151
|
Abstract
It has been estimated that there are more microorganisms within and upon the human body than there are human cells. By necessity, every accessible niche must be defended by innate mechanisms to prevent invasive infection, and ideally that precludes the need for robust inflammatory responses. Yet the potential for pathogens to transcend the integument actively or passively and access the bloodstream emphasizes the need for rapid and potent antimicrobial defense mechanisms within the vascular compartment. Antimicrobial peptides from leukocytes have long been contemplated as being integral to defense against these infections. Recently, platelets are increasingly recognized for their likely multiple roles in antimicrobial host defense. Platelets and leukocytes share many structural and functional archetypes. Once activated, both cell types respond in specific ways that emphasize key roles for their antimicrobial peptides in host defense efficacy: (a) targeted accumulation at sites of tissue injury or infection; (b) direct interaction with pathogens; and (c) deployment of intracellular (leukocyte phagosomes) or extracellular (platelet secretion) antimicrobial peptides. Antimicrobial peptides from these cells exert rapid, potent, and direct antimicrobial effects against organisms that commonly access the bloodstream. Experimental models in vitro and in vivo show that antimicrobial peptides from these cells significantly contribute to prevent or limit infection. Moreover, certain platelet antimicrobial proteins are multifunctional kinocidins (microbicidal chemokines) that recruit leukocytes to sites of infection, and potentiate the antimicrobial mechanisms of these cells. In turn, pathogens pre-decorated by kinocidins may be more efficiently phagocytosed and killed by leukocytes and their antimicrobial peptide arsenal. Hence, multiple and relevant interactions between platelets and leukocytes have immunologic functions yet to be fully understood. A clearer definition of these interactions, and the antimicrobial peptide effectors contributing to these functions, will significantly advance our understanding of antimicrobial host defense against invasive infection. In addition, this knowledge may accelerate development of novel anti-infective agents and strategies against pathogens that have become refractory to conventional antimicrobials.
Collapse
Affiliation(s)
- M R Yeaman
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, LAC-Harbor UCLA Medical Center, Torrance 90502, USA.
| | | |
Collapse
|
152
|
Luu RA, Gurnani K, Dudani R, Kammara R, van Faassen H, Sirard JC, Krishnan L, Sad S. Delayed expansion and contraction of CD8+ T cell response during infection with virulent Salmonella typhimurium. THE JOURNAL OF IMMUNOLOGY 2006; 177:1516-25. [PMID: 16849458 PMCID: PMC4015949 DOI: 10.4049/jimmunol.177.3.1516] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.
Collapse
Affiliation(s)
- Rachel A. Luu
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Komal Gurnani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Renu Dudani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Rajagopal Kammara
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Henk van Faassen
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Jean-Claude Sirard
- Institut National de la Santé et de la Recherche Médicale, Institut de Biologie, Campus Pasteur Lille, Lille, France
| | - Lakshmi Krishnan
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Subash Sad
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada
- Address correspondence and reprint requests to Dr. Subash Sad, Institute for Biological Sciences, National Research Council, Building M-54, 1200 Montreal Road, Room 127, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
153
|
Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci U S A 2006; 103:13503-8. [PMID: 16938894 PMCID: PMC1557385 DOI: 10.1073/pnas.0606026103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sigma factor RpoS regulates the expression of many stress response genes and is required for virulence in several bacterial species. We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logarithmically in media with low Mg(2+) concentrations. This process requires the two-component regulatory system PhoP/PhoQ, which is specifically activated in low Mg(2+). We show that PhoP controls RpoS protein turnover by serving as a transcriptional activator of the iraP (yaiB) gene, which encodes a product that enhances RpoS stability by interacting with RssB, the protein that normally delivers RpoS to the ClpXP protease for degradation. Mutation of the phoP gene rendered Salmonella as sensitive to hydrogen peroxide as an rpoS mutant after growth in low Mg(2+). In Escherichia coli, low Mg(2+) leads to only modest RpoS stabilization, and iraP is not regulated by PhoP/PhoQ. These findings add the sigma factor RpoS to the regulatory proteins and two-component systems that are elevated in a PhoP/PhoQ-dependent fashion when Salmonella face low Mg(2+) environments. Our data also exemplify the critical differences in regulatory circuits that exist between the closely related enteric bacteria Salmonella and E. coli.
Collapse
Affiliation(s)
- Xuanlin Tu
- Department of Molecular Microbiology and
| | - Tammy Latifi
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alexandre Bougdour
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed. E-mail:
or
| | - Eduardo A. Groisman
- Department of Molecular Microbiology and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
154
|
Groisman EA, Mouslim C. Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 2006; 4:705-9. [PMID: 16894339 DOI: 10.1038/nrmicro1478] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free-living organisms have the ability to gauge their surroundings and modify their gene expression patterns in ways that help them cope with new environments. Here we discuss the physiological significance of recent reports describing the ability of the Salmonella typhimurium PhoP/PhoQ two-component system to recognize and respond to host-derived antimicrobial peptides.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, Campus P.O. Box 8230, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
155
|
Weeks CS, Tanabe H, Cummings JE, Crampton SP, Sheynis T, Jelinek R, Vanderlick TK, Cocco MJ, Ouellette AJ. Matrix metalloproteinase-7 activation of mouse paneth cell pro-alpha-defensins: SER43 down arrow ILE44 proteolysis enables membrane-disruptive activity. J Biol Chem 2006; 281:28932-42. [PMID: 16822871 DOI: 10.1074/jbc.m602041200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small intestinal Paneth cells secrete alpha-defensin microbicidal peptides as mediators of innate enteric immunity. In mice, production of mature Paneth cell alpha-defensins, termed cryptdins (Crps), requires proteolytic activation of inactive precursors (pro-Crps) by the convertase matrix metalloproteinase-7. Proteolysis of mouse (pro-Crp4)(20-92) produces the specific cleavage intermediates pro-Crp4(44-92), pro-Crp4(54-92), and pro-Crp4(59-92). To identify which cleavage event enables bactericidal activity, recombinant pro-Crp4-processing intermediates were purified to homogeneity and assayed for bactericidal peptide activity. The in vitro bactericidal activities of pro-Crp4-processing intermediates were very similar to fully processed Crp4, contrasting the lack of bactericidal and membrane-disruptive activity shown by pro-Crp4(20-92). Thus, cleavage of pro-Crp4(20-92) at Ser(43) downward arrowIle(44) is sufficient to activate bactericidal activity, and amino acids in the pro-Crp4(20-43) of the proregion maintain the precursor in an inactive state. Because cationic Arg residues are determinants of Crp4 bactericidal peptide activity, we hypothesized that Asp and Glu residues in pro-Crp4(20-43) neutralize Crp4 Arg side chains in pro-Crp4(20-92). Therefore, a pro-Crp4(20-92) variant with Gly substitutions at all pro-Crp4(20-43) Asp and Glu positions ((DE/G)-pro-Crp4) was prepared, and it was bactericidal and lysed phospholipid vesicles under conditions where native pro-Crp4(20-92) lacks activity. These findings show that MMP-7 proteolysis of pro-Crp4(20-92) at Ser(43) downward arrowIle(44) converts inactive precursors to bactericidal forms by removal of covalently associated, inhibitory acidic amino acids from proximity with the Crp4 component of the molecule.
Collapse
Affiliation(s)
- Colby S Weeks
- Department of Pathology & Laboratory Medicine, Molecular Biology & Biochemistry, and Microbiology & Molecular Genetics, and Center for Immunology, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 2006; 61:795-809. [PMID: 16803592 DOI: 10.1111/j.1365-2958.2006.05271.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FliC is a natural antigen recognized by the innate and adaptive immune systems during Salmonella infection in mice and humans; however, the regulatory mechanisms governing its expression in vivo are incompletely understood. Here, we use flow cytometry to quantify fliC gene expression in single bacteria. In vitro, fliC transcription was not uniformly positive; a viable fliC-negative subpopulation was also identified. Intracellular Salmonella repressed transcription of fliC and its positive regulator fliA, but constitutively transcribed the master regulator flhD; fliC repression required ClpXP protease, known to degrade FlhD. In orally infected mice, fliC transcription was anatomically restricted: Salmonella transcribed fliC in the Peyer's Patches (PP) but not in the mesenteric lymph nodes and spleen. The intracellularly transcribed pagC promoter was upregulated by Salmonella in all tissues, defining the infected PP as a unique environment that initiates expression of intracellularly induced genes and yet permits transcription of fliC. Because a single bacterium can escape the GI tract to colonize deeper tissues, heterogeneous gene expression may have important implications for Salmonella pathogenesis: FliC-positive bacteria in the PP could stimulate inflammation and facilitate the priming of FliC-specific immune responses, while FliC-negative bacteria escape host detection in the gut and spread to systemic sites of replication.
Collapse
Affiliation(s)
- Lisa A Cummings
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
157
|
Venkatesh B, Babujee L, Liu H, Hedley P, Fujikawa T, Birch P, Toth I, Tsuyumu S. The Erwinia chrysanthemi 3937 PhoQ sensor kinase regulates several virulence determinants. J Bacteriol 2006; 188:3088-98. [PMID: 16585768 PMCID: PMC1447017 DOI: 10.1128/jb.188.8.3088-3098.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoPQ two-component system regulates virulence factors in Erwinia chrysanthemi, a pectinolytic enterobacterium that causes soft rot in several plant species. We characterized the effect of a mutation in phoQ, the gene encoding the sensor kinase PhoQ of the PhoPQ two-component regulatory system, on the global transcriptional profile of E. chrysanthemi using cDNA microarrays and further confirmed our results by quantitative reverse transcription-PCR analysis. Our results indicate that a mutation in phoQ affects transcription of at least 40 genes, even in the absence of inducing conditions. Enhanced expression of several genes involved in iron metabolism was observed in the mutant, including that of the acs operon that is involved in achromobactin biosynthesis and transport. This siderophore is required for full virulence of E. chrysanthemi, and its expression is governed by the global repressor protein Fur. Changes in gene expression were also observed for membrane transporters, stress-related genes, toxins, and transcriptional regulators. Our results indicate that the PhoPQ system governs the expression of several additional virulence factors and may also be involved in interactions with other regulatory systems.
Collapse
Affiliation(s)
- Balakrishnan Venkatesh
- Laboratory of Plant Pathology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Hernàndez Pando R, Aguilar LD, Infante E, Cataldi A, Bigi F, Martin C, Gicquel B. The use of mutant mycobacteria as new vaccines to prevent tuberculosis. Tuberculosis (Edinb) 2006; 86:203-10. [PMID: 16542875 DOI: 10.1016/j.tube.2006.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Given the variable protective efficacy generated by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Rational attenuated mutants of Mycobacterium tuberculosis are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate mutant mycobacteria, as well as the results obtained with some of these strains, in terms of attenuation, immunogenicity and level of protection, when compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on safe and live mycobacterial mutants could be promising candidates.
Collapse
Affiliation(s)
- R Hernàndez Pando
- Experimental Pathology Section, Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiràn, Vasco de Quiroga 15, Tlalpan, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
159
|
Ygberg SE, Clements MO, Rytkönen A, Thompson A, Holden DW, Hinton JCD, Rhen M. Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 2006; 74:1243-54. [PMID: 16428774 PMCID: PMC1360324 DOI: 10.1128/iai.74.2.1243-1254.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutational inactivation of the cold-shock-associated exoribonuclease polynucleotide phosphorylase (PNPase; encoded by the pnp gene) in Salmonella enterica serovar Typhimurium was previously shown to enable the bacteria to cause chronic infection and to affect the bacterial replication in BALB/c mice (M. O. Clements et al., Proc. Natl. Acad. Sci. USA 99:8784-8789, 2002). Here, we report that PNPase deficiency results in increased expression of Salmonella plasmid virulence (spv) genes under in vitro growth conditions that allow induction of spv expression. Furthermore, whole-genome microarray-based transcriptome analyses of bacteria growing inside murine macrophage-like J774.A.1 cells revealed six genes as being significantly up-regulated in the PNPase-deficient background, which included spvABC, rtcB, entC, and STM2236. Mutational inactivation of the spvR regulator diminished the increased expression of spv observed in the pnp mutant background, implying that PNPase acts upstream of or at the level of SpvR. Finally, competition experiments revealed that the growth advantage of the pnp mutant in BALB/c mice was dependent on spvR as well. Combined, our results support the idea that in S. enterica PNPase, apart from being a regulator of the cold shock response, also functions in tuning the expression of virulence genes and bacterial fitness during infection.
Collapse
Affiliation(s)
- Sofia Eriksson Ygberg
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
160
|
Calva E, Oropeza R. Two-component signal transduction systems, environmental signals, and virulence. MICROBIAL ECOLOGY 2006; 51:166-76. [PMID: 16435167 DOI: 10.1007/s00248-005-0087-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 09/19/2005] [Indexed: 05/06/2023]
Abstract
The relevance toward virulence of a variety of two-component signal transduction systems is reviewed for 16 pathogenic bacteria, together with the wide array of environmental signals or conditions that have been implicated in their regulation. A series of issues is raised, concerning the need to understand the environmental cues that determine their regulation in the infected host and in the environment outside the laboratory, which shall contribute toward the bridging of bacterial pathogenesis and microbial ecology.
Collapse
Affiliation(s)
- E Calva
- Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, 62210, Mexico.
| | | |
Collapse
|
161
|
Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59:126-41. [PMID: 16359323 DOI: 10.1111/j.1365-2958.2005.04940.x] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug efflux systems play a major role in resistance to a wide range of noxious compounds in several Gram negative species. Here, we report the drug resistance and virulence phenotypes of Salmonella mutants defective in either resistance-nodulation-division (RND)-type systems and/or in drug efflux systems belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) superfamilies. We determined that nine potential drug transporters contribute to drug resistance of Salmonella and found that the Salmonella-specific MdsABC system conferred resistance to a variety of toxic compounds. The RND-type MdsAB system could function with either MdsC, which is encoded in the same operon, or TolC as the outer membrane component. Although the Salmonella EmrAB, MdfA and MdtK are 90% identical in their amino acid sequences to their Escherichia coli homologues, the drug specificity of Salmonella transporters was different from that reported for equivalent E. coli transporters. Deletion of the macAB genes attenuated Salmonella virulence and a strain lacking all drug efflux systems was avirulent when mice were inoculated by the oral route. The promoter region of the macAB drug efflux system genes harbours a binding site for the response regulator PhoP, which functions to repress macAB transcription. The PhoP/PhoQ two-component system is a major regulator of Salmonella virulence, which underscores the connection between drug efflux systems and virulence.
Collapse
Affiliation(s)
- Kunihiko Nishino
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
162
|
Bergman MA, Cummings LA, Alaniz RC, Mayeda L, Fellnerova I, Cookson BT. CD4+-T-cell responses generated during murine Salmonella enterica serovar Typhimurium infection are directed towards multiple epitopes within the natural antigen FliC. Infect Immun 2005; 73:7226-35. [PMID: 16239517 PMCID: PMC1273846 DOI: 10.1128/iai.73.11.7226-7235.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flagellar filament protein FliC is a natural antigen recognized by memory CD4+ T cells recovered from Salmonella enterica serovar Typhimurium-infected humans and mice. To further investigate T-cell responses to FliC, we derived FliC-specific CD4+-T-cell clones from mice of two different haplotypes following oral S. enterica serovar Typhimurium infection. Using C-terminal truncations of MalE-FliC recombinant fusion proteins, we mapped antigenic activity to four different regions of FliC; three of the four epitope-containing regions were present in both FliC and the alternate flagellin subunit FljB. We determined that two novel FliC epitopes were also present in flagellins from several gram-negative enteric bacterial species: E(k)-restricted FliC 80-94 (amino acids 80 to 94) and A(b)-restricted FliC 455-469. Further mapping confirmed the presence of two previously identified FliC epitopes: A(k)-restricted FliC 339-350 and A(b)-restricted FliC 428-442. Therefore, like the recognition site of the innate immune receptor Toll-like receptor 5, three of four FliC epitopes recognized by CD4+ T cells colocalize in the D0/D1 domains of FliC. Salmonella-infected macrophages and dendritic cells stimulated epitope-specific CD4+-T-cell proliferation; infected dendritic cells also activated T cells to produce gamma interferon. These data demonstrate that Salmonella infection generates murine CD4+-T-cell responses to multiple epitopes in the natural antigen FliC and that recognition of infected phagocytes by FliC-specific CD4+ T cells triggers effector functions known to be essential for protective immunity. Together, these data suggest that FliC-specific CD4+ T cells may contribute to cell-mediated host defenses against Salmonella.
Collapse
Affiliation(s)
- Molly A Bergman
- Department of Microbiology, University of Washington Medical Center, Box 357110, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
163
|
Coconnier-Polter MH, Liévin-Le Moal V, Servin AL. A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica Serovar Typhimurium by triggering lethal bacterial membrane damage. Appl Environ Microbiol 2005; 71:6115-20. [PMID: 16204528 PMCID: PMC1265971 DOI: 10.1128/aem.71.10.6115-6120.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human gastrointestinal microbiota produces antagonistic activities against gastrointestinal bacterial pathogens. We undertook a study to investigate the mechanism(s) by which a Lactobacillus acidophilus strain of human microbiota origin antagonizes the gram-negative enteroinvasive pathogen Salmonella enterica serovar Typhimurium. We showed that the cell-free culture supernatant of L. acidophilus strain LB (LB-CFCS) induced the following effects in S. enterica SL1344: (i) a decrease in intracellular ATP that paralleled bacterial death, (ii) the release of lipopolysaccharide, (iii) permeabilization of the bacterial membrane, and (iv) an increase in the sensitivity of Salmonella to the lytic action of sodium dodecyl sulfate. Finally, we showed using two mutant strains of Salmonella, PhoP MS7953s and PmrA JKS1170, that the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB that regulate the mechanisms of resistance to antibacterial agents in Salmonella did not influence the anti-Salmonella effect of LB-CFCS.
Collapse
|
164
|
Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, McClelland M, Fang FC, De Moor B, Vanderleyden J, Marchal K. Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 2005; 60:462-74. [PMID: 15883881 DOI: 10.1007/s00239-004-0212-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/20/2004] [Indexed: 01/04/2023]
Abstract
The PhoPQ two-component system acts as a transcriptional regulator that responds to Mg(2+) starvation both in Escherichia coli and Salmonella typhimurium (Garcia et al. 1996; Kato et al. 1999). By monitoring the availability of extracellular Mg(2+), this two-component system allows S. typhimurium to sense the transition from an extracellular environment to a subcellular location. Concomitantly with this transition, a set of virulence factors essential for survival in the intracellular environment is activated by the PhoPQ system (Groisman et al. 1989; Miller et al. 1989). Compared to nonpathogenic strains, such as E. coli K12, the PhoPQ regulon in pathogens must contain target genes specifically contributing to the virulence phenotype. To verify this hypothesis, we compared the composition of the PhoPQ regulon between E. coli and S. typhimurium using a combination of expression experiments and motif data. PhoPQ-dependent genes in both organisms were identified from PhoPQ-related microarray experiments. To distinguish between direct and indirect targets, we searched for the presence of the regulatory motif in the promoter region of the identified PhoPQ-dependent genes. This allowed us to reconstruct the direct PhoPQ-dependent regulons in E. coli K12 and S. typhimurium LT2. Comparison of both regulons revealed a very limited overlap of PhoPQ-dependent genes between both organisms. These results suggest that the PhoPQ system has acquired a specialized function during evolution in each of these closely related species that allows adaptation to the specificities of their lifestyles (e.g., pathogenesis in S. typhimurium).
Collapse
Affiliation(s)
- Pieter Monsieurs
- ESAT-SCD, K.U. Leuven, Kasteelpark Arenberg 10, 3001, Leuven-Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461-72. [PMID: 16096064 DOI: 10.1016/j.cell.2005.05.030] [Citation(s) in RCA: 414] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/08/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
PhoQ is a membrane bound sensor kinase important for the pathogenesis of a number of Gram-negative bacterial species. PhoQ and its cognate response regulator PhoP constitute a signal-transduction cascade that controls inducible resistance to host antimicrobial peptides. We show that enzymatic activity of Salmonella typhimurium PhoQ is directly activated by antimicrobial peptides. A highly acidic surface of the PhoQ sensor domain participates in both divalent-cation and antimicrobial-peptide binding as a first step in signal transduction across the bacterial membrane. Identification of PhoQ signaling mutants, binding studies with the PhoQ sensor domain, and structural analysis of this domain can be incorporated into a model in which antimicrobial peptides displace divalent cations from PhoQ metal binding sites to initiate signal transduction. Our findings reveal a molecular mechanism by which bacteria sense small innate immune molecules to initiate a transcriptional program that promotes bacterial virulence.
Collapse
Affiliation(s)
- Martin W Bader
- Department of Microbiology, University of Washington Medical School, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Brodsky IE, Ghori N, Falkow S, Monack D. Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol Microbiol 2005; 55:954-72. [PMID: 15661016 DOI: 10.1111/j.1365-2958.2004.04444.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) infects a wide variety of mammalian hosts and in rodents causes a typhoid-like systemic disease involving replication of bacteria inside macrophages within reticuloendothelial tissues. Previous studies demonstrated that the mig-14 and virK genes of Salmonella enterica are important in bacterial resistance to anti-microbial peptides and are necessary for continued replication of S. typhimurium in the liver and spleen of susceptible mice after orogastric inoculation. In this work we report that inflammatory signalling via interferon-gamma (IFN-gamma) is crucial to controlling replication of mig-14 mutant bacteria within the liver and spleen of mice after oral infection. Using a Salmonella persistence model recently developed in our laboratory, we further demonstrate that mig-14 contributes to long-term persistence of Salmonella in the spleen and mesenteric lymph nodes of chronically infected mice. Both mig-14 and virK contribute to the survival of Salmonella in macrophages treated with IFN-gamma and are necessary for resistance to cathelin-related anti-microbial peptide (CRAMP), an anti-microbial peptide expressed at high levels in activated mouse macrophages. We also show that both Mig-14 and VirK inhibit the binding of CRAMP to Salmonella, and demonstrate that Mig-14 is an inner membrane-associated protein. We further demonstrate by transmission electron microscopy that the primary locus of CRAMP activity appears to be intracytoplasmic, rather than at the outer membrane, suggesting that Mig-14 may prevent the penetration of the inner membrane by CRAMP. Together, these data indicate an important role for mig-14 in anti-microbial peptide resistance in vivo, and show that this resistance is important to the survival of Salmonella in systemic sites during both acute and persistent infection.
Collapse
Affiliation(s)
- Igor E Brodsky
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
167
|
Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 2005; 56:492-508. [PMID: 15813739 DOI: 10.1111/j.1365-2958.2005.04553.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of the transcriptome of slyA mutant Salmonella enterica serovar Typhimurium revealed that many SlyA-dependent genes, including pagC, pagD, ugtL, mig-14, virK, phoN, pgtE, pipB2, sopD2, pagJ and pagK, are also controlled by the PhoP/PhoQ regulatory system. Many SlyA- and PhoP/PhoQ-co-regulated genes have functions associated with the bacterial envelope, and some have been directly implicated in virulence and resistance to antimicrobial peptides. Purified His-tagged SlyA binds to the pagC and mig-14 promoters in regions homologous to a previously proposed 'SlyA-box'. The pagC promoter lacks a consensus PhoP binding site and does not bind PhoP in vitro, suggesting that the effect of PhoP on pagC transcription is indirect. Stimulation of pagC expression by PhoP requires SlyA. Levels of SlyA protein and mRNA are not significantly changed under low-magnesium PhoP-inducing conditions in which pagC expression is profoundly elevated, however, indicating that the PhoP/PhoQ system does not activate pagC expression by altering SlyA protein concentration. Models are proposed in which PhoP may control SlyA activity via a soluble ligand or SlyA may function as an anti-repressor to allow PhoP activation. The absence of almost all SlyA-activated genes from the Escherichia coli K12 genome suggests that the functional linkage between the SlyA and PhoP/PhoQ regulatory systems arose as Salmonella evolved its distinctive pathogenic lifestyle.
Collapse
|
168
|
Tamayo R, Choudhury B, Septer A, Merighi M, Carlson R, Gunn JS. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 2005; 187:3391-9. [PMID: 15866924 PMCID: PMC1112023 DOI: 10.1128/jb.187.10.3391-3399.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In response to the in vivo environment, the Salmonella enterica serovar Typhimurium lipopolysaccharide (LPS) is modified. These modifications are controlled in part by the two-component regulatory system PmrA-PmrB, with the addition of 4-aminoarabinose (Ara4N) to the lipid A and phosphoethanolamine (pEtN) to the lipid A and core. Here we demonstrate that the PmrA-regulated STM4118 (cptA) gene is necessary for the addition of pEtN to the LPS core. pmrC, a PmrA-regulated gene necessary for the addition of pEtN to lipid A, did not affect core pEtN addition. Although imparting a similar surface charge modification as Ara4N, which greatly affects polymyxin B resistance and murine virulence, neither pmrC nor cptA plays a dramatic role in antimicrobial peptide resistance in vitro or virulence in the mouse model. Therefore, factors other than surface charge/electrostatic interaction contribute to resistance to antimicrobial peptides such as polymyxin B.
Collapse
Affiliation(s)
- R Tamayo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
169
|
Gibbons HS, Kalb SR, Cotter RJ, Raetz CRH. Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol 2005; 55:425-40. [PMID: 15659161 DOI: 10.1111/j.1365-2958.2004.04409.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid A of Salmonella typhimurium is covalently modified with additional acyl and/or polar substituents in response to activation of the PhoP/PhoQ and/or PmrA/PmrB signalling systems, which are induced by growth at low Mg2+ concentrations and mild acid pH respectively. Although these conditions are thought to exist within macrophage phagolysosomes, no direct evidence for lipid A modification after endocytosis has been presented. To address this issue, we grew S. typhimurium inside RAW264.7 cells in the presence of 32Pi, and then isolated the labelled lipid A fraction, which was found to be extensively derivatized with phosphoethanolamine, aminoarabinose, 2-hydroxymyristate and/or palmitate moieties. S. typhimurium grown in tissue culture medium synthesized lipid A molecules lacking all these substituents with the exception of the 2-hydroxymyristate chain, which was still present. Using defined minimal media to simulate the intracellular pH and Mg2+ concentrations of endosomes, we found that lipid A of S. typhimurium grown in an acidic, low-Mg2+ medium closely resembled lipid A isolated from bacteria internalized by RAW264.7 cells. A subset of S. typhimurium lipid A modifications were induced by low Mg2+ alone. Escherichia coli K-12 W3110 modified its lipid A molecules in response to growth under acidic but not low-Mg2+ conditions. Growth in a high-Mg2+, mildly alkaline medium resulted in suppression of most lipid A modifications with the exception of the 2-hydroxymyristate in S. typhimurium. Although lpxO transcription was stimulated by growth on low Mg2+, the biosynthesis of lipid A species containing 2-hydroxymyristate was independent of PhoP/PhoQ and PmrA/PmrB in S. typhimurium. Our labelling methods should be applicable to studies of lipid A modifications induced by endocytosis of diverse bacteria.
Collapse
Affiliation(s)
- Henry S Gibbons
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
170
|
Tanabe H, Ayabe T, Bainbridge B, Guina T, Ernst RK, Darveau RP, Miller SI, Ouellette AJ. Mouse paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infect Immun 2005; 73:2312-20. [PMID: 15784576 PMCID: PMC1087394 DOI: 10.1128/iai.73.4.2312-2320.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse Paneth cells respond to bacteria and bacterial cell surface antigens by discharging secretory granules into the lumen of small intestinal crypts (T. Ayabe et al., Nat. Immunol. 1:113-118, 2000). To investigate mechanisms regulating these responses, purified surface glycolipid molecules with known acyl chain modifications and attenuated properties were tested for the ability to stimulate Paneth cell secretion. The antigens included lipopolysaccharide (LPS) from wild-type and msbB-null Escherichia coli and phoP-null and phoP-constitutive Salmonella enterica serovar Typhimurium strains, as well as LPS, lipid A, and lipoteichoic acid from Pseudomonas aeruginosa and Listeria monocytogenes grown in Mg2+-limited media. Measurements of total secreted protein, secreted lysozyme, and the bactericidal peptide activities of collected secretions showed that the purified antigens elicited similar secretory responses from Paneth cells in mouse crypts ex vivo, regardless of glycolipid acyl chain modification. Despite their impaired Tlr4 pathway, Paneth cells in ex vivo C3H/HeJ mouse crypts released equivalent amounts of bactericidal peptide activity in response to purified bacterial antigens, including lipid A. Thus, mouse Paneth cells respond equivalently to purified bacterial cell envelope glycolipids, regardless of functional Tlr4, the structural properties of glycolipid acyl chains, or their association with virulence in humans.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Department of Pathology, School of Medicine, College of Health Sciences, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Bergman MA, Cummings LA, Barrett SLR, Smith KD, Lara JC, Aderem A, Cookson BT. CD4+ T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 2005; 73:1350-6. [PMID: 15731032 PMCID: PMC1064935 DOI: 10.1128/iai.73.3.1350-1356.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysaccharide (LPS). PhoP/PhoQ, a regulon controlling Salmonella virulence and remodeling of LPS to resist innate immunity, coordinately represses production of surface-exposed antigens recognized by CD4+ T cells and TLRs. These data suggest that genetically coordinated surface modifications may provide a growth advantage for Salmonella in host tissues by limiting both innate and adaptive immune recognition.
Collapse
Affiliation(s)
- Molly A Bergman
- Department of Laboratory Medicine and Microbiology, University of Washington Medical Center, Mailstop 357110, 1959 NE Pacific Ave., Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Llama-Palacios A, López-Solanilla E, Rodríguez-Palenzuela P. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes. J Bacteriol 2005; 187:2157-62. [PMID: 15743964 PMCID: PMC1064042 DOI: 10.1128/jb.187.6.2157-2162.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.
Collapse
|
173
|
Pizarro-Cerdá J, Tedin K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 2005; 52:1827-44. [PMID: 15186428 DOI: 10.1111/j.1365-2958.2004.04122.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous, overlapping global regulatory systems mediate the environmental signalling controlling the virulence of Salmonella typhimurium. With both extra- and intracellular lifestyles, unravelling the mechanisms involved in regulating Salmonella pathogenesis has been complex. Here, we report a factor co-ordinating environmental signals with global regulators involved in pathogenesis. An S. typhimuriumDeltarelADeltaspoT strain deficient in guanosine tetraphosphate (ppGpp) synthesis was found to be highly attenuated in vivo and non-invasive in vitro. The DeltarelADeltaspoT strain exhibited severely reduced expression of hilA and invF, encoding major transcriptional activators required for Salmonella pathogenicity island 1 (SPI-1) gene expression and at least two other pathogenicity islands. None of the growth conditions intended to mimic the intestinal milieu was capable of inducing hilA expression in the absence of ppGpp. However, the expression of global regulators of Salmonella virulence, RpoS and PhoP/Q, and RpoS- and PhoP/Q-dependent, non-virulence-related genes was not significantly different from the wild-type strain. The results indicate that ppGpp plays a central role as a regulator of virulence gene expression in S. typhimurium and implicates ppGpp as a major factor in the environmental and host-dependent regulation of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité Interactions Bactéries-Cellules, 28 Rue du Docteur Roux, F-75724 Cedex 15 Paris, France
| | | |
Collapse
|
174
|
Orihuela CJ, Fogg G, DiRita VJ, Tuomanen E. Bacterial Interactions with Mucosal Epithelial Cells. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50044-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
175
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
176
|
Shi Y, Cromie MJ, Hsu FF, Turk J, Groisman EA. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol 2004; 53:229-41. [PMID: 15225317 DOI: 10.1111/j.1365-2958.2004.04107.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Salmonella enterica, the PhoP-PhoQ two-component system governs resistance to structurally different antimicrobial peptides including the alpha-helical magainin 2, the beta-sheet defensins and the cyclic lipopeptide polymyxin B. To identify the PhoP-regulated determinants mediating peptide resistance, we prepared a plasmid library from a phoP mutant, introduced it into a phoP mutant and selected for magainin-resistant clones. One of the clones harboured the PhoP-activated ugtL gene, deletion of which rendered Salmonella susceptible to magainin 2 and polymyxin B, but not defensin HNP-1. We established that ugtL encodes an inner membrane protein that promotes the formation of monophosphorylated lipid A in the lipopolysaccharide. Inactivation of both ugtL and the regulatory gene pmrA, which controls lipid A modifications required for resistance to polymxyin B (but not to magainin 2) and is post-transcriptionally activated by the PhoP-PhoQ system, resulted in a strain that was as susceptible to polymyxin B as a phoP mutant. The most frequently recovered clone harboured the yqjA gene, which we show is PhoP regulated and required for resistance to magainin 2 but not to polymyxin B or defensin HNP-1. Our results indicate that different PhoP-mediated modifications in lipid A are necessary for resistance to different antimicrobial peptides.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Molecular Microbiology, Campus Box 8230, Washington University, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
177
|
Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ. Functional Analysis of the α-Defensin Disulfide Array in Mouse Cryptdin-4. J Biol Chem 2004; 279:44188-96. [PMID: 15297466 DOI: 10.1074/jbc.m406154200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-defensin antimicrobial peptide family is defined by a unique tridisulfide array. To test whether this invariant structural feature determines alpha-defensin bactericidal activity, mouse cryptdin-4 (Crp4) tertiary structure was disrupted by pairs of site-directed Ala for Cys substitutions. In a series of Crp4 disulfide variants whose cysteine connectivities were confirmed using NMR spectroscopy and mass spectrometry, mutagenesis did not induce loss of function. To the contrary, the in vitro bactericidal activities of several Crp4 disulfide variants were equivalent to or greater than those of native Crp4. Mouse Paneth cell alpha-defensins require the proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7), prompting an analysis of the relative sensitivities of native and mutant Crp4 and pro-Crp4 molecules to degradation by MMP-7. Although native Crp4 and the alpha-defensin moiety of proCrp4 resisted proteolysis completely, all disulfide variants were degraded extensively by MMP-7. Crp4 bactericidal activity was eliminated by MMP-7 cleavage. Thus, rather than determining alpha-defensin bactericidal activity, the Crp4 disulfide arrangement confers essential protection from degradation by this critical activating proteinase.
Collapse
Affiliation(s)
- Atsuo Maemoto
- Department of Pathology, College of Medicine, University of California, Irvine 92697-4800, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Zaharik ML, Cullen VL, Fung AM, Libby SJ, Kujat Choy SL, Coburn B, Kehres DG, Maguire ME, Fang FC, Finlay BB. The Salmonella enterica serovar typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 2004; 72:5522-5. [PMID: 15322058 PMCID: PMC517450 DOI: 10.1128/iai.72.9.5522-5525.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nramp1 is a transporter that pumps divalent cations from the vacuoles of phagocytic cells and is associated with the innate resistance of mice to diverse intracellular pathogens. We demonstrate that sitA and mntH, genes encoding high-affinity metal ion uptake systems in Salmonella enterica serovar Typhimurium, are upregulated when Salmonella is internalized by Nramp1-expressing macrophages and play an essential role in systemic infection of congenic Nramp1-expressing mice.
Collapse
Affiliation(s)
- Michelle L Zaharik
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Roland K, Tinge S, Warner E, Sizemore D. Comparison of Different Attenuation Strategies in Development of a Salmonella hadar Vaccine. Avian Dis 2004; 48:445-52. [PMID: 15529966 DOI: 10.1637/7106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this work was to develop a live, attenuated vaccine strain to protect chickens against colonization by group C Salmonella. We constructed two candidate vaccines: a deltacya deltacrp derivative and a deltaphoP derivative of Salmonella hadar. White Leghorn chickens were vaccinated at day of age and at 2 wk with one of the two strains. A nonvaccinated group served as a control. At 4 wk of age, all birds were challenged with wild-type S. hadar and necropsied 6 days later. Numbers of S. hadar in the ceca were determined. Enzyme-linked immunosorbent assay-derived serum immunoglobulin G responses against S. hadar lipopolysaccharide indicated that both strains induced a serum antibody response. The average optical density450 for birds vaccinated with the deltaphoP or deltacya deltacrp derivatives was 0.456 and 0.881, respectively. Although the deltacya deltacrp derivative induced higher levels of serum antibody, it did not provide an immune response protective against colonization by S. hadar. Conversely, birds vaccinated with the deltaphoP strain showed significant protection against S. hadar challenge. Seventy percent of the nonvaccinates, 60% of the deltacya deltacrp vaccinates, and 15% of deltaphoP vaccinates were positive for S. hadar in tissues. In a second experiment, birds were vaccinated with either the deltaphoP strain or buffer and challenged with a 10-fold higher dose than in the first experiment. After challenge, all of the birds in both groups were colonized. The geometric mean number of cecal S. hadar isolated from the control group was 1.0 x 10(6) colony-forming units (CFU)/g, and from the vaccinated group, this value was 32 CFU/g, indicating a four to five log reduction in colonization by the challenge strain.
Collapse
Affiliation(s)
- Kenneth Roland
- AVANT Immunotherapeutics, Inc., 8620 Pennell Drive, Overland, MO 63114, USA
| | | | | | | |
Collapse
|
180
|
Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124-33. [PMID: 15205413 PMCID: PMC421605 DOI: 10.1128/jb.186.13.4124-4133.2004] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with aminoarabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
181
|
Powers JPS, Rozek A, Hancock REW. Structure-activity relationships for the beta-hairpin cationic antimicrobial peptide polyphemusin I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:239-50. [PMID: 15134657 DOI: 10.1016/j.bbapap.2003.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/01/2003] [Accepted: 12/10/2003] [Indexed: 11/29/2022]
Abstract
The solution structure of polyphemusin I was determined using (1)H-NMR spectroscopy. Polyphemusin I was found to be an amphipathic, beta-hairpin connected by a type I' beta-turn. The 17 low-energy structures aligned very well over the beta-sheet region while both termini were poorly defined due in part to a hinge-like region centred in the molecule about arginine residues 6 and 16. Conversely, a linear analogue, PM1-S, with all cysteines simultaneously replaced with serine was found to be dynamic in nature, and a lack of medium and long-range NOEs indicated that this molecule displayed no favoured conformation. Circular dichroism (CD) spectroscopy confirmed that in solution, 50% trifluoroethanol (TFE) and in the presence of liposomes, PM1-S remained unstructured. The antimicrobial activity of PM1-S was found to be 4- to 16-fold less than that of polyphemusin I and corresponded with a 4-fold reduction in bacterial membrane depolarization. Both peptides were able to associate with lipid bilayers in a similar fashion; however, PM1-S was completely unable to translocate model membranes while polyphemusin I retained this activity. It was concluded that the disulfide-constrained, beta-sheet structure of polyphemusin I is required for maximum antimicrobial activity. Disruption of this structure results in reduced antimicrobial activity and completely abolishes membrane translocation indicating that the linear PM1-S acts through a different antimicrobial mechanism.
Collapse
Affiliation(s)
- Jon-Paul S Powers
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Boulevard, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
182
|
Shi Y, Latifi T, Cromie MJ, Groisman EA. Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem 2004; 279:38618-25. [PMID: 15208313 DOI: 10.1074/jbc.m406149200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PhoP/PhoQ two-component system is a master regulator that governs the ability of Salmonella to cause a lethal infection in mice, the adaptation to low Mg(2+) environments, and resistance to a variety of antimicrobial peptides. We have recently established that the PhoP-activated ugtL gene is required for resistance to the antimicrobial peptides magainin 2 and polymyxin B. Here we report that ugtL transcription requires not only the PhoP protein but also the virulence regulatory protein SlyA. The PhoP protein footprinted two regions of the ugtL promoter, mutation of either one of which was sufficient to abolish ugtL transcription. Although the SlyA protein is a transcriptional activator of the ugtL gene, it footprinted the ugtL promoter at a region located downstream of the transcription start site. The PhoP protein footprinted the slyA promoter, indicating that it controls slyA transcription directly. The slyA mutant was hypersensitive to magainin 2 and polymyxin B, suggesting that the virulence attenuation exhibited by slyA mutants may be caused by hypersensitivity to antimicrobial peptides. We propose that the PhoP and SlyA proteins control ugtL transcription using a feed-forward loop design.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | | | |
Collapse
|
183
|
Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 2004; 101:2422-7. [PMID: 14983025 PMCID: PMC356966 DOI: 10.1073/pnas.0304455101] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides have established an important role in the defense against extracellular infections, but the expression of cationic peptides within macrophages as an antibacterial effector mechanism against intracellular pathogens has not been demonstrated. Macrophage expression of the murine cathelicidin-related antimicrobial peptide (CRAMP) was increased after infection by the intracellular pathogen Salmonella typhimurium, and this increase required reactive oxygen intermediates. By using CRAMP-deficient mice or synthetic CRAMP peptide, we found that CRAMP impaired Salmonella cell division in vivo and in vitro, resulting in long filamentous bacteria. This impaired bacterial cell division also depended on intracellular elastase-like serine protease activity, which can proteolytically activate cathelicidins. Macrophage serine protease activity induced filamentation and enhanced the activity of CRAMP in vitro. A peptide-sensitive Salmonella mutant showed enhanced survival within macrophages derived from CRAMP-deficient mice, indicating that Salmonella can sense and respond to cationic peptides in the intracellular environment. Although cationic peptides have been hypothesized to have activity against pathogens within macrophages, this work provides experimental evidence that the antimicrobial arsenal of macrophages includes cathelicidins. These results show that intracellular reactive oxygen intermediates and proteases regulate macrophage CRAMP expression and activity to impair the replication of an intracellular bacterial pathogen, and they highlight the cooperativity between macrophage antibacterial effectors.
Collapse
Affiliation(s)
- Carrie M Rosenberger
- Department of Microbiology and Immunology and Biotechnology Laboratory, University of British Columbia, 237-6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
184
|
Baud D, Benyacoub J, Revaz V, Kok M, Ponci F, Bobst M, Curtiss R, De Grandi P, Nardelli-Haefliger D. Immunogenicity against human papillomavirus type 16 virus-like particles is strongly enhanced by the PhoPc phenotype in Salmonella enterica serovar Typhimurium. Infect Immun 2004; 72:750-6. [PMID: 14742517 PMCID: PMC321624 DOI: 10.1128/iai.72.2.750-756.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Salmonella strains have been widely used to deliver heterologous antigens and induce immune responses in vaccinated animals and humans. It remains to be established, however, how these bacteria mount an immune response; this has prevented the rational design of vaccines. Here we report for the first time that a particular genetic program, PhoPc, is necessary for recombinant Salmonella strains to induce an antibody response to a heterologous antigen, the human papillomaviruses type 16 (HPV16) virus-like particle (VLP). The PhoPc phenotype results from a point mutation in phoQ, the gene encoding the sensor component of a two-component regulatory system (PhoP-PhoQ) that controls the expression of a number of virulence factors in Salmonellae. To demonstrate that immunogenicity of the viral antigen expressed by the bacterial vector was dependent on the PhoPc phenotype, we have expressed the phoQ mutant gene (phoQ24) in two differently attenuated Salmonella enterica serovar Typhimurium strains. Our data show extrachromosomal phoQ24 to be dominant over the chromosomal copy of the phoQ gene, conferring the PhoPc phenotype on the recipient strains. In addition, activation of PhoPQ-regulated genes by the plasmid-encoded PhoQ24 did not alter bacterial survival and conferred immunogenicity to the HPV16 VLP expressed in the two S. enterica serovar Typhimurium backgrounds, inducing the production of HPV-specific antibodies in mice. This strongly suggests that at least one of the PhoP-regulated genes is necessary for mounting an efficient antibody response to HPV16 VLP. This finding sets the stage for further development of a Salmonella-based vaccine against HPV infection and cervical cancer.
Collapse
Affiliation(s)
- David Baud
- Department of Gynaecology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Sha J, Kozlova EV, Fadl AA, Olano JP, Houston CW, Peterson JW, Chopra AK. Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila. Infect Immun 2004; 72:1084-95. [PMID: 14742556 PMCID: PMC321642 DOI: 10.1128/iai.72.2.1084-1095.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 10/23/2003] [Accepted: 11/03/2003] [Indexed: 11/20/2022] Open
Abstract
By using a mini-transposon, we obtained two mutated strains of a diarrheal isolate, SSU, of Aeromonas hydrophila that exhibited a 50 to 53% reduction in the hemolytic activity and 83 to 87% less cytotoxic activity associated with the cytotoxic enterotoxin (Act). Act is a potent virulence factor of A. hydrophila and has been shown to contribute significantly to the development of both diarrhea and septicemia in animal models. Subsequent cloning and DNA sequence analysis revealed that transposon insertion occurred at different locations in these two mutants within the same 1,890-bp open reading frame for the glucose-inhibited division gene (gidA). A similar reduction in hemolytic (46%) and cytotoxic (81%) activity of Act was noted in the gidA isogenic mutant of A. hydrophila that was generated by marker exchange mutagenesis. Northern blot analysis revealed that the transcription of the cytotoxic enterotoxin gene (act) was not altered in the gidA transposon and isogenic mutants. However, by generating a chromosomal act::alkaline phosphatase gene (phoA) reporter construct, we demonstrated significantly reduced phosphatase activity in these mutants, indicating the effect of glucose-inhibited division (GidA) protein in modulating act gene expression at the translational level. The biological effects of Act in the gidA mutants were restored by complementation. The virulence of the gidA mutants in mice was dramatically reduced compared to the those of the wild-type (WT) and complemented strains of A. hydrophila. The histopathological examination of lungs, in particular, indicated severe congestion, alveolar hemorrhage, and acute inflammatory infiltrate in the interstitial compartment and the alveolar spaces when mice were infected with the WT and complemented strains. Minimal-to-mild changes were noted in the lungs with the gidA mutants. Taken together, our data indicate for the first time that GidA regulates the most-potent virulence factor of A. hydrophila, Act.
Collapse
Affiliation(s)
- Jian Sha
- Departments of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Tanabe H, Qu X, Weeks CS, Cummings JE, Kolusheva S, Walsh KB, Jelinek R, Vanderlick TK, Selsted ME, Ouellette AJ. Structure-activity determinants in paneth cell alpha-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem 2003; 279:11976-83. [PMID: 14702345 DOI: 10.1074/jbc.m310251200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paneth cells secrete microbicidal enteric alpha-defensins into the small intestinal lumen, and cryptdin-4 (Crp4) is the most bactericidal of the mouse alpha-defensin peptides in vitro. Here, site-directed Arg to Asp mutations in Crp4 have been shown to attenuate or eliminate microbicidal activity against all of the bacterial species tested regardless of the Arg residue position. R31D/R32D charge-reversal mutagenesis at the C terminus and mutations at R16D/R18D, R16D/R24D, and R18D/R24D in the Crp4 polypeptide chain eliminated in vitro bactericidal activity, blocked peptide-membrane interactions, as well as Crp4-mediated membrane vesicle disruption. Lys for Arg charge-neutral substitutions in (R16K/R18K)-Crp4 did not alter the bactericidal activity relative to Crp4, showing that bactericidal activity appears not to require the guanidinium side chain of Arg at those two positions. Partial restoration of (R31D/R32D)-Crp4 bactericidal activity occurred when an electropositive Arg for Gly substitution was introduced at the peptide N terminus and the (G1R/R31D/R32D)-Crp4 peptide exhibited intermediate membrane binding capability. Also, the loss of peptide bactericidal activity in (G1D/R31D/R32D)-Crp4 and (R16D/R24D)-Crp4 mutants corresponded with diminished phospholipid vesicle disruptive activity. Fluorophore leakage from anionic phospholipid vesicles induced by the charge-reversal variants was negligible relative to Crp4 and lower than that induced by pro-Crp4, the inactive Crp4 precursor. Thus, Arg residues function as determinants of Crp4 bactericidal activity by facilitating or enabling target cell membrane disruption. The role of the Arg residues, however, was surprisingly independent of their position in the polypeptide chain.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Departments of Pathology, College of Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 2003; 50:219-30. [PMID: 14507376 DOI: 10.1046/j.1365-2958.2003.03675.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cationic antimicrobial peptides (CAMP) represent a conserved and highly effective component of innate immunity. During infection, the Gram-negative pathogen Salmonella typhimurium induces different mechanisms of CAMP resistance that promote pathogenesis in animals. This study shows that exposure of S. typhimurium to sublethal concentrations of CAMP activates the PhoP/PhoQ and RpoS virulence regulons, while repressing the transcription of genes required for flagella synthesis and the invasion-associated type III secretion system. We further demonstrate that growth of S. typhimurium in low doses of the alpha-helical peptide C18G induces resistance to CAMP of different structural classes. Inducible resistance depends on the presence of PhoP, indicating that the PhoP/PhoQ system can sense sublethal concentrations of cationic antimicrobial peptides. Growth of S. typhimurium in the presence of CAMP also leads to RpoS-dependent protection against hydrogen peroxide. Because bacterial resistance to oxidative stress and CAMP are induced during infection of animals, CAMP may be an important signal recognized by bacteria on colonization of animal tissues.
Collapse
Affiliation(s)
- Martin W Bader
- Departments of Microbiology and Laboratory Medicine, University of Washington Medical School, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Haines LR, Hancock REW, Pearson TW. Cationic Antimicrobial Peptide Killing of African Trypanosomes andSodalis glossinidius, a Bacterial Symbiont of the Insect Vector of Sleeping Sickness. Vector Borne Zoonotic Dis 2003; 3:175-86. [PMID: 14733670 DOI: 10.1089/153036603322662165] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nine biochemically distinct cationic antimicrobial peptides were tested in vitro for their effects on bloodstream forms and procyclic (insect) forms of African trypanosomes, the protozoan parasites that cause African sleeping sickness in humans and trypanosomiasis in domestic animals. At low concentrations, one peptide completely inhibited growth of bloodstream forms, one inhibited procyclic forms, and five inhibited both trypanosome life cycle stages. The peptides were also tested on Sodalis glossinidius, a bacterial symbiont of tsetse flies. S. glossinidius was highly resistant to seven of the nine peptides, including both that specifically inhibited either bloodstream or procyclic forms and three of the five that inhibited both trypanosome life cycle stages. The results indicate that several of these peptides may be ideal candidates for therapy of trypanosome infected mammals or for transgenic expression in S. glossinidius as a strategy for inhibiting trypanosome survival, development, and maturation in tsetse and interference with transmission of African sleeping sickness.
Collapse
Affiliation(s)
- Lee R Haines
- Department of Biochemistry and Microbiology, University of Victoria, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
189
|
Affiliation(s)
- Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
190
|
Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2003; 75:49-58. [PMID: 14525966 DOI: 10.1189/jlb.0503249] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is exposed to a wide range of microorganisms. The expression of antimicrobial peptides has been demonstrated in different regions of the GI tract, predominantly in epithelial cells, which represent the first host cells with which the microorganisms have to interact for invasion. The intestinal epithelial monolayer is complex, consisting of different cell types, and most have a limited lifespan. Of the GI antimicrobial peptides, alpha- and beta-defensins have been studied the most and are expressed by distinct types of epithelial cells. Enteric alpha-defensin expression is normally restricted to Paneth and intermediate cells in the small intestine. However, there are important differences between mice and humans in the processing of the precursor forms of enteric alpha-defensins. Parasite infection induces an increase in the number of enteric alpha-defensin-expressing Paneth and intermediate cells in the murine small intestine. In the chronically inflamed colonic mucosa, metaplastic Paneth cells (which are absent in the normal colon) also express enteric alpha-defensins. Epithelial expression of beta-defensins may be constitutive or inducible by infectious and inflammatory stimuli. The production of some members of the beta-defensin family appears to be restricted to distinct parts of the GI tract. Recent studies using genetically manipulated rodents have demonstrated the likely in vivo importance of enteric antimicrobial peptides in innate host defense against microorganisms. The ability of these peptides to act as chemoattractants for cells of the innate- and adaptive-immune system may also play an important role in perpetuating chronic inflammation in the GI tract.
Collapse
Affiliation(s)
- R N Cunliffe
- Institute of Infection, Immunity and Inflammation and Division of Gastroenterology, University of Nottingham, United Kingdom
| | | |
Collapse
|
191
|
Patrzykat A, Gallant JW, Seo JK, Pytyck J, Douglas SE. Novel antimicrobial peptides derived from flatfish genes. Antimicrob Agents Chemother 2003; 47:2464-70. [PMID: 12878506 PMCID: PMC166104 DOI: 10.1128/aac.47.8.2464-2470.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification of active novel antimicrobials determined by screening both the genomic information and the mRNA transcripts from a number of different flatfish for sequences encoding antimicrobial peptides, predicting the sequences of active peptides from the genetic information, producing the predicted peptides chemically, and testing them for their activities. We amplified 35 sequences from various species of flatfish using primers whose sequences are based on conserved flanking regions of a known antimicrobial peptide from winter flounder, pleurocidin. We analyzed the sequences of the amplified products and predicted which sequences were likely to encode functional antimicrobial peptides on the basis of charge, hydrophobicity, relation to flanking sequences, and similarity to known active peptides. Twenty peptides were then produced synthetically and tested for their activities against gram-positive and gram-negative bacteria and the yeast Candida albicans. The most active peptide (with the carboxy-terminus amidated sequence GWRTLLKKAEVKTVGKLALKHYL, derived from American plaice) showed inhibitory activity over a concentration range of 1 to 8 micro g/ml against a test panel of pathogens, including the intrinsically antibiotic-resistant organism Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and C. albicans. The methods described here will be useful for the identification of novel peptides with good antimicrobial activities.
Collapse
Affiliation(s)
- Aleksander Patrzykat
- Institute for Marine Biosciences, National Research Council of Canada, Halifax NS B3H 3Z1, Canada
| | | | | | | | | |
Collapse
|
192
|
Llama-Palacios A, López-Solanilla E, Poza-Carrión C, García-Olmedo F, Rodríguez-Palenzuela P. The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue. Mol Microbiol 2003; 49:347-57. [PMID: 12828634 DOI: 10.1046/j.1365-2958.2003.03583.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the role of acidic pH as a barrier for the colonization of the plant apoplast by Erwinia chrysanthemi. A minitransposon containing a promoterless reporter gene, gus, was used for random mutagenesis of the bacterial genome. An acid-sensitive mutant, named BT119, was isolated and had the following differential features with respect to the wild-type strain: (i) inability to grow at pH </= 5.5; (ii) decreased survival at acid pH and in plant tissues; (iii) increased susceptibility to antimicrobial peptides; (iv) decreased virulence in chicory leaves and pear fruits; (v) reduced polygalacturonase production; and (vi) reduced ability to alkalinize chicory tissues after infection. The sequence of the interrupted gene was highly similar to the phoQ gene, which is involved in environmental sensing in several bacteria, such as Yersinia pseudotuberculosis, Erwinia carotovora, Salmonella typhimurium and Escherichia coli and thus, this designation was used for the E. chrysanthemi system. This gene was induced at low Mg(2+) concentrations and in planta. These results suggest that E. chrysanthemi PhoP-PhoQ system plays an important role in bacterial survival in plant tissues during the initial infection stages.
Collapse
|
193
|
Abstract
Tuberculosis (TB), one of the oldest known human diseases. is still is one of the major causes of mortality, since two million people die each year from this malady. TB has many manifestations, affecting bone, the central nervous system, and many other organ systems, but it is primarily a pulmonary disease that is initiated by the deposition of Mycobacterium tuberculosis, contained in aerosol droplets, onto lung alveolar surfaces. From this point, the progression of the disease can have several outcomes, determined largely by the response of the host immune system. The efficacy of this response is affected by intrinsic factors such as the genetics of the immune system as well as extrinsic factors, e.g., insults to the immune system and the nutritional and physiological state of the host. In addition, the pathogen may play a role in disease progression since some M. tuberculosis strains are reportedly more virulent than others, as defined by increased transmissibility as well as being associated with higher morbidity and mortality in infected individuals. Despite the widespread use of an attenuated live vaccine and several antibiotics, there is more TB than ever before, requiring new vaccines and drugs and more specific and rapid diagnostics. Researchers are utilizing information obtained from the complete sequence of the M. tuberculosis genome and from new genetic and physiological methods to identify targets in M. tuberculosis that will aid in the development of these sorely needed antitubercular agents.
Collapse
Affiliation(s)
- Issar Smith
- TB Center, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA.
| |
Collapse
|
194
|
Sanowar S, Martel A, Moual HL. Mutational analysis of the residue at position 48 in the Salmonella enterica Serovar Typhimurium PhoQ sensor kinase. J Bacteriol 2003; 185:1935-41. [PMID: 12618457 PMCID: PMC150125 DOI: 10.1128/jb.185.6.1935-1941.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoP/PhoQ two-component regulatory system of Salmonella enterica serovar Typhimurium plays an essential role in controlling virulence by mediating the adaptation to Mg(2+) depletion. The pho-24 allele of phoQ harbors a single amino acid substitution (T48I) in the periplasmic domain of the PhoQ histidine kinase sensor. This mutation has been shown to increase net phosphorylation of the PhoP response regulator. We analyzed the effect on signaling by PhoP/PhoQ of various amino acid substitutions at this position (PhoQ-T48X [X = A, S, V, I, or L]). Mutations T48V, T48I, and T48L were found to affect signaling by PhoP/PhoQ both in vivo and in vitro. Mutations PhoQ-T48V and PhoQ-T48I increased both the expression of the mgtA::lacZ transcriptional fusion and the net phosphorylation of PhoP, conferring to cells a PhoP constitutively active phenotype. In contrast, mutation PhoQ-T48L barely responded to changes in the concentration of external Mg(2+), in vivo and in vitro, conferring to cells a PhoP constitutively inactive phenotype. By analyzing in vitro the individual catalytic activities of the PhoQ-T48X sensors, we found that the PhoP constitutively active phenotype observed for the PhoQ-T48V and PhoQ-T48I proteins is solely due to decreased phosphatase activity. In contrast, the PhoP constitutively inactive phenotype observed for the PhoQ-T48L mutant resulted from both decreased autokinase activity and increased phosphatase activity. Our data are consistent with a model in which the residue at position 48 of PhoQ contributes to a conformational switch between kinase- and phosphatase-dominant states.
Collapse
Affiliation(s)
- Sarah Sanowar
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
195
|
Abstract
Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA.
| | | |
Collapse
|
196
|
Salzman NH, Chou MM, de Jong H, Liu L, Porter EM, Paterson Y. Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect Immun 2003; 71:1109-15. [PMID: 12595421 PMCID: PMC148886 DOI: 10.1128/iai.71.3.1109-1115.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paneth cells, highly secretory epithelial cells found at the bases of small intestinal crypts, release a variety of microbicidal molecules, including alpha-defensins and lysozyme. The secretion of antimicrobials by Paneth cells is thought to be important in mucosal host defense against invasion by enteric pathogens. We explored whether enteric pathogens can interfere with this arm of defense. We found that oral inoculation of mice with wild-type Salmonella enterica serovar Typhimurium decreases the expression of alpha-defensins (called cryptdins in mice) and lysozyme. Oral inoculation with Salmonella serovar Typhimurium strains that are heat killed, lack the PhoP regulon, and lack the SPI1 type III secretion system or with Listeria monocytogenes does not have this effect. Salmonella may gain a specific survival advantage in the intestinal lumen by decreasing the expression of microbicidal peptides in Paneth cells through direct interactions between Salmonella and the small intestinal epithelium.
Collapse
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
The PhoP/PhoQ two-component regulatory system governs the adaptation to low Mg(2+) environments and virulence in several Gram-negative species. During growth in low Mg(2+), the sensor PhoQ modifies the activity of the response regulator PhoP promoting gene transcription, whereas growth in high Mg(2+) represses transcription of PhoP-activated genes. The PhoQ protein harbors a periplasmic domain of 146 amino acid residues that binds Mg(2+) in vitro and is required for Mg(2+)-mediated repression in vivo. Here, we identify periplasmic mutants of the Salmonella PhoQ protein that allow transcription of PhoP-activated genes even under high Mg(2+) concentrations. When expressed in a strain harboring a PhoP variant that is phosphorylated from acetyl phosphate, some of the mutants failed to repress PhoP-promoted transcription in high Mg(2+), whereas others displayed a wild-type ability to do so. Mutant PhoQ proteins that allowed expression of PhoP-activated genes in high Mg(2+) displayed a pattern of iron-mediated cleavage in vitro that was different from that displayed by wild-type PhoQ, indicative of altered Mg(2+) binding. A PhoQ protein with the conserved histidine residue (H277) substituted by alanine could not promote transcription of PhoP-activated genes in low Mg(2+) but could turn off expression in response to high Mg(2+). Our studies demonstrate that residues G93, W97, H120 and T156 are required for a wild-type response to Mg(2+), and suggest that Mg(2+) binding to the periplasmic domain regulates several activities in the PhoQ protein.
Collapse
Affiliation(s)
- Sangpen Chamnongpol
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8230, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
198
|
Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA, Finlay BB. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 2003; 4:36-48. [PMID: 12535274 DOI: 10.1034/j.1600-0854.2003.40106.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Salmonella typhimuriumis a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium, demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella-containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1-150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells.
Collapse
Affiliation(s)
- John H Brumell
- Biotechnology Laboratory and Departments of Biochemistry and Molecular Biology, Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T-1Z3, Canada
| | | | | | | | | | | |
Collapse
|
199
|
Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103-18. [PMID: 12492857 DOI: 10.1046/j.1365-2958.2003.03313.x] [Citation(s) in RCA: 673] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For intracellular pathogens such as Salmonellae, Mycobacteriae and Brucellae, infection requires adaptation to the intracellular environment of the phagocytic cell. The transition from extracellular to intravacuolar environment has been expected to involve a global modulation of bacterial gene expression, but the precise events have been difficult to determine. We now report the complete transcriptional profile of intracellular Salmonella enterica sv. Typhimurium following macrophage infection. During replication in murine macrophage-like J774-A.1 cells, 919 of 4451 S. Typhimurium genes showed significant changes in transcription. The expression profile identified alterations in numerous virulence and SOS response genes and revealed unexpected findings concerning the biology of the Salmonella-macrophage interaction. We observed that intracellular Salmonella are not starved for amino acids or iron (Fe2+), and that the intravacuolar environment is low in phosphate and magnesium but high in potassium. S. Typhimurium appears to be using the Entner-Douderoff pathway to use gluconate and related sugars as a carbon source within macrophages. Almost half the in vivo-regulated genes were of unknown function, suggesting that intracellular growth involves novel macrophage-associated functions. This is the first report that identifies the whole set of in vivo-regulated genes for any bacterial pathogen during infection of mammalian cells.
Collapse
Affiliation(s)
- Sofia Eriksson
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
200
|
Lawhon SD, Maurer R, Suyemoto M, Altier C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 2002; 46:1451-64. [PMID: 12453229 DOI: 10.1046/j.1365-2958.2002.03268.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella typhimurium causes enteric and systemic disease by invading the intestinal epithelium of the distal ileum, a process requiring the invasion genes of Salmonella pathogenicity island 1 (SPI-1). BarA, a sensor kinase postulated to interact with the response regulator SirA, is required for the expression of SPI-1 invasion genes. We found, however, that a barA null mutation had little effect on virulence using the mouse model for septicaemia. This confounding result led us to seek environmental signals present in the distal ileum that might supplant the need for BarA. We found that acetate restored the expression of invasion genes in the barA mutant, but had no effect on a sirA mutant. Acetate had its effect only at a pH that allowed its accumulation within the bacterial cytoplasm and not with the deletion of ackA and pta, the two genes required to produce acetyl-phosphate. These results suggest that the rising concentration of acetate in the distal ileum provides a signal for invasion gene expression by the production of acetyl-phosphate in the bacterial cytoplasm, a pathway that bypasses barA. We also found that a Delta(ackA-pta) mutation alone had no effect on virulence but, in combination with Delta(barA), it increased the oral LD50 24-fold. Thus, the combined loss of the BarA- and acetate-dependent pathways is required to reduce virulence. Two other short-chain fatty acids (SCFA), propionate and butyrate, present in high concentrations in the caecum and colon, had effects opposite to those of acetate: neither restored invasion gene expression in the barA mutant, and both, in fact, reduced expression in the wild-type strain. Further, a combination of SCFAs found in the distal ileum restored invasion gene expression in the barA mutant, whereas colonic conditions failed to do so and also reduced expression in the wild-type strain. These results suggest that the concentration and composition of SCFAs in the distal ileum provide a signal for productive infection by Salmonella, whereas those of the large intestine inhibit invasion.
Collapse
Affiliation(s)
- Sara D Lawhon
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|