151
|
Yang J, Yang K, Du S, Luo W, Wang C, Liu H, Liu K, Zhang Z, Gao Y, Han X, Song Y. Bioorthogonal Reaction-Mediated Tumor-Selective Delivery of CRISPR/Cas9 System for Dual-Targeted Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202306863. [PMID: 37485554 DOI: 10.1002/anie.202306863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Shiyu Du
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Str, Xicheng District, Beijing, 100037, China
| | - Kunguo Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| |
Collapse
|
152
|
Al Zein M, Boukhdoud M, Shammaa H, Mouslem H, El Ayoubi LM, Iratni R, Issa K, Khachab M, Assi HI, Sahebkar A, Eid AH. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today 2023; 28:103669. [PMID: 37328052 DOI: 10.1016/j.drudis.2023.103669] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The tremendous success of immunotherapy in clinical trials has led to its establishment as a new pillar of cancer therapy. However, little clinical efficacy has been achieved in microsatellite stable colorectal cancer (MSS-CRC), which constitutes most CRC tumors. Here, we discuss the molecular and genetic heterogeneity of CRC. We review the immune escape mechanisms, and focus on the latest advances in immunotherapy as a treatment modality for CRC. By providing a better understanding of the tumor microenvironment (TME) and the molecular mechanisms underlying immunoevasion, this review offers an insight into developing therapeutic strategies that are effective for patients with various subsets of CRC.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Mona Boukhdoud
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hadi Shammaa
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hadi Mouslem
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | | | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Khodr Issa
- University of Lille, Proteomics, Inflammatory Response, Mass Spectrometry, INSERM U-1192, Lille, France
| | - Maha Khachab
- Faculty of Medicine, University of Balamand, Lebanon
| | - Hazem I Assi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
153
|
Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin Transl Med 2023; 13:e1425. [PMID: 37735815 PMCID: PMC10514379 DOI: 10.1002/ctm2.1425] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children's Hospital, StPetersburgFloridaUSA
- Department of OncologySydney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eyad Elkord
- Department of Applied BiologyCollege of ScienceUniversity of SharjahUniversity CitySharjahUnited Arab Emirates
- Biomedical Research CenterSchool of ScienceEngineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
154
|
Li Y, Luo Y, Hou L, Huang Z, Wang Y, Zhou S. Antigen-Capturing Dendritic-Cell-Targeting Nanoparticles for Enhanced Tumor Immunotherapy Based on Photothermal-Therapy-Induced In Situ Vaccination. Adv Healthc Mater 2023; 12:e2202871. [PMID: 37276021 DOI: 10.1002/adhm.202202871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/30/2023] [Indexed: 06/07/2023]
Abstract
In situ vaccines have revolutionized immunotherapy as they can stimulate tumor-specific immune responses, with the cancer being the antigen source. However, the heterogeneity of tumor antigens and insufficient dendritic cells (DCs) activation result in low cancer immunogenicity and hence poor vaccine response. Herein, a new in situ vaccine composed of acid-responsive liposome-coated polydopamine (PDA) nanoparticles modified with mannose and loaded with resiquimod (R848) is designed to promote the efficacy of immunotherapy. The in situ vaccine can actively target the tumor site based on the decomposition of the liposome, while the PDA nanoparticles promote photothermal therapy and capture the immunogenic cell-death-induced tumor-associated antigens based on the adsorption effect of dopamine-mimetic mussels. The PDA nanoparticles, which are modified with a mannose ligand, target the DCs and release R848 for activated antigen presentation. As a result, the in situ vaccine not only effectively activates the maturation of the DCs but also significantly enhances their effect on cytotoxic T lymphocyte cells. Furthermore, the vaccine effectively inhibits the distant recurrence and metastasis of tumors via long-term immune memory effects. Therefore, the in situ vaccine provides a potential strategy for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingmin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lamei Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zhengjie Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
155
|
Zhang W, Chen Y, Li M, Cao S, Wang N, Zhang Y, Wang Y. A PDA-Functionalized 3D Lung Scaffold Bioplatform to Construct Complicated Breast Tumor Microenvironment for Anticancer Drug Screening and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302855. [PMID: 37424037 PMCID: PMC10502821 DOI: 10.1002/advs.202302855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
2D cell culture occupies an important place in cancer progression and drug discovery research. However, it limitedly models the "true biology" of tumors in vivo. 3D tumor culture systems can better mimic tumor characteristics for anticancer drug discovery but still maintain great challenges. Herein, polydopamine (PDA)-modified decellularized lung scaffolds are designed and can serve as a functional biosystem to study tumor progression and anticancer drug screening, as well as mimic the tumor microenvironment. PDA-modified scaffolds with strong hydrophilicity and excellent cell compatibility can promote cell growth and proliferation. After 96 h treatment with 5-FU, cisplatin, and DOX, higher survival rates in PDA-modified scaffolds are observed compared to nonmodified scaffolds and 2D systems. The E-cadhesion formation, HIF-1α-mediated senescence decrease, and tumor stemness enhancement can drive drug resistance and antitumor drug screening of breast cancer cells. Moreover, there is a higher survival rate of CD45+ /CD3+ /CD4+ /CD8+ T cells in PDA-modified scaffolds for potential cancer immunotherapy drug screening. This PDA-modified tumor bioplatform will supply some promising information for studying tumor progression, overcoming tumor resistance, and screening tumor immunotherapy drugs.
Collapse
Affiliation(s)
- Wanheng Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yan Chen
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Mengyuan Li
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Shucheng Cao
- Department of Quantitative Life SciencesMcGill UniversityMontréalQuébecH3A 0G4Canada
| | - Nana Wang
- Department of PediatricsShanghai General HospitalShanghai Jiao Tong UniversityShanghai200080China
| | - Yingjian Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
156
|
Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr 2023; 43:225-250. [PMID: 37207358 DOI: 10.1146/annurev-nutr-061121-090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Modernization of society from a rural, hunter-gatherer setting into an urban and industrial habitat, with the associated dietary changes, has led to an increased prevalence of cardiometabolic and additional noncommunicable diseases, such as cancer, inflammatory bowel disease, and neurodegenerative and autoimmune disorders. However, while dietary sciences have been rapidly evolving to meet these challenges, validation and translation of experimental results into clinical practice remain limited for multiple reasons, including inherent ethnic, gender, and cultural interindividual variability, among other methodological, dietary reporting-related, and analytical issues. Recently, large clinical cohorts with artificial intelligence analytics have introduced new precision and personalized nutrition concepts that enable one to successfully bridge these gaps in a real-life setting. In this review, we highlight selected examples of case studies at the intersection between diet-disease research and artificial intelligence. We discuss their potential and challenges and offer an outlook toward the transformation of dietary sciences into individualized clinical translation.
Collapse
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
- Division of Microbiome & Cancer, National German Cancer Research Center (DKFZ), Heidelberg, Germany;
| |
Collapse
|
157
|
Huang RZ, Liang QL, Jing XT, Wang K, Zhang HY, Wang HS, Ma XL, Wei JH, Zhang Y. Synthesis and Biological Evaluation of Novel 2-Amino-1,4-Naphthoquinone Amide-Oxime Derivatives as Potent IDO1/STAT3 Dual Inhibitors with Prospective Antitumor Effects. Molecules 2023; 28:6135. [PMID: 37630387 PMCID: PMC10459814 DOI: 10.3390/molecules28166135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 08/27/2023] Open
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) have emerged as significant targets in the tumor microenvironment for cancer therapy. In this study, we synthesized three novel 2-amino-1,4-naphthoquinone amide-oxime derivatives and identified them as dual inhibitors of IDO1 and STAT3. The representative compound NK3 demonstrated effective binding to IDO1 and exhibited good inhibitory activity (hIDO1 IC50 = 0.06 μM), leading to its selection for further investigation. The direct interactions between compound NK3 and IDO1 and STAT3 proteins were confirmed through surface plasmon resonance analysis. A molecular docking study of compound NK3 revealed key interactions between NK3 and IDO1, with the naphthoquinone-oxime moiety coordinating with the heme iron. In the in vitro anticancer assay, compound NK3 displayed potent antitumor activity against selected cancer cell lines and effectively suppressed nuclear translocation of STAT3. Moreover, in vivo assays conducted on CT26 tumor-bearing Balb/c mice and an athymic HepG2 xenograft model revealed that compound NK3 exhibited potent antitumor activity with low toxicity relative to 1-methyl-L-tryptophan (1-MT) and doxorubicin (DOX). Overall, these findings provided evidence that the dual inhibitors of IDO1 and STAT3 may offer a promising avenue for the development of highly effective drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Qiao-Ling Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Xiao-Teng Jing
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
- Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Xinyi Road 15, Guilin 541001, China
| | - Ke Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Hui-Yong Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China (K.W.)
| |
Collapse
|
158
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
159
|
Aran A, Lázaro G, Marco V, Molina E, Abancó F, Peg V, Gión M, Garrigós L, Pérez-García J, Cortés J, Martí M. Analysis of tumor infiltrating CD4+ and CD8+ CDR3 sequences reveals shared features putatively associated to the anti-tumor immune response. Front Immunol 2023; 14:1227766. [PMID: 37600765 PMCID: PMC10436466 DOI: 10.3389/fimmu.2023.1227766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Tumor-infiltrating lymphocytes (TILs) have predictive and prognostic value in breast cancer (BC) and exert a protective function against tumor growth, indicating that it is susceptible to treatment using adoptive cell transfer of TILs or T cell receptor (TCR)-based therapies. TCR can be used to identify naturally tumor-reactive T cells, but little is known about the differences in the TCR repertoires of CD4+ and CD8+ TILs. Methods TCR high-throughput sequencing was performed using TILs derived from the initial cultures of 11 BC biopsies and expanded and sorted CD4+ and CD8+ TILs as well as using PBMCs from healthy donors expanded and sorted using the same methodology. Results Physicochemical TCR differences between T cell subsets were observed, as CD4+ TILs presented larger N(D)Nnt TRB sequences and with a higher usage of positively charged residues, although only the latest was also observed in peripheral T cells from healthy individuals. Moreover, in CD4+ TILs, a more restricted TCR repertoire with a higher abundance of similar sequences containing certain amino acid motifs was observed. Discussion Some differences between CD4+ and CD8+ TCRs were intrinsic to T cell subsets as can also be observed in peripheral T cells from healthy individuals, while other were only found in TILs samples and therefore may be tumor-driven. Notably, the higher similarity among CD4+ TCRs suggests a higher TCR promiscuity in this subset.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Gonzalo Lázaro
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Vicente Marco
- Pathology, Hospital Quironsalud Barcelona, Barcelona, Spain
| | - Elisa Molina
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ferran Abancó
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Department of Morphological Sciences, Universidad Autónoma de Barcelona, Bellaterra, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - María Gión
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
| | - José Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
160
|
Han J, Bhatta R, Wang H. Bio-adhesive Macroporous Hydrogels for In Situ Recruitment and Modulation of Dendritic Cells. Cell Mol Bioeng 2023; 16:355-367. [PMID: 37811000 PMCID: PMC10550891 DOI: 10.1007/s12195-023-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Biomaterials that enable in situ recruitment and modulation of immune cells have demonstrated tremendous promise for developing potent cancer immunotherapy such as therapeutic cancer vaccine. One challenge related to biomaterial scaffold-based cancer vaccines is the development of macroporous materials that are biocompatible and stable, enable controlled release of chemokines to actively recruit a large number of dendritic cells (DCs), contain macropores that are large enough to home the recruited DCs, and support the survival and proliferation of DCs. Methods Bio-adhesive macroporous gelatin hydrogels were synthesized and characterized for mechanical properties, porous structure, and adhesion towards tissues. The recruitment of immune cells including DCs to chemokine-loaded bioadhesive macroporous gels was analyzed. The ability of gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor extracellular vesicles (EVs) to elicit tumor-specific CD8+ T cell responses was also analyzed. Results Here we develop a bioadhesive macroporous hydrogel that can strongly adhere to tissues, contain macropores that are large enough to home immune cells, are mechanically tough, and enable controlled release of chemokines to recruit and modulate immune cells in situ. The macroporous hydrogel is composed of a double crosslinked network of gelatin and polyacrylic acid, and the macropores are introduced via cryo-polymerization. By incorporating GM-CSF and tumor EVs into the macroporous hydrogel, a high number of DCs can be recruited in situ to process and present EV-encased antigens. These tumor antigen-presenting DCs can then traffic to lymphatic tissues to prime antigen-specific CD8+ T cells. Conclusion This bioadhesive macroporous hydrogel system provides a new platform for in situ recruitment and modulation of DCs and the development of enhanced immunotherapies including tumor EV vaccines. We also envision the promise of this material system for drug delivery, tissue regeneration, long-term immunosuppression, and many other applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00770-2.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Cancer Center at Illinois (CCIL), Urbana, IL 61801 USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
161
|
Zhang T, Xu H, Zheng X, Xiong X, Zhang S, Yi X, Li J, Wei Q, Ai J. Clinical benefit and safety associated with mRNA vaccines for advanced solid tumors: A meta-analysis. MedComm (Beijing) 2023; 4:e286. [PMID: 37470066 PMCID: PMC10353527 DOI: 10.1002/mco2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 07/21/2023] Open
Abstract
Tumor mRNA vaccines have been developed for over 20 years. Whether mRNA vaccines could promote a clinical benefit to advanced cancer patients is highly unknown. PubMed and Embase were retrieved from January 1, 2000 to January 4, 2023. Random effects models were employed. Clinical benefit (objective response rate [ORR], disease control rate [DCR], 1-year/2-year progression-free survival [PFS], and overall survival [OS]) and safety (vaccine-related grade 3-5 adverse events [AEs]) were evaluated. Overall, 984 patients (32 trials) were enrolled. The most typical cancer types were melanoma (13 trials), non-small cell lung cancer (5 trials), renal cell carcinoma (4 trials), and prostate adenocarcinoma (4 trials). The pooled ORR and DCR estimates were 10.0% (95%CI, 4.6-17.0%) and 34.6% (95%CI, 24.1-45.9%). The estimates for 1-year and 2-year PFS were 38.4% (95%CI, 24.8-53.0%) and 20.0% (95%CI, 10.4-31.7%), respectively. The estimates for 1-year and 2-year OS were 75.3% (95%CI, 62.4-86.3%) and 45.5% (95%CI, 34.0-57.2%), respectively. The estimate for vaccine-related grade 3-5 AEs was 1.0% (95%CI, 0.2-2.4%). Conclusively, mRNA vaccines seem to demonstrate modest clinical response rates, with acceptable survival rates and rare grade 3-5 AEs.
Collapse
Affiliation(s)
- Tian‐yi Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hang Xu
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐nan Zheng
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xing‐yu Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Shi‐yu Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xian‐yanling Yi
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jin Li
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Qiang Wei
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jian‐zhong Ai
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
162
|
Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med 2023; 13:e1384. [PMID: 37612832 PMCID: PMC10447885 DOI: 10.1002/ctm2.1384] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines are a relatively new class of vaccines that have shown great promise in the immunotherapy of a wide variety of infectious diseases and cancer. In the past 2 years, SARS-CoV-2 mRNA vaccines have contributed tremendously against SARS-CoV2, which has prompted the arrival of the mRNA vaccine research boom, especially in the research of cancer vaccines. Compared with conventional cancer vaccines, mRNA vaccines have significant advantages, including efficient production of protective immune responses, relatively low side effects and lower cost of acquisition. In this review, we elaborated on the development of cancer vaccines and mRNA cancer vaccines, as well as the potential biological mechanisms of mRNA cancer vaccines and the latest progress in various tumour treatments, and discussed the challenges and future directions for the field.
Collapse
Affiliation(s)
- Youhuai Li
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Mina Wang
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
- Department of Acupuncture and MoxibustionBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing Key Laboratory of Acupuncture NeuromodulationBeijingChina
| | - Xueqiang Peng
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Yingying Yang
- Clinical Research CenterShanghai Key Laboratory of Maternal Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qishuang Chen
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
| | - Jiaxing Liu
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qing She
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Jichao Tan
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Chuyuan Lou
- Department of OphthalmologyXi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Zehuan Liao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetSweden
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetBiomedicumStockholmSweden
| |
Collapse
|
163
|
Lei X, Wang Y, Shan F, Li S, Jia Y, Miao R, Xue K, Li Z, Ji J, Li Z. Efficacy and safety of preoperative immunotherapy alone followed by surgery in the treatment of advanced gastric cancer with MSI-H/dMMR or EBV-positive. J Chin Med Assoc 2023; 86:717-724. [PMID: 37273199 DOI: 10.1097/jcma.0000000000000944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND At present, there is no consensus on whether preoperative immunotherapy (PIT) without chemotherapy followed by surgery could benefit patients with advanced gastric cancer (AGC). Here, we report a six-case series study to describe the safety and efficacy of PIT plus gastrectomy in patients with AGC. METHODS This study involved six patients with AGC who received PIT and surgery at our center between January 2019 and July 2021. Demographic characteristics, preoperative gastroscope biopsy pathology, surgical tissue pathology, radicalness of tumor resection, surgical safety, and recovery parameters were reported. RESULTS Six patients, including four patients with Epstein-Barr virus (EBV)-positive gastric cancer (GC) and two patients with microsatellite instability-high (MSI-H)/expression deficiency of mismatch repair (dMMR) protein GC, were enrolled in this study. Four patients experienced immunotherapy-related adverse events (irAEs), without severe adverse events (SAEs). Five patients underwent R0 resection, and one patient underwent palliative gastrectomy due to liver and hilar lymph node metastasis. Pathologic responses from the surgical tissue were observed in all patients, including two pathological complete response (pCR). No operative complications or postoperative deaths occurred. Three patients (50%) experienced mild or moderate postoperative complications without severe postoperative complications. All six patients eventually recovered and were discharged. CONCLUSION This study indicated that PIT was effective and tolerant in some patients with MSI-H/dMMR and/or EBV-positive AGC. PIT followed by gastrectomy might be an alternative treatment option for these selected patients.
Collapse
Affiliation(s)
- Xiaokang Lei
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinkui Wang
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fei Shan
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuangxi Li
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongning Jia
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Rulin Miao
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Kan Xue
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhemin Li
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziyu Li
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
164
|
Liu Z, Lim SH, Min JJ, Jung S. Synergistic Antitumor Effect of Combined Radiotherapy and Engineered Salmonella typhimurium in an Intracranial Sarcoma Mouse Model. Vaccines (Basel) 2023; 11:1275. [PMID: 37515090 PMCID: PMC10385126 DOI: 10.3390/vaccines11071275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Intracranial sarcoma is an uncommon aggressive cancer with a poor prognosis and a high recurrence rate. Although postoperative adjuvant radiotherapy (RT) is the most recommended treatment strategy, it does not significantly improve survival rates. In this study, we used an attenuated Salmonella typhimurium strain engineered to secrete Vibrio vulnificus flagellin B (SLpFlaB) as an immunotherapy to assist with the antitumor effects of RT on intracranial sarcoma. In vitro, the expression of γH2AX and cleaved caspase-3 was analyzed by Western blot. In vivo detection of SLpFlaB colonization time in tumors was measured using an in vivo imaging system (IVIS). Tumor growth delay and elimination were demonstrated in an intracranial mouse model, and the distribution of macrophages, M1 macrophages, and CD8+ cells after treatment was measured using FACS analysis. Our findings in vitro suggest that combination therapy increases S-180 radiosensitivity, the expression of DNA double-strand breaks, and programmed cell death. In vivo, combination treatment causes intracranial sarcoma to be eliminated without tumor recurrence and redistribution of immune cells in the brain, with data showing the enhanced migration and infiltration of CD8+ T cells and macrophages, and an increased proportion of M1 macrophage polarization. Compared to RT alone, the combination therapy enhanced the radiosensitivity of S-180 cells, promoted the recruitment of immune cells at the tumor site, and prevented tumor recurrence. This combination therapy may provide a new strategy for treating intracranial sarcomas.
Collapse
Affiliation(s)
- Zhipeng Liu
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
| | - Sa-Hoe Lim
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
- Department of Neurosurgery, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
- Department of Neurosurgery, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| |
Collapse
|
165
|
Zheng X, Lin J, Xiong J, Guan Y, Lan B, Li Y, Gao X, Fei Z, Chen L, Chen L, Chen L, Chen G, Guo Z, Yi X, Cao W, Ai X, Zhou C, Li X, Zhao J, Yan X, Yu Q, Si L, Chen Y, Chen C. SETD2 variation correlates with tumor mutational burden and MSI along with improved response to immunotherapy. BMC Cancer 2023; 23:686. [PMID: 37479966 PMCID: PMC10360270 DOI: 10.1186/s12885-023-10920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND SETD2 protects against genomic instability via maintenance of homologous recombination repair (HRR) and mismatch repair (MMR) in neoplastic cells. However, it remains unclear whether SETD2 dysfunction is a complementary or independent factor to microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) for immunocheckpoint inhibitor (ICI) treatment, and little is known regarding whether this type of dysfunction acts differently in various types of cancer. METHODS This cohort study used multidimensional genomic data of 6726 sequencing samples from our cooperative and non-public GenePlus institute from April 1 through April 10, 2020. MSIsensor score, HRD score, RNAseq, mutational data, and corresponding clinical data were obtained from the TCGA and MSKCC cohort for seven solid tumor types. RESULTS A total of 1021 genes underwent target panel sequencing reveal that SETD2 mutations were associated with a higher TMB. SETD2 deleterious mutation dysfunction affected ICI treatment prognosis independently of TMB-H (p < 0.01) and had a lower death hazard than TMB-H in pancancer patients (0.511 vs 0.757). Significantly higher MSI and lower homologous recombination deficiency were observed in the SETD2 deleterious mutation group. Improved survival rate was found in the MSKCC-IO cohort (P < 0.0001) and was further confirmed in our Chinese cohort. CONCLUSION We found that SETD2 dysfunction affects ICI treatment prognosis independently of TMB-H and has a lower death hazard than TMB-H in pancancer patients. Therefore, SETD2 has the potential to serve as a candidate biomarker for ICI treatment. Additionally, SETD2 should be considered when dMMR is detected by immunohistochemistry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | | | - Bin Lan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Lisha Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Ling Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Gang Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Zengqing Guo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Weiguo Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinghao Ai
- Department of Shanghai Lung Cancer Center, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Chengzhi Zhou
- First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Li
- Department of Oncology, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jun Zhao
- Department of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangtao Yan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Province, Zhengzhou, China
| | - Qitao Yu
- Department of Oncology, The Cancer Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lu Si
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|
166
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
167
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
168
|
Oláh E. Learning from cancer to address COVID-19. Biol Futur 2023:10.1007/s42977-023-00156-5. [PMID: 37410273 DOI: 10.1007/s42977-023-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/24/2023] [Indexed: 07/07/2023]
Abstract
Patients with cancer have been disproportionately affected by the novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowledge collected during the last three decades of cancer research has helped the medical research community worldwide to respond to many of the challenges raised by COVID-19, during the pandemic. The review, briefly summarizes the underlying biology and risk factors of COVID-19 and cancer, and aims to present recent evidence on cellular and molecular relationship between the two diseases, with a focus on those that are related to the hallmarks of cancer and uncovered in the first less than three years of the pandemic (2020-2022). This may not only help answer the question "Why cancer patients are considered to be at a particularly high risk of developing severe COVID-19 illness?", but also helped treatments of patients during the COVID-19 pandemic. The last session highlights the pioneering mRNA studies and the breakthrough discovery on nucleoside-modifications of mRNA by Katalin Karikó, which led to the innovation and development of the mRNA-based SARSCoV-2 vaccines saving lives of millions and also opened the door for a new era of vaccines and a new class of therapeutics.
Collapse
Affiliation(s)
- Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Ráth György u. 7-9, Budapest, 1122, Hungary.
| |
Collapse
|
169
|
Li J, Zhou W, Li D, Huang Y, Yang X, Jiang L, Hu X, Yang J, Fu M, Zhang M, Wang F, Li J, Zhang Y, Yang Y, Yan F, Gao H, Wang W. Co-infusion of CAR T cells with aAPCs expressing chemokines and costimulatory ligands enhances the anti-tumor efficacy in mice. Cancer Lett 2023:216287. [PMID: 37392990 DOI: 10.1016/j.canlet.2023.216287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) cell therapy has shown curable efficacy for treating hematological malignancies, while in solid tumors, the immunosuppressive microenvironment causes poor activation, expansion and survival of CAR-T cells, accounting mainly for the unsatisfactory efficacy. The artificial antigen-presenting cells (aAPCs) have been used for ex vivo expansion and manufacturing of CAR-T cells. Here, we constructed a K562 cell-based aAPCs expressing human epithelial cell adhesion molecule (EpCAM), chemokines (CCL19 and CCL21) and co-stimulatory molecular ligands (CD80 and 4-1BBL). Our data demonstrated that the novel aAPCs enhanced the expansion, and increased the immune memory phenotype and cytotoxicity of CAR-T cells recognizing EpCAM, in vitro. Of note, co-infusion CAR-T and aAPC enhances the infiltration of CAR-T cells in solid tumors, which has certain potential for the treatment of solid tumors Moreover, IL-2-9-21, a cytokine cocktail, prevents CAR-T cells from entering the state of exhaustion prematurely following continuous antigen engagement and boosts the anti-tumor activity of CAR-T cells co-infused with aAPCs. These data provide a new strategy to enhance the therapeutic potential of CAR-T cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoyi Hu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Hematology, Hematology Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Maorong Fu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengxi Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaqian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuening Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feiyang Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Haozhan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
170
|
Wang S, Khan FI. Investigation of Molecular Interactions Mechanism of Pembrolizumab and PD-1. Int J Mol Sci 2023; 24:10684. [PMID: 37445859 DOI: 10.3390/ijms241310684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Human programmed cell death protein 1 (PD-1) is a checkpoint protein involved in the regulation of immune response. Antibodies are widely used as inhibitors that block the immune checkpoint, preventing strong immune responses. Pembrolizumab is an FDA-approved IgG4 antibody with PD-1 inhibitory ability for the treatment of melanoma. In this study, we investigated the effect of Pembrolizumab on the conformational changes in PD-1 using extensive molecular modeling and simulation approaches. Our study revealed that during the 200 ns simulation, the average values of the solvent accessible surface area, the radius of gyration, and internal hydrogen bonds of PD-1 were 64.46 nm2, 1.38 nm and 78, respectively, while these values of PD-1 in the PD-1/Pembrolizumab complex were 67.29 nm2, 1.39 nm and 76, respectively. The RMSD value of PD-1 gradually increased until 80 ns and maintained its stable conformation at 0.32 nm after 80 ns, while this value of PD-1 in the PD-1/Pembrolizumab complex maintained an increasing trend during 200 ns. The interaction between PD-1 and Pembrolizumab led to a flexible but stable structure of PD-1. PD-1 rotated around the rotation axis of the C'D loop and gradually approached Pembrolizumab. The number of hydrogen bonds involved in the interactions on the C and C' strands increased from 4 at 100 ns to 7 at 200 ns. The strong affinity of Pembrolizumab for the C'D and FG loops of PD-1 disrupted the interactions between PD-1 and PD-L1. Inhibition of the interaction between PD-1 and PD-L1 increased the T cell activity, and is effective in controlling and curing cancer. Further experimental work can be performed to support this finding.
Collapse
Affiliation(s)
- Simiao Wang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
171
|
Kaur SD, Singh AD, Kapoor DN. Current perspectives on Vaxinia virus: an immuno-oncolytic vector in cancer therapy. Med Oncol 2023; 40:205. [PMID: 37318642 DOI: 10.1007/s12032-023-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Viruses are being researched as cutting-edge therapeutic agents in cancer due to their selective oncolytic action against malignancies. Immuno-oncolytic viruses are a potential category of anticancer treatments because they have natural features that allow viruses to efficiently infect, replicate, and destroy cancer cells. Oncolytic viruses may be genetically modified; engineers can use them as a platform to develop additional therapy modalities that overcome the limitations of current treatment approaches. In recent years, researchers have made great strides in the understanding relationship between cancer and the immune system. An increasing corpus of research is functioning on the immunomodulatory functions of oncolytic virus (OVs). Several clinical studies are currently underway to determine the efficacy of these immuno-oncolytic viruses. These studies are exploring the design of these platforms to elicit the desired immune response and to supplement the available immunotherapeutic modalities to render immune-resistant malignancies amenable to treatment. This review will discuss current research and clinical developments on Vaxinia immuno-oncolytic virus.
Collapse
Affiliation(s)
- Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Aman Deep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142048, India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
172
|
Mao L, Ma P, Luo X, Cheng H, Wang Z, Ye E, Loh XJ, Wu YL, Li Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS NANO 2023; 17:9826-9849. [PMID: 37207347 DOI: 10.1021/acsnano.3c02273] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of nanovaccines that employ polymeric delivery carriers has garnered substantial interest in therapeutic treatment of cancer and a variety of infectious diseases due to their superior biocompatibility, lower toxicity and reduced immunogenicity. Particularly, stimuli-responsive polymeric nanocarriers show great promise for delivering antigens and adjuvants to targeted immune cells, preventing antigen degradation and clearance, and increasing the uptake of specific antigen-presenting cells, thereby sustaining adaptive immune responses and improving immunotherapy for certain diseases. In this review, the most recent advances in the utilization of stimulus-responsive polymer-based nanovaccines for immunotherapeutic applications are presented. These sophisticated polymeric nanovaccines with diverse functions, aimed at therapeutic administration for disease prevention and immunotherapy, are further classified into several active domains, including pH, temperature, redox, light and ultrasound-sensitive intelligent nanodelivery systems. Finally, the potential strategies for the future design of multifunctional next-generation polymeric nanovaccines by integrating materials science with biological interface are proposed.
Collapse
Affiliation(s)
- Liuzhou Mao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
173
|
Yi B, Fu Q, Zheng Z, Zhang M, Liu D, Liang Z, Xu S, Zhang Z. Pan-cancer analysis reveals the prognostic and immunotherapeutic value of cytoskeleton-associated protein 2-like. Sci Rep 2023; 13:8368. [PMID: 37225919 DOI: 10.1038/s41598-023-35633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/21/2023] [Indexed: 05/26/2023] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L), a cell cycle-related protein, is correlated to tumor progression in some tumors. But there were no pan-cancer studies on CKAP2L, and its role in cancer immunotherapy is also unclear. The expression levels, expression activity, genomic alterations, DNA methylation and functions of CKAP2L in various tumors, as well as the associations between CKAP2L expression and patient prognosis, chemotherapy sensitivity, and tumor immune microenvironment, were all analyzed in a comprehensive pan-cancer analysis of CKAP2L by various databases, analysis websites, and R software. The experiments were also conducted to verify the analysis results. In the majority of cancers, CKAP2L expression and activity were markedly elevated. Elevated CKAP2L expression led to poor prognostic outcomes in patients, and is an independent risk factor for most tumors. Elevated CKAP2L causes decreased sensitivity to chemotherapeutic agents. Knockdown of CKAP2L significantly inhibited the proliferation and metastasis capacity of the KIRC cell lines and resulted in cell cycle G2/M arrest. In addition, CKAP2L was closely related to immune subtypes, immune cell infiltration, immunomodulators and immunotherapy markers (TMB, MSI), patients with high CKAP2L expression were more sensitive to immunotherapy in the IMvigor210 cohort. The results indicate that CKAP2L is a pro-cancer gene that serves as a potential biomarker for predicting patient outcomes. By inducing cells to transition from the G2 phase to the M phase, CKAP2L may promote cell proliferation and metastasis. Furthermore, CKAP2L is closely related to the tumor immune microenvironment and can be used as a biomarker to predict tumor immunotherapy.
Collapse
Affiliation(s)
- Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qingfeng Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiwen Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Man Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Dongze Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhengxin Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shengxian Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
174
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
175
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
176
|
Ozulumba T, Montalbine AN, Ortiz-Cárdenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol 2023; 14:1183286. [PMID: 37234163 PMCID: PMC10206051 DOI: 10.3389/fimmu.2023.1183286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.
Collapse
Affiliation(s)
- Tochukwu Ozulumba
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer E. Ortiz-Cárdenas
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia (UVA) Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
177
|
Nava A, Alves da Quinta D, Prato L, Girotti R, Moron G, Llera AS, Fernández EA. Novel evaluation approach for molecular signature-based deconvolution methods. J Biomed Inform 2023; 142:104387. [PMID: 37172634 DOI: 10.1016/j.jbi.2023.104387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The tumoral immune microenvironment (TIME) plays a key role in prognosis, therapeutic approach and pathophysiological understanding over oncological processes. Several computational immune cell-type deconvolution methods (DM), supported by diverse molecular signatures (MS), have been developed to uncover such TIME interplay from RNA-seq tumor biopsies. MS-DM pairs were benchmarked against each other by means of different metrics, such as Pearson's correlation, R2 and RMSE, but these only evaluate the linear association of the estimated proportion related to the expected one, missing the analysis of prediction-dependent bias trends and cell identification accuracy. We present a novel protocol composed of four tests allowing appropriate evaluation of the cell type identification performance and proportion prediction accuracy of molecular signature-deconvolution method pair by means of certainty and confidence cell-type identification scores (F1-score, distance to the optimal point and error rates) as well the Bland-Altman method for error-trend analysis. Our protocol was used to benchmark six state-of-the-art DMs (CIBERSORTx, DCQ, DeconRNASeq, EPIC, MIXTURE and quanTIseq) paired to five murine tissue-specific MSs, revealing a systematic overestimation of the number of different cell types across almost all methods.
Collapse
Affiliation(s)
- A Nava
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina; Fundación Huésped, Buenos Aires, Argentina
| | - D Alves da Quinta
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE). Instituto de Tecnología (INTEC), Buenos Aires, Argentina
| | - L Prato
- Universidad de Villa María, Córdoba, Argentina
| | - R Girotti
- Universidad Argentina de la Empresa (UADE). Instituto de Tecnología (INTEC), Buenos Aires, Argentina
| | - G Moron
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - A S Llera
- Fundación Instituto Leloir-CONICET, Buenos Aires, Argentina
| | - E A Fernández
- Facultad de Ingeniería, Carrera de Bioinformática, Universidad Católica de Córdoba (UCC), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciòn en Inmunología y Enfermedades Infecciosas, UCC, CONICET, Córdoba, Argentina.
| |
Collapse
|
178
|
Xu C, Dobson HE, Yu M, Gong W, Sun X, Park KS, Kennedy A, Zhou X, Xu J, Xu Y, Tai AW, Lei YL, Moon JJ. STING agonist-loaded mesoporous manganese-silica nanoparticles for vaccine applications. J Control Release 2023; 357:84-93. [PMID: 36948420 PMCID: PMC10164691 DOI: 10.1016/j.jconrel.2023.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Cyclic dinucleotides (CDNs), as one type of Stimulator of Interferon Genes (STING) pathway agonist, have shown promising results for eliciting immune responses against cancer and viral infection. However, the suboptimal drug-like properties of conventional CDNs, including their short in vivo half-life and poor cellular permeability, compromise their therapeutic efficacy. In this study, we have developed a manganese-silica nanoplatform (MnOx@HMSN) that enhances the adjuvant effects of CDN by achieving synergy with Mn2+ for vaccination against cancer and SARS-CoV-2. MnOx@HMSN with large mesopores were efficiently co-loaded with CDN and peptide/protein antigens. MnOx@HMSN(CDA) amplified the activation of the STING pathway and enhanced the production of type-I interferons and other proinflammatory cytokines from dendritic cells. MnOx@HMSN(CDA) carrying cancer neoantigens elicited robust antitumor T-cell immunity with therapeutic efficacy in two different murine tumor models. Furthermore, MnOx@HMSN(CDA) loaded with SARS-CoV-2 antigen achieved strong and durable (up to one year) humoral immune responses with neutralizing capability. These results demonstrate that MnOx@HMSN(CDA) is a versatile nanoplatform for vaccine applications.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hannah E Dobson
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mengjie Yu
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoqi Sun
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Kennedy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Xu
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xu
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew W Tai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
179
|
Hoefges A, McIlwain SJ, Erbe AK, Mathers N, Xu A, Melby D, Tetreault K, Le T, Kim K, Pinapati RS, Garcia B, Patel J, Heck M, Feils AS, Tsarovsky N, Hank JA, Morris ZS, Ong IM, Sondel PM. Antibody landscape of C57BL/6 mice cured of B78 melanoma via immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529012. [PMID: 36896021 PMCID: PMC9996675 DOI: 10.1101/2023.02.24.529012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Hoefges et al. utilized a whole-proteome peptide array approach to show that C57BL/6 mice develop a large repertoire of antibodies against linear peptide sequences of their melanoma after receiving a curative immunotherapy regimen consisting of radiation and an immunocytokine. Antibodies can play an important role in innate and adaptive immune responses against cancer, and in preventing infectious disease. Flow cytometry analysis of sera of immune mice that were previously cured of their melanoma through a combined immunotherapy regimen with long-term memory showed strong antibody-binding against melanoma tumor cell lines. Using a high-density whole-proteome peptide array, we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by 2 or more of these 6 mice and exhibited strong antibody binding only by immune, not naive sera. Confirmatory studies were done to validate these results using 2 separate ELISA-based systems. To the best of our knowledge, this is the first study of the "immunome" of protein-based epitopes that are recognized by immune sera from mice cured of cancer via immunotherapy.
Collapse
Affiliation(s)
- A Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - S J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - A K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - N Mathers
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - A Xu
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - D Melby
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - K Tetreault
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - T Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - K Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - B Garcia
- Nimble Therapeutics, Inc., Madison, WI, USA
| | - J Patel
- Nimble Therapeutics, Inc., Madison, WI, USA
| | - M Heck
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - A S Feils
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - N Tsarovsky
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - J A Hank
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Z S Morris
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - I M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - P M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
180
|
Singh R, Srivastava P, Manna PP. Chemokine-targeted nanoparticles: stimulation of the immune system in cancer immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:123-147. [DOI: 10.37349/ei.2023.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 01/06/2025]
Abstract
Surgery, chemotherapy, radiation therapy, and immunotherapy are potential therapeutic choices for many malignant and metastatic cancers. Despite adverse side effects and pain, surgery and chemotherapy continue to be the most common cancer treatments. However, patients treated with immunotherapy had better cancer control than those who got other treatments. There are two methods to activate immunological pathways: systemically and locally. To modify the tumor microenvironment (TME), the former uses systemic cytokine/chemokine (CK) delivery, whilst the latter uses immunological checkpoints or small molecule inhibitors. Organic and inorganic nanomaterials (NMs) enhanced the efficacy of cancer immunotherapy. NMs can transmit drugs, peptides, antigens, antibodies, whole cell membranes, etc. Surface-modified NMs precisely target and enter the tissues. The inner core of surface-modified NMs is composed of chemicals with limited bioavailability and biocompatibility, resulting in prolonged blood retention and decreased renal clearance. These platforms hinder or prevent many immune cell activities and modify the TME, enhancing the efficiency of cancer immunotherapy. By inhibiting CK/CK receptor signaling, cell migration and other immune responses could be controlled. Developing CK-targeted nanoparticles (NPs) that inhibit CK signaling or take advantage of the ligand-receptor connection is possible. Surface chemical modification of NMs with CKs or specific peptides has several medicinal applications, including tissue-specific drug delivery and limited cell migration in cancer-afflicted conditions. This review covers current developments in the role of different groups of CK-loaded NP in tumor therapy targeting immune cells and cancer. It also covers the role of NP targeting CK signaling which aids in immunogenic cell death (ICD) and induction of antitumor immunity. In addition, CK gene silencing and its capacity to prevent cancer metastasis as well as inhibition of immune cell migration to modulate the TME are discussed.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India;Current address: Postdoctoral Fellow, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
181
|
George JT, Levine H. Optimal cancer evasion in a dynamic immune microenvironment generates diverse post-escape tumor antigenicity profiles. eLife 2023; 12:82786. [PMID: 37096883 PMCID: PMC10129331 DOI: 10.7554/elife.82786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors.
Collapse
Affiliation(s)
- Jason T George
- Department of Biomedical Engineering, Texas A&M University, Houston, United States
- Engineering Medicine Program, Texas A&M University, Houston, United States
- Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, United States
- Department of Physics, Northeastern University, Boston, United States
- Department of Bioengineering, Northeastern University, Boston, United States
| |
Collapse
|
182
|
Zhang X, Zhang X, Jiang D, Zheng W, Wang H, Tian Y, Cheng B. INHA acts as a novel and potential biomarker in lung adenocarcinoma and shapes the immune-suppressive tumor microenvironment. Transl Oncol 2023; 33:101679. [PMID: 37105130 PMCID: PMC10182329 DOI: 10.1016/j.tranon.2023.101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND INHA expression has been correlated with the development, growth, and progression of multiple cancer types. However, the biological role of INHA has not been investigated in patients with lung adenocarcinoma (LUAD). Here, we performed a comprehensive bioinformatics analysis of the LUAD dataset to determine the mechanisms underlying the regulation of tumorigenesis by INHA. MATERIALS AND METHODS INHA expression and clinical information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database. Protein levels in LUAD cell lines and human lung epithelial cells were examined by western blotting. Next, the prognostic value of INHA in LUAD was assessed using Cox regression analysis, while the potential biological functions and the impact on the immune microenvironment of INHA were investigated using gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA). Finally, the effect of INHA on LUAD cell proliferation and invasion was determined in vitro and in vivo. RESULTS We found significantly high mRNA and protein expression levels of INHA in LUAD tissues and cell lines. Additionally, a higher expression of INHA was linked to a shorter overall survival (OS) and a worse pathological stage, while INHA expression was associated with immune cell infiltration and immune-related markers in the LUAD tumor microenvironment. LUAD with high INHA expression tends to be a cold tumor. Furthermore, GO and KEGG enrichment analysis indicated that INHA-related genes were enriched in the cell adhesion and immune signaling pathways of LUAD. INHA promoted LUAD cell proliferation and invasion, in vitro and in vivo, by inducing the EGFR pathway. CONCLUSION Our findings revealed that INHA is overexpressed in LUAD and is linked to a poor prognosis. Our study demonstrates the potential of INHA as an immunotherapeutic and predictive biomarker in LUAD.
Collapse
Affiliation(s)
- Xun Zhang
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Xinyu Zhang
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Dizhi Jiang
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Wendi Zheng
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Huimin Wang
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Yu Tian
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Bo Cheng
- Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| |
Collapse
|
183
|
Nikoo M, Hassan ZF, Mardasi M, Rostamnezhad E, Roozbahani F, Rahimi S, Mohammadi J. Hepatocellular carcinoma (HCC) immunotherapy by anti-PD-1 monoclonal antibodies: A rapidly evolving strategy. Pathol Res Pract 2023; 247:154473. [PMID: 37207558 DOI: 10.1016/j.prp.2023.154473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world, with a high relapse rate. Delayed symptom onset observed in 70-80% of patients leads to diagnosis in advanced stages commonly associated with chronic liver disease. Programmed cell death protein 1 (PD-1) blockade therapy has recently emerged as a promising therapeutic option in the clinical management of several advanced malignancies, including HCC, due to the activation of exhausted tumor-infiltrating lymphocytes and improved outcomes of T-cell function. However, many people with HCC do not respond to PD-1 blockade therapy, and the diversity of immune-related adverse events (irAEs) restricts their clinical utility. Therefore, numerous effective combinatory strategies, including combinations with anti-PD-1 antibodies and other therapeutic methods ranging from chemotherapy to targeted therapies, are evolving to improve therapeutic outcomes and evoke synergistic anti-tumor impressions in patients with advanced HCC. Unfortunately, combined therapy may have more side effects than single-agent treatment. Nonetheless, identifying appropriate predictive biomarkers can aid in managing potential immune-related adverse events by distinguishing patients who respond best to PD-1 inhibitors as single agents or in combination strategies. In the present review, we summarize the therapeutic potential of PD-1 blockade therapy for advanced HCC patients. Besides, a glimpse of the pivotal predictive biomarkers influencing a patient's response to anti-PD-1 antibodies will be provided.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Elmira Rostamnezhad
- Department of Molecular Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahel Rahimi
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
184
|
Yang J, Fu L, Shirakawa T, Xiang T. Editorial: Targeting tumor vasculature to enhance cancer immunotherapy. Front Oncol 2023; 13:1199811. [PMID: 37143939 PMCID: PMC10151897 DOI: 10.3389/fonc.2023.1199811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Jieying Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, China
| | - Toshiro Shirakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
185
|
Tang Y, Lei Y, Gao P, Jia J, Du H, Wang Q, Yan Z, Zhang C, Liang G, Wang Y, Ma W, Xing N, Cheng L, Ren L. Pan-cancer analysis and experimental validation of DTL as a potential diagnosis, prognosis and immunotherapy biomarker. BMC Cancer 2023; 23:328. [PMID: 37038185 PMCID: PMC10088150 DOI: 10.1186/s12885-023-10755-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND DTL has been found to be related with multiple cancers. However, comprehensive analyses, which identify the prediction value of DTL in diagnosis, prognosis, immune infiltration and treatment, have rarely been reported so far. METHODS Combined with the data online databases, the gene expression, gene mutation, function enrichment and the correlations with the immunity status and clinical indexes of DTL were analyzed. Expression of DTL and the degree of immune cell infiltration were examined by immunofluorescence (IF) and immunohistochemistry (IHC) and analyzed by statistical analysis. Furthermore, the influences of DTL on the cell cycle, cell proliferation and apoptosis were detected by live cell imaging, IF and flow cytometric (FC) analysis. Genomic stability assays were conducted by chromosome slide preparation. RESULTS DTL was widely expressed in various cells and tissues, while it was overexpressed in tumor tissues except acute myeloid leukemia (LAML). Pan-cancer bioinformatics analysis showed that the expression of DTL was correlated with the prognosis, immunotherapy, and clinical indexes in various cancers. In addition, gene set enrichment analysis (GSEA) uncovered that DTL was enriched in oocyte meiosis, pyrimidine metabolism, the cell cycle, the G2M checkpoint, mTORC1 signaling and E2F targets. Furthermore, the overexpression of DTL, and its association with immune cell infiltration and clinical indexes in liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA) and stomach adenocarcinoma (STAD) were verified in our study. It was also verified that overexpression of DTL could regulate the cell cycle, promote cell proliferation and cause genomic instability in cultured cells, which may be the reason why DTL plays a role in the occurrence, progression and treatment of cancer. CONCLUSIONS Collectively, this study suggested that DTL is of clinical value in the diagnosis, prognosis and treatment of various cancers, and may be a potential biomarker in certain cancers.
Collapse
Affiliation(s)
- Yumei Tang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
- Shanxi Keda Research Institute, Taiyaun, 030000, P.R. China
| | - Ye Lei
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Peng Gao
- BGI-Shenzhen, Shenzhen, 518083, P.R. China
| | - Junting Jia
- Department of Pharmacy, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Huijun Du
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Qitong Wang
- School of Basic Medical Sciences, Dali University, Dali, 671000, P.R. China
| | - Zhixin Yan
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Chen Zhang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Guojun Liang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Yanfeng Wang
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China
| | - Weijun Ma
- Shanxi Beike Biotechnology Co., Ltd, Taiyuan, 030000, P.R. China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China.
- Department of Urology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| | - Le Cheng
- BGI-Yunnan, Kunming, Yunnan, 650106, P.R. China.
| | - Laifeng Ren
- Department of Immunology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyaun, 030000, P.R. China.
| |
Collapse
|
186
|
Qiu Y, Zhao Y, Liu H, Cao S, Zhang C, Zang Y. Modified isotonic regression based phase I/II clinical trial design identifying optimal biological dose. Contemp Clin Trials 2023; 127:107139. [PMID: 36870476 PMCID: PMC10065963 DOI: 10.1016/j.cct.2023.107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Conventional phase I/II clinical trial designs often use complicated parametric models to characterize the dose-response relationships and conduct the trials. However, the parametric models are hard to justify in practice, and the misspecification of parametric models can lead to substantially undesirable performances in phase I/II trials. Moreover, it is difficult for the physicians conducting phase I/II trials to clinically interpret the parameters of these complicated models, and such significant learning costs impede the translation of novel statistical designs into practical trial implementation. To solve these issues, we propose a transparent and efficient phase I/II clinical trial design, referred to as the modified isotonic regression-based design (mISO), to identify the optimal biological doses for molecularly targeted agents and immunotherapy. The mISO design makes no parametric model assumptions on the dose-response relationship and yields desirable performances under any clinically meaningful dose-response curves. The concise, clinically interpretable dose-response models and dose-finding algorithm make the proposed designs highly translational from the statistical community to the clinical community. We further extend the mISO design and develop the mISO-B design to handle the delayed outcomes. Our comprehensive simulation studies show that the mISO and mISO-B designs are highly efficient in optimal biological dose selection and patients allocation and outperform many existing phase I/II clinical trial designs. We also provide a trial example to illustrate the practical implementation of the proposed designs. The software for simulation and trial implementation are available for free download.
Collapse
Affiliation(s)
- Yingjie Qiu
- Department of Biostatistics and Health Data Science, Indiana University, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Cancer Institute of New Jersey, Rutgers University, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University, USA; Center of Computational Biology and Bioinformatics, Indiana University, USA
| | - Chi Zhang
- Center of Computational Biology and Bioinformatics, Indiana University, USA; Department of Medical and Molecular Genetics, Indiana University, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Science, Indiana University, USA; Center of Computational Biology and Bioinformatics, Indiana University, USA.
| |
Collapse
|
187
|
Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2023; 149:1645-1656. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022]
Abstract
Tumor immunotherapy has become an important means of tumor therapy by enhancing the immune response and triggering the activation of immune cells. However, currently, only a small number of patients respond to immunotherapy alone, and patients may experience immune-related adverse events (irAEs) during the course of treatment. Sonodynamic therapy (SDT) can produce cytotoxic substances to tumor tissue, induce apoptosis and enhance immunity. SDT combined with immunotherapy is considered a promising strategy for cancer treatment. In this mini review, we summarize the role of SDT in immunotherapy in recent years, including the application of SDT-triggered immunotherapy and the combination of SDT and immunotherapy.
Collapse
Affiliation(s)
- Jia-Rui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Yang Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Zong-Hua Yue
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Han-Yu Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Guo-Qing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Zhi-Xia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| |
Collapse
|
188
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
189
|
Fang H, Wu Y, Chen L, Cao Z, Deng Z, Zhao R, Zhang L, Yang Y, Liu Z, Chen Q. Regulating the Obesity-Related Tumor Microenvironment to Improve Cancer Immunotherapy. ACS NANO 2023; 17:4748-4763. [PMID: 36809912 DOI: 10.1021/acsnano.2c11159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.
Collapse
Affiliation(s)
- Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yicheng Wu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zheng Deng
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
190
|
Mohapatra S, Cafiero J, Kashfi K, Mehta P, Banerjee P. Why Don't the Mutant Cells That Evade DNA Repair Cause Cancer More Frequently? Importance of the Innate Immune System in the Tumor Microenvironment. Int J Mol Sci 2023; 24:5026. [PMID: 36902456 PMCID: PMC10002487 DOI: 10.3390/ijms24055026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
The standard of care for most malignant solid tumors still involves tumor resection followed by chemo- and radiation therapy, hoping to eliminate the residual tumor cells. This strategy has been successful in extending the life of many cancer patients. Still, for primary glioblastoma (GBM), it has not controlled recurrence or increased the life expectancies of patients. Amid such disappointment, attempts to design therapies using the cells in the tumor microenvironment (TME) have gained ground. Such "immunotherapies" have so far overwhelmingly used genetic modifications of Tc cells (Car-T cell therapy) or blocking of proteins (PD-1 or PD-L1) that inhibit Tc-cell-mediated cancer cell elimination. Despite such advances, GBM has remained a "Kiss of Death" for most patients. Although the use of innate immune cells, such as the microglia, macrophages, and natural killer (NK) cells, has been considered in designing therapies for cancers, such attempts have not reached the clinic yet. We have reported a series of preclinical studies highlighting strategies to "re-educate" GBM-associated microglia and macrophages (TAMs) so that they assume a tumoricidal status. Such cells then secrete chemokines to recruit activated, GBM-eliminating NK cells and cause the rescue of 50-60% GBM mice in a syngeneic model of GBM. This review discusses a more fundamental question that most biochemists harbor: "since we are generating mutant cells in our body all the time, why don't we get cancer more often?" The review visits publications addressing this question and discusses some published strategies for re-educating the TAMs to take on the "sentry" role they initially maintained in the absence of cancer.
Collapse
Affiliation(s)
- Shubhasmita Mohapatra
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Jared Cafiero
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Parag Mehta
- Aveta Biomics, Inc., 110 Great Road, Suite 302, Bedford, MA 01730, USA
| | - Probal Banerjee
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
191
|
Qian Q, Song J, Chen C, Pu Q, Liu X, Wang H. Recent advances in hydrogels for preventing tumor recurrence. Biomater Sci 2023; 11:2678-2692. [PMID: 36877511 DOI: 10.1039/d3bm00003f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
192
|
Sun N, Yu M, Jiang Z, Yang F, Lu L, Xia Y, Zhao Y, Huang Y, Chen S, Chen S, Luo C, Wang Y, Xie Q. Optimization of carbazole carboxamide RORγt agonists: Challenges in improving the metabolic stability and maintaining the agonistic activity. Eur J Med Chem 2023; 251:115213. [PMID: 36905917 DOI: 10.1016/j.ejmech.2023.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Based on two previously discovered carbazole carboxamide retinoic acid receptor-related orphan receptor-γt (RORγt) agonists 6 and 7 (t1/2 = 8.7 min and 16.4 min in mouse liver microsome, respectively), new carbazole carboxamides were designed and synthesized according to the molecular mechanism of action (MOA) and metabolic site analysis with the aim of identifying novel RORγt agonists with optimal pharmacological and metabolic profiles. By modifying the "agonist lock" touching substitutions on carbazole ring, introducing heteroatoms into different parts of the molecule and attaching a side chain to the sulfonyl benzyl moiety, several potent RORγt agonists were identified with greatly improved metabolic stability. Best overall properties were achieved in compound (R)-10f with high agonistic activities in RORγt dual FRET (EC50 = 15.6 nM) and Gal4 reporter gene (EC50 = 141 nM) assays and greatly improved metabolic stability (t1/2 > 145 min) in mouse liver microsome. Besides, the binding modes of (R)-10f and (S)-10f in RORγt ligand binding domain (LBD) were also studied. Altogether, the optimization of carbazole carboxamides led to the discovery of (R)-10f as a potential small molecule therapeutics for cancer immunotherapy.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China; Fudan Zhangjiang Institute, Shanghai, 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingcheng Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Zhengyuan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Feng Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Yuehan Xia
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Yunpeng Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Yafei Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Song Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China.
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai, 201203, China; Fudan Zhangjiang Institute, Shanghai, 201203, China.
| |
Collapse
|
193
|
Chen F, Li T, Zhang H, Saeed M, Liu X, Huang L, Wang X, Gao J, Hou B, Lai Y, Ding C, Xu Z, Xie Z, Luo M, Yu H. Acid-Ionizable Iron Nanoadjuvant Augments STING Activation for Personalized Vaccination Immunotherapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209910. [PMID: 36576344 DOI: 10.1002/adma.202209910] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The critical challenge for cancer vaccine-induced T-cell immunity is the sustained activation of antigen cross-presentation in antigen-presenting cells (APCs) with innate immune stimulation. In this study, it is first discovered that the clinically used magnetic contrast agents, iron oxide nanoparticles (IONPs), markedly augment the type-I interferon (IFN-I) production profile of the stimulator of interferon genes (STING) agonist MSA-2 and achieve a 16-fold dosage-sparing effect in the human STING haplotype. Acid-ionizable copolymers are coassembled with IONPs and MSA-2 into iron nanoadjuvants to concentrate STING activation in the draining lymph nodes. The top candidate iron nanoadjuvant (PEIM) efficiently delivers the model antigen ovalbumin (OVA) to CD169+ APCs and facilitates antigen cross-presentation to elicit a 55-fold greater frequency of antigen-specific CD8+ cytotoxic T-lymphocyte response than soluble antigen. PEIM@OVA nanovaccine immunization induces potent and durable antitumor immunity to prevent tumor lung metastasis and eliminate established tumors. Moreover, PEIM nanoadjuvant is applicable to deliver autologous tumor antigen and synergizes with immune checkpoint blockade therapy for prevention of postoperative tumor recurrence and distant metastasis in B16-OVA melanoma and MC38 colorectal tumor models. The acid-ionizable iron nanoadjuvant offers a generalizable and readily translatable strategy to augment STING cascade activation and antigen cross-presentation for personalized cancer vaccination immunotherapy.
Collapse
Affiliation(s)
- Fangmin Chen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianliang Li
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Huijuan Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Madiha Saeed
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiaoying Liu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiyuan Wang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jing Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Bo Hou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yi Lai
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200241, P. R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zuoquan Xie
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Min Luo
- Institute of Biomedical Science and Children's Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
194
|
Dong F, Zhao C, He X, Dong Y, Liu H, Yao P, Xu W. Safety evaluation of Balanced Health Care Dan-A medicinal formulation containing traditional edible ingredients in lung tumor-loaded mice. Food Sci Nutr 2023; 11:1544-1552. [PMID: 36911849 PMCID: PMC10002941 DOI: 10.1002/fsn3.3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Chinese formulation-based medicinal food has been widely used in clinical trials, but its safety is not well studied. In this research, the edible safety assessment of Balanced Health Care Dan-a formulation containing traditional edible ingredients that were initially formulated to reduce side effects for lung cancer patients-was studied in mice based on biochemical and gut microbial analyses. The experimental mice were subcutaneously loaded with lung tumor A549 cells and then administrated with Balanced Health Care Dan (200 mg/kg or 400 mg/kg b.w. in gavage feeding) for 4 weeks. The body weight, blood parameters, and pathogenic phenotype in tissues were examined. No toxicological symptom was found in experimental mice compared with the normal control. Comprehensive analyses were also conducted to evaluate intestinal microbiota that are associated with many diseases. Balanced Health Care Dan modified the gut microbiota structure in a positive way. In conclusion, the Chinese formulation-based medicinal food has shown no toxicological effect in mice within 4 weeks of feeding experiment and has the potential to be used in clinical trials.
Collapse
Affiliation(s)
- Feng Dong
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Changhui Zhao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Xiaoyun He
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | | | | | - Peng Yao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Wentao Xu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| |
Collapse
|
195
|
Jia Y, Wang Y, Dunmall LSC, Lemoine NR, Wang P, Wang Y. Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Front Immunol 2023; 14:1126969. [PMID: 36923404 PMCID: PMC10008950 DOI: 10.3389/fimmu.2023.1126969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Lemoine
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pengju Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
196
|
Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140977. [PMID: 39086690 PMCID: PMC11285639 DOI: 10.3389/fmmed.2023.1140977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 08/02/2024]
Abstract
The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages. Nevertheless, the clinical results in terms of overall survival and progression free survival were not as anticipated. Majority of cancer patients do not respond to immunotherapies and the reasons differ. Hence, further improvements for cancer immunotherapies are crucially needed. In the review, we will discuss various forms of cancer immunotherapies that are being tested or already in the clinic. Moreover, we also highlight future directions to improve such therapies.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
197
|
Juang SJ, Lin CY, Chien TW, Chou W, Lai FJ. Using temporal heatmaps to identify worthwhile articles on immune checkpoint blockade for melanoma (ICBM) in Mainland China, Hong Kong, and Taiwan since 2000: A bibliometric analysis. Medicine (Baltimore) 2023; 102:e32797. [PMID: 36749257 PMCID: PMC9902021 DOI: 10.1097/md.0000000000032797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Melanoma is a life-threatening form of skin cancer. Due to its remarkable effectiveness, the immune checkpoint blockade is widely used to treat melanoma (ICBM). No research has been conducted on ICBM for identifying the most readable articles. A bibliometric analysis of 100 top-cited ICBM (T100ICBM) in recent decades is required to highlight articles worth reading. METHODS Based on the Web of Science Core Collection, we summarized the articles on ICBM published in each year from 2000 to 2022, with first authors from Mainland China, Hong Kong, and Taiwan (CHT). Using the CJAL score, data extraction and visualization of the distribution of ICBM publications were conducted on 2718, and 100 top-cited articles, respectively. We used the temporal heatmap to identify the most readable articles. Four descriptive, diagnostic, predictive, and prescriptive analytics (called DDPP model) were applied to describe the features of T100ICBM articles. The absolute advantage coefficient was used to determine the dominance extent of the most influential region, institute, department, and author. RESULTS A total of 2718 publications was included after removing first or corresponding authors who were not affiliated with CHT. Publications by year showed a sharp increase from 2014 onward and either peaked in 2022 or have not yet peaked. It was evident that there was a large difference between the number of publications in provinces/metropolitan cities/regions on CHT. Beijing, Sichuan University, Oncology, and Guo Jun from Beijing are the most prolific and influential region, institute, department, and author. When comparing research achievements to the next productive authors based on the CJAL score, only Dr Jun has a medium effect of dominance (=0.60). On the basis of their consecutive growth in citations over the past 4 years, 20 T100ICBM articles were recommended for readers. CONCLUSION The field of ICBM is growing rapidly, and Beijing and Sichuan University are taking the lead in CHT. Furthermore, the study provides references for worth-reading articles using the temporal heatmap. Future research hot spots may focus on these 4 themes of immunotherapy, melanoma, metastatic melanoma, regulatory T cells, cells, and activation, which may pave the way for additional study.
Collapse
Affiliation(s)
- Shiow-Jen Juang
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Yao Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
- National Tainan Institute of Nursing, Tainan, Taiwan
| |
Collapse
|
198
|
Ye Z, Xiong Y, Peng W, Wei W, Huang L, Yue J, Zhang C, Lin G, Huang F, Zhang L, Zheng S, Yue J. Manipulation of PD-L1 Endosomal Trafficking Promotes Anticancer Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206411. [PMID: 36567273 PMCID: PMC9951344 DOI: 10.1002/advs.202206411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 05/28/2023]
Abstract
The aberrant regulation of PD-L1 in tumor cells remains poorly understood. Here, the authors systematically investigate the endosomal trafficking of plasma membrane PD-L1 in tumor cells. They show that plasma membrane PD-L1 is continuously internalized, and then trafficked from early endosomes to multivesicular bodies/late endosomes, recycling endosomes, lysosomes, and/or extracellular vesicles (EVs). This constitutive endocytic trafficking of PD-L1 is Rab5- and clathrin-dependent. Triazine compound 6J1 blocks the endosomal trafficking of PD-L1 and induces its accumulation in endocytic vesicles by activating Rab5. 6J1 also promotes exosomal PD-L1 secretion by activating Rab27. Together, these effects result in a decrease in the membrane level of PD-L1 in 6J1-treated tumor cells and enables tumor cells to be more susceptible to the tumor-killing activity of T cells in vitro. 6J1 also increases tumor-infiltrating cytotoxic T cells and promotes chemokines secretion in the tumor microenvironment. Rab27 knockdown abolishes 6J1-induced PD-L1 secretion in EVs and revokes the exhausted tumor-infiltrating T cells in tumors, thereby improving the anticancer efficacy of 6J1. Furthermore, a combination of 6J1 and an anti-PD-1 antibody significantly improves the anticancer immune response. Therefore, manipulating PD-L1 endosomal trafficking provides a promising means to promote an anticancer immune response in addition to the immune checkpoint-blocking antibody therapy.
Collapse
Affiliation(s)
- Zuodong Ye
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Yiding Xiong
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Wenjie Wei
- Research Core FacilitiesSouth University of Science and Technology of ChinaShenzhen518052China
| | - Lihong Huang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Juliana Yue
- Department of BiologyBrigham Young UniversityProvoUT84602USA
| | - Chunyuan Zhang
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ge Lin
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Feng Huang
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077China
| | - Songguo Zheng
- Department of Clinical ImmunologyThird Affiliated hospital at the Sun Yat‐sen UniversityGuangzhou510630China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
- Division of Natural and Applied SciencesSynear Molecular Biology LabDuke Kunshan UniversityKunshan215316China
| |
Collapse
|
199
|
Bhatta R, Han J, Liu Y, Bo Y, Wang H. T cell-responsive macroporous hydrogels for in situ T cell expansion and enhanced antitumor efficacy. Biomaterials 2023; 293:121972. [PMID: 36566554 PMCID: PMC9868092 DOI: 10.1016/j.biomaterials.2022.121972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Adoptive T cell therapy has demonstrated great promise for treating cancer and other diseases. While extensive effort has been made to improve ex vivo expansion of T cells, strategies for maintaining the proliferation and function of T cells post adoptive transfer are still lacking. Here we report an injectable T cell-responsive macroporous hydrogel that enables in situ activation and expansion of T cells. The macroporous gel is composed of a polymeric network with dispersed macropores (∼150 μm) that are large enough to home T cells. In the presence of T cells that can gradually disrupt the gel network surrounding the macropores, activation cues can be gradually released for in situ activation and expansion of T cells. This T cell-responsive macroporous gel enables expansion of effector T cells in vivo, is stable over weeks upon subcutaneous injection, and results in enhanced CD8+ T cell response and antitumor efficacy. We further show that the T cell-responsive macroporous gel could achieve comparable antitumor efficacy to conventional T cell therapy with a much lower cell dose. This injectable, T cell-responsive macroporous gel provides a platform for in vivo expansion of engineered T cells in a controlled manner, for timely and effective treatment of diseases.
Collapse
Affiliation(s)
- Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
200
|
Veinalde R, Pidelaserra-Martí G, Moulin C, Tan CL, Schäfer TE, Kang N, Ball CR, Leichsenring J, Stenzinger A, Kaderali L, Jäger D, Ungerechts G, Engeland CE. Virotherapy combined with anti-PD-1 transiently reshapes the tumor immune environment and induces anti-tumor immunity in a preclinical PDAC model. Front Immunol 2023; 13:1096162. [PMID: 36726983 PMCID: PMC9886093 DOI: 10.3389/fimmu.2022.1096162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model. Methods We characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity. Results Combination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity. Discussion Our results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy.
Collapse
Affiliation(s)
- Rūta Veinalde
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gemma Pidelaserra-Martí
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Coline Moulin
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chin Leng Tan
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theresa E. Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Na Kang
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia R. Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany,Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus, Faculty of Medicine and Technische Universität Dresden, Dresden, Germany
| | - Jonas Leichsenring
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany
| | | | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Christine E. Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany,*Correspondence: Christine E. Engeland, ;
| |
Collapse
|