151
|
Hu C, Fan Y, Lin Z, Xie X, Huang S, Hu Z. Metabolomic landscape of overall and common cancers in the UK Biobank: A prospective cohort study. Int J Cancer 2024; 155:27-39. [PMID: 38430541 DOI: 10.1002/ijc.34884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 03/04/2024]
Abstract
Information about the NMR metabolomics landscape of overall, and common cancers is still limited. Based on a cohort of 83,290 participants from the UK Biobank, we used multivariate Cox regression to assess the associations between each of the 168 metabolites with the risks of overall cancer and 20 specific types of cancer. Then, we applied LASSO to identify important metabolites for overall cancer risk and obtained their associations using multivariate cox regression. We further conducted mediation analysis to evaluate the mediated role of metabolites in the effects of traditional factors on overall cancer risk. Finally, we included the 13 identified metabolites as predictors in prediction models, and compared the accuracies of our traditional models. We found that there were commonalities among the metabolic profiles of overall and specific types of cancer: the top 20 frequently identified metabolites for 20 specific types of cancer were all associated with overall cancer; most of the specific types of cancer had common identified metabolites. Meanwhile, the associations between the same metabolite with different types of cancer can vary based on the site of origin. We identified 13 metabolic biomarkers associated with overall cancer, and found that they mediated the effects of traditional factors. The accuracies of prediction models improved when we added 13 identified metabolites in models. This study is helpful to understand the metabolic mechanisms of overall and a wide range of cancers, and our results also indicate that NMR metabolites are potential biomarkers in cancer diagnosis and prevention.
Collapse
Affiliation(s)
- Chanchan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yi Fan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhifeng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
152
|
Duran‐Padilla M, Serrano‐Loyola R, Perez‐Garcia A, Carrillo‐Betancourt R, Campos‐García Rojas C, Reyes‐Alberto M, Franco W, Hernandez‐Ruiz J, Gutierrez‐Herrera E. Tryptophan intrinsic fluorescence from wound healing correlates with re-epithelialization in a rabbit model. Skin Res Technol 2024; 30:e13834. [PMID: 38923076 PMCID: PMC11197032 DOI: 10.1111/srt.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Wound healing monitoring and timely decision-making are critical for wound classification. Tryptophan (Tr) intrinsic fluorescence, detected at 295/340 nm, provides a noninvasive approach for wound assessment. Our previous work demonstrated that this autofluorescence is associated with keratinocytes in a highly proliferative state in vitro. OBJECTIVE We investigated the correlation between Tr fluorescence and key wound healing parameters, including re-epithelialization, fibrosis, neovascularization, and acute and chronic inflammation, using a rabbit model. METHODS Seven rabbits underwent wound healing assessment over a 15-day period. We employed histological analysis from central and marginal biopsies, and UV fluorescence imaging captured by a monochromatic near-UV sensitive camera equipped with a passband optical filter (340 nm/12 nm). Excitation was achieved using a 295 nm LEDs ring lamp. Normalized fluorescence values were correlated with histological measurements using Pearson correlation. RESULTS The UV fluorescence strongly exhibited a strong correlation with re-epithelization (r = 0.8) at the wound edge, with peak intensity observed between the sixth and ninth days. Notably, wound-healing dynamics differed between the wound center and edge, primarily attributed to variations in re-epithelialization, neovascularization, and chronic inflammation. CONCLUSION Our findings highlight the presence of autofluorescence at 295/340 nm during wound healing, demonstrating a robust association with re-epithelialization. This excitation/emission signal holds promise as a valuable noninvasive strategy for monitoring wound closure, re-epithelialization, and other biological processes where Tr plays a pivotal role.
Collapse
Affiliation(s)
- Marco Duran‐Padilla
- Pathology DepartmentHospital General de Mexico Dr. Eduardo LiceagaMexico CityMexico
| | - Raul Serrano‐Loyola
- Vascular SurgeryHospital General de Mexico Dr. Eduardo LiceagaMexico CityMexico
| | - Adolfo Perez‐Garcia
- Research DepartmentHospital General de Mexico Dr. Eduardo LiceagaMexico CityMexico
| | - Rodolfo Carrillo‐Betancourt
- Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | | | - Miguel Reyes‐Alberto
- Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Walfre Franco
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMassachusettsUSA
- Department of DermatologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Enoch Gutierrez‐Herrera
- Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
153
|
Luu HN, Thi-Hai Y, Yuan JM, Brand RE, Van T, Dao HV, Le CKT, Huynh NYN, Nguyen HM, Le NT. Tryptophan intake and pancreatic cancer: findings from a case-control study. Eur J Cancer Prev 2024; 33:285-292. [PMID: 38215023 PMCID: PMC11156568 DOI: 10.1097/cej.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related death worldwide. Tryptophan plays a vital role in cell growth and maintenance as a building block of protein and coordination of organismal responses to environmental and dietary cues. Animal model study showed that dietary tryptophan improved treatment response in those who received chemotherapy or immune checkpoint inhibitors. Limited data are available assessing the association between tryptophan intake and risk of pancreatic cancer. We aimed to evaluate this association in a case-control study in Vietnam. METHODS We analyzed data from a case-control study, including 3759 cancer cases and 2995 control subjects of whom 37 with pancreatic cancer cases. Tryptophan intake was derived from food frequency questionnaire. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for different levels of tryptophan intake with pancreatic cancer risk. RESULTS Overall, tryptophan intake was inversely associated with pancreatic cancer risk in a dose-dependent manner. The ORs and 95% CIs of pancreatic cancer were 0.51 (0.29-0.92) for continuous scale, 0.27 (0.10-0.73) for tertile 2 and 0.34 (0.11-1.06) for tertile 3, compared with tertile 1 (the lowest intake) ( Ptrend = 0.02). In stratified analysis, this inverse association pattern was present among those with BMI < 23 kg/m 2 and ever drinkers. CONCLUSION A diet with a higher intake of tryptophan was significantly associated with a lower incidence of pancreatic cancer among Vietnamese population. These suggest that dietary modification may be an effective strategy for primary prevention of pancreatic cancer development.
Collapse
Affiliation(s)
- Hung N. Luu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen Thi-Hai
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jian-Min Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Randall E. Brand
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tuyen Van
- Bach Mai Center of Pathology, Bach Mai Hospital, Viet Nam
| | - Hang Viet Dao
- Internal Medicine Faculty, Hanoi Medical University, Ha Noi City, Viet Nam
| | - Chung Kim Thi Le
- Research laboratory, Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Nhi Yen Ngoc Huynh
- School of Medicine, International University of Health and Welfare, Narita City, Japan
| | - Hai Minh Nguyen
- School of Medicine, International University of Health and Welfare, Narita City, Japan
| | - Ngoan Tran Le
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
- Department of Occupational Health, Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
154
|
Raines NH, Leone DA, Amador JJ, Lopez-Pilarte D, Ramírez-Rubio O, Delgado IS, Francey LJ, Leibler JH, Asara JM, Scammell MK, Parikh SM, Brooks DR, Friedman DJ. Derangement in Nicotinamide Adenine Dinucleotide Metabolism is Observed During Acute Kidney Injury Among Male Agricultural Workers at Risk for Mesoamerican Nephropathy. Kidney Int Rep 2024; 9:2250-2259. [PMID: 39081728 PMCID: PMC11284402 DOI: 10.1016/j.ekir.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Mesoamerican nephropathy (MeN) is a chronic kidney disease (CKD) which may be caused by recurrent acute kidney injury (AKI). We investigated urinary quinolinate-to-tryptophan ratio (Q/T), a validated marker of nicotinamide adenine dinucleotide (NAD+) biosynthesis that is elevated during ischemic and inflammatory AKI, in a sugarcane worker population in Nicaragua with high rates of MeN. Methods Among 693 male sugarcane workers studied, we identified 45 who developed AKI during the harvest season. We matched them 1:1 based on age and job category with 2 comparison groups: (i) "no kidney injury," active sugarcane workers with serum creatinine (sCr) <1.1 mg/dl; and (ii) "CKD," individuals no longer working in sugarcane due to their CKD, who had additional 1:1 matching for sCr. We measured urine metabolites using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) and compared Q/T and other metabolic features between the AKI and comparison groups. Results Urine Q/T was significantly higher in workers with AKI than in those with no kidney injury (median interquartile Range [IQR]: 0.104 [0.074-0.167] vs. 0.060 [0.045-0.091], P < 0.0001) and marginally higher than in workers with CKD (0.086 [0.063-0.142], P = 0.059). Urine levels of the NAD+ precursor nicotinamide were lower in the AKI group than in comparison groups. Conclusion Workers at risk for MeN who develop AKI demonstrate features of impaired NAD+ biosynthesis, thereby providing new insights into the metabolic mechanisms of injury in this population. Therapeutic use of oral nicotinamide, which may ameliorate NAD+ biosynthetic derangement and fortify against kidney injury, should be investigated to prevent AKI in this setting.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dominic A. Leone
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Juan Jose Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Damaris Lopez-Pilarte
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Oriana Ramírez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Iris S. Delgado
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lauren J. Francey
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - John M. Asara
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Madeleine K. Scammell
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Daniel R. Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
155
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
156
|
Wang Y, Jia S, Chen Y, Liao X, Jie R, Jiang L, Wang T, Wen H, Gan W, Cui H. Taking advantage of the interaction between the sulfoxide and heme cofactor to develop indoleamine 2, 3-dioxygenase 1 inhibitors. Bioorg Chem 2024; 148:107426. [PMID: 38733750 DOI: 10.1016/j.bioorg.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shumi Jia
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ru Jie
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Lei Jiang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Wenqiang Gan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
157
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
158
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
159
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
160
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
161
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
162
|
Parada-Kusz M, Clatworthy AE, Goering ER, Blackwood SM, Shigeta JY, Mashin E, Salm EJ, Choi C, Combs S, Lee JSW, Rodriguez-Osorio C, Clish C, Tomita S, Hung DT. 3-Hydroxykynurenine targets kainate receptors to promote defense against infection. Nat Chem Biol 2024:10.1038/s41589-024-01635-z. [PMID: 38898166 DOI: 10.1038/s41589-024-01635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxykynurenine (3-HK) protects from lethal bacterial infection. 3-HK, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages through a systemic mechanism that targets kainate-sensitive glutamate receptors. These findings reveal a new pathway by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with important implications for the coordination between the immune and nervous systems in pathological conditions.
Collapse
Affiliation(s)
- Margarita Parada-Kusz
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Emily R Goering
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie M Blackwood
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Y Shigeta
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elizabeth J Salm
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Catherine Choi
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senya Combs
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jenny S W Lee
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos Rodriguez-Osorio
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
163
|
Fan S, Zhu H, Liu W, Ha J, Liu Y, Mi M, Ren Q, Xu L, Zhang J, Liu W, Feng F, Xu J. Comparing massa medicata fermentata before and after charred in terms of digestive promoting effect via metabolomics and microbiome analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117989. [PMID: 38462026 DOI: 10.1016/j.jep.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.
Collapse
Affiliation(s)
- Siqi Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huangyao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwen Ha
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ma Mi
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Qingjia Ren
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Lijun Xu
- Tibetan University of Tibetan Medicine, Lhasa, 850007, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Tibetan University of Tibetan Medicine, Lhasa, 850007, China.
| |
Collapse
|
164
|
Juhas U, Reczkowicz J, Kortas JA, Żychowska M, Pilis K, Ziemann E, Cytrych I, Antosiewicz J, Borkowska A. Eight-day fasting modulates serum kynurenines in healthy men at rest and after exercise. Front Endocrinol (Lausanne) 2024; 15:1403491. [PMID: 38933822 PMCID: PMC11199767 DOI: 10.3389/fendo.2024.1403491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Tryptophan's (Trp) metabolites are undervalued markers of human health. Their serum concentrations are modified by physical exercise and other factors, among which fasting has a well-documented role. Although this mechanism is hardly explored, thus, the study aimed to determine the effect of the 8-day fasting period and the impact of such a procedure on a single bout of an endurance exercise on the concentration of kynurenine pathway (KP) metabolites. Methods 10 participants fasted for 8 days, and 10 as a control group participated in the study. The exercise was performed at baseline after an overnight fast and repeated post 8 days. Results The 8 days of fasting increased the resting 3-hydroxy-L-kynurenine (3HK), picolinic acid (PA), kynurenic acid (KYNA), and xanthurenic acid (XA) serum concentration. Also elevated phenylalanine (Phe) and tyrosine (Tyr) levels were recorded, suggesting expanded proteolysis of muscle proteins. In turn, physical activity caused a decrease in the concentration of 3-hydroxyanthranilic acid (3HAA) and PA after fasting. The obtained results were not recorded in controls. Conclusion The results of this study show that the health-promoting effects of fasting are associated with changes in the KYN pathway. The increase in the concentration of PA and XA metabolites following fasting is capable of penetrating the blood-brain barrier, and KYNA, which initiates several beneficial changes, supports this assumption.
Collapse
Affiliation(s)
- Ulana Juhas
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Antoni Kortas
- Department of Health and Life Sciences, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Karol Pilis
- Department of Health Sciences, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | | | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
165
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
166
|
Scorsone E, Stewart S, Hamel M. Highly Sensitive and Selective Detection of L-Tryptophan by ECL Using Boron-Doped Diamond Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:3627. [PMID: 38894416 PMCID: PMC11175342 DOI: 10.3390/s24113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest.
Collapse
Affiliation(s)
- Emmanuel Scorsone
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France; (S.S.)
| | | | | |
Collapse
|
167
|
Zhang X, Shi J, Jin S, Wang R, Li M, Zhang Z, Yang X, Ma H. Metabolic landscape of head and neck squamous cell carcinoma informs a novel kynurenine/Siglec-15 axis in immune escape. Cancer Commun (Lond) 2024; 44:670-694. [PMID: 38734931 PMCID: PMC11194450 DOI: 10.1002/cac2.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape. METHODS Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort. RESULTS A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues. CONCLUSIONS The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.
Collapse
Affiliation(s)
- Xin‐Yu Zhang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Jian‐Bo Shi
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Shu‐Fang Jin
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
- Department of Second Dental CenterShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Rui‐Jie Wang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Ming‐Yu Li
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Zhi‐Yuan Zhang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Xi Yang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Hai‐Long Ma
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| |
Collapse
|
168
|
Zhang J, Liu Y, Zhi X, Xu L, Tao J, Cui D, Liu TF. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies. Inflamm Res 2024; 73:979-996. [PMID: 38592457 DOI: 10.1007/s00011-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp), an essential amino acid, is the only amino acid whose level is regulated specifically by immune signals. Most proportions of Trp are catabolized via the kynurenine (Kyn) pathway (KP) which has evolved to align the food availability and environmental stimulation with the host pathophysiology and behavior. Especially, the KP plays an indispensable role in balancing the immune activation and tolerance in response to pathogens. SCOPE OF REVIEW In this review, we elucidate the underlying immunological regulatory network of Trp and its KP-dependent catabolites in the pathophysiological conditions by participating in multiple signaling pathways. Furthermore, the KP-based regulatory roles, biomarkers, and therapeutic strategies in pathologically immune disorders are summarized covering from acute to chronic infection and inflammation. MAJOR CONCLUSIONS The immunosuppressive effects dominate the functions of KP induced-Trp depletion and KP-produced metabolites during infection and inflammation. However, the extending minor branches from the KP are not confined to the immune tolerance, instead they go forward to various functions according to the specific condition. Nevertheless, persistent efforts should be made before the clinical use of KP-based strategies to monitor and cure infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
169
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
170
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
171
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
172
|
Gan J, Wang Y, Deng Y, Zhang J, Wang S, Jiang X, Guo M, Song L. Sacubitril/valsartan ameliorates cardiac function and ventricular remodeling in CHF rats via the inhibition of the tryptophan/kynurenine metabolism and inflammation. Sci Rep 2024; 14:12377. [PMID: 38811632 PMCID: PMC11136956 DOI: 10.1038/s41598-024-62472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1β, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1β, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.
Collapse
Affiliation(s)
- Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Deng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
173
|
Fila M, Chojnacki J, Derwich M, Chojnacki C, Pawlowska E, Blasiak J. Urine 5-Hydroxyindoleacetic Acid Negatively Correlates with Migraine Occurrence and Characteristics in the Interictal Phase of Episodic Migraine. Int J Mol Sci 2024; 25:5471. [PMID: 38791512 PMCID: PMC11121987 DOI: 10.3390/ijms25105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Although migraine belongs to the main causes of disability worldwide, the mechanisms of its pathogenesis are poorly known. As migraine diagnosis is based on the subjective assessment of symptoms, there is a need to establish objective auxiliary markers to support clinical diagnosis. Tryptophan (TRP) metabolism has been associated with the pathogenesis of neurological and psychiatric disorders. In the present work, we investigated an association between migraine and the urine concentration of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA) in 21 low-frequency episodic migraine patients and 32 controls. We chose the interictal phase as the episodic migraine patients were recruited from the outpatient clinic and had monthly migraine days as low as 1-2 in many cases. Migraine patients displayed lower urinary levels of 5-HIAA (p < 0.01) and KYNA (p < 0.05), but KYN and QA were enhanced, as compared with the controls (p < 0.05 and 0.001, respectively). Consequently, the patients were characterized by different values of the 5-HIAA/TRP, KYN/TRP, KYNA/KYN, and KYNA/QA ratios (p < 0.001 for all). Furthermore, urinary concentration of 5-HIAA was negatively correlated with Migraine Disability Assessment score and monthly migraine and monthly headache days. There was a negative correlation between Patient Health Questionnaire 9 scores assessing depression. In conclusion, the urinary 5-HIAA level may be further explored to assess its suitability as an easy-to-determine marker of migraine.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| |
Collapse
|
174
|
Huai M, Wang Y, Li J, Pan J, Sun F, Zhang F, Zhang Y, Xu L. Intelligent nanovesicle for remodeling tumor microenvironment and circulating tumor chemoimmunotherapy amplification. J Nanobiotechnology 2024; 22:257. [PMID: 38755645 PMCID: PMC11097415 DOI: 10.1186/s12951-024-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yingjie Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Junhao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Jiaxing Pan
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Fang Sun
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Feiyu Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yi Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Leiming Xu
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
175
|
Feng T, Tang Z, Karges J, Shu J, Xiong K, Jin C, Chen Y, Gasser G, Ji L, Chao H. An iridium(iii)-based photosensitizer disrupting the mitochondrial respiratory chain induces ferritinophagy-mediated immunogenic cell death. Chem Sci 2024; 15:6752-6762. [PMID: 38725496 PMCID: PMC11077511 DOI: 10.1039/d4sc01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer cells have a strategically optimized metabolism and tumor microenvironment for rapid proliferation and growth. Increasing research efforts have been focused on developing therapeutic agents that specifically target the metabolism of cancer cells. In this work, we prepared 1-methyl-4-phenylpyridinium-functionalized Ir(iii) complexes that selectively localize in the mitochondria and generate singlet oxygen and superoxide anion radicals upon two-photon irradiation. The generation of this oxidative stress leads to the disruption of the mitochondrial respiratory chain and therefore the disturbance of mitochondrial oxidative phosphorylation and glycolysis metabolisms, triggering cell death by combining immunogenic cell death and ferritinophagy. To the best of our knowledge, this latter is reported for the first time in the context of photodynamic therapy (PDT). To provide cancer selectivity, the best compound of this work was encapsulated within exosomes to form tumor-targeted nanoparticles. Treatment of the primary tumor of mice with two-photon irradiation (720 nm) 24 h after injection of the nanoparticles in the tail vein stops the primary tumor progression and almost completely inhibits the growth of distant tumors that were not irradiated. Our compound is a promising photosensitizer that efficiently disrupts the mitochondrial respiratory chain and induces ferritinophagy-mediated long-term immunotherapy.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
176
|
Babcock NS, Montes-Cabrera G, Oberhofer KE, Chergui M, Celardo GL, Kurian P. Ultraviolet Superradiance from Mega-Networks of Tryptophan in Biological Architectures. J Phys Chem B 2024; 128:4035-4046. [PMID: 38641327 PMCID: PMC11075083 DOI: 10.1021/acs.jpcb.3c07936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Networks of tryptophan (Trp)─an aromatic amino acid with strong fluorescence response─are ubiquitous in biological systems, forming diverse architectures in transmembrane proteins, cytoskeletal filaments, subneuronal elements, photoreceptor complexes, virion capsids, and other cellular structures. We analyze the cooperative effects induced by ultraviolet (UV) excitation of several biologically relevant Trp mega-networks, thus giving insights into novel mechanisms for cellular signaling and control. Our theoretical analysis in the single-excitation manifold predicts the formation of strongly superradiant states due to collective interactions among organized arrangements of up to >105 Trp UV-excited transition dipoles in microtubule architectures, which leads to an enhancement of the fluorescence quantum yield (QY) that is confirmed by our experiments. We demonstrate the observed consequences of this superradiant behavior in the fluorescence QY for hierarchically organized tubulin structures, which increases in different geometric regimes at thermal equilibrium before saturation, highlighting the effect's persistence in the presence of disorder. Our work thus showcases the many orders of magnitude across which the brightest (hundreds of femtoseconds) and darkest (tens of seconds) states can coexist in these Trp lattices.
Collapse
Affiliation(s)
- N. S. Babcock
- Quantum
Biology Laboratory, Howard University, Washington, D.C. 20060, United States
| | - G. Montes-Cabrera
- Quantum
Biology Laboratory, Howard University, Washington, D.C. 20060, United States
- Institute
of Physics, Benemérita Universidad
Autónoma de Puebla, Puebla 72570, Mexico
| | - K. E. Oberhofer
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - M. Chergui
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - G. L. Celardo
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, Florence 50019, Italy
| | - P. Kurian
- Quantum
Biology Laboratory, Howard University, Washington, D.C. 20060, United States
| |
Collapse
|
177
|
Kotańska M, Łanocha M, Bednarski M, Marcinkowska M. MM165 - A Small Hybrid Molecule Modulates the Kynurenine Pathway and Attenuates Lipopolysaccharide-Induced Memory Deficits and Inflammation. Neurochem Res 2024; 49:1200-1211. [PMID: 38381245 DOI: 10.1007/s11064-024-04105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland.
| | - Michał Łanocha
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| |
Collapse
|
178
|
Illescas S, Diaz-Osorio Y, Serradell A, Toro-Soria L, Musokhranova U, Juliá-Palacios N, Ribeiro-Constante J, Altafaj X, Olivella M, O'Callaghan M, Darling A, Armstrong J, Artuch R, García-Cazorla À, Oyarzábal A. Metabolic characterization of neurogenetic disorders involving glutamatergic neurotransmission. J Inherit Metab Dis 2024; 47:551-569. [PMID: 37932875 DOI: 10.1002/jimd.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
The study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives. We have performed a semi-targeted metabolomic analysis on CSF samples from 25 patients with neurogenetic disorders with an important expression in the glutamatergic synapse and 5 controls. Samples from patients diagnosed with MCP2, CDKL5-, GRINpathies and STXBP1-related encephalopathies were included. We have performed univariate (UVA) and multivariate statistical analysis (MVA), using Wilcoxon rank-sum test, principal component analysis (PCA), and OPLS-DA. By using the results of both analyses, we have identified the metabolites that were significantly altered and that were important in clustering the respective groups. On these, we performed pathway- and network-based analyses to define which metabolic pathways were possibly altered in each pathology. We have observed alterations in the tryptophan and branched-chain amino acid metabolism pathways, which interestingly converge on LAT1 transporter-dependency to cross the blood-brain barrier (BBB). Analysis of the expression of LAT1 transporter in brain samples from a mouse model of Rett syndrome (MECP2) revealed a decrease in the transporter expression, that was already noticeable at pre-symptomatic stages. The study of the glutamatergic synapse from this perspective advances the understanding of their pathophysiology, shining light on an understudied feature as is their metabolic signature.
Collapse
Affiliation(s)
- Sofía Illescas
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Yaiza Diaz-Osorio
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Anna Serradell
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Lucía Toro-Soria
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Uliana Musokhranova
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Juliana Ribeiro-Constante
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Altafaj
- Neurophysiology Laboratory, Department of Biomedicine, Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mireia Olivella
- School of International Studies, ESCI-UPF, Barcelona, Spain
- Bioinformatics and Bioimaging Group, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Vic, Spain
| | - Mar O'Callaghan
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| | - Alejandra Darling
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Judith Armstrong
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
- Department of Medical Genetics, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Àngels García-Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| |
Collapse
|
179
|
Zhai Y, Chavez JA, D'Aquino KE, Meng R, Nawrocki AR, Pocai A, Wang L, Ma LJ. Kynurenine 3-monooxygenase limits de novo NAD + synthesis through dietary tryptophan in renal proximal tubule epithelial cell models. Am J Physiol Cell Physiol 2024; 326:C1423-C1436. [PMID: 38497113 DOI: 10.1152/ajpcell.00445.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.
Collapse
Affiliation(s)
- Yougang Zhai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Jose A Chavez
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Katharine E D'Aquino
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Rong Meng
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Andrea R Nawrocki
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Alessandro Pocai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Lifeng Wang
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Li-Jun Ma
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| |
Collapse
|
180
|
Zhu Y, Yin L, Liu Q, Guan Y, Nie S, Zhu Y, Mo F. Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating. Curr Res Food Sci 2024; 8:100754. [PMID: 38736909 PMCID: PMC11087915 DOI: 10.1016/j.crfs.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Chronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.
Collapse
Affiliation(s)
- Ying Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Lifeng Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Qing Liu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yaoxing Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
181
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
182
|
Kang P, Wang AZX. Microbiota-gut-brain axis: the mediator of exercise and brain health. PSYCHORADIOLOGY 2024; 4:kkae007. [PMID: 38756477 PMCID: PMC11096970 DOI: 10.1093/psyrad/kkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
The brain controls the nerve system, allowing complex emotional and cognitive activities. The microbiota-gut-brain axis is a bidirectional neural, hormonal, and immune signaling pathway that could link the gastrointestinal tract to the brain. Over the past few decades, gut microbiota has been demonstrated to be an essential component of the gastrointestinal tract that plays a crucial role in regulating most functions of various body organs. The effects of the microbiota on the brain occur through the production of neurotransmitters, hormones, and metabolites, regulation of host-produced metabolites, or through the synthesis of metabolites by the microbiota themselves. This affects the host's behavior, mood, attention state, and the brain's food reward system. Meanwhile, there is an intimate association between the gut microbiota and exercise. Exercise can change gut microbiota numerically and qualitatively, which may be partially responsible for the widespread benefits of regular physical activity on human health. Functional magnetic resonance imaging (fMRI) is a non-invasive method to show areas of brain activity enabling the delineation of specific brain regions involved in neurocognitive disorders. Through combining exercise tasks and fMRI techniques, researchers can observe the effects of exercise on higher brain functions. However, exercise's effects on brain health via gut microbiota have been little studied. This article reviews and highlights the connections between these three interactions, which will help us to further understand the positive effects of exercise on brain health and provide new strategies and approaches for the prevention and treatment of brain diseases.
Collapse
Affiliation(s)
- Piao Kang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
183
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
184
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
185
|
Predescu E, Vaidean T, Rapciuc AM, Sipos R. Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents-A Systematic Review. Int J Mol Sci 2024; 25:4385. [PMID: 38673970 PMCID: PMC11050195 DOI: 10.3390/ijms25084385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD), characterized by clinical diversity, poses diagnostic challenges often reliant on subjective assessments. Metabolomics presents an objective approach, seeking biomarkers for precise diagnosis and targeted interventions. This review synthesizes existing metabolomic insights into ADHD, aiming to reveal biological mechanisms and diagnostic potentials. A thorough PubMed and Web of Knowledge search identified studies exploring blood/urine metabolites in ADHD-diagnosed or psychometrically assessed children and adolescents. Synthesis revealed intricate links between ADHD and altered amino acid metabolism, neurotransmitter dysregulation (especially dopamine and serotonin), oxidative stress, and the kynurenine pathway impacting neurotransmitter homeostasis. Sleep disturbance markers, notably in melatonin metabolism, and stress-induced kynurenine pathway activation emerged. Distinct metabolic signatures, notably in the kynurenine pathway, show promise as potential diagnostic markers. Despite limitations like participant heterogeneity, this review underscores the significance of integrated therapeutic approaches targeting amino acid metabolism, neurotransmitters, and stress pathways. While guiding future research, this overview of the metabolomic findings in ADHD suggests directions for precision diagnostics and personalized ADHD interventions.
Collapse
Affiliation(s)
- Elena Predescu
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Tudor Vaidean
- Clinic of Pediatric Psychiatry and Addiction, Clinical Emergency Hospital for Children, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Andreea-Marlena Rapciuc
- Clinical Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Roxana Sipos
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| |
Collapse
|
186
|
Liu Z, Ma Z, Jin L, Nizhamuding X, Zeng J, Zhang T, Zhang J, Wang J, Zhao H, Zhou W, Zhang C. Altered neopterin and IDO in kynurenine metabolism based on LC-MS/MS metabolomics study: Novel therapeutic checkpoints for type 2 diabetes mellitus. Clin Chim Acta 2024; 557:117859. [PMID: 38518968 DOI: 10.1016/j.cca.2024.117859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND This study assessed the alternations of kynurenine pathway (KP) and neopterin in type 2 diabetes mellitus (T2DM) and explored possible differential metabolites. METHODS A fresh residual sera panel was collected from 80 healthy control (HC) individuals and 72 T2DM patients. Metabolites/ratios of interest including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), neopterin (NEO), KA/KYN ratio and KYN/TRP ratio were determined using a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics approach, and the difference between groups was assessed. Supervised orthogonal partial least squares-discriminant analysis and differential metabolite screening with fold change (FC) were performed to identify distinct biomarkers. The diagnostic performance of KP metabolites in T2DM was evaluated. RESULTS Significant decreases of TRP, 5HT, KA, XA, and KA/KYN and increases of KYN/TRP and NEO in T2DM compared to HC group were observed (P < 0.05). The KP metabolites panel significantly changed between T2DM and HC groups (Q2: 0.925, P < 0.005). 5HT (FC: 0.63, P < 0.01) and NEO (FC: 3.27, P < 0.01) were proven to be distinct differential metabolites. A combined testing of fasting plasma glucose and KYN/TRP showed good value in the prediction of T2DM (AUC: 0.904, 95% CI 0.843-0.947). CONCLUSIONS The targeted LC-MS/MS metabolomics study is a powerful tool for evaluating the status of T2DM. This study facilitated the application of KP metabolomics into future clinical practice. 5HT and NEO are promising biomarkers in T2DM. KYN/TRP was highly associated with the development of T2DM and may serve as a potential treatment target.
Collapse
Affiliation(s)
- Zhenni Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zijia Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaerbanu Nizhamuding
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Jing Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Haijian Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Weiyan Zhou
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
187
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024; 16:1003-1022. [PMID: 38739945 PMCID: PMC11964442 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
Affiliation(s)
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
188
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
189
|
Shao J, Qu L, Liu Y, Zhang J, Liu Y, Deng J, Ma X, Fan D. Ginsenoside Rk3 Regulates Tryptophan Metabolism along the Brain-Gut Axis by Targeting Tryptophan Hydroxylase and Remodeling the Intestinal Microenvironment to Alleviate Depressive-Like Behavior in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7100-7120. [PMID: 38488514 DOI: 10.1021/acs.jafc.3c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.
Collapse
Affiliation(s)
- Jingjing Shao
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jingjing Zhang
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
190
|
Yu Z, Lin Y, Wu L, Wang L, Fan Y, Xu L, Zhang L, Wu W, Tao J, Huan F, Liu W, Wang J, Gao R. Bisphenol F exposure induces depression-like changes: Roles of the kynurenine metabolic pathway along the "liver-brain" axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123356. [PMID: 38266696 DOI: 10.1016/j.envpol.2024.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Bisphenol F (BPF), one of the major alternatives of Bisphenol A (BPA), is becoming extensively used in industrial production with great harm to human beings and environment. Recent studies have revealed that environmental exposure is crucial to the initiation and development of depression. Thereby, the aim the present study is to ascertain the correlationship between the BPF exposure and depression occurrence. In the current study, BPF strikingly triggered depression-like changes in mice through the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST), accompanied by the perturbation of the kynurenine (KYN) metabolic pathway along the "liver-brain" axis. Mechanistically, the neurotransmitters from the tryptophan metabolic pathway were converted to the toxic KYN pathway after BPF treatment. With the ELISA assay, it revealed that the toxic KYN metabolites, including KYN and 3-hydroxykynurenine (3-HK), were strikingly increased in the mouse brains which was ascribed to the enhanced expression of the rate-limiting enzymes Indoleamine 2,3-dioxygenase (IDO1) and Kynurenine 3-monooxygenase (KMO) respectively. Interestingly, the increased brain KYN induced by BPF was also validated partially from the periphery, since the ELISA and western blotting results indicated the significantly increased KYN in the serum and L-type amino acid transporter 1 (LAT1) in the brain, the key transporter responsible for KYN and 3-HK crossing the blood-brain barrier. Intriguingly, the liver-derived KYN metabolic pathway was the important source of the peripheral KYN and 3-HK, as BPF substantially enhanced hepatic IDO1, Tryptophan, 2, 3-dioxygenase (TDO2), and KMO levels indicated by western blotting. This study is the first to delineate previously unrecognized BPF-induced depression by regulating the KYN metabolic pathway along the "liver-brain" axis; therefore, targeting LAT1 or hepatic KYN signaling may provide a potentially unique therapeutic intervention in BPF-induced depression.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yuxin Lin
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Luyao Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linwei Zhang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Jingxian Tao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Fei Huan
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Jun Wang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
191
|
Yu L, Xu L, Chen Y, Rong Y, Zou Y, Ge S, Wu T, Lai Y, Xu Q, Guo W, Liu W. IDO1 Inhibition Promotes Activation of Tumor-intrinsic STAT3 Pathway and Induces Adverse Tumor-protective Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1232-1243. [PMID: 38391297 DOI: 10.4049/jimmunol.2300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.
Collapse
Affiliation(s)
- Longbo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunjie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yicheng Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Tiancong Wu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
192
|
Kiecka A, Szczepanik M. Migraine and the microbiota. Can probiotics be beneficial in its prevention? - a narrative review. Pharmacol Rep 2024; 76:251-262. [PMID: 38502301 DOI: 10.1007/s43440-024-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
Migraine is a recurrent disease of the central nervous system that affects an increasing number of people worldwide causing a continuous increase in the costs of treatment. The mechanisms underlying migraine are still unclear but recent reports show that people with migraine may have an altered composition of the intestinal microbiota. It is well established that the gut-brain axis is involved in many neurological diseases, and probiotic supplementation may be an interesting treatment option for these conditions. This review collects data on the gastrointestinal and oral microbiota in people suffering from migraine and the use of probiotics as a novel therapeutic approach in its treatment.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland.
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland
| |
Collapse
|
193
|
Gabrawy MM, Westbrook R, King A, Khosravian N, Ochaney N, DeCarvalho T, Wang Q, Yu Y, Huang Q, Said A, Abadir M, Zhang C, Khare P, Fairman JE, Le A, Milne GL, Vonhoff FJ, Walston JD, Abadir PM. Dual treatment with kynurenine pathway inhibitors and NAD + precursors synergistically extends life span in Drosophila. Aging Cell 2024; 23:e14102. [PMID: 38481042 PMCID: PMC11019140 DOI: 10.1111/acel.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/17/2024] Open
Abstract
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Reyhan Westbrook
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Austin King
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Nick Khosravian
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Neeraj Ochaney
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Tagide DeCarvalho
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Qinchuan Wang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yuqiong Yu
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qiao Huang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Adam Said
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Emory UniversityAtlantaGeorgiaUSA
| | - Michael Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- University of Maryland, College ParkCollege ParkMarylandUSA
| | | | | | - Jennifer E. Fairman
- Department of Arts as Applied to MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anne Le
- Gigantest Inc.BaltimoreMarylandUSA
| | - Ginger L. Milne
- Vanderbilt UniversityVanderbilt Brain Institute, Neurochemistry CoreNashvilleTennesseeUSA
| | - Fernando J. Vonhoff
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jeremy D. Walston
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter M. Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
194
|
Oyebade AO, Taiwo GA, Idowu M, Sidney T, Queiroz O, Adesogan AT, Vyas D, Ogunade IM. Effects of direct-fed microbial supplement on ruminal and plasma metabolome of early-lactation dairy cows: Untargeted metabolomics approach. J Dairy Sci 2024; 107:2556-2571. [PMID: 37939839 DOI: 10.3168/jds.2023-23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including β-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.
Collapse
Affiliation(s)
- A O Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - G A Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - T Sidney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - O Queiroz
- Chr. Hansen A/S, Animal Health and Nutrition, DK-2970 Hørsholm, Denmark
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - I M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
195
|
Gao WY, Tian MY, Li ML, Gao SR, Wei XL, Gao C, Zhou YY, Li T, Wang HJ, Bian BL, Si N, Zhao W, Zhao HY. Study on the potential mechanism of Qingxin Lianzi Yin Decoction on renoprotection in db/db mice via network pharmacology and metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155222. [PMID: 38382279 DOI: 10.1016/j.phymed.2023.155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) was one of the most popular and most significant microvascular complications of diabetes mellitus. Qingxin Lianzi Yin Decoction (QXLZY) was a traditional Chinese classical formula, suitable for chronic urinary system diseases. QXLZY had good clinical efficacy in early DN, but the underlying molecular mechanism remained unrevealed. PURPOSE This study aimed to establish the content determination method of QXLZY index components and explore the mechanism of QXLZY on DN by network pharmacology and metabolomics studies. METHODS Firstly, the content determination methods of QXLZY were established with calycosin-7-O-β-d-glucoside, acteoside, baicalin and glycyrrhizic acid as index components. Secondly, pharmacological experiments of QXLZY were evaluated using db/db mice. UHPLC-LTQ-Orbitrap MS was used to carry out untargeted urine metabolomics, serum metabolomics, and kidney metabolomics studies. Thirdly, employing network pharmacology, key components and targets were analyzed. Finally, targeted metabolomics studies were performed on the endogenous constituents in biological samples for validation based on untargeted metabolomics results. RESULTS A method for the simultaneous determination of multiple index components in QXLZY was established, which passed the comprehensive methodological verification. It was simple, feasible, and scientific. The QXLZY treatment alleviated kidney injury of db/db mice, included the degree of histopathological damage and the level of urinary microalbumin/creatinine ratio. Untargeted metabolomics studies had identified metabolic dysfunction in pathways associated with amino acid metabolism in db/db mice. Treatment with QXLZY could reverse metabolite abnormalities and influence the pathways related to energy metabolism and amino acid metabolism. It had been found that pathways with a high degree were involved in signal transduction, prominently on amino acids metabolism and lipid metabolism, analyzed by network pharmacology. Disorders of amino acid metabolism did occur in db/db mice. QXLZY could revert the levels of metabolites, such as quinolinic acid, arginine, and asparagine. CONCLUSION This study was the first time to demonstrate that QXLZY alleviated diabetes-induced pathological changes in the kidneys of db/db mice by correcting disturbances in amino acid metabolism. This work could provide a new experimental basis and theoretical guidance for the rational application of QXLZY on DN, exploring the new pharmacological effect of traditional Chinese medicine, and promoting in-depth research and development.
Collapse
Affiliation(s)
- Wen-Ya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng-Yao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ming-Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuang-Rong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Lu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Yan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhao
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
196
|
Gao M, Wang M, Chen Y, Wu J, Zhou S, He W, Shu Y, Wang X. Identification and validation of tryptophan metabolism-related lncRNAs in lung adenocarcinoma prognosis and immune response. J Cancer Res Clin Oncol 2024; 150:171. [PMID: 38558328 PMCID: PMC10984901 DOI: 10.1007/s00432-024-05665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tryptophan (Trp) is an essential amino acid. Increasing evidence suggests that tryptophan metabolism plays a complex role in immune escape from Lung adenocarcinoma (LUAD). However, the role of long non-coding RNAs (lncRNAs) in tryptophan metabolism remains to be investigated. METHODS This study uses The Cancer Genome Atlas (TCGA)-LUAD dataset as the training cohort, and several datasets from the Gene Expression Omnibus (GEO) database are merged into the validation cohort. Genes related to tryptophan metabolism were identified from the Molecular Signatures Database (MSigDB) database and further screened for lncRNAs with Trp-related expression. Subsequently, a prognostic signature of lncRNAs related to tryptophan metabolism was constructed using Cox regression analysis, (Least absolute shrinkage and selection operator regression) and LASSO analysis. The predictive performance of this risk score was validated by Kaplan-Meier (KM) survival analysis, (receiver operating characteristic) ROC curves, and nomograms. We also explored the differences in immune cell infiltration, immune cell function, tumor mutational load (TMB), tumor immune dysfunction and exclusion (TIDE), and anticancer drug sensitivity between high- and low-risk groups. Finally, we used real-time fluorescence quantitative PCR, CCK-8, colony formation, wound healing, transwell, flow cytometry, and nude mouse xenotransplantation models to elucidate the role of ZNF8-ERVK3-1 in LUAD. RESULTS We constructed 16 tryptophan metabolism-associated lncRNA prognostic models in LUAD patients. The risk score could be used as an independent prognostic indicator for the prognosis of LUAD patients. Kaplan-Meier survival analysis, ROC curves, and risk maps validated the prognostic value of the risk score. The high-risk and low-risk groups showed significant differences in phenotypes, such as the percentage of immune cell infiltration, immune cell function, gene mutation frequency, and anticancer drug sensitivity. In addition, patients with high-risk scores had higher TMB and TIDE scores compared to patients with low-risk scores. Finally, we found that ZNF8-ERVK3-1 was highly expressed in LUAD tissues and cell lines. A series of in vitro experiments showed that knockdown of ZNF8-ERVK3-1 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. In vivo experiments with xenografts have shown that knocking down ZNF8-ERVK3-1 can significantly inhibit tumor size and tumor proliferation. CONCLUSION We constructed a new prognostic model for tryptophan metabolism-related lncRNA. The risk score was closely associated with common clinical features such as immune cell infiltration, immune-related function, TMB, and anticancer drug sensitivity. Knockdown of ZNF8-ERVK3-1 inhibited LUAD cell proliferation, migration, invasion, and G0/G1 phase blockade and promoted apoptosis.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
| | | | - Yong Chen
- Dalian Medical University, Dalian, 116000, China
| | - Jun Wu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Siding Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225000, Jiangsu, China.
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
197
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
198
|
Johnson EE, Southern WM, Doud B, Steiger B, Razzoli M, Bartolomucci A, Ervasti JM. Retention of stress susceptibility in the mdx mouse model of Duchenne muscular dystrophy after PGC-1α overexpression or ablation of IDO1 or CD38. Hum Mol Genet 2024; 33:594-611. [PMID: 38181046 PMCID: PMC10954366 DOI: 10.1093/hmg/ddad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological β-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.
Collapse
Affiliation(s)
- Erynn E Johnson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - W Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Baird Doud
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Brandon Steiger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, United States
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| |
Collapse
|
199
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
200
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|