151
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
152
|
Shin JH, Tillotson G, MacKenzie TN, Warren CA, Wexler HM, Goldstein EJC. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024; 85:102819. [PMID: 38215933 DOI: 10.1016/j.anaerobe.2024.102819] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Microbial communities play a significant role in maintaining ecosystems in a healthy homeostasis. Presently, in the human gastrointestinal tract, there are certain taxonomic groups of importance, though there is no single species that plays a keystone role. Bacteroides spp. are known to be major players in the maintenance of eubiosis in the human gastrointestinal tract. Here we review the critical role that Bacteroides play in the human gut, their potential pathogenic role outside of the gut, and their various methods of adapting to the environment, with a focus on data for B. fragilis and B. thetaiotaomicron. Bacteroides are anaerobic non-sporing Gram negative organisms that are also resistant to bile acids, generally thriving in the gut and having a beneficial relationship with the host. While they are generally commensal organisms, some Bacteroides spp. can be opportunistic pathogens in scenarios of GI disease, trauma, cancer, or GI surgery, and cause infection, most commonly intra-abdominal infection. B. fragilis can develop antimicrobial resistance through multiple mechanisms in large part due to its plasticity and fluid genome. Bacteroidota (formerly, Bacteroidetes) have a very broad metabolic potential in the GI microbiota and can rapidly adapt their carbohydrate metabolism to the available nutrients. Gastrointestinal Bacteroidota species produce short-chain fatty acids such as succinate, acetate, butyrate, and occasionally propionate, as the major end-products, which have wide-ranging and many beneficial influences on the host. Bacteroidota, via bile acid metabolism, also play a role in in colonization-resistance of other organisms, including Clostridioides difficile, and maintenance of gut integrity.
Collapse
Affiliation(s)
- Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | | | | | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Hannah M Wexler
- GLAVAHCS, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
153
|
Georgeson P, Steinfelder RS, Harrison TA, Pope BJ, Zaidi SH, Qu C, Lin Y, Joo JE, Mahmood K, Clendenning M, Walker R, Aglago EK, Berndt SI, Brenner H, Campbell PT, Cao Y, Chan AT, Chang-Claude J, Dimou N, Doheny KF, Drew DA, Figueiredo JC, French AJ, Gallinger S, Giannakis M, Giles GG, Goode EL, Gruber SB, Gsur A, Gunter MJ, Harlid S, Hoffmeister M, Hsu L, Huang WY, Huyghe JR, Manson JE, Moreno V, Murphy N, Nassir R, Newton CC, Nowak JA, Obón-Santacana M, Ogino S, Pai RK, Papadimitrou N, Potter JD, Schoen RE, Song M, Sun W, Toland AE, Trinh QM, Tsilidis K, Ugai T, Um CY, Macrae FA, Rosty C, Hudson TJ, Winship IM, Phipps AI, Jenkins MA, Peters U, Buchanan DD. Genotoxic colibactin mutational signature in colorectal cancer is associated with clinicopathological features, specific genomic alterations and better survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.03.10.23287127. [PMID: 37090539 PMCID: PMC10120801 DOI: 10.1101/2023.03.10.23287127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Background and Aims The microbiome has long been suspected of a role in colorectal cancer (CRC) tumorigenesis. The mutational signature SBS88 mechanistically links CRC development with the strain of Escherichia coli harboring the pks island that produces the genotoxin colibactin, but the genomic, pathological and survival characteristics associated with SBS88-positive tumors are unknown. Methods SBS88-positive CRCs were identified from targeted sequencing data from 5,292 CRCs from 17 studies and tested for their association with clinico-pathological features, oncogenic pathways, genomic characteristics and survival. Results In total, 7.5% (398/5,292) of the CRCs were SBS88-positive, of which 98.7% (392/398) were microsatellite stable/microsatellite instability low (MSS/MSI-L), compared with 80% (3916/4894) of SBS88 negative tumors (p=1.5x10-28). Analysis of MSS/MSI-L CRCs demonstrated that SBS88 positive CRCs were associated with the distal colon (OR=1.84, 95% CI=1.40-2.42, p=1x10-5) and rectum (OR=1.90, 95% CI=1.44-2.51, p=6x10-6) tumor sites compared with the proximal colon. The top seven recurrent somatic mutations associated with SBS88-positive CRCs demonstrated mutational contexts associated with colibactin-induced DNA damage, the strongest of which was the APC:c.835-8A>G mutation (OR=65.5, 95%CI=39.0-110.0, p=3x10-80). Large copy number alterations (CNAs) including CNA loss on 14q and gains on 13q, 16q and 20p were significantly enriched in SBS88-positive CRCs. SBS88-positive CRCs were associated with better CRC-specific survival (p=0.007; hazard ratio of 0.69, 95% CI=0.52-0.90) when stratified by age, sex, study, and by stage. Conclusion SBS88-positivity, a biomarker of colibactin-induced DNA damage, can identify a novel subtype of CRC characterized by recurrent somatic mutations, copy number alterations and better survival. These findings provide new insights for treatment and prevention strategies for this subtype of CRC.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
| | - Robert S. Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Melbourne Bioinformatics, The University of Melbourne, Carlton, Australia
| | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Melbourne Bioinformatics, The University of Melbourne, Carlton, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center(DKFZ), Heidelberg, Germany
| | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Kimberly F. Doheny
- Center for Inherited Disease Research (CIDR), Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David A. Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Amy J. French
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Ellen L Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - JoAnn E. Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, College of Medicine, Umm Al-Qura University, Saudi Arabia
| | | | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| | - Rish K. Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nikos Papadimitrou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Robert E. Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda E. Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Quang M. Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Finlay A. Macrae
- Parkville Familial Cancer Centre, and Dept of Colorectal Medicine and Genetics The Royal Melbourne Hospital
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Envoi Specialist Pathologists, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | | | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Amanda I. Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
154
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
155
|
Terlouw D, Boot A, Ducarmon QR, Nooij S, Suerink M, van Leerdam ME, van Egmond D, Tops CM, Zwittink RD, Ruano D, Langers AMJ, Nielsen M, van Wezel T, Morreau H. Enrichment of colibactin-associated mutational signatures in unexplained colorectal polyposis patients. BMC Cancer 2024; 24:104. [PMID: 38238650 PMCID: PMC10797792 DOI: 10.1186/s12885-024-11849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Colibactin, a genotoxin produced by polyketide synthase harboring (pks+) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks+Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. METHODS In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. RESULTS NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. CONCLUSIONS These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.
Collapse
Affiliation(s)
- Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud Boot
- Department of Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Demi van Egmond
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy D Zwittink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Alexandra M J Langers
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
156
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
157
|
Huang J, Mao Y, Wang L. The crosstalk of intratumor bacteria and the tumor. Front Cell Infect Microbiol 2024; 13:1273254. [PMID: 38235490 PMCID: PMC10791805 DOI: 10.3389/fcimb.2023.1273254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The in-depth studies reveal the interaction between the host and commensal microbiomes. Symbiotic bacteria influence in tumor initiation, progression, and response to treatment. Recently, intratumor bacteria have been a burgeoning research field. The tumor microenvironment is under vascular hyperplasia, aerobic glycolysis, hypoxia, and immunosuppression. It might be attractive for bacterial growth and proliferation. As a component of the tumor microenvironment, intratumor bacteria influence tumor growth and metastasis, as well as the efficacy of anti-tumor therapies. Therefore, understanding the intricate interplay of intratumoral bacteria and the host might contribute to better approaches to treat tumors. In this review, we summarize current evidence about roles of intratumor bacteria in tumor initiation and anti-tumor therapy, and what is remained to be solved in this field.
Collapse
Affiliation(s)
- Jiating Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuqin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
158
|
Zechner EL, Kienesberger S. Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem. Gut Microbes 2024; 16:2430423. [PMID: 39558480 PMCID: PMC11581169 DOI: 10.1080/19490976.2024.2430423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The human intestinal tract is densely colonized by a microbial community that is subject to intense competition. Bacteria in this complex habitat seek to outcompete their neighbors for nutrients and eliminate competitors with antibacterial toxins. Antagonism can be mediated by diverse effectors including toxic proteins and small molecule inhibitors that are released extracellularly or delivered by specialized secretion systems to targeted cells. Two prototypical microbiota-derived enterotoxins, colibactin and tilimycin, and the newly discovered family of indolimines represent an expanding group of non-proteinaceous small molecules which specifically target DNA. In addition to cell killing, they generate mutations and genome instability in intoxicated microbes and host cells alike. They have been studied in detail because of their direct toxicity to human cells and important etiological roles in intestinal pathologies. Increasing evidence, however, reveals that these commensal genotoxins are also mediators of interbacterial antagonism, which impacts gut microbial ecology. In this review, we illustrate the functional versatility of commensal genotoxins in the gut ecosystem.
Collapse
Affiliation(s)
- Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
159
|
Park PH, Keith K, Calendo G, Jelinek J, Madzo J, Gharaibeh RZ, Ghosh J, Sapienza C, Jobin C, Issa JPJ. Association between gut microbiota and CpG island methylator phenotype in colorectal cancer. Gut Microbes 2024; 16:2363012. [PMID: 38860458 PMCID: PMC11174071 DOI: 10.1080/19490976.2024.2363012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.
Collapse
Affiliation(s)
- Pyoung Hwa Park
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Gennaro Calendo
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| |
Collapse
|
160
|
Mandarino Alves A, Lecchi C, Lopez S, Stornetta A, Mathai PP, Villalta PW, Ishii S, Balskus EP, Balbo S, Khoruts A. Dysfunctional mucus structure in cystic fibrosis increases vulnerability to colibactin-mediated DNA adducts in the colon mucosa. Gut Microbes 2024; 16:2387877. [PMID: 39133871 PMCID: PMC11321416 DOI: 10.1080/19490976.2024.2387877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Colibactin is a recently characterized pro-carcinogenic genotoxin produced by pks+ Escherichia coli. We hypothesized that cystic fibrosis (CF)-associated dysfunctional mucus structure increases the vulnerability of host mucosa to colibactin-induced DNA damage. In this pilot study, we tested healthy-appearing mucosal biopsy samples obtained during screening and surveillance colonoscopies of adult CF and non-CF patients for the presence of pks+ E. coli, and we investigated the possibility of detecting a novel colibactin-specific DNA adduct that has not been yet been demonstrated in humans. While CF patients had a lower incidence of pks+ E. coli carriage (~8% vs 29%, p = 0.0015), colibactin-induced DNA adduct formation was detected, but only in CF patients and only in those who were not taking CFTR modulator medications. Moreover, the only patient found to have colon cancer during this study had CF, harbored pks+ E. coli, and had colibactin-induced DNA adducts in the mucosal samples. Larger studies with longitudinal follow-up should be done to extend these initial results and further support the development of colibactin-derived DNA adducts to stratify patients and their risk.
Collapse
Affiliation(s)
- Amanda Mandarino Alves
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Chiara Lecchi
- Department of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sharon Lopez
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Alessia Stornetta
- Department of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Prince P. Mathai
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Silvia Balbo
- Department of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
161
|
de Oliveira Alves N, Dalmasso G, Nikitina D, Vaysse A, Ruez R, Ledoux L, Pedron T, Bergsten E, Boulard O, Autier L, Allam S, Motreff L, Sauvanet P, Letourneur D, Kashyap P, Gagnière J, Pezet D, Godfraind C, Salzet M, Lemichez E, Bonnet M, Najjar I, Malabat C, Monot M, Mestivier D, Barnich N, Yadav P, Fournier I, Kennedy S, Mettouchi A, Bonnet R, Sobhani I, Chamaillard M. The colibactin-producing Escherichia coli alters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance. Gut Microbes 2024; 16:2320291. [PMID: 38417029 PMCID: PMC10903627 DOI: 10.1080/19490976.2024.2320291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.
Collapse
Affiliation(s)
| | - Guillaume Dalmasso
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Darja Nikitina
- CNRS, Institute Pasteur, Paris, France
- Laboratory of Clinical and Molecular Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Amaury Vaysse
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Richard Ruez
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Lea Ledoux
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | - Emma Bergsten
- Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Boulard
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Lora Autier
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Sofian Allam
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Laurence Motreff
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Pragya Kashyap
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Johan Gagnière
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Pezet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Catherine Godfraind
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | - Mathilde Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Imène Najjar
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Christophe Malabat
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | | | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | | | - Richard Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Iradj Sobhani
- Université Paris Est Créteil, Créteil, France
- Service de Gastroentérologie CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris-APHP, Créteil, France
| | | |
Collapse
|
162
|
Terlouw D, Boot A, Ducarmon QR, Nooij S, Jessurun MA, van Leerdam ME, Tops CM, Langers AMJ, Morreau H, van Wezel T, Nielsen M. Colibactin mutational signatures in NTHL1 tumor syndrome and MUTYH associated polyposis patients. Genes Chromosomes Cancer 2024; 63:e23208. [PMID: 37795928 DOI: 10.1002/gcc.23208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Polyketide synthase (pks) island harboring Escherichia coli are, under the right circumstances, able to produce the genotoxin colibactin. Colibactin is a risk factor for the development of colorectal cancer and associated with mutational signatures SBS88 and ID18. This study explores colibactin-associated mutational signatures in biallelic NTHL1 and MUTYH patients. Targeted Next Generation Sequencing (NGS) was performed on colorectal adenomas and carcinomas of one biallelic NTHL and 12 biallelic MUTYH patients. Additional fecal metagenomics and genome sequencing followed by mutational signature analysis was conducted for the NTHL1 patient. Targeted NGS of the NTHL1 patient showed somatic APC variants fitting SBS88 which was confirmed using WGS. Furthermore, fecal metagenomics revealed pks genes. Also, in 1 out of 11 MUTYH patient a somatic variant was detected fitting SBS88. This report shows that colibactin may influence development of colorectal neoplasms in predisposed patients.
Collapse
Affiliation(s)
- D Terlouw
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Boot
- Department of Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Q R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - S Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M A Jessurun
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A M J Langers
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
163
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
164
|
Dalmasso G, Cougnoux A, Faïs T, Bonnin V, Mottet-Auselo B, Nguyen HTT, Sauvanet P, Barnich N, Jary M, Pezet D, Delmas J, Bonnet R. Colibactin-producing Escherichia coli enhance resistance to chemotherapeutic drugs by promoting epithelial to mesenchymal transition and cancer stem cell emergence. Gut Microbes 2024; 16:2310215. [PMID: 38374654 PMCID: PMC10880512 DOI: 10.1080/19490976.2024.2310215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antony Cougnoux
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Virginie Bonnin
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Hang TT Nguyen
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Nicolas Barnich
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marine Jary
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Denis Pezet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Julien Delmas
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Richard Bonnet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
165
|
Orgler E, Baumgartner M, Duller S, Kumptisch C, Hausmann B, Moser D, Khare V, Lang M, Köcher T, Frick A, Muttenthaler M, Makristathis A, Moissl-Eichinger C, Gasche C. Archaea influence composition of endoscopically visible ileocolonic biofilms. Gut Microbes 2024; 16:2359500. [PMID: 38825783 PMCID: PMC11152093 DOI: 10.1080/19490976.2024.2359500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.
Collapse
Affiliation(s)
- Elisabeth Orgler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine II, University Hospital, Munich, Germany
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Stefanie Duller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christina Kumptisch
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Metabolomics Service and Research Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Athanasios Makristathis
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| |
Collapse
|
166
|
CARETHERS JOHNM. THE JEREMIAH METZGER LECTURE: ENVIRONMENTAL INFLUENCES ON COLORECTAL CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:181-199. [PMID: 39135583 PMCID: PMC11316861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gene-environmental interactions create risk profiles for sporadic cancer development in patients with colorectal cancer (CRC). For instance, a person's socioeconomic status over their lifetime can affect their level of physical activity and type of diet, and their exposure to tobacco and alcohol may affect their gut microbiome and ultimate risk for developing CRC. Metabolic disease can independently or further change the gut microbiome and alter the typical timing of CRC development, such as is observed and linked with early-onset disease. Patients with microsatellite unstable tumors where DNA mismatch repair is defective have altered immune environments as a result of tumor hypermutability and neoantigen generation, allowing for immune checkpoint inhibitor susceptibility; in such cases, the genetics of the tumor changed the environment. The environment can also change the genetics, where interleukin-6-generated inflammation can inactivate MSH3 protein function that is associated with CRCs which are more metastatic, and patients show poor outcomes. Some specific aspects of the local microbial environment that may be influenced by diet and metabolism are associated with CRC risk, such as Fusobacterium nucleatum infection, and may affect the initiation, perpetuation, and spread of CRC. Overall, both the macro- and microenvironments associated with a person play a major role in CRC formation, progression, and metastases.
Collapse
|
167
|
Luo F, Wang X, Ye C, Sun H. Microbial Biomarkers in Liquid Biopsy for Cancer: An Overview and Future Directions. Cancer Control 2024; 31:10732748241292019. [PMID: 39431347 PMCID: PMC11500238 DOI: 10.1177/10732748241292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, the relationship between microbes and tumors has led to a new wave of scholarly pursuits. Due to the growing awareness of the importance of microbiota, including those within tumors, for cancer onset, progression, metastasis, and treatment, researchers have come to understand that microbiota and the tumor microenvironment together form a dynamic and complex ecosystem. Liquid biopsy technology, a non-invasive and easily repeatable method for sample collection, combined with emerging multi-omics techniques, allows for a more comprehensive and in-depth exploration of microbial signals and characteristics in bodily fluids. Microbial biomarkers hold immense potential in the early diagnosis, treatment stratification, and prognosis prediction of cancer. In this review, we describe the significant potential of microbial biomarkers in liquid biopsy for clinical applications in cancer, including early diagnosis, predicting treatment responses, and prognosis. Moreover, we discuss current limitations and potential solutions related to microbial biomarkers. This review aims to provide an overview and future directions of microbial biomarkers in liquid biopsy for cancer clinical practice.
Collapse
Affiliation(s)
| | - Xinyue Wang
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| | | | - Haitao Sun
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
168
|
Hill CA, Casterline BW, Valguarnera E, Hecht AL, Shepherd ES, Sonnenburg JL, Bubeck Wardenburg J. Bacteroides fragilis toxin expression enables lamina propria niche acquisition in the developing mouse gut. Nat Microbiol 2024; 9:85-94. [PMID: 38168616 PMCID: PMC11214347 DOI: 10.1038/s41564-023-01559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacterial toxins are well-studied virulence factors; however, recent studies have revealed their importance in bacterial niche adaptation. Enterotoxigenic Bacteroides fragilis (ETBF) expresses B. fragilis toxin (BFT) that we hypothesized may contribute to both colonic epithelial injury and niche acquisition. We developed a vertical transmission model for ETBF in mice that showed that BFT enabled ETBF to access a lamina propria (LP) niche during colonic microbiome development that was inaccessible to non-toxigenic B. fragilis. LP entry by ETBF required BFT metalloprotease activity, and showed temporal restriction to the pre-weaning period, dependent on goblet-cell-associated passages. In situ single-cell analysis showed bft expression at the apical epithelial surface and within the LP. BFT expression increased goblet cell number and goblet-cell-associated passage formation. These findings define a paradigm by which bacterial toxin expression specifies developmental niche acquisition, suggesting that a selective advantage conferred by a toxin may impact long-term host health.
Collapse
Affiliation(s)
- Craig A Hill
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Benjamin W Casterline
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Aaron L Hecht
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | |
Collapse
|
169
|
Kandalai S, Li H, Zhang N, Peng H, Zheng Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol Ther 2023; 24:2240084. [PMID: 37498047 PMCID: PMC10376920 DOI: 10.1080/15384047.2023.2240084] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Recent evidence has shown that the human microbiome is associated with various diseases, including cancer. The salivary microbiome, fecal microbiome, and circulating microbial DNA in blood plasma have all been used experimentally as diagnostic biomarkers for many types of cancer. The microbiomes present within local tissue, other regions, and tumors themselves have been shown to promote and restrict the development and progression of cancer, most often by affecting cancer cells or the host immune system. These microbes have also been shown to impact the efficacy of various cancer therapies, including radiation, chemotherapy, and immunotherapy. Here, we review the research advances focused on how microbes impact these different facets and why they are important to the clinical care of cancer. It is only by better understanding the roles these microbes play in the diagnosis, development, progression, and treatment of cancer, that we will be able to catch and treat cancer early.
Collapse
Affiliation(s)
- Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
170
|
Ding K, Mou P, Wang Z, Liu S, Liu J, Lu H, Yu G. The next bastion to be conquered in immunotherapy: microsatellite stable colorectal cancer. Front Immunol 2023; 14:1298524. [PMID: 38187388 PMCID: PMC10770832 DOI: 10.3389/fimmu.2023.1298524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide, and its incidence continues to rise, particularly in developing countries. The advent of immune checkpoint inhibitors (ICIs) has represented a significant advancement in CRC treatment. Deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H) serves as a biomarker for immunotherapy, with dMMR/MSI-H CRC exhibiting significantly better response rates to immunotherapy compared to proficient mismatch repair (pMMR)or microsatellite stable (MSS) CRC. While some progress has been made in the treatment of pMMR/MSS CRC in recent years, it remains a challenging issue in clinical practice. The tumor microenvironment (TME) plays a crucial role not only in the development and progression of CRC but also in determining the response to immunotherapy. Understanding the characteristics of the TME in pMMR/MSS CRC could offer new insights to enhance the efficacy of immunotherapy. In this review, we provide an overview of the current research progress on the TME characteristics and advancements in immunotherapy for pMMR/MSS CRC.
Collapse
Affiliation(s)
- Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhe Wang
- Department of General Surgery, Pudong New Area People’s Hospital, Shanghai, China
| | - Shuqing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - JinPei Liu
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hao Lu
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ganjun Yu
- Department of Immunology, College of Basic Medicine & National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
| |
Collapse
|
171
|
Neff SL, Hampton TH, Koeppen K, Sarkar S, Latario CJ, Ross BD, Stanton BA. Rocket-miR, a translational launchpad for miRNA-based antimicrobial drug development. mSystems 2023; 8:e0065323. [PMID: 37975659 PMCID: PMC10734502 DOI: 10.1128/msystems.00653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Antimicrobial-resistant infections contribute to millions of deaths worldwide every year. In particular, the group of bacteria collectively known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) pathogens are of considerable medical concern due to their virulence and exceptional ability to develop antibiotic resistance. New kinds of antimicrobial therapies are urgently needed to treat patients for whom existing antibiotics are ineffective. The Rocket-miR application predicts targets of human miRNAs in bacterial and fungal pathogens, rapidly identifying candidate miRNA-based antimicrobials. The application's target audience are microbiologists that have the laboratory resources to test the application's predictions. The Rocket-miR application currently supports 24 recognized human pathogens that are relevant to numerous diseases including cystic fibrosis, chronic obstructive pulmonary disease (COPD), urinary tract infections, and pneumonia. Furthermore, the application code was designed to be easily extendible to other human pathogens that commonly cause hospital-acquired infections.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Casey J. Latario
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
172
|
Bleich RM, Li C, Sun S, Ahn JH, Dogan B, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Carroll IM, Simpson KW, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. MICROBIOME 2023; 11:277. [PMID: 38124090 PMCID: PMC10731797 DOI: 10.1186/s40168-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. RESULTS Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. CONCLUSIONS Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstract.
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Sun
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne R Franks
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bulik-Sullivan
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M Carroll
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Anthony A Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
173
|
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H, Shang D. Gut microbiome: decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1299977. [PMID: 38156313 PMCID: PMC10754537 DOI: 10.3389/fcimb.2023.1299977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, accounting for the second most common cause of gastrointestinal tumors. As one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal work, and form the living environment of intestinal cells. Metagenomic next-generation sequencing (mNGS) of the gut bacteria in a large number of CRC patients has been established, enabling specific microbial signatures to be associated with colorectal adenomato-carcinoma. Gut bacteria are involved in both benign precursor lesions (polyps), in situ growth and metastasis of CRC. Therefore, the term tumorigenic bacteria was proposed in 2018, such as Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin (CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and promote cancer occurrence and tumor immune escape. It is important to note that there are differences in the bacteria of different types of CRC. In this paper, the role of tumorigenic bacteria in the polyp-cancer transformation and the effects of their secreted toxins on the tumor microenvironment will be discussed, thereby further exploring new ideas for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongnian Zhang
- Departments of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
174
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
175
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
176
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
177
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
178
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
179
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
180
|
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Liang C, Gao L, Shang H, Xu JD. Rhubarb extract rebuilding the mucus homeostasis and regulating mucin-associated flora to relieve constipation. Exp Biol Med (Maywood) 2023; 248:2449-2463. [PMID: 38073524 PMCID: PMC10903230 DOI: 10.1177/15353702231211859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 01/23/2024] Open
Abstract
In clinical trials, rhubarb extract (Rb) was demonstrated to efficiently alleviate constipation. We would like to find out the underlying mechanism of rhubarb relieving constipation. However, there are few studies on the effects of rhubarb on colonic mucus secretion and constipation. The aim of this study was to investigate the effects of rhubarb on colonic mucus secretion and its underlying mechanism. The mice were randomly divided into four groups. Group I was the control group and Group II was the rhubarb control group, with Rb (24 g/kg body weight [b.w.]) administered through intragastric administration for three days. Group III mice were given diphenoxylate (20 mg/kg b.w.) for five days via gavage to induce constipation. Group IV received diphenoxylate lasting five days before undergoing Rb administration for three days. The condition of the colon was evaluated using an endoscope. Particularly, the diameter of blood vessels in the colonic mucosa expanded considerably in constipation mice along with diminishing mucus output, which was in line with the observation via scanning electron microscope (SEM) and transmission electron microscope (TEM). We also performed metagenomic analysis to reveal the microbiome related to mucin gene expression level referring to mucin secretion. In conclusion, Rb relieves constipation by rebuilding mucus homeostasis and regulating the microbiome.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing 100039, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
181
|
Zhou A, Tang B, Xie Y, Li S, Xiao X, Wu L, Tu D, Wang S, Feng Y, Feng X, Lai Y, Ning S, Yang S. Changes of gut microbiota and short chain fatty acids in patients with Peutz-Jeghers syndrome. BMC Microbiol 2023; 23:373. [PMID: 38036954 PMCID: PMC10688050 DOI: 10.1186/s12866-023-03132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Peutz-Jeghers Syndromeis a rare autosomal dominant genetic disease characterized by gastrointestinal hamartomatous polyps and skin and mucous membrane pigmentation. The pathogenesis of PJS remains unclear; however, it may be associated with mutations in the STK11 gene, and there is currently no effective treatment available. The gut microbiota plays an important role in maintaining intestinal homeostasis in the human body, and an increasing number of studies have reported a relationship between gut microbiota and human health and disease. However, relatively few studies have been conducted on the gut microbiota characteristics of patients with PJS. In this study, we analyzed the characteristics of the gut microbiota of 79 patients with PJS using 16 S sequencing and measured the levels of short-chain fatty acids in the intestines. The results showed dysbiosis in the gut microbiota of patients with PJS, and decreased synthesis of short-chain fatty acids. Bacteroides was positively correlated with maximum polyp length, while Agathobacter was negatively correlated with age of onset. In addition, acetic acid, propionic acid, and butyric acid were positively correlated with the age of onset but negatively correlated with the number of polyps. Furthermore, the butyric acid level was negatively correlated with the frequency of endoscopic surgeries. In contrast, we compared the gut microbiota of STK11-positive and STK11-negative patients with PJS for the first time, but 16 S sequencing analysis revealed no significant differences. Finally, we established a random forest prediction model based on the gut microbiota characteristics of patients to provide a basis for the targeted diagnosis and treatment of PJS in the future.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Bo Tang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuhong Xie
- Department of Gastroenterology, Air Force Medical Center, Beijing, 100142, China
| | - Shengpeng Li
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu Xiao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lingyi Wu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Dianji Tu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yunxuan Feng
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaojie Feng
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Lai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Shoubin Ning
- Department of Gastroenterology, Air Force Medical Center, Beijing, 100142, China.
| | - Shiming Yang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
182
|
Sharma S, Sharma H, Gogoi H. Bacterial immunotherapy: is it a weapon in our arsenal in the fight against cancer? Front Immunol 2023; 14:1277677. [PMID: 38090593 PMCID: PMC10711065 DOI: 10.3389/fimmu.2023.1277677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in understanding the genetic basis of cancer have driven alternative treatment approaches. Recent findings have demonstrated the potential of bacteria and it's components to serve as robust theranostic agents for cancer eradication. Compared to traditional cancer therapies like surgery, chemotherapy, radiotherapy, bacteria mediated tumor therapy has exhibited superior cancer suppressing property which is attributed a lot to it's tumor proliferating and accumulating characteristics. Genetically modified bacteria has reduced inherent toxicity and enhanced specificity towards tumor microenvironment. This anti- tumor activity of bacteria is attributed to its toxins and other active components from the cell membrane, cell wall and spores. Furthermore, bacterial genes can be regulated to express and deliver cytokines, antibodies and cancer therapeutics. Although there is less clinical data available, the pre- clinical research clearly indicates the feasibility and potential of bacteria- mediated cancer therapy.
Collapse
Affiliation(s)
- Shubhra Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himani Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
183
|
Bruggeling CE, te Groen M, Garza DR, van Heeckeren tot Overlaer F, Krekels JPM, Sulaiman BC, Karel D, Rulof A, Schaaphok AR, Hornikx DLAH, Nagtegaal ID, Dutilh BE, Hoentjen F, Boleij A. Bacterial Oncotraits Rather than Spatial Organization Are Associated with Dysplasia in Ulcerative Colitis. J Crohns Colitis 2023; 17:1870-1881. [PMID: 37243505 PMCID: PMC10673813 DOI: 10.1093/ecco-jcc/jjad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Colonic bacterial biofilms are frequently present in ulcerative colitis [UC] and may increase dysplasia risk through pathogens expressing oncotraits. This prospective cohort study aimed to determine [1] the association of oncotraits and longitudinal biofilm presence with dysplasia risk in UC, and [2] the relation of bacterial composition with biofilms and dysplasia risk. METHODS Faeces and left- and right-sided colonic biopsies were collected from 80 UC patients and 35 controls. Oncotraits [FadA of Fusobacterium, BFT of Bacteroides fragilis, colibactin [ClbB] and Intimin [Eae] of Escherichia coli] were assessed in faecal DNA with multiplex quantitative polymerase chain reaction [qPCR]. Biopsies were screened for biofilms [n = 873] with 16S rRNA fluorescent in situ hybridiation. Shotgun metagenomic sequencing [n = 265], and ki67-immunohistochemistry were performed. Associations were determined with a mixed-effects regression model. RESULTS Biofilms were highly prevalent in UC patients [90.8%] with a median persistence of 3 years (interquartile range [IQR] 2-5 years). Biofilm-positive biopsies showed increased epithelial hypertrophy [p = 0.025] and a reduced Shannon diversity independent of disease status [p = 0.015], but were not significantly associated with dysplasia in UC: adjusted odds ratio [aOR] 1.45, 95% confidence interval [CI] 0.63-3.40. In contrast, ClbB independently associated with dysplasia [aOR 7.16, 95% CI 1.75-29.28], and FadA and Fusobacteriales were associated with a decreased dysplasia risk in UC [aOR 0.23, 95% CI 0.06-0.83, p <0.01]. CONCLUSIONS Biofilms are a hallmark of UC; however, because of their high prevalence are a poor biomarker for dysplasia. In contrast, colibactin presence and FadA absence independently associate with dysplasia in UC and might therefore be valuable biomarkers for future risk stratification and intervention strategies.
Collapse
Affiliation(s)
- Carlijn E Bruggeling
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten te Groen
- Inflammatory Bowel Disease Center, Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel R Garza
- Center for Molecular and Biomolecular Informatics [CMBI], Radboud Institute for Molecular Life Sciences [RIMLS], Nijmegen, The Netherlands
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Famke van Heeckeren tot Overlaer
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce P M Krekels
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Basma-Chick Sulaiman
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Davy Karel
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Athreyu Rulof
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne R Schaaphok
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas E Dutilh
- Center for Molecular and Biomolecular Informatics [CMBI], Radboud Institute for Molecular Life Sciences [RIMLS], Nijmegen, The Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Frank Hoentjen
- Inflammatory Bowel Disease Center, Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences [RIMLS], Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
184
|
Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol 2023; 13:1294082. [PMID: 38035341 PMCID: PMC10684967 DOI: 10.3389/fcimb.2023.1294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Microbiota colonize exposed body tissues (e.g., gastrointestinal tract, skin, lungs, female genital tract, and urogenital tracts) and unexposed sites (e.g., breast). Persistent bacterial infection in the host lead to the development of multiple disease. They are implicated in the pathogenesis of various complex diseases, including diabetes, atherosclerosis, autoimmune diseases, Alzheimer's disease, and malignant diseases. Amounting studies have demonstrated the role of bacterial infection in carcinogenesis. The study of microbiota in tumorigenesis is primarily focused on lung cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and gynecologic tumors, and so on. Infection of Helicobacter pylori in gastric cancer carcinogenesis is recognized as class I carcinogen by the World Health Organization (WHO) decades ago. The role of Fusobacterium nucleatum in the development of colorectal cancer is extensively investigated. Variable bacteria have been cultured from the tumor tissues. The identification of microbiota in multiple tumor tissues reveal that bacterial infection and microbiota are associated with tumor development. The microbiota affects multiple aspects of carcinogenesis and tumor development, including favoring epithelial cells proliferation, establishing inflammatory microenvironment, promoting metastasis, and causing resistance to therapy. On the other hand, microbiota can shape a tumor surveillance environment by enhancing cell activity, and sensitize the tumor cells to immune therapy. In the present review, the roles of microbiota in multiple malignancies are summarized, and unraveling the mechanisms of host-microbiota interactions can contribute to a better understanding of the interaction between microbiota and host cells, also the development of potential anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
185
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Clinical Implications for Cancer Immunity and Immunotherapy. Cancers (Basel) 2023; 15:5385. [PMID: 38001645 PMCID: PMC10670143 DOI: 10.3390/cancers15225385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
A simple way to understand the immune system is to separate the self from non-self. If it is self, the immune system tolerates and spares. If it is non-self, the immune system attacks and destroys. Consequently, if cancer has a stem cell origin and is a stem cell disease, we have a serious problem and a major dilemma with immunotherapy. Because many refractory cancers are more self than non-self, immunotherapy may become an uphill battle and pyrrhic victory in cancer care. In this article, we elucidate cancer immunity. We demonstrate for whom, with what, as well as when and how to apply immunotherapy in cancer care. We illustrate that a stem cell theory of cancer affects our perspectives and narratives of cancer. Without a pertinent theory about cancer's origin and nature, we may unwittingly perform misdirected cancer research and prescribe misguided cancer treatments. In the ongoing saga of immunotherapy, we are at a critical juncture. Because of the allure and promises of immunotherapy, we will be treating more patients not immediately threatened by their cancer. They may have more to lose than to gain, if we have a misconception and if we are on a wrong mission with immunotherapy. According to the stem cell theory of cancer, we should be careful with immunotherapy. When we do not know or realize that cancer originates from a stem cell and has stem-ness capabilities, we may cause more harm than good in some patients and fail to separate the truth from the myth about immunotherapy in cancer care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.A.); (T.L.)
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.A.); (T.L.)
| |
Collapse
|
186
|
Long D, Mao C, Zhang Z, Zou J, Zhu Y. Visual analysis of colorectal cancer and gut microbiota: A bibliometric analysis from 2002 to 2022. Medicine (Baltimore) 2023; 102:e35727. [PMID: 37933041 PMCID: PMC10627710 DOI: 10.1097/md.0000000000035727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
A growing number of studies have shown that gut microbiota (GM) plays an essential role in the occurrence and development of colorectal cancer (CRC). The current body of research exploring the relationship between CRC and GM is vast. Nevertheless, bibliometric studies in this area have not yet been reported. This study aimed to explore the hotspots and frontiers of research on GM and CRC in the past 20 years, which may provide a reference for researchers in this field. The Web of Science Core Collection database was searched for publications on CRC and GM from 2002 to 2022. The scientometric softwares CiteSpace and VOSviewer were used to visually analyze the countries, institutions, authors, journals, and keywords involved in the literature. Keywords co-occurrence, cluster, and burst analysis were utilized to further explore the current state and development trends of research on GM and CRC. A total of 2158 publications were included in this study, with a noticeably rising annual publication trend. The majority of these papers are from 80 nations, primarily China and the USA. J Yu was the most active author and WS Garrett has the highest citation. Among all institutions, Shanghai Jiao Tong University has the largest number of papers. Most of the publications were published in the International Journal of Molecular Sciences, with Science being the most frequently cited journal. The 4 main clusters mainly involved probiotics, inflammation, molecular mechanisms, and research methods. Current research hotspots included "Fusobacterium nucleatum," "Escherichia coli," etc. Newly emerging research has focused predominantly on immune response, gene expression, and recent strategies for the treatment of CRC with GM. The relationship between GM and CRC will continue to be a hot research area. Changes in the composition of GM in patients with CRC, the potential molecular mechanisms as well as probiotics and natural products used in the treatment of CRC have been the focus of current research and hotspots for future studies.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhensheng Zhang
- The First Traditional Chinese Medicine Hospital of Zhanjiang City, Zhanjiang, Guangdong, China
| | - Junjun Zou
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
187
|
Cao Y, Shang F, Jin M, Deng S, Gu J, Mao F, Qin L, Wang J, Xue Y, Jiang Z, Cheng D, Liu L, Nie X, Liu T, Liu H, Cai K. Changes in Bacteroides and the microbiota in patients with obstructed colorectal cancer: retrospective cohort study. BJS Open 2023; 7:zrad105. [PMID: 38006331 PMCID: PMC10675991 DOI: 10.1093/bjsopen/zrad105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The relationship between intestinal obstruction due to colorectal cancer (CRC) and the gut microbiota remains largely unknown. The aim of this study was to investigate the potential association between alterations in gut microbiota and CRC in the presence of intestinal obstruction. METHODS Patients with CRC with or without obstruction were recruited and compared using 1:1 propensity score matching (PSM). Total DNA from tumours and adjacent normal tissues of 84 patients and 36 frozen tumour tissues was extracted and amplified. 16S RNA sequencing was used to uncover differences in microbiota composition between the two groups. RESULTS A total of 313 patients with CRC were recruited. Survival analysis demonstrated that patients in the obstruction group had shorter overall survival time and disease-free survival (DFS) time than those in the non-obstruction group. Microbial richness and diversity in tumour tissues of patients with obstruction were significantly higher than those of patients with no obstruction. The alpha diversity indices and beta diversity exhibited were different between the two groups (P < 0.05). At the phylum and genus levels, Bacteroidetes were significantly enriched in the tumour tissues of patients with obstruction. Alpha diversity in tumour tissues was closely related to specific microbiota. These findings were replicated in the 16S rRNA analyses from frozen samples. There were more Bacteroidetes in CRC patients with obstruction. CONCLUSIONS Patients with obstructed CRC have worse prognosis and have differences in their microbiota. Higher levels of Bacteroides were observed in patients with obstructed CRC.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fumei Shang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
188
|
Wu-Woods NJ, Barlow JT, Trigodet F, Shaw DG, Romano AE, Jabri B, Eren AM, Ismagilov RF. Microbial-enrichment method enables high-throughput metagenomic characterization from host-rich samples. Nat Methods 2023; 20:1672-1682. [PMID: 37828152 PMCID: PMC10885704 DOI: 10.1038/s41592-023-02025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/27/2023] [Indexed: 10/14/2023]
Abstract
Host-microbe interactions have been linked to health and disease states through the use of microbial taxonomic profiling, mostly via 16S ribosomal RNA gene sequencing. However, many mechanistic insights remain elusive, in part because studying the genomes of microbes associated with mammalian tissue is difficult due to the high ratio of host to microbial DNA in such samples. Here we describe a microbial-enrichment method (MEM), which we demonstrate on a wide range of sample types, including saliva, stool, intestinal scrapings, and intestinal mucosal biopsies. MEM enabled high-throughput characterization of microbial metagenomes from human intestinal biopsies by reducing host DNA more than 1,000-fold with minimal microbial community changes (roughly 90% of taxa had no significant differences between MEM-treated and untreated control groups). Shotgun sequencing of MEM-treated human intestinal biopsies enabled characterization of both high- and low-abundance microbial taxa, pathways and genes longitudinally along the gastrointestinal tract. We report the construction of metagenome-assembled genomes directly from human intestinal biopsies for bacteria and archaea at relative abundances as low as 1%. Analysis of metagenome-assembled genomes reveals distinct subpopulation structures between the small and large intestine for some taxa. MEM opens a path for the microbiome field to acquire deeper insights into host-microbe interactions by enabling in-depth characterization of host-tissue-associated microbial communities.
Collapse
Affiliation(s)
- Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Jacob T Barlow
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dustin G Shaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anna E Romano
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred-Wegener-Institute for Marine and Polar Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
189
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
190
|
Zhou RW, Harpaz N, Itzkowitz SH, Parsons RE. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023; 12:48. [PMID: 37884500 PMCID: PMC10603140 DOI: 10.1038/s41389-023-00492-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Sustained chronic inflammation of the large intestine leads to tissue damage and repair, which is associated with an increased incidence of colitis-associated colorectal cancer (CAC). The genetic makeup of CAC is somewhat similar to sporadic colorectal carcinoma (sCRC), but there are differences in the sequence and timing of alterations in the carcinogenesis process. Several models have been developed to explain the development of CAC, particularly the "field cancerization" model, which proposes that chronic inflammation accelerates mutagenesis and selects for the clonal expansion of phenotypically normal, pro-tumorigenic cells. In contrast, the "Big Bang" model posits that tumorigenic clones with multiple driver gene mutations emerge spontaneously. The details of CAC tumorigenesis-and how they differ from sCRC-are not yet fully understood. In this Review, we discuss recent genetic, epigenetic, and environmental findings related to CAC pathogenesis in the past five years, with a focus on unbiased, high-resolution genetic profiling of non-dysplastic field cancerization in the context of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, Internal Medicine Residency Program, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Noam Harpaz
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven H Itzkowitz
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
191
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
192
|
Welham Z, Li J, Engel AF, Molloy MP. Mucosal Microbiome in Patients with Early Bowel Polyps: Inferences from Short-Read and Long-Read 16S rRNA Sequencing. Cancers (Basel) 2023; 15:5045. [PMID: 37894412 PMCID: PMC10605900 DOI: 10.3390/cancers15205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Numerous studies have correlated dysbiosis in stool microbiota with colorectal cancer (CRC); however, fewer studies have investigated the mucosal microbiome in pre-cancerous bowel polyps. The short-read sequencing of variable regions in the 16S rRNA gene has commonly been used to infer bacterial taxonomy, and this has led, in part, to inconsistent findings between studies. Here, we examined mucosal microbiota from patients who presented with one or more polyps, compared to patients with no polyps, at the time of colonoscopy. We evaluated the results obtained using both short-read and PacBio long-read 16S rRNA sequencing. Neither sequencing technology identified significant differences in microbial diversity measures between patients with or without bowel polyps. Differential abundance measures showed that amplicon sequence variants (ASVs) associated with Ruminococcus gnavus and Escherichia coli were elevated in mucosa from polyp patients, while ASVs associated with Parabacteroides merdae, Veillonella nakazawae, and Sutterella wadsworthensis were relatively decreased. Only R. gnavus was consistently identified using both sequencing technologies as being altered between patients with polyps compared to patients without polyps, suggesting differences in technologies and bioinformatics processing impact study findings. Several of the differentially abundant bacteria identified using either sequencing technology are associated with inflammatory bowel diseases despite these patients being excluded from the current study, which suggests that early bowel neoplasia may be associated with a local inflammatory niche.
Collapse
Affiliation(s)
- Zoe Welham
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| | - Jun Li
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| | - Alexander F. Engel
- Colorectal Surgical Unit, Royal North Shore Hospital, Sydney 2065, Australia;
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2050, Australia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, Sydney 2065, Australia; (Z.W.); (J.L.)
| |
Collapse
|
193
|
Sun L, Qu J, Ke X, Zhang Y, Xu H, Lv N, Leng J, Zhang Y, Guan A, Feng Y, Sun Y. Interaction between intratumoral microbiota and tumor mediates the response of neoadjuvant therapy for rectal cancer. Front Microbiol 2023; 14:1229888. [PMID: 37901832 PMCID: PMC10602640 DOI: 10.3389/fmicb.2023.1229888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Previous observations have demonstrated that the response to neoadjuvant chemoradiotherapy (nCRT) is highly variable in patients with locally advanced rectal cancer (LARC). Recent studies focusing on the intratumoral microbiota of colorectal cancer have revealed its role in oncogenesis and tumor progression. However, limited research has focused on the influence of intratumoral microbiota on the nCRT of LARC. Methods We explored the microbial profiles in the tumor microenvironment of LARC using RNA-seq data from a published European cohort. Microbial signatures were characterized in pathological complete response (pCR) and non-pCR groups. Multi-omics analysis was performed between intratumor microbiomes and transcriptomes. Results Microbial α and β diversity were significantly different in pCR and non-pCR groups. Twelve differential microbes were discovered between the pCR and non-pCR groups, six of which were related to subclusters of cancer-associated fibroblasts (CAFs) associated with extracellular matrix formation. A microbial risk score based on the relative abundance of seven differential microbes had predictive value for the nCRT response (AUC = 0.820, p < 0.001). Conclusion Our study presents intratumoral microbes as potential independent predictive markers for the response of nCRT to LARC and demonstrates the underlying mechanism by which the interaction between intratumoral microbes and CAFs mediates the response to nCRT.
Collapse
Affiliation(s)
- Lejia Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Jiangming Qu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xindi Ke
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Hengyi Xu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Lv
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingze Leng
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanbin Zhang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Ai Guan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Colorectal Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
194
|
Dzierozynski L, Queen J, Sears CL. Subtle, persistent shaping of the gut microbiome by host genes: A critical determinant of host biology. Cell Host Microbe 2023; 31:1569-1573. [PMID: 37827115 PMCID: PMC11272393 DOI: 10.1016/j.chom.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Although environmental impacts on the host microbiome have been well studied, it is less certain whether and how host genetics impact the microbiome. This commentary discusses current literature supporting host genetic influences on resident species and pathogenic microbes. Mechanistic experimental studies are warranted to understand host gene-microbiome interplay.
Collapse
Affiliation(s)
- Lindsey Dzierozynski
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg∼Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
195
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
196
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
197
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
198
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
199
|
Yu Z, Yue L, Yang Z, Wang Y, Wang Z, Zhou F, Li C, Li L, Zhang W, Li X. Impairment of intestinal barrier associated with the alternation of intestinal flora and its metabolites in cow's milk protein allergy. Microb Pathog 2023; 183:106329. [PMID: 37659726 DOI: 10.1016/j.micpath.2023.106329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Cow's milk protein allergy (CMPA), one of the most prevalent food allergies, seriously affects the growth and development of infants and children with the rising incidence and prevalence. The dysbiosis of intestinal flora acts to promote disease including allergic disease. Therefore, studying the role of intestinal flora in allergic diseases holds great promise for developing effective strategies to mitigate the risk of food allergies. This study aims to elucidate the role of disrupted intestinal flora and its metabolites in children with CMPA.16S rDNA sequence analysis was applied to characterize the changes in the composition of intestinal flora. The findings revealed heightened diversity of intestinal flora in CMPA, marked by decreased abundance of Firmicutes and Bacteroidetes, and increased abundance of Proteobacteria and Actinobacteria. Furthermore, metabolite analysis identified a total of 1245 differential metabolites in children with CMPA compared to those in healthy children. Among these, 765 metabolites were down-regulated, while 480 were up-regulated. Notably, there were 10 negative differential metabolites identified as bile acids and derivatives, including second bile acids, such as deoxycholic acid, ursodeoxycholic acid and isoursodexycholic acid. The intestinal barrier was further analyzed and showed that the enterocytes proliferation and the expression of Claudin-1, Claudin-3 and MUC2 were down-regulated with the invasion of biofilm community members in the CMPA group. In summary, these findings provide compelling evidence that food allergies disrupt intestinal flora and its metabolites, consequently damaging the intestinal barrier's integrity to increase intestinal permeability and immune response.
Collapse
Affiliation(s)
- Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Lingling Yue
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Zhaojie Yang
- Henan Province Orthopedic Hospital, Zhengzhou, 450000, China
| | - Yuesheng Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Zihui Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Fang Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chan Li
- Department of Biostatistics, University at Buffalo, 208 Norton Hall, Buffalo, NY, 14260-1800, USA
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Xiaoqin Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
200
|
Takeda K, Koi M, Okita Y, Sajibu S, Keku TO, Carethers JM. Fusobacterium nucleatum Load Correlates with KRAS Mutation and Sessile Serrated Pathogenesis in Colorectal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1940-1951. [PMID: 37772997 PMCID: PMC10530411 DOI: 10.1158/2767-9764.crc-23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Fusobacterium nucleatum (Fn) has been frequently detected in colorectal cancer. A high load of Fn has been associated with subtypes of colorectal cancers, located in the proximal colon, exhibiting microsatellite instability-high (MSI-H), MLH1 promoter hypermethylation, the CpG island hypermethylation phenotype-high, or BRAF mutation in some studies. Although these features characterize the sessile serrated pathway (SSP) of colon cancers, other studies have shown that Fn infection is associated with KRAS mutations mainly characteristic of non-serrated neoplasia. It is also not clear at what point the association of Fn infection with these genomic alterations is established during colorectal carcinogenesis. Here we show that MSI-H, MLH1 hypermethylation, BRAF mutation or KRAS mutations were independently associated with Fn infection in colorectal cancer. On the other hand, increasing Fn copy number in tissues was associated with increased probability to exhibit MSI-H, MLH1 hypermethylation or BRAF mutations but not KRAS mutations in colorectal cancer. We also show that Fn load was significantly less than that of colorectal cancer and no association was detected between BRAF/KRAS mutations or MLH1 hypermethylation and Fn infection in adenomas. Our combined data suggest that increasing loads of Fn during and/or after adenomacarcinoma transition might promote SSP but not KRAS-driven colorectal carcinogenesis. Alternatively, Fn preferentially colonizes colorectal cancers with SSP and KRAS mutations but can expand more in colorectal cancers with SSP. SIGNIFICANCE The authors demonstrated that Fn is enriched in colorectal cancers exhibiting the SSP phenotype, and in colorectal cancers carrying KRAS mutations. Fn infection should be considered as a candidate risk factor specific to colorectal cancers with the SSP phenotype and with KRAS mutations.
Collapse
Affiliation(s)
- Koki Takeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Minoru Koi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Graduate School of Medicine, Mie University, Mie, Japan
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Temitope O. Keku
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John M. Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|