affinity for the monoamine transporters is reported, and the (potential) therapeutic applications of the compounds are discussed.
Collapse
Affiliation(s)
- B Olivier
- Dept. of Psychopharmacology, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | |
Collapse
|
157
|
Runkel F, Brüss M, Nöthen MM, Stöber G, Propping P, Bönisch H. Pharmacological properties of naturally occurring variants of the human norepinephrine transporter. PHARMACOGENETICS 2000; 10:397-405. [PMID: 10898109 DOI: 10.1097/00008571-200007000-00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human norepinephrine transporter (hNET) gene has five sequence polymorphisms that predict amino acid substitutions in the transporter protein: Val69Ile, Thr99Ile, Val245Ile, Val449Ile, and Gly478Ser. In order to functionally characterize the naturally occurring transporter variants, we used site-directed mutagenesis to establish the hNET variants and compared some basic pharmacological properties (uptake of norepinephrine and its inhibition by the tricyclic antidepressant desipramine) in COS-7 cells transiently expressing variant hNETs and wild-type hNET. None of the hNET variants displayed changes in the potency (Ki) of desipramine for inhibition of norepinephrine uptake. Furthermore, variants Val69Ile, Thr99Ile, ValZ45Ile, and Val449Ile did not affect kinetic constants (Km, Vmax) of norepinephrine uptake. However, COS-7 cells expressing the hNET variant Gly478Ser displayed an approximately four-fold increase in the Km for norepinephrine, while the Vmax was unaffected. The increase in the Km, which is equivalent to a four-fold reduction in the affinity of the variant hNET for its natural substrate norepinephrine, indicates that the glycine in position 478 is part of a substrate recognition domain. The reduced clearance of released norepinephrine by reuptake through the Gly478Ser variant might cause an increase in the synaptic and the circulating concentration of norepinephrine. Elevated norepinephrine concentrations have been associated with human diseases and it will be interesting to explore a possible contribution by the Gly478Ser variant to certain disease states.
Collapse
Affiliation(s)
- F Runkel
- Institute of Pharmacology and Toxicology, University of Bonn, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Kaye DM, Gruskin S, Smith AI, Esler MD. Nitric oxide mediated modulation of norepinephrine transport: identification of a potential target for S-nitrosylation. Br J Pharmacol 2000; 130:1060-4. [PMID: 10882390 PMCID: PMC1572172 DOI: 10.1038/sj.bjp.0703416] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Carrier mediated uptake (uptake-1) transport of norepinephrine (NE) plays a key role in the regulation of sympathetic neurotransmission. Recent investigations indicate that nitric oxide (NO) may modulate uptake-1 activity, possibly in a cyclic GMP independent manner. 2. Carrier mediated transport of [(3)H-NE] and [(3)H-dopamine, DA] was examined in CHO cells transfected with cDNA for the NE and DA transporters (NET, DAT) respectively. 3. While exposure to the NO donor S-nitroso-N-acetylpenicillamine (100 microM, SNAP) significantly reduced [(3)H-NE] uptake (P<0.001), no effect on [(3)H-DA] transport was apparent. 4. Comparison of the amino acid sequences for NET and DAT identified cysteine residue 351 in NET, which was not present in DAT. Site-directed mutagenesis of Cys 351 to Ser produced a functional NET that was resistant to the inhibitory effects of SNAP. 5. The presence of SNAP mediated nitrosylation of the cysteine residue in an 8-mer model peptide based around Cys 351 in NET was confirmed by both biochemical and mass spectroscopic means. 6. These data indicate the potential regulatory role for NO in modulating sympathetic neurotransmission, and further confirm the importance of non-cyclic GMP dependent mechanisms in mediating the actions of NO.
Collapse
Affiliation(s)
- D M Kaye
- Molecular Neurocardiology Laboratory, Baker Medical Research Institute, Commercial Road, Prahran, Victoria 3181, Melbourne, Australia.
| | | | | | | |
Collapse
|
159
|
Gross J, Müller I, Chen Y, Elizalde M, Leclere N, Herrera-Marschitz M, Andersson K. Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 79:110-7. [PMID: 10925148 DOI: 10.1016/s0169-328x(00)00106-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To study the effects of neonatal asphyxia on gene expression of the dopaminergic systems, we determined quantitatively the mRNA levels of tyrosine hydroxylase, dopamine transporter, dopamine D(1) and D(2) receptors in substantia nigra/ventral tegmental area, striatum and limbic area. The mRNA levels were determined at one and 4 weeks after asphyxia by a quantitative reverse transcription polymerase chain reaction method. Spontaneously and Caesarean section born rats showed similar mRNA levels with the exception of an increase of tyrosine hydroxylase mRNA levels in the limbic area of 4-week-old animals. Five min of asphyxia did not change the mRNA levels in any region compared to that in the spontaneously born rats. Fifteen and twenty min of asphyxia induced region-specific alterations in mRNA levels. In SN/VTA an increase of tyrosine hydroxylase mRNA levels in the 1-week-old rats and in striatum an increase of D(1) and D(2) dopamine receptor mRNA levels in the 4-week-old rats were observed. Fifteen min of asphyxia induced a selective increase of D(1) and D(2) dopamine receptor mRNA levels in the limbic area of 4-week-old rats. These observations indicate that neonatal asphyxia triggers a cascade of gene expressions for tyrosine hydroxylase and D(1) and D(2) dopamine receptors. In 1-week-old rats, the gene expression of tyrosine hydroxylase increased in the cell body region substantia nigra/ventral tegmental area. This change may increase the D(1) and D(2) dopamine receptor expression in the target regions striatum and limbic area during further development.
Collapse
Affiliation(s)
- J Gross
- Department of Otorhinolaryngology, Charité Hospital, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
160
|
Sadée W, Graul RC, Lee AY. Classification of membrane transporters. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:29-58. [PMID: 10742971 DOI: 10.1007/0-306-46812-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W Sadée
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California San Francisco 94143-0446, USA
| | | | | |
Collapse
|
161
|
Staffen W, Mair A, Unterrainer J, Trinka E, Bsteh C, Ladurner G. [123I] beta-CIT binding and SPET compared with clinical diagnosis in parkinsonism. Nucl Med Commun 2000; 21:417-24. [PMID: 10874697 DOI: 10.1097/00006231-200005000-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The largest group of neurodegenerative disorders are extrapyramidal diseases, especially parkinsonism. The development of the cocaine derivative [123I] beta-CIT and single photon emission tomography (SPET) may help in the diagnosis of these patients. The aim of this study was to demonstrate the diagnostic value of this method and its relationship with clinical data. Ninety-eight individuals were investigated: 11 healthy volunteers, 58 patients with idiopathic Parkinson's disease (IPD) and 29 patients with symptomatic parkinsonism (SPD). All patients with parkinsonism were staged according to the clinical classification of Hoehn and Yahr. [123I] beta-CIT was injected intravenously and a triple-headed camera was used to obtain images 20 h later. The images were evaluated visually and semi-quantitatively to obtain comparable values (ratio: specific to non-displaceable binding). The ratios differed significantly between controls and IPD patients. A significant correlation also existed between the ratios and clinical stages. In 11 hemiparkinsonian patients, a significantly diminished ratio was demonstrated not only contralateral to the affected side, but also in the clinically silent striatum. A clinical threshold at a reduction of 34% [123I] beta-CIT binding was calculated in this group. The ratios of all SPD patients in our study did not differ significantly from those of the healthy volunteers. According to the clinical degree of symptoms, the more severe subgroup showed a diminished mean ratio of 22% and therefore could not be clearly differentiated from mild IPD. In contrast, ratios were significantly different when comparing groups of the same clinical severity. We conclude that this method is not only a powerful diagnostic tool in IPD patients, but it is also possible to differentiate between IPD and SPD patients, if clinical aspects are also included.
Collapse
Affiliation(s)
- W Staffen
- Department of Neurology, Landesnervenklinik Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
162
|
Lin Z, Itokawa M, Uhl GR. Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression. FASEB J 2000; 14:715-28. [PMID: 10744628 DOI: 10.1096/fasebj.14.5.715] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analyses of mutation effects can aid in understanding how large proteins act. The dopamine transporter (DAT) mediates complex actions in recognizing cocaine and in recognizing and translocating dopamine, sodium, and chloride. DAT proline residues, especially those in transmembrane (TM) domains, are good candidates for involvement in these DAT actions. We now report production of mutants substituting alanine and/or glycine residues for 16 prolines located in or near putative DAT TM domains. We examine effects of these modifications on DAT expression, dopamine uptake, and cocaine analog binding. Mutants in prolines located in five DAT TM domains and four connecting loops alter apparent DAT membrane targeting. Five mutations decrease dopamine affinities more than threefold without significantly decreasing cocaine analog affinities. One decreases cocaine analog affinity without decreasing dopamine affinity. Two mutations decrease affinities for both dopamine and cocaine analog. P101 is especially implicated in dopamine uptake. Alanine substitution for this proline yields dopamine V(max) values of less than 3% of wild-type values despite dopamine affinities more than fourfold higher than wild-type and normal Na(+) and Cl(-) dependence. These DAT proline mutants identify DAT regions likely for dopamine translocation and for recognition of dopamine and cocaine.
Collapse
Affiliation(s)
- Z Lin
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
163
|
Robarge MJ, Agoston GE, Izenwasser S, Kopajtic T, George C, Katz JL, Newman AH. Highly selective chiral N-substituted 3alpha-[bis(4'-fluorophenyl)methoxy]tropane analogues for the dopamine transporter: synthesis and comparative molecular field analysis. J Med Chem 2000; 43:1085-93. [PMID: 10737741 DOI: 10.1021/jm990265s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a continuing effort to further characterize the role of the dopamine transporter in the pharmacological effects of cocaine, a series of chiral and achiral N-substituted analogues of 3alpha-[bis(4'-fluorophenyl)methoxy]tropane (5) has been prepared as potential selective dopamine transporter ligands. These novel compounds displaced [(3)H]WIN 35,428 binding from the dopamine transporter in rat caudate putamen with K(i) values ranging from 13. 9 to 477 nM. Previously, it was reported that 5 demonstrated a significantly higher affinity for the dopamine transporter than the parent drug, 3alpha-(diphenylmethoxy)tropane (3; benztropine). However, 5 remained nonselective over muscarinic m(1) receptors (dopamine transporter, K(i) = 11.8 nM; m(1), K(i) = 11.6 nM) which could potentially confound the interpretation of behavioral data, for this compound and other members of this series. Thus, significant effort has been directed toward developing analogues that retain high affinity at the dopamine transporter but have decreased affinity at muscarinic sites. Recently, it was discovered that by replacing the N-methyl group of 5 with the phenyl-n-butyl substituent (6) retention of high binding affinity at the dopamine transporter (K(i) = 8.51 nM) while decreasing affinity at muscarinic receptors (K(i) = 576 nM) was achieved, resulting in 68-fold selectivity. In the present series, a further improvement in the selectivity for the dopamine transporter was accomplished, with the chiral analogue (S)-N-(2-amino-3-methyl-n-butyl)-3alpha-[bis(4'-fluorophenyl)metho xy] tropane (10b) showing a 136-fold selectivity for the dopamine transporter versus muscarinic m(1) receptors (K(i) = 29.5 nM versus K(i) = 4020 nM, respectively). In addition, a comparative molecular field analysis (CoMFA) model was derived to correlate the binding affinities of all the N-substituted 3alpha-[bis(4'-fluorophenyl)methoxy]tropane analogues that we have prepared with their 3D-structural features. The best model (q(2) = 0. 746) was used to accurately predict binding affinities of compounds in the training set and in a test set. The CoMFA coefficient contour plot for this model, which provides a visual representation of the chemical environment of the binding domain of the dopamine transporter, can now be used to design and/or predict the binding affinities of novel drugs within this class of dopamine uptake inhibitors.
Collapse
Affiliation(s)
- M J Robarge
- Medicinal Chemistry and Psychobiology Sections, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Deschaux O, Bandyopadhyay BC, Tella SR, Zaman WA, Johnson KM. Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity relationships, and behavioral pharmacological studies. J Med Chem 2000; 43:351-60. [PMID: 10669562 DOI: 10.1021/jm990516x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel, fairly potent dopamine transporter (DAT) inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone (3, K(i) values of 492 and 360 nM in binding affinity and inhibition of dopamine reuptake, respectively), with significant functional antagonism against cocaine and a different in vitro pharmacological profile from cocaine at the three transporter sites (dopamine, serotonin, and norepinephrine) was discovered through 3D-database pharmacophore searching. Through structure-activity relationships and molecular modeling studies, we found that hydrophobicity and conformational preference are two additional important parameters that determine affinity at the DAT site. Chemical modifications of the lead compound (3) led to a high affinity analogue (6, K(i) values of 11 and 55 nM in binding affinity and inhibition of dopamine reuptake, respectively). In behavioral pharmacological testing, 6 mimics partially the effect of cocaine in increasing locomotor activity in mice but lacks cocaine-like discriminative stimulus effect in rats. Taken together, these data suggest that 6 represents a promising lead for further evaluations as potential therapy for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- S Wang
- Drug Discovery Program, Georgetown Institute for Cognitive and Computational Science, Georgetown University Medical Center, 3970 Reservoir Road, Washington, DC, 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Arachidonic acid stimulates a novel cocaine-sensitive cation conductance associated with the human dopamine transporter. J Neurosci 2000. [PMID: 10632584 DOI: 10.1523/jneurosci.20-02-00550.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine transporter (DAT) exhibits several ionic currents that are either coupled to or uncoupled from the transport of substrate. Second messenger systems have been shown to modulate dopamine (DA) transport, however, the modulation of DAT-associated currents has not been studied in depth. Using the two-electrode voltage-clamp method to record from Xenopus oocytes expressing the human DAT, we examined the effects of arachidonic acid (AA) on membrane currents. AA (10-100 microM) stimulates a novel nonselective cation conductance seen only in oocytes expressing human DA transporter (hDAT). The AA-stimulated conductance is up to 50-fold greater than the current normally elicited by DA, but does not appear to arise from the modulation of previously described hDAT conductances, including the leak current and the current associated with electrogenic transport. In addition, DA dramatically potentiates and cocaine blocks the AA-stimulated DAT current. DA potentiates the AA-induced currents in the absence of sodium and chloride, indicating that these currents arise from processes distinct from those associated with substrate transport. The effects of AA were mimicked by other fatty acids with a rank order of potency correlated with their degree of unsaturation, suggesting that AA directly stimulates the novel cation current. Therefore, AA stimulation of this DAT-associated conductance may provide a novel mechanism for modulation of neuronal signaling.
Collapse
|
166
|
Chen N, Ferrer JV, Javitch JA, Justice JB. Transport-dependent accessibility of a cytoplasmic loop cysteine in the human dopamine transporter. J Biol Chem 2000; 275:1608-14. [PMID: 10636852 DOI: 10.1074/jbc.275.3.1608] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of covalent sulfhydryl modification on dopamine uptake by the human dopamine transporter was determined by rotating disc electrode voltammetry. A transporter construct, X5C, with five mutated cysteines (C90A, C135A, C306A, C319F, and C342A) and the constructs into which the wild-type cysteines were substituted back into X5C, one at a time, all showed nearly normal binding affinity for [(3)H]CFT and for cocaine, but they displayed significant reductions in K(m) and V(max) for DA uptake. Reaction of Cys-90 or Cys-306 with impermeant methanethiosulfonate derivatives enhanced dopamine uptake to a similar extent as the previously observed enhancement of [(3)H]CFT binding caused by the same reaction, suggesting that cocaine may bind preferentially to a conformation in the transport cycle. m-Tyramine increased the rate of reaction of (2-aminoethyl)methanethiosulfonate (MTSEA) with X-A342C, the construct with a cytoplasmic loop residue Cys-342 restored. This m-tyramine-induced increase in reactivity appeared to require the inward transport rather than the outward transport or external binding of m-tyramine, and it was prevented by cocaine. Thus, inward translocation of substrates may involve structural rearrangement of hDAT, which likely exposes Cys-342 to reaction with MTSEA, and Cys-342 may be located on a part of the transporter associated with cytoplasmic gating.
Collapse
Affiliation(s)
- N Chen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
167
|
Interference of alkaloids with neuroreceptors and ion channels. BIOACTIVE NATURAL PRODUCTS (PART B) 2000. [DOI: 10.1016/s1572-5995(00)80004-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
168
|
Fleuranceau-Morel P, Barrier L, Fauconneau B, Piriou A, Huguet F. Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na+/K+ adenosine triphosphate in rat striatal synaptosomes. Neurosci Lett 1999; 277:91-4. [PMID: 10624817 DOI: 10.1016/s0304-3940(99)00652-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous experiments reported that an incubation of striatal synaptosomes with 4-hydroxynonenal (4-HNE) resulted in an inhibition of dopamine (DA) uptake and Na+/K+ adenosine triphosphate (ATPase) activity. The present work investigated whether theses inhibitions are related to a 4-HNE binding to the DA transporter (DAT) and the Na+/K+ ATPase. The number of specific [125I]-PE21 binding sites on the DAT was significantly reduced after incubation with 4-HNE. The Na+/K+ ATPase activity decrease induced by 4-HNE was partially reversed, in a dose-dependent manner, by veratridine, a pump stimulator agent. Our previous data (Morel, P., Tallineau, C., Pontcharraud, R., Piriou, A. and Huguet, F., Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem. Int., 33 (1999) 531-540) combining with the data observed in this study suggest that changes in DA uptake in striatal synaptosomes are directly related to 4-HNE binding to the DAT, whereas the decrease in Na+/K+ ATPase activity resulted only partially from 4-HNE binding to the pump and is mainly secondary to membrane lipid disruption.
Collapse
Affiliation(s)
- P Fleuranceau-Morel
- Center for Study and Research on Xenobiotics, College of Medicine and Pharmacy, Poitiers, France.
| | | | | | | | | |
Collapse
|
169
|
Daniels GM, Amara SG. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem 1999; 274:35794-801. [PMID: 10585462 DOI: 10.1074/jbc.274.50.35794] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter plays an essential role in the modulation of dopaminergic neurotransmission by mediating the reuptake of dopamine into presynaptic neurons. In cells expressing the dopamine transporter, activation of protein kinase C by phorbol esters results in a significant reduction in dopamine uptake. This phorbol ester-mediated inhibition of dopamine transport is associated with a decrease in V(max), although the apparent affinity of the transporter for dopamine remains unchanged. Using a green fluorescent protein-tagged dopamine transporter stably expressed in Madin-Darby canine kidney cells, we show in live cells that the decrease in transporter activity is caused by the rapid internalization of carriers from the plasma membrane. This redistribution of the transporter is specific to phorbol ester activation and is unaffected by the presence of either substrates or inhibitors of the carrier. Upon the addition of phorbol esters, transporters at the cell surface are rapidly endocytosed through a clathrin-mediated and dynamin-dependent mechanism into early endosomes, where they colocalize with transferrin. The internalized carrier is targeted to the endosomal/lysosomal pathway and is completely degraded within 2 h of protein kinase C activation. Phorbol ester-mediated alterations in the trafficking of the dopamine transporter may serve as a mechanism for controlling extracellular dopamine levels in the central nervous system.
Collapse
Affiliation(s)
- G M Daniels
- Department of Cell Biology, Oregon Health Science University, Portland, Oregon 97201, USA
| | | |
Collapse
|
170
|
Abstract
Aminergic signalling in the CNS is terminated by clearance of neurotransmitters from the synapse via high affinity transporter molecules in the presynaptic membrane. Relatively recent sequence identification of these molecules has now permitted the initiation of studies of regulation of transporter function at the cellular and systems levels. In vitro studies provide evidence that the transporters for dopamine, serotonin, and gamma-aminobutyric acid (GABA) may be substrates for regulation by protein kinase C and protein kinase A signalling. Changes in energy balance and metabolic status, such as starvation, result in major shifts in hormonal output. It is now recognized that metabolic hormones such as insulin or the adrenal steroids can have significant acute and chronic effects on several aspects of CNS function. Data from this laboratory and others now provide evidence that insulin and adrenal and gonadal steroid hormones may regulate the synthesis and activity of the transporters. Future studies should permit elucidation of the cellular basis for endocrine regulation of neurotransmitter clearance, and thus, the role of endocrines in the maintenance of normal CNS aminergic signalling. The potential relevance of transporter regulation for the ketogenic diet is discussed.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle 98195, USA.
| |
Collapse
|
171
|
Szot P, White SS, Veith RC, Rasmussen DD. Reduced Gene Expression for Dopamine Biosynthesis and Transport in Midbrain Neurons of Adult Male Rats Exposed Prenatally to Ethanol. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04056.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
172
|
Percy E, Kaye DM, Lambert GW, Gruskin S, Esler MD, Du XJ. Catechol-O-methyltransferase activity in CHO cells expressing norepinephrine transporter. Br J Pharmacol 1999; 128:774-80. [PMID: 10516661 PMCID: PMC1571673 DOI: 10.1038/sj.bjp.0702831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We examined the existence of catecholamine metabolizing enzymes (catechol-O-methyltransferase, COMT, and monoamine oxidase, MAO) in CHO cells transfected with norepinephrine (NE) transporter (NET) cDNA. 2. NET activity was studied by incubating cells with [3H]-NE (0. 5 microCi ml-1, 20 min) in a Na+ containing medium. Incubation with [3H]-NE lead to [3H] accumulation at 47797+/-4864 d.p.m. per well. Specific inhibitors of NET abolished this uptake. 3. During post-uptake incubation, [3H] leaked rapidly from cells and the extracellular phase comprised 89% of total radioactivity within 40 min. Both [3H] retention and [3H] 'leakage' were largely unaffected by inhibitors for MAO. In contrast, COMT inhibitors, U-0521 and Ro 41-0960, dose-dependently increased intracellular [3H]-NE retention with a maximal increase of 4.5 fold. The EC50 for Ro 41-0960 was 139-times lower than that of U-0521. U-0521 largely inhibited [3H] 'leakage' and doubled the apparent Vmax for [3H]-NE uptake. 4. Addition of U-0521 during uptake incubation increased intracellular NE content by 8 fold. Normetanephrine, the COMT-dependent metabolite of NE, was formed in large quantities during post-uptake incubation. U-0521 significantly inhibited the formation of NMN with an equal preservation of intracellular NE. 5. CHO cells expressing NET possess COMT activity, which is responsible for the metabolism of NE to form lipophilic metabolite normetanephrine. The apparent 'properties' of the NET function expressed in CHO cells changed, after inhibition of COMT, in such a way closer to that described in the native neuronal preparations.
Collapse
Affiliation(s)
- Elodie Percy
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - David M Kaye
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Gavin W Lambert
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Sara Gruskin
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Murray D Esler
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Xiao-Jun Du
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
- Author for correspondence:
| |
Collapse
|
173
|
Abstract
Addictive drugs like cocaine, ethanol, and morphine activate signal transduction pathways that regulate brain gene expression. Such regulation is modulated by the presence of certain transcription factor proteins present in a given neuron. This article summarizes the effects of several addictive drugs on transcriptional processes contributing to the development of a drug-dependent state. The characterization of drug-induced changes in gene expression shows promise for improving our understanding of drug-addiction phenomena and cellular modes of cocaine, ethanol, and morphine action.
Collapse
Affiliation(s)
- G Torres
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Buffalo, 14260, USA.
| | | |
Collapse
|
174
|
Inazu M, Takeda H, Ikoshi H, Uchida Y, Kubota N, Kiuchi Y, Oguchi K, Matsumiya T. Regulation of dopamine uptake by basic fibroblast growth factor and epidermal growth factor in cultured rat astrocytes. Neurosci Res 1999; 34:235-44. [PMID: 10576546 DOI: 10.1016/s0168-0102(99)00053-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the characteristics of dopamine (DA) uptake and its regulation by neurotrophic factors such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) in cultured rat astrocytes. In the presence of inhibitors of monoamine oxidase (MAO) and catechol-O-methyl-transferase (COMT), astrocytes took up DA by Na(+)-dependent and Na(+)-independent mechanisms that were sensitive to a reduction in temperature. The Na(+)-dependent and Na(+)-independent components increased linearly with increasing [3H]DA concentration (1-1000 microM), and showed no saturation. Na(+)-dependent DA uptake was significantly inhibited by ouabain, a Na(+)-K+ ATPase inhibitor. In bFGF-treated astrocytes, [3H]DA uptake increased in a time-dependent manner until 48 h, and declined after 72 h in both the presence and absence of Na+. In EGF-treated astrocytes, [3H]DA uptake increased in a time-dependent manner until 72 h in both the presence and absence of Na +. This enhancement of DA uptake induced by EGF or bFGF was significantly inhibited when the cells were cultured with actinomycin D, cycloheximide, or brefeldin A. Actinomycin D and brefeldin A also significantly inhibited the basal uptake of [3H]DA into astrocytes. These results suggest the existence of Na(+)-dependent and Na(+)-independent DA uptake in cultured rat astrocytes, and that EGF or bFGF might stimulate the expression and translocation of the extraneuronal DA transporter.
Collapse
Affiliation(s)
- M Inazu
- Department of Pharmacology, Tokyo Medical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Lin Z, Wang W, Kopajtic T, Revay RS, Uhl GR. Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition. Mol Pharmacol 1999; 56:434-47. [PMID: 10419565 DOI: 10.1124/mol.56.2.434] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling through molecular interactions that are only partially understood. Cocaine analog structure-activity studies have suggested roles for both cationic and aromatic interactions among DAT, dopamine, and cocaine. We hypothesized that phenylalanine residues lying in putative DAT transmembrane (TM) domains were good candidates to contribute to aromatic and/or cationic interactions among DAT, dopamine, and cocaine. To test this idea, we characterized the influences of alanine substitution for each of 29 phenylalanine residues lying in or near a putative DAT TM domain. Cells express 22 mutants at near wild-type levels, manifest by DAT immunohistochemistry and binding of the radiolabeled cocaine analog [(3)H](-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (CFT). Seven mutants fail to express at normal levels. Four mutations selectively reduce cocaine analog affinities. Alanine substitutions at Phe(76), Phe(98), Phe(390), and Phe(361) located in TM domains 1 and 2, the fourth extracellular loop near TM 4 and in TM 7, displayed normal affinities for dopamine but 3- to 8-fold reductions in affinities for CFT. One TM 3 mutation, F(155)A, selectively decreased dopamine affinity to less than 3% of wild-type levels while reducing CFT affinity less than 3-fold. In a current DAT structural model, each of the residues at which alanine substitution selectively reduces cocaine analog or dopamine affinities faces a central transporter cavity, whereas mutations that influence expression levels are more likely to lie at potential helix/helix interfaces. Specific, overlapping sets of phenylalanine residues contribute selectively to DAT recognition of dopamine and cocaine.
Collapse
Affiliation(s)
- Z Lin
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
176
|
Danek Burgess KS, Justice JB. Effects of serine mutations in transmembrane domain 7 of the human norepinephrine transporter on substrate binding and transport. J Neurochem 1999; 73:656-64. [PMID: 10428062 DOI: 10.1046/j.1471-4159.1999.0730656.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two serine residues in the beta-adrenergic receptor (beta-AR) have been proposed to form hydrogen bonds with the catechol moiety of the ligand and contribute to the activation of the receptor. These conserved serine residues in the dopamine (DA) and norepinephrine transporters (DAT and NET, respectively) have also been shown to affect substrate transport in the rat DAT. In the present work, hydrogen bonding interactions between the corresponding serine residues in the human NET (hNET), 354 and 357, and the hydroxyl groups on the substrate were systematically evaluated by examining the transport and binding properties of DA and several single hydroxyl analogues of DA at wild-type and serine-to-alanine-substituted transporters. A comparison of [3H]nisoxetine binding at the serine 354 mutant, in which K(D) increased 70-fold from the wild-type value, with the binding of DA, m-tyramine (m-TYR), and p-tyramine (p-TYR) at mutant 354, where the increase in Ki was less dramatic, revealed that serine 354 is more influential in inhibitor than substrate binding. The binding of m-TYR and p-TYR at the serine 354 and serine 357 mutants did not show a direct interaction between one serine and one substrate catechol hydroxyl group. DA, m-TYR, and p-TYR binding affinity did not deviate from the wild-type value at the serine 357 and double mutant transporters. At these two transporters, however, the Km of DA uptake increased, suggesting that the roles of serine 357 and serine 354 in substrate transport are different from their roles in binding. The K'm for induced efflux of DA decreased at the serine 357 mutant compared with the wild-type, whereas the K'm at the serine 354 mutant was the same as that of the wild-type. Further investigation of the role of substrate hydroxyls in the transport process revealed no difference between the transport of m-TYR or p-TYR, as measured indirectly through their induced efflux of DA, at any of the mutants. Although these serines are influential in inhibitor and substrate binding to the transporter and substrate uptake and efflux, they do not appear to be involved in a direct hydrogen bond interaction with substrate, suggesting that the pattern of distinct hydrogen bonding interactions at the beta-AR does not exist at the hNET.
Collapse
Affiliation(s)
- K S Danek Burgess
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
177
|
Garzón M, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. J Comp Neurol 1999; 410:197-210. [PMID: 10414527 DOI: 10.1002/(sici)1096-9861(19990726)410:2<197::aid-cne3>3.0.co;2-d] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cholinergic activation of dopaminergic neurons in the ventral tegmental area (VTA) is thought to play a major role in cognitive functions and reward. These dopaminergic neurons differentially project to cortical and limbic forebrain regions, where their terminals differ in levels of expression of the plasmalemmal dopamine transporter (DAT). This transporter selectively identifies dopaminergic neurons, whereas the vesicular acetylcholine transporter (VAchT) is present only in the neurons that store and release acetylcholine. We examined immunogold labeling for DAT and immunoperoxidase localization of VAchT antipeptide antisera in single sections of the rat VTA to determine whether dopaminergic somata and dendrites in this region differ in their levels of expression of DAT and/or input from cholinergic terminals. VAchT immunoreactivity was prominently localized to membranes of small synaptic vesicles in unmyelinated axons and axon terminals. VAchT-immunoreactive terminals formed almost exclusively asymmetric synapses with dendrites. Of 159 dendrites that were identified as cholinergic targets, 35% contained plasmalemmal DAT, and 65% were without detectable DAT immunoreactivity. The DAT-immunoreactive dendrites postsynaptic to VAchT-labeled terminals contained less than half the density of gold particles as seen in other dendrites receiving input only from unlabeled terminals. These results suggest selective targeting of cholinergic afferents in the VTA to non-dopaminergic neurons and a subpopulation of dopaminergic neurons that have a limited capacity for plasmalemmal reuptake of dopamine, a characteristic of those that project to the frontal cortex.
Collapse
Affiliation(s)
- M Garzón
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
178
|
Abstract
Evidence suggests that the acute reinforcing actions of drugs of abuse may be mediated by specific elements of the striatopallidal and extended amygdala systems. These include the shell of the nucleus accumbens, the central nucleus of the amygdala, and the sublenticular extended amygdala. Chronic administration of drugs of abuse, including cocaine, amphetamines, nicotine, alcohol, and tetrahydrocannabinol leads to an increasing dysregulation of brain reward systems that is characterized by decreases in reward function. Withdrawal from chronic administration of cocaine, amphetamine, nicotine, alcohol, and tetrahydrocannabinol raises thresholds for brain stimulation reward. Neurochemical elements in the extended amygdala may mediate these changes, including decreases in dopamine and serotonin neurotransmission in the nucleus accumbens and increases in the brain-stress neurotransmitter, corticotropin-releasing factor, in the central nucleus of the amygdala. The combination of decreases in function of neurotransmitters involved in the positive-reinforcing properties of drugs of abuse with recruitment of brain-stress systems within the extended amygdala provides a powerful mechanism for allostatic changes in hedonic set point that can lead to the compulsive drug-seeking and drug-taking behavior characteristic of addiction.
Collapse
Affiliation(s)
- G F Koob
- Department of Neuropharmacology, CVN-7, Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
179
|
Inazu M, Kubota N, Takeda H, Zhang J, Kiuchi Y, Oguchi K, Matsumiya T. Pharmacological characterization of dopamine transport in cultured rat astrocytes. Life Sci 1999; 64:2239-45. [PMID: 10374914 DOI: 10.1016/s0024-3205(99)00175-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of GBR-12909 (selective DA uptake inhibitor), zimelidine (selective 5-HT uptake inhibitor) and nisoxetine (selective NE uptake inhibitor) on the uptake of 30 nM [3H]DA into cultured rat astrocytes were examined. [3H]DA uptake was inhibited by approximately 50% by GBR-12909 or zimelidine in a concentration-dependent manner (100 nM to approximately 10 microM). Furthermore, the inhibition curves of GBR-12909 were biphasic, and uptake was completely inhibited by a high concentration of GBR-12909 (100 microM). [3H]DA uptake was also inhibited by approximately 50% by nisoxetine in a concentration-dependent manner (0.1 to approximately 100 nM), and nisoxetine was more potent than GBR-12909 or zimelidine. The inhibitory potencies were in the order nisoxetine > GBR-12909 > zimelidine. The uptake of [3H]DA under Na+-free conditions was approximately 50% of that under normal conditions. Thus, DA was taken up by both Na+-dependent and Na+-independent mechanisms. Nisoxetine (100 nM), zimelidine (100 microM) and GBR-12909 (10 microM) inhibited [3H]DA uptake into astrocytes only in the presence of Na+. On the other hand, this uptake was completely inhibited by a high concentration of GBR-12909 (100 microM) in the absence of Na+. The present data suggest that the Na+-dependent uptake of [3H]DA in cultured rat astrocytes may occur in the NE uptake system. Furthermore, astrocytes express the extraneuronal monoamine transporter (uptake2), which is an Na+-independent system, and this transporter is involved in the inactivation of centrally released DA.
Collapse
Affiliation(s)
- M Inazu
- Department of Pharmacology, Tokyo Medical University, Japan
| | | | | | | | | | | | | |
Collapse
|
180
|
Gallagher MJ, Burgess LH, Brunden KR. Characterization of multiple forms of the human glycine transporter type-2. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:101-15. [PMID: 10381548 DOI: 10.1016/s0169-328x(99)00135-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The human glycine transporter type 2 (hGlyT2) was cloned from a spinal cord cDNA library using PCR-based methodologies. The isolated sequence exhibits 89% homology with the previously isolated rat GlyT2 cDNA (Liu et al., J. Biol. Chem. 268 (1993) 22802-22808) at the nucleotide level, and 93% amino acid sequence identity. The greatest divergence between the human and rat sequences is found at the amino-terminus, where only 74% amino acid identity exists in residues 1-190. Expression of the intact hGlyT2 transporter sequence in COS-7 cells resulted in a 10-fold increase in high-affinity uptake relative to control cells transfected with vector alone. An artificially truncated form of the transporter, missing the NH2-terminal 153 amino acids, was also capable of mediating glycine uptake. However, an identified variant lacking the first 234 amino acids was non-functional. An hGlyT2 transporter containing a 14-residue deletion in the intracellular loop between transmembrane domains 6 and 7 was also identified and expressed, but failed to mediate glycine uptake. Like rat GlyT2, the high-affinity uptake mediated by hGlyT2 was found to be insensitive to the GlyT1 inhibitor sarcosine.
Collapse
Affiliation(s)
- M J Gallagher
- Discovery Research, Gliatech, 23420 Commerce Park Rd., Cleveland, OH 44122, USA.
| | | | | |
Collapse
|
181
|
Huang CL, Chen HC, Huang NK, Yang DM, Kao LS, Chen JC, Lai HL, Chern Y. Modulation of dopamine transporter activity by nicotinic acetylcholine receptors and membrane depolarization in rat pheochromocytoma PC12 cells. J Neurochem 1999; 72:2437-44. [PMID: 10349853 DOI: 10.1046/j.1471-4159.1999.0722437.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate the regulation of the rat dopamine transporter (rDAT), we established several PC12 variants overexpressing the rDAT. Treating these cells with a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide, 30 microM) depolarized the plasma membrane potential from -31 +/- 2 to 43 +/- 5 mV and inhibited rDAT activity significantly in a calcium- and protein kinase C-independent manner. Membrane depolarization by a high external K+ concentration or two K+ channel blockers (tetraethylammonium hydroxide and BaCl2) also resulted in a marked inhibition of rDAT activity. Such inhibition of dopamine uptake is due to a reduction in Vmax, with no marked effect on the Km for dopamine. The potency of cocaine in inhibiting dopamine uptake was not significantly altered, whereas that of amphetamine was slightly enhanced by membrane depolarization. Removing extracellular Ca2+ or blocking the voltage-sensitive L-type calcium channels using nifedipine did not exert any significant effect on the inhibition of rDAT activity by depolarization. These data confirm that calcium influx on depolarization is not required for inhibition of the rDAT. Collectively, our data suggest that rDAT activity can be altered by a neurotransmitter that modulates the membrane potential, thus suggesting an exquisite mechanism for the fine-tuning of dopamine levels in the synapse.
Collapse
Affiliation(s)
- C L Huang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Lee SY, Im SY, Kim KM. Preparation of dopamine transporter-specific antibodies using molecular cloned genes. Arch Pharm Res 1999; 22:262-6. [PMID: 10403128 DOI: 10.1007/bf02976360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dopamine transporter (DAT) plays the most important role in terminating the actions of dopamines released into the synaptic cleft. DAT is also the target of various psychotropic drugs such as cocaine and amphetamine. In this study we prepared DAT-specific antibodies using the 2nd extracellular loop of rat DAT as an antigen. The 2nd extracellular loop of the rat DAT was expressed in bacteria as a fusion protein with glutathione-S-transferase, and injected into rabbits to raise antibodies. Produced antibodies clearly recognized the rat DAT in ELISA, immunoblotting, and immunoprecipitation. As expected from the high sequence homology between the rat and human DAT, the antibodies raised for the rat DAT cross-reacted with the human DAT in the immunoblotting. Considering the specificity for DAT with wide range of applications such as ELISA, immunoblotting, and immunoprecipitation, these antibodies would be valuable tool for understanding the pharmacological actions of dopamine transporter and drug addiction.
Collapse
Affiliation(s)
- S Y Lee
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Kwang-Ju, Korea
| | | | | |
Collapse
|
183
|
Nishimura M, Sato K, Shimada S, Tohyama M. Expression of norepinephrine and serotonin transporter mRNAs in the rat superior cervical ganglion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:82-6. [PMID: 10101235 DOI: 10.1016/s0169-328x(99)00041-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the gene expression of three monoamine transporters (norepinephrine transporter, NET; serotonin transporter, SERT; and dopamine transporter, DAT) in the rat superior cervical ganglion (SCG). Most of principal ganglion neurons abundantly expressed NET mRNA. In addition, about 30% of principal ganglion neurons also expressed SERT mRNA. However, DAT mRNA expression was not observed there. These results suggest that serotonin as well as norepinephrine works as a neurotransmitter in a subset of principal ganglion neurons.
Collapse
Affiliation(s)
- M Nishimura
- Department of Anesthesiology, Osaka University Medical School, 2-2, Yamadaoka Suita, Osaka 565, Japan
| | | | | | | |
Collapse
|
184
|
Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson's disease. Exp Neurol 1999; 156:138-48. [PMID: 10192785 DOI: 10.1006/exnr.1998.7008] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vesicular monoamine transporter (VMAT2) has been suggested to be an excellent marker of presynaptic dopaminergic nerve terminals in the striatum of Parkinson's disease patients based on its high level of expression and insensitivity to drugs used to treat the disease. Previous in vivo imaging and postmortem binding studies have detected a loss in striatal VMAT2 binding in Parkinson's diseased (PD) brain; however, these techniques have poor spatial resolution and may suffer from nonspecific binding of some ligands. In this study, we use novel polyclonal antibodies to distinct regions of human VMAT2 to quantify and localize the protein. Western blot analysis demonstrated marked reductions in VMAT2 immunoreactivity in putamen, caudate, and nucleus accumbens of PD brain compared to control cases. Immunohistochemistry revealed VMAT2 immunoreactive fibers and puncta that were dense throughout the striatum of control brains, but which were drastically reduced in putamen of PD brains. In PD brains the caudate showed a significant degree of sparing along the border of the lateral ventricle and the nucleus accumbens was relatively preserved. The distribution of VMAT2 in striatum and its loss in PD paralleled that of the dopamine transporter (DAT), a phenotypic marker of dopamine neurons. Thus, immunochemical analysis of VMAT2 protein provides novel and sensitive means for localizing and quantifying VMAT2 protein and nigrostriatal dopamine terminals in PD. Furthermore, the relative expression of VMAT2 compared to that of DAT may predict the differential vulnerability of dopamine neurons in PD.
Collapse
Affiliation(s)
- G W Miller
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Flores G, Wood GK, Barbeau D, Quirion R, Srivastava LK. Lewis and Fischer rats: a comparison of dopamine transporter and receptors levels. Brain Res 1998; 814:34-40. [PMID: 9838033 DOI: 10.1016/s0006-8993(98)01011-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous reports have shown that the inbred strains of rat, Lewis (LEW) and Fischer 344 (F344), differ in several behavioural and biochemical indices of mesolimbic dopamine (DA) function. Specifically, these two strains differ in their behavioural and neurochemical response to novel environments, and acute amphetamine or cocaine challenge as well as in their susceptibility to addiction. To investigate if differences in DA D1-like, D2-like, D3 receptors and DA transporter could be correlated with these behavioural differences between strains, a comparative autoradiographic study of DA receptors and transporter within the striatal and accumbal regions was undertaken. We observed strain and region specific differences in binding levels for DA D2-like and D3 receptors and for the DA transporter. Namely, DA transporter levels in the striatum, nucleus accumbens and olfactory tubercle of LEW rats were significantly lower than in F344 rats. DA D3 densities in the shell of the nucleus accumbens and olfactory tubercle of LEW rats were lower than the levels found in the F344 rats. Finally, LEW rats have a lower levels of D2-like receptors in the striatum and the core of the nucleus accumbens compared to F344 rats. These data suggest that differences in DA transporter and DA receptors may in part contribute to differences in DA related behaviour seen between these two strains.
Collapse
Affiliation(s)
- G Flores
- Douglas Hospital Research Centre, Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Montreal, Qc, Canada
| | | | | | | | | |
Collapse
|
186
|
Morel P, Tallineau C, Pontcharraud R, Piriou A, Huguet F. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Int 1998; 33:531-40. [PMID: 10098723 DOI: 10.1016/s0197-0186(98)00062-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Incubation of rat striatal synaptosomes in ascorbic acid induced the production of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and 4-hydroxynonenal (4-HNE), a lipid peroxidation aldehydic product. Incubations with 4-HNE, used at a range of concentrations comparable to those obtained during peroxidation, induced a simultaneous, dose-dependent decrease of dopamine (DA) uptake and Na+/K+ ATPase activity and a loss of sulfhydryl (SH) groups. Similar results were observed in a previous study when lipid peroxidation was induced after incubation of synaptosomes in ascorbic acid. Taken together, these data suggest that 4-HNE is an important mediator of oxidative stress and may alter DA uptake after binding to SH groups of the DA transporter and to Na+/K+ ATPase. These toxic events may contribute to the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- P Morel
- Center for Study and Research on Xenobiotics, University of Medicine and Pharmacy, Poitiers, France.
| | | | | | | | | |
Collapse
|
187
|
Martres MP, Demeneix B, Hanoun N, Hamon M, Giros B. Up- and down-expression of the dopamine transporter by plasmid DNA transfer in the rat brain. Eur J Neurosci 1998; 10:3607-16. [PMID: 9875340 DOI: 10.1046/j.1460-9568.1998.00366.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional role of the dopamine transporter (DAT) in central dopaminergic neurotransmission was assessed further by investigating the consequences on dopamine (DA) turn-over of up- and down-regulation of this protein induced by a non-viral gene transfer approach. For this purpose, expression plasmids containing the sense or antisense coding sequence of DAT complexed with the cationic polymer, polyethylenimine (PEI), were injected into the rat substantia nigra, the brain region containing the majority of DA cell bodies. Before in vivo injection, the efficacies of the different DNA constructs were assessed by transfection studies into LLC-PK1 cells. Stereotaxic administration of the sense plasmid complexed to PEI induced, 3 days later, a significant increase in the immunoautoradiographic labelling by anti-DAT antibodies of the substantia nigra and various DA projection areas. These effects were associated with a significantly enhanced capacity of striatal synaptosomes to take up [3H]-DA and lasted up to 14 days postinjection. In contrast, 7 days after intranigral administration of the antisense plasmid complexed to PEI, we observed a significant decrease of DAT immunolabelling in the substantia nigra and [3H]-DA uptake by striatal synaptosomes. Whereas DA turnover in the striatum was unaltered 3 days after intranigral administration of the sense plasmid, it was increased 7 days after intranigral administration of the antisense construct. These data indicate that non-viral transfer of the sense or antisense coding sequence of DAT can be used as a novel approach to induce long-term changes in central DA neurotransmission.
Collapse
Affiliation(s)
- M P Martres
- INSERM U288, Faculté de Médecine Pitié-Salpêtrière, Paris, France.
| | | | | | | | | |
Collapse
|
188
|
Morrow JA, Collie IT, Dunbar DR, Walker GB, Shahid M, Hill DR. Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome. FEBS Lett 1998; 439:334-40. [PMID: 9845349 DOI: 10.1016/s0014-5793(98)01390-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurotransmitter transport systems are major targets for therapeutic alterations in synaptic function. We have cloned and sequenced a cDNA encoding the human type 2 glycine transporter GlyT2 from human brain and spinal cord. An open reading frame of 2391 nucleotides encodes a 797 amino acid protein that transports glycine in a Na+/Cl--dependent manner. When stably expressed in CHO cells, human GlyT2 displays a dose-dependent uptake of glycine with an apparent Km of 108 microM. This uptake is not affected by sarcosine at concentrations up to 1 mM. Radiation hybrid analysis mapped the GlyT2 gene to D11S1308 (LOD=8.988) on human chromosome 11p15.1-15.2.
Collapse
Affiliation(s)
- J A Morrow
- Target Discovery Section, Organon Laboratories Limited, Newhouse, Lanarkshire, UK.
| | | | | | | | | | | |
Collapse
|
189
|
Comer AM, Qi J, Christie DL, Gibbons HM, Lipski J. Noradrenaline transporter expression in the pons and medulla oblongata of the rat: localisation to noradrenergic and some C1 adrenergic neurones. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 62:65-76. [PMID: 9795140 DOI: 10.1016/s0169-328x(98)00241-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Catecholaminergic neurotransmission is normally terminated by rapid re-uptake of the neurotransmitter by a high-affinity Na+/Cl--dependent plasma membrane transporter. Specific transporters have been cloned for both dopamine (DAT) and noradrenaline (NAT) in the rat. While DAT has been studied extensively, NAT expression has received less attention, particularly at the protein level. We used an antibody generated against a 49 residue segment of an extracellular loop region of NAT to study expression of the transporter protein throughout the rat pons and medulla oblongata. NAT was expressed in over 95% of noradrenergic neurones in the A1, A2/area postrema, A5, A6/locus subcoeruleus, and A7 noradrenergic groups. Approximately 10% of C1 adrenergic neurones located in the rostral ventrolateral medulla (RVL) also expressed NAT. Expression of NAT mRNA in bulbospinal C1 cells was confirmed using single-cell reverse transcription polymerase chain reaction (RT-PCR) of acutely isolated RVL neurones. Spinally projecting neurones were identified by retrograde labelling with rhodamine beads, and C1 neurones were identified by RT-PCR using primers specific for tyrosine hydroxylase (TH) or phenylethanolamine N-methyltransferase (PNMT) mRNAs. Thirteen percent of adrenergic bulbospinal neurones tested expressed NAT mRNA. C1 neurones are potentially important in cardiovascular control and blood pressure regulation, and the identification of NAT expression in a sub-population of these neurones provides further evidence for the heterogeneity of this neuronal population.
Collapse
Affiliation(s)
- A M Comer
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
190
|
Ramamoorthy S, Melikian HE, Qian Y, Blakely RD. Biosynthesis, N-glycosylation, and surface trafficking of biogenic amine transporter proteins. Methods Enzymol 1998; 296:347-70. [PMID: 9779460 DOI: 10.1016/s0076-6879(98)96026-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S Ramamoorthy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA
| | | | | | | |
Collapse
|
191
|
Affiliation(s)
- K J Buck
- Department of Behavioral Neuroscience, Oregon Health Sciences University 97201, USA
| | | |
Collapse
|
192
|
Affiliation(s)
- M A Bunin
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA
| | | |
Collapse
|
193
|
Uhl G, Lin Z, Metzger T, Dar DE. Dopamine transporter mutants, small molecules, and approaches to cocaine antagonist/dopamine transporter disinhibitor development. Methods Enzymol 1998; 296:456-65. [PMID: 9779467 DOI: 10.1016/s0076-6879(98)96033-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Uhl
- Molecular Neurobiology Branch, NIDA-IRP, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
194
|
Lill H, Nelson N. Homologies and family relationships among Na+/Cl- neurotransmitter transporters. Methods Enzymol 1998; 296:425-36. [PMID: 9779464 DOI: 10.1016/s0076-6879(98)96030-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- H Lill
- Abteilung Biophysik, Fachberich Biologie/Chemie, Universitat Osnabruck, Germany
| | | |
Collapse
|
195
|
Povlock SL, Amara SG. Vaccinia virus-T7 RNA polymerase expression system for neurotransmitter transporters. Methods Enzymol 1998; 296:436-43. [PMID: 9779465 DOI: 10.1016/s0076-6879(98)96031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S L Povlock
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201-3011, USA
| | | |
Collapse
|
196
|
Morel P, Fauconneau B, Page G, Mirbeau T, Huguet F. Inhibitory effects of ascorbic acid on dopamine uptake by rat striatal synaptosomes: relationship to lipid peroxidation and oxidation of protein sulfhydryl groups. Neurosci Res 1998; 32:171-9. [PMID: 9858024 DOI: 10.1016/s0168-0102(98)00080-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ascorbic acid is frequently added in the incubation medium to prevent oxidation of dopamine (DA) during uptake assays. However, a preliminary study showed that the presence of ascorbic acid induced a decrease of DA uptake after prolonged incubation. The purpose of this study was to determine the mechanism underlying ascorbic acid-induced alterations of DA uptake in rat striatal synaptosomes. In this context, the effects of physiological concentrations of ascorbic acid (100-500 microM) on DA uptake and Na+/K+ ATPase activity (which is essential for DA transporter function) were assessed in synaptosomes before and after incubation at 37 degrees C. The capacity of synaptosomes to take up DA was significantly decreased after incubation owing to a reduction in DA transporters (but with no modification of their affinity for DA). This partial inhibition was associated with a decrease of Na+/K+ ATPase activity, a production of thiobarbituric acid reactive substances (TBARS) and malonaldehyde (MDA), and a loss of sulfhydryl group content. Addition of Trolox C to the medium prevented the reduction of DA uptake, the inhibition of Na+/K+ ATPase activity, the decrease in sulfhydryl group content and the production of TBARS and MDA. These results suggest that ascorbic acid in the presence of contaminant ferrous ions induced a decrease in functional DA transporters, probably through a lipid peroxidation process involving oxidation of sulfhydryl groups and at least in part through a decrease of Na+/K+ ATPase activity.
Collapse
Affiliation(s)
- P Morel
- Centre d'Etudes et de Recherche sur les Xénobiotiques, Faculté de Médecine et Pharmacie, Poitiers, France.
| | | | | | | | | |
Collapse
|
197
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 588] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
198
|
Ferrer JV, Javitch JA. Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci U S A 1998; 95:9238-43. [PMID: 9689064 PMCID: PMC21322 DOI: 10.1073/pnas.95.16.9238] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cocaine and other psychostimulants act by blocking the dopamine transporter. Binding of the cocaine analog, [3H]2-beta-carbomethoxy-3-beta-(4-fluorophenyl) tropane (CFT) to the dopamine transporter is sensitive to polar sulfhydryl-specific derivatives of methanethiosulfonate (MTS). These reagents preferentially react with water-accessible, reduced cysteines. The human dopamine transporter has 13 cysteines. Their topology is not completely determined. We sought to identify those cysteine residues the modification of which affects CFT binding and to determine the topology of these reactive cysteines. We mutated each of the cysteines, one at a time and in various combinations, to residues that preserved binding and transport, and we tested the sensitivity of each of the mutant transporters to the reagents. One construct, X5C, had five mutated cysteines (C90A, C135A, C306A, C319F, and C342A). Using a membrane preparation in which both extracellular and intracellular cysteines could be accessible, we found that CFT binding in X5C, as compared with wild-type transporter, was two orders of magnitude less sensitive to MTS ethylammonium (MTSEA). The wild-type cysteines were substituted back into X5C, one at a time, and these constructs were tested in cells and in membranes. Cys-90 and Cys-306 appear to be extracellular, and Cys-135 and Cys-342 appear to be intracellular. Each of these residues is predicted to be in extramembranous loops. The binding of cocaine increases the rate of reaction of MTSEA and MTS ethyltrimethylammonium with the extracellular Cys-90 and therefore acts by inducing a conformational change. Cocaine decreases the rate of reaction of MTSEA with Cys-135 and Cys-342, acting either directly or indirectly on these intracellular residues.
Collapse
Affiliation(s)
- J V Ferrer
- Center for Molecular Recognition and Departments of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
199
|
Barker EL, Perlman MA, Adkins EM, Houlihan WJ, Pristupa ZB, Niznik HB, Blakely RD. High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J Biol Chem 1998; 273:19459-68. [PMID: 9677366 DOI: 10.1074/jbc.273.31.19459] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and Drosophila melanogaster serotonin (5-HT) transporters (SERTs) exhibit similar 5-HT transport kinetics and can be distinguished pharmacologically by many, but not all, biogenic amine transporter antagonists. By using human and Drosophila SERT chimeras, major determinants of potencies of two transporter antagonists, mazindol and citalopram, were tracked to the amino-terminal domains encompassing transmembrane domains I and II. Species-scanning mutagenesis, whereby amino acid substitutions are made switching residues from one species to another, was employed on the eight amino acids that differ between human and Drosophila SERTs in this region, and antagonist potencies were reassessed in 5-HT uptake assays. A single mutation in transmembrane domain I of human SERT, Y95F, shifted both citalopram and mazindol to Drosophila SERT-like potencies. Strikingly, these potency changes were in opposite directions suggesting Tyr95 contributes both positive and negative determinants of antagonist potency. To gain insight into how the Y95F mutant might influence mazindol potency, we determined how structural variants of mazindol responded to the mutation. Our studies demonstrate the importance of the hydroxyl group on the heterocyclic nucleus of mazindol for maintaining species-selective recognition of mazindol and suggest that transmembrane domain I participates in the formation of antagonist-binding sites for amine transporters.
Collapse
Affiliation(s)
- E L Barker
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Petrie EC, Veith RC, Szot P. Bupropion and desipramine increase dopamine transporter mRNA expression in the ventral tegmental area/substantia nigra of rat brain. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:845-56. [PMID: 9723124 DOI: 10.1016/s0278-5846(98)00044-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. Regulation of dopamine transporter (DAT) mRNA was studied in rats treated with the DAT blocker bupropion (BUP; 15 or 30 mg/kg tid x 2d), the norepinephrine transporter blocker desipramine (DMI; 10 mg/kg/d x 2d), or saline. 2. mRNA expression was assessed via in situ hybridization histochemistry. 3. BUP and DMI both increased DAT mRNA expression in the ventral tegmental area/substantia nigra. 4. These findings suggest that DAT mRNA expression in the brain may be regulated by both noradrenergic and dopaminergic mechanisms.
Collapse
Affiliation(s)
- E C Petrie
- Mental Health Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | | | | |
Collapse
|