151
|
Borges dos Reis R, Aguilar-Ponce JL, Cayol F, Jansen AM, K RM, Merino TR, Sanku G, Vaca LB, Isaacsson Velho P, Korbenfeld EP. Latin American Challenges and Recommendations for Poly Adenosine Diphosphate Ribose Polymerase Inhibitor Treatment in Metastatic Castration Resistant Prostate Cancer: An Expert Overview. Cancer Control 2024; 31:10732748241280446. [PMID: 39387315 PMCID: PMC11526293 DOI: 10.1177/10732748241280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
In Latin America, prostate cancer is the third most common cancer overall and the most common in men, with the highest mortality rate of all cancers. In 2022, there were approximately 22,985 new prostate cancer cases and 61,056 deaths from prostate cancer in the region. Patients with metastatic disease that is resistant to cure by castration now have multiple therapeutic options, including poly-ADP ribose polymerase inhibitors. These treatment advances present new challenges, such as developing monitoring protocols for early detection of disease progression to castration resistance. The Americas Health Foundation organized a 3-day meeting with 8 regional oncologists and pathologists to create a paper on metastatic castration-resistant prostate cancer diagnosis and therapy, including the new poly-ADP ribose polymerase inhibitors. The panel examined metastatic castration-resistant prostate cancer in Latin America and recommended ways to improve patient care using published literature and their expertise. Gene mutations play an important role in prostate cancer development. Precision medicine innovations highlight the importance of genotyping DNA variants and tumor biomarkers for targeted treatment. Access to appropriate genetic testing is difficult, medications are available but expensive, and there is a lack of infrastructure and regulatory frameworks that prevent patients from benefiting from innovative therapies. The panel recommends developing a population database and biobank and creating tumor tissue collection, processing, and storage facilities. Multi-stakeholder collaboration is needed to integrate the information gathered, train staff, select target populations, improve patient accessibility, and reduce the cost burden of drugs, genetic counselors, and cancer geneticists in Latin America. Collaboration is essential among healthcare professionals, policymakers, patient advocacy groups, pharmaceutical companies, and international organizations to address these challenges and needs in Latin America.
Collapse
Affiliation(s)
| | - José L. Aguilar-Ponce
- Department of Medica Oncology, Instituto Nacional de CancerologiaMéxico, Mexico City, Mexico
| | - Federico Cayol
- Sección de Oncología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Ray Manneh K
- Medical Oncology Research Institute, Sociedad de Oncología y Hematología del Cesar, Valledupar, Cesar, Colombia
| | - Tomas R Merino
- Departamento de Hemato Oncología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Laura B. Vaca
- Clinical Oncology, Clínica Universitaria Colombia, Clínica de Marly Bogotá, Colombia
| | - Pedro Isaacsson Velho
- Oncology, Hospital Moinhos de Vento, Porto Alegre, Brazil
- Johns Hopkins Hospital, Baltimore, MD, USA
| | | |
Collapse
|
152
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
153
|
Zhang T, Zhao F, Lin Y, Liu M, Zhou H, Cui F, Jin Y, Chen L, Sheng X. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression. Theranostics 2024; 14:1065-1080. [PMID: 38250042 PMCID: PMC10797290 DOI: 10.7150/thno.92336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) typically implies severe lethality and limited treatment options. The precise identification of NEPC cells holds paramount significance for both research and clinical applications, yet valid NEPC biomarker remains to be defined. Methods: Leveraging 11 published NE-related gene sets, 11 single-cell RNA-sequencing (scRNA-seq) cohorts, 15 bulk transcriptomic cohorts, and 13 experimental models of prostate cancer (PCa), we employed multiple advanced algorithms to construct and validate a robust NEPC risk prediction model. Results: Through the compilation of a comprehensive scRNA-seq reference atlas (comprising a total of 210,879 single cells, including 66 tumor samples) from 9 multicenter datasets of PCa, we observed inconsistent and inefficient performance among the 11 published NE gene sets. Therefore, we developed an integrative analysis pipeline, identifying 762 high-quality NE markers. Subsequently, we derived the NE cell-intrinsic gene signature, and developed an R package named NEPAL, to predict NEPC risk scores. By applying to multiple independent validation datasets, NEPAL consistently and accurately assigned NE feature and delineated PCa progression. Intriguingly, NEPAL demonstrated predictive capabilities for prognosis and therapy responsiveness, as well as the identification of potential epigenetic drivers of NEPC. Conclusion: The present study furnishes a valuable tool for the identification of NEPC and the monitoring of PCa progression through transcriptomic profiles obtained from both bulk and single-cell sources.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital/Pu'ai Hospital, Wuhan, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Fengzhen Cui
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Sheng
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
154
|
Ajkunic A, Sayar E, Roudier MP, Patel RA, Coleman IM, De Sarkar N, Hanratty B, Adil M, Zhao J, Zaidi S, True LD, Sperger JM, Cheng HH, Yu EY, Montgomery RB, Hawley JE, Ha G, Lee JK, Harmon SA, Corey E, Lang JM, Sawyers CL, Morrissey C, Schweizer MT, Gulati R, Nelson PS, Haffner MC. ASSESSMENT OF CELL SURFACE TARGETS IN METASTATIC PROSTATE CANCER: EXPRESSION LANDSCAPE AND MOLECULAR CORRELATES. RESEARCH SQUARE 2023:rs.3.rs-3745991. [PMID: 38196594 PMCID: PMC10775381 DOI: 10.21203/rs.3.rs-3745991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.
Collapse
Affiliation(s)
- Azra Ajkunic
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, WI, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jimmy Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Heather H Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan Y Yu
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert B Montgomery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica E Hawley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Michael T Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
155
|
Jing N, Zhang K, Chen X, Liu K, Wang J, Xiao L, Zhang W, Ma P, Xu P, Cheng C, Wang D, Zhao H, He Y, Ji Z, Xin Z, Sun Y, Zhang Y, Bao W, Gong Y, Fan L, Ji Y, Zhuang G, Wang Q, Dong B, Zhang P, Xue W, Gao WQ, Zhu HH. ADORA2A-driven proline synthesis triggers epigenetic reprogramming in neuroendocrine prostate and lung cancers. J Clin Invest 2023; 133:e168670. [PMID: 38099497 PMCID: PMC10721152 DOI: 10.1172/jci168670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.
Collapse
Affiliation(s)
- Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Lingling Xiao
- Emergency Intensive Care Unit, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Yuman He
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Zhongzhong Ji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Zhixiang Xin
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Wei Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Yiming Gong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Liancheng Fan
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Yiyi Ji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Baijun Dong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Pengcheng Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine and School of Biomedical Engineering, and
| |
Collapse
|
156
|
Stumpo S, Formelli MG, Persano I, Parlagreco E, Lauricella E, Rodriquenz MG, Guerrera LP, Zurlo IV, Campana D, Brizzi MP, Cives M, La Salvia A, Lamberti G. Extrapulmonary Neuroendocrine Carcinomas: Current Management and Future Perspectives. J Clin Med 2023; 12:7715. [PMID: 38137784 PMCID: PMC10743506 DOI: 10.3390/jcm12247715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroendocrine carcinomas (NECs) are poorly differentiated and highly aggressive epithelial neuroendocrine neoplasms. The most common primary site is the lung, but they may arise in every organ. Approximately 37% of extrapulmonary NECs (EP-NECs) occur in the gastroenteropancreatic (GEP) tract, followed by the genitourinary (GU) system and gynecological tract. As a result of their rarity, there is scant evidence to guide treatment recommendations, and a multidisciplinary approach is essential for the management of such patients. Platinum-based chemotherapy currently represents the standard of care for EP-NECs of any site, mirroring the management of small-cell lung cancer (SCLC), but further approaches are still under investigation. Indeed, ongoing trials evaluating targeted therapies, immune checkpoint inhibitors (ICIs), and radionuclide therapy could provide potentially breakthrough therapeutic options. Given the relative dearth of evidence-based literature on these orphan diseases, the aim of this review is to provide an overview of the pathology and current treatment options, as well as to shed light on the most pressing unmet needs in the field.
Collapse
Affiliation(s)
- Sara Stumpo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Maria Giovanna Formelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Irene Persano
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Elena Parlagreco
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Eleonora Lauricella
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
| | - Maria Grazia Rodriquenz
- Oncology Unit, Ospedale IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Luigi Pio Guerrera
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy
| | | | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Pia Brizzi
- Department of Oncology, A.O.U. San Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Mauro Cives
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161 Rome, Italy
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, Vito Fazzi Hospital, 73100 Lecce, Italy;
| |
Collapse
|
157
|
Viscuse PV, Slack-Tidwell RS, Zhang M, Rohra P, Zhu K, San Lucas FA, Konnick E, Pilie PG, Siddiqui B, Logothetis CJ, Corn P, Subudhi SK, Pritchard CC, Soundararajan R, Aparicio A. Evaluation of the Aggressive-Variant Prostate Cancer Molecular Signature in Clinical Laboratory Improvement Amendments (CLIA) Environments. Cancers (Basel) 2023; 15:5843. [PMID: 38136389 PMCID: PMC10741546 DOI: 10.3390/cancers15245843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.
Collapse
Affiliation(s)
- Paul V. Viscuse
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Rebecca S. Slack-Tidwell
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Miao Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Prih Rohra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Keyi Zhu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - F. Anthony San Lucas
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Patrick G. Pilie
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal Siddiqui
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
158
|
Kwon J, Zhang J, Mok B, Allsup S, Kim C, Toretsky J, Han C. USP13 drives lung squamous cell carcinoma by switching lung club cell lineage plasticity. Mol Cancer 2023; 22:204. [PMID: 38093367 PMCID: PMC10717271 DOI: 10.1186/s12943-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Jinmin Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Samuel Allsup
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Chul Kim
- Division of Hematology and Oncology, Georgetown University School of Medicine, Washington D.C, USA
- MedStar Georgetown University Hospital, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
- Departments of Pediatrics, Washington D.C, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA.
- Lombardi Comprehensive Cancer Center, Washington D.C, USA.
| |
Collapse
|
159
|
Chen CC, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, Sheu KM, Cheng D, Ta L, Varuzhanyan G, Huang A, Xu R, Zeng Y, Borujerdpur A, Bayley NA, Noguchi M, Mao Z, Morrissey C, Corey E, Nelson PS, Zhao Y, Huang J, Park JW, Witte ON, Graeber TG. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell 2023; 41:2066-2082.e9. [PMID: 37995683 PMCID: PMC10878415 DOI: 10.1016/j.ccell.2023.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Tyler Sugimoto
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Donghui Cheng
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Runzhe Xu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Yuanhong Zeng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amirreza Borujerdpur
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, China
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Owen N Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA; California NanoSystems Institute, UCLA, Los Angeles, CA, USA; Metabolomics Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
160
|
Sakellakis MJ, Hahn AW, Ramachandran S, Zhang M, Hoang A, Song JH, Liu J, Wang F, Basu HS, Sheperd P, Wang X, Frigo DE, Lin SH, Panaretakis T, Zhang J, Navone N, Troncoso P, Logothetis CJ, Titus MA. Characterization of prostate cancer adrenal metastases: dependence upon androgen receptor signaling and steroid hormones. Prostate Cancer Prostatic Dis 2023; 26:751-758. [PMID: 36100698 DOI: 10.1038/s41391-022-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate cancer (PCa) typically spreads to the bone, and this distribution is attributed to the central role of the microenvironment in progression. However, metastasis to the adrenal glands, while not as common, does occur. The biology that accounts for adrenal metastases may be attributed to the unique local steroid metabolome and co-clinical characterization may elucidate the role steroid biosynthesis plays in PCa progression. METHODS Three patients with metastatic PCa who had archived tumor tissue from an adrenalectomy were retrospectively identified, and one adrenal metastasis was developed into a xenograft (MDA-PCa-250). The adrenal metastases were characterized by performing somatic DNA whole exome sequencing (WES), RNA-Seq, immunohistochemistry (IHC), and steroid metabolite quantitation. The influence of steroid metabolites on adrenal metastasis cells and tumor growth was tested in vitro and in vivo. RESULTS Clinically, adrenalectomy was performed during castration-resistant oligometastatic disease, and two men experienced resensitization to leuprolide. Somatic DNA WES revealed heterogeneous alterations in tumor suppressor and DNA damage repair pathway genes. Adrenal metastases had active androgen receptor (AR) signaling by IHC, and RNA-Seq supported a potential role for adrenal androgen precursor metabolism in activating the AR. Steroid quantitation suggested the adrenal androgen precursors were converted into testosterone in these metastases, and stable isotope tracing of an organoid from MDA-PCa-250 confirmed the capability of adrenal metastases to biosynthesize testosterone from adrenal precursors. In vitro testing of a cell line derived from MDA-PCa-250 showed that testosterone and cortisol stimulated tumor cell growth. In vivo experiments demonstrated that MDA-PCa-250 grew in intact mice with circulating testosterone, but not in castrated mice. CONCLUSIONS PCa adrenal metastases depend upon AR signaling driven by androgen precursors, androstenedione and dehydroepiandrosterone, available in the microenvironment, despite the presence of heterogeneous somatic DNA alterations. Moreover, MDA-PCa-250 provides a preclinical model that can recapitulate the unique androgen-dependence of adrenal metastases. CLINICAL TRIAL REGISTRATION This study does not report the clinical results of a clinical trial, but it does use samples from a completed clinical trial that is registered with clinicaltrials.gov (NCT01254864).
Collapse
Affiliation(s)
- Minas J Sakellakis
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew W Hahn
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miao Zhang
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hirak S Basu
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Sheperd
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
161
|
Ji Y, Zhang W, Shen K, Su R, Liu X, Ma Z, Liu B, Hu C, Xue Y, Xin Z, Yang Y, Li A, Jiang Z, Jing N, Zhu HH, Dong L, Zhu Y, Dong B, Pan J, Wang Q, Xue W. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer. Nat Commun 2023; 14:7794. [PMID: 38016952 PMCID: PMC10684895 DOI: 10.1038/s41467-023-43676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Neuroendocrine prostate cancer is a rapidly progressive and lethal disease characterized by early visceral metastasis, poor prognosis, and limited treatment options. Uncovering the oncogenic mechanisms could lead to the discovery of potential therapeutic avenues. Here, we demonstrate that the RNA-binding protein ELAVL3 is specifically upregulated in neuroendocrine prostate cancer and that overexpression of ELAVL3 alone is sufficient to induce the neuroendocrine phenotype in prostate adenocarcinoma. Mechanistically, ELAVL3 is transcriptionally regulated by MYCN and subsequently binds to and stabilizes MYCN and RICTOR mRNA. Moreover, ELAVL3 is shown to be released in extracellular vesicles and induce neuroendocrine differentiation of adenocarcinoma cells via an intercellular mechanism. Pharmacological inhibition of ELAVL3 with pyrvinium pamoate, an FDA-approved drug, effectively suppresses tumor growth, reduces metastatic risk, and improves survival in neuroendocrine prostate cancer mouse models. Our results identify ELAVL3 as a critical regulator of neuroendocrine differentiation in prostate cancer and propose a drug repurposing strategy for targeted therapies.
Collapse
Affiliation(s)
- Yiyi Ji
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Kai Shen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ruopeng Su
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Xinyu Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zehua Ma
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Bo Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Cong Hu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yizheng Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zhixiang Xin
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yi Yang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ang Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zhou Jiang
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
162
|
Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku SY, Garcia MM, Beltran H. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med 2023; 15:eadf6732. [PMID: 37967200 PMCID: PMC10954288 DOI: 10.1126/scitranslmed.adf6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Martin Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
163
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
164
|
Xing P, Wang S, Cao Y, Liu B, Zheng F, Guo W, Huang J, Zhao Z, Yang Z, Lin X, Sang L, Liu Z. Treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs. Drug Resist Updat 2023; 71:101002. [PMID: 37678078 DOI: 10.1016/j.drup.2023.101002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
Adenocarcinoma is a common type of malignant tumor, originating from glandular epithelial cells in various organs, such as pancreas, breast, lung, stomach, colon, rectus, and prostate. For patients who lose the opportunity for radical surgery, medication is available to provide potential clinical benefits. However, drug resistance is a big obstacle to obtain desired clinical prognosis. In this review, we provide a summary of treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs, including pancreatic cancer, gastric adenocarcinoma, colorectal adenocarcinoma, lung adenocarcinoma, and prostate cancer. Although the underlying molecular mechanisms involved in drug resistance of adenocarcinoma vary from one organ to the other, there are several targets that are universal for drug resistance in adenocarcinoma, and targeting these molecules could potentially reverse drug resistance in the treatment of adenocarcinomas.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Feifei Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Junhao Huang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zimo Zhao
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Ziyi Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
165
|
Du Z, Chen X, Zhu P, Lv Q, Yong J, Gu J. Knocking down SOX2 overcomes the resistance of prostate cancer to castration via notch signaling. Mol Biol Rep 2023; 50:9007-9017. [PMID: 37716921 DOI: 10.1007/s11033-023-08757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is a terminal type of advanced cancer resistant to androgen deprivation therapy (ADT). Due to the poor therapeutic response of CRPC, novel treatment strategies are urgently required. This study aimed to clarify the regulatory roles of the SOX2/Notch axis in CRPC. METHODS For the evaluation of the SOX2, Notch, and Hey1 expression in the prostate cancer (PCa) and CRPC tissues, we conducted immunohistochemistry (IHC) analyses. RT-PCR, Western blotting, and immunofluorescence were performed to evaluate SOX2 and Notch expression in enzalutamide-resistant LNCaP cells (Enza-R). CCK-8, Transwell, Wound healing, and Western blotting assays were used to assess the viability, invasion, migration, cell cycle, and drug-resistant in Enza-R cells. RESULTS Compared to the PCa tissues, CRPC tissues exhibited significantly elevated SOX2, Notch1, and Hey1 expression. SOX2-positive patients were more likely to develop bone metastases than SOX2-negative ones. Significant activation of the signaling associated with SOX2 and Notch was detected in Enza-R cells. The suppression of SOX2 clearly inactivated the Notch signaling and inhibited malignant behaviors, including proliferation, invasion, migration, and drug resistance in Enza-R cells. Theγsecretase inhibitor, GSI-IX, abrogated the enzalutamide resistance by inhibiting Notch signaling in vitro in vitro. Also, GSI-IX alone had a significant anti-tumor effect in Enza-R cells. CONCLUSION We demonstrated that SOX2/Notch signaling was responsible for Enzalutamide resistance in CRPC. Targeting SOX2/Notch signaling might represent a new choice for the treatment and therapy of CRPC.
Collapse
Affiliation(s)
- Zhongbo Du
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China.
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Xiaobin Chen
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Pingyu Zhu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qi Lv
- Department of Operation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Yong
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Junqing Gu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
166
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
167
|
Xu Y, Wang Z, Sjöström M, Deng S, Wang C, Johnson NA, Gonzalez J, Li X, Metang LA, Tirado CR, Mukherji A, Wainwright G, Yu X, Yang Y, Barnes S, Hofstad M, Zhu H, Hanker A, He HH, Chen Y, Wang Z, Raj G, Arteaga C, Feng F, Wang Y, Wang T, Mu P. ZNF397 Loss Triggers TET2-driven Epigenetic Rewiring, Lineage Plasticity, and AR-targeted Therapy Resistance in AR-dependent Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563645. [PMID: 37961351 PMCID: PMC10634771 DOI: 10.1101/2023.10.24.563645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.
Collapse
|
168
|
Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, Yan Y, Cadaneanu RM, Zhang B, Kaochar S, Freedland SJ, Posadas EM, Ellis L, Vizio DD, Morrissey C, Nelson PS, Brady L, Murali R, Campbell MJ, Yang W, Knudsen BS, Mostaghel EA, Ye H, Garraway IP, You S, Freeman MR. ONECUT2 Activates Diverse Resistance Drivers of Androgen Receptor-Independent Heterogeneity in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560025. [PMID: 37905039 PMCID: PMC10614109 DOI: 10.1101/2023.09.28.560025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that the HOX/CUT transcription factor ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 targets include the glucocorticoid receptor and the NE splicing factor SRRM4, among others. OC2 regulates gene expression by promoter binding, enhancement of chromatin accessibility, and formation of novel super-enhancers. OC2 also activates glucuronidation genes that irreversibly disable androgen, thereby evoking phenotypic heterogeneity indirectly by hormone depletion. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC. Our findings support enhanced efforts to therapeutically target this protein as a means of suppressing treatment-resistant disease.
Collapse
Affiliation(s)
- Chen Qian
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qian Yang
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, Pamplona, Navarra, Spain
| | - Rongrong Huang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hyoyoung Kim
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brad Gallent
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiwu Yan
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Radu M. Cadaneanu
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Baohui Zhang
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Salma Kaochar
- Department of Medicine Section Hematology/Oncology Baylor College of Medicine, Houston, 77030, TX
| | - Stephen J. Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M. Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Mutha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lauren Brady
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ramachandran Murali
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moray J. Campbell
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Pathology and Cancer Center, Stony Brook University, NY 11794, USA
| | - Beatrice S. Knudsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84108, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84108, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98133, USA
| | - Huihui Ye
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
169
|
Li W, Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. RESEARCH SQUARE 2023:rs.3.rs-3270539. [PMID: 37886478 PMCID: PMC10602109 DOI: 10.21203/rs.3.rs-3270539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Wenliang Li
- The University of Texas Health Science Center at Houston
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University
| | - Yan Zhang
- The University of Texas Health Science Center at Houston
| | - Sukjin Yang
- The University of Texas Health Science Center at Houston
| | - Ning Su
- The University of Texas Health Science Center at Houston
| | | | - Guoliang Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiaotong University
| | | | - Zhengmei Mao
- The University of Texas Health Science Center at Houston
| | - Zheng Wang
- The University of Texas Health Science Center at Houston
| | - Ting Zhou
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
170
|
Freeburg NF, Peterson N, Ruiz DA, Gladstein AC, Feldser DM. Metastatic Competency and Tumor Spheroid Formation Are Independent Cell States Governed by RB in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1992-2002. [PMID: 37728504 PMCID: PMC10545537 DOI: 10.1158/2767-9764.crc-23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Inactivation of the retinoblastoma (RB) tumor suppressor in lung adenocarcinoma is associated with the rapid acquisition of metastatic ability and the loss of lung cell lineage commitment. We previously showed that restoration of RB in advanced lung adenocarcinomas in the mouse was correlated with a decreased frequency of lineage decommitted tumors and overt metastases. To identify a causal relationship for RB and its role in reprogramming lineage commitment and reducing metastatic competency in lung adenocarcinoma, we developed multiple tumor spheroid forming lines where RB restoration could be achieved after characterization of the degree of each spheroid's lineage commitment and metastatic ability. Surprisingly, we discovered that RB inactivation dramatically promoted tumor spheroid forming potential in tumors that arise in the KrasLSL-G12D/+; p53flox/flox lung adenocarcinoma model. However, RB reactivation had no effect on the maintenance of tumor spheroid lines once established. In addition, we show that RB-deficient tumor spheroid lines are not uniformly metastatically competent but are equally likely to be nonmetastatic. Interestingly, unlike tumor spheroid maintenance, RB restoration could functionally revert metastatic tumor spheroids to a nonmetastatic cell state. Thus, strategies to reinstate RB pathway activity in lung cancer may reverse metastatic ability and have therapeutic potential. Finally, the acquisition of tumor spheroid forming potential reflects underlying cell state plasticity, which is often predictive of, or even conflated with metastatic ability. Our data support that each is a discrete cell state restricted by RB and question the suitability of tumor spheroid models for their predictive potential of advanced metastatic tumor cell states. SIGNIFICANCE Members of the RB pathway are frequently mutated in lung adenocarcinoma. We show that RB regulates cell state plasticity, tumor spheroid formation, and metastatic competency. Our data indicate that these are independent states where spheroid formation is distinct from metastatic competency. Thus, we caution against conflating spheroid formation and other signs of cell state plasticity with advanced metastatic cell states. Nevertheless, our work supports clinical strategies to reactivate RB pathways.
Collapse
Affiliation(s)
- Nelson F. Freeburg
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nia Peterson
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dain A. Ruiz
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C. Gladstein
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
171
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Multi-modal transcriptomic analysis unravels enrichment of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.558960. [PMID: 37873432 PMCID: PMC10592858 DOI: 10.1101/2023.09.30.558960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Current affiliation: Feinberg School of Medicine, Northwestern University, Chicago, 60611, USA
| | - Beatriz P San Juan
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Arpita G Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Christine L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of New South Wales, UNSW Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
172
|
Song Z, Cao Q, Guo B, Zhao Y, Li X, Lou N, Zhu C, Luo G, Peng S, Li G, Chen K, Wang Y, Ruan H, Guo Y. Overexpression of RACGAP1 by E2F1 Promotes Neuroendocrine Differentiation of Prostate Cancer by Stabilizing EZH2 Expression. Aging Dis 2023; 14:1757-1774. [PMID: 37196108 PMCID: PMC10529746 DOI: 10.14336/ad.2023.0202] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 05/19/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. It is characterized by the loss of androgen receptor (AR) signaling in neuroendocrine transdifferentiation, and finally, resistance to AR-targeted therapy. With the application of a new generation of potent AR inhibitors, the incidence of NEPC is gradually increasing. The molecular mechanism of neuroendocrine differentiation (NED) after androgen deprivation therapy (ADT) remains largely unclear. In this study, using NEPC-related genome sequencing database analyses, we screened RACGAP1, a common differentially expressed gene. We investigated RACGAP1 expression in clinical prostate cancer specimens by IHC. Regulated pathways were examined by Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation, and immunoprecipitation assays. The corresponding function of RACGAP1 in prostate cancer was analyzed by CCK-8 and Transwell assays. The changes of neuroendocrine markers and AR expression in C4-2-R and C4-2B-R cells were detected in vitro. We confirmed that RACGAP1 contributed to NE transdifferentiation of prostate cancer. Patients with high tumor RACGAP1 expression had shorter relapse-free survival time. The expression of RACGAP1 was induced by E2F1. RACGAP1 promoted neuroendocrine transdifferentiation of prostate cancer by stabilizing EZH2 expression in the ubiquitin-proteasome pathway. Moreover, overexpression of RACGAP1 promoted enzalutamide resistance of castration-resistant prostate cancer (CRPC) cells. Our results showed that the upregulation of RACGAP1 by E2F1 increased EZH2 expression, which drove NEPC progression. This study explored the molecular mechanism of NED and may provide novel methods and ideas for targeted therapy of NEPC.
Collapse
Affiliation(s)
- Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Bin Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Xuechao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ning Lou
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Chenxi Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Gang Luo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Song Peng
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| |
Collapse
|
173
|
Ji Y, Liu B, Chen L, Li A, Shen K, Su R, Zhang W, Zhu Y, Wang Q, Xue W. Repurposing ketotifen as a therapeutic strategy for neuroendocrine prostate cancer by targeting the IL-6/STAT3 pathway. Cell Oncol (Dordr) 2023; 46:1445-1456. [PMID: 37120492 DOI: 10.1007/s13402-023-00822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/01/2023] Open
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC), a highly aggressive subtype of prostate cancer displaying resistance to hormone therapy, presents a poor prognosis and limited therapeutic options. Here, we aimed to find novel medication therapies for NEPC and explore the underlying mechanism. METHODS A high-throughput drug screening utilizing an FDA-approved drug library was performed and ketotifen, an antihistamine agent, was identified as a potential therapeutic candidate for NEPC. The whole-transcriptome sequencing analysis was conducted to explore mechanism of ketotifen inhibitory in NEPC. Multiple cell biology and biochemistry experiments were performed to confirm the inhibitory effect of ketotifen in vitro. A spontaneous NEPC mice model (PBCre4:Ptenf/f;Trp53f/f;Rb1f/f) was used to reveal the inhibitory effect of ketotifen in vivo. RESULTS Our in vitro experiments demonstrated that ketotifen effectively suppressed neuroendocrine differentiation, reduced cell viability, and reversed the lineage switch via targeting the IL-6/STAT3 pathway. Our in vivo results showed that ketotifen significantly prolonged overall survival and reduced the risk of distant metastases in NEPC mice model. CONCLUSION Our findings repurpose ketotifen for antitumor applications and endorse its clinical development for NEPC therapy, offering a novel and promising therapeutic strategy for this formidable cancer subtype.
Collapse
Affiliation(s)
- Yiyi Ji
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Bo Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Lei Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ang Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Kai Shen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ruopeng Su
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
174
|
Liu R, Xu Z, Huang X, Xu B, Chen M. Yin Yang 1 promotes the neuroendocrine differentiation of prostate cancer cells via the non-canonical WNT pathway (FYN/STAT3). Clin Transl Med 2023; 13:e1422. [PMID: 37771187 PMCID: PMC10539684 DOI: 10.1002/ctm2.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.
Collapse
Affiliation(s)
- Rui‐ji Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Zhi‐Peng Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bin Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Ming Chen
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
- Department of Urology, Nanjing Lishui District People's HospitalZhongda Hospital Lishui BranchSoutheast UniversityNanjingChina
| |
Collapse
|
175
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
176
|
Weng XT, Lin WL, Pan QM, Chen TF, Li SY, Gu CM. Aggressive variant prostate cancer: A case report and literature review. World J Clin Cases 2023; 11:6213-6222. [PMID: 37731555 PMCID: PMC10507546 DOI: 10.12998/wjcc.v11.i26.6213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Aggressive variant prostate cancer (AVPC) is a rare disease that progresses rapidly. The first-line treatment for AVPC is currently unknown. We examined a rare case of AVPC with rare brain and bladder metastases. A summary review of the mechanism of development, clinicopathological manifestations, associated treatments and prognosis of this disease is presented. CASE SUMMARY The patient was diagnosed with prostate cancer (PCA), and was actively treated with endocrine therapy, radiotherapy, chemotherapy, and traditional Chinese medicine. Unfortunately, he was insensitive to treatment, and the disease progressed rapidly. He died five years after being diagnosed with PCA. CONCLUSION We should reach consensus definitions of the AVPC and other androgen receptor-independent subtypes of PCA and develop new biomarkers to identify groups of high-risk variants. It is crucial to complete a puncture biopsy of the tumor or metastatic lesion as soon as possible in patients with advanced PCA who exhibit clinical features such as low Prostate-specific antigen levels, high carcinoembryonic antigen levels, and insensitivity to hormones to determine the pathological histological type and to create a more aggressive monitoring and treatment regimens.
Collapse
Affiliation(s)
- Xiang-Tao Weng
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Wen-Li Lin
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Qi-Man Pan
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Tao-Fen Chen
- Department of Urology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Si-Yi Li
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Chi-Ming Gu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
177
|
Li X, Mu P. The Critical Interplay of CAF Plasticity and Resistance in Prostate Cancer. Cancer Res 2023; 83:2990-2992. [PMID: 37504898 DOI: 10.1158/0008-5472.can-23-2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Prostate cancer is a common malignancy driven by the androgen receptor (AR) pathway, with androgen deprivation therapy (ADT) being a standard treatment. However, the development of castration-resistant prostate cancer (CRPC) poses a significant challenge. CRPC is characterized by significantly increased tumor heterogeneity and lineage plasticity. Current research has primarily emphasized intrinsic tumor mechanisms, paying less attention to the role of the tumor microenvironment in cancer recurrence and drug resistance. In their recent study published in Cancer Cell, Wang and colleagues used single-cell RNA sequencing in genetically engineered mouse models with prostate tumors at different stages. They revealed that SPP1+ myofibroblastic cancer-associated fibroblasts (myCAF), induced by ADT, play an instrumental role in CRPC development. Their work also underscores the association between therapy-induced phenotypic alterations of CAFs and disease progression. This discovery highlights the potential for stromal compartment targeting as a means to mitigate CRPC development and overcome treatment resistance.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
178
|
Khani F, Hooper WF, Wang X, Chu TR, Shah M, Winterkorn L, Sigouros M, Conteduca V, Pisapia D, Wobker S, Walker S, Graff JN, Robinson B, Mosquera JM, Sboner A, Elemento O, Robine N, Beltran H. Evolution of structural rearrangements in prostate cancer intracranial metastases. NPJ Precis Oncol 2023; 7:91. [PMID: 37704749 PMCID: PMC10499931 DOI: 10.1038/s41698-023-00435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease (n = 6) and nonbrain prostate cancer metastases (n = 36). This first whole genome sequencing study of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Xiaofei Wang
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vincenza Conteduca
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - David Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sara Wobker
- Department of Pathology and Laboratory Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Sydney Walker
- Department of Medical Oncology, Oregon Health Sciences University, Portland, OR, USA
| | - Julie N Graff
- Department of Medical Oncology, Oregon Health Sciences University, Portland, OR, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
179
|
Groves SM, Quaranta V. Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1225736. [PMID: 37731743 PMCID: PMC10507267 DOI: 10.3389/fnetp.2023.1225736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.
Collapse
Affiliation(s)
- Sarah M. Groves
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Vito Quaranta
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
180
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
181
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
182
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
183
|
Guo L, Mohanty A, Singhal S, Srivastava S, Nam A, Warden C, Ramisetty S, Yuan YC, Cho H, Wu X, Li A, Vohra M, Saladi SV, Wheeler D, Arvanitis L, Massarelli E, Kulkarni P, Zeng Y, Salgia R. Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors. iScience 2023; 26:107302. [PMID: 37554452 PMCID: PMC10405066 DOI: 10.1016/j.isci.2023.107302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
This study investigates the role of integrin β4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function.
Collapse
Affiliation(s)
- Linlin Guo
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Saumya Srivastava
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Divison of Translational Bioinformatics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hyejin Cho
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Manik Vohra
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Srinivas Vinod Saladi
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deric Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
184
|
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, Sjöström M, Chou J, Chang K, Moreno-Rodriguez T, Shrestha R, Baskin A, Zhu X, Weinstein AS, Younger N, Alumkal JJ, Beer TM, Chi KN, Evans CP, Gleave M, Lara PN, Reiter RE, Rettig MB, Witte ON, Wyatt AW, Feng FY, Small EJ, Quigley DA. The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer. Cancer Res 2023; 83:2763-2774. [PMID: 37289025 PMCID: PMC10425725 DOI: 10.1158/0008-5472.can-23-0593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.
Collapse
Affiliation(s)
- Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kevin Chang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Avi Baskin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Noah Younger
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joshi J. Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Tomasz M. Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher P. Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Department of Urologic Surgery, University of California Davis, Sacramento, California
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Primo N. Lara
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Rob E. Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Matthew B. Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
185
|
Komori T, Kosaka T, Tanaka T, Watanabe K, Yasumizu Y, Mikami S, Oya M. Locally recurrent prostate cancer with RB1/TP53 alterations successfully treated by salvage focal brachytherapy: a case report. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:339-343. [PMID: 37645609 PMCID: PMC10461036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Retinoblastoma transcriptional corepressor 1 (RB1) and tumor protein p53 (TP53) are well-known tumor suppressor genes; their alterations are associated with poor prognosis in human malignancies and quite rare in locally recurrent cases. The patient was a 58-year-old man who was diagnosed with cT1cN0M0 prostate cancer with Gleason score of 3+3=6 and underwent brachytherapy as the initial treatment. Local recurrence was detected in the left lobe of the prostate 154 months later and whole-exome sequencing that was performed at the request of the patient revealed RB1 loss-of-heterozygosity and TP53 p.I162Rfs*27 mutations. He underwent salvage focal brachytherapy with 125I seeds and serum prostate-specific antigen levels has been stabilized without any genitourinary or gastrointestinal toxicity.
Collapse
Affiliation(s)
- Takahiro Komori
- Department of Urology, Keio University School of MedicineTokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of MedicineTokyo, Japan
| | - Tomoki Tanaka
- Department of Radiology, Keio University School of MedicineTokyo, Japan
| | - Keitaro Watanabe
- Department of Urology, Keio University School of MedicineTokyo, Japan
| | - Yota Yasumizu
- Department of Urology, Keio University School of MedicineTokyo, Japan
| | - Shuji Mikami
- Department of Pathology, National Hospital Organization Saitama HospitalTokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of MedicineTokyo, Japan
| |
Collapse
|
186
|
Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, Zhang Z, Tirado CR, Xu Y, Metang LA, Gonzalez J, Mukherji A, Ye J, Yang Y, Peng W, Tang Y, Hofstad M, Xie Z, Yoon H, Chen L, Liu X, Chen S, Zhu H, Strand D, Liang H, Raj G, He HH, Mendell JT, Li B, Wang T, Mu P. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell 2023; 41:1427-1449.e12. [PMID: 37478850 PMCID: PMC10530398 DOI: 10.1016/j.ccell.2023.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Peng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Heewon Yoon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Liping Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Hong Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
187
|
Kumaraswamy A, Duan Z, Flores D, Zhang C, Sehrawat A, Hu YM, Swaim OA, Rodansky E, Storck WK, Kuleape JA, Bedi K, Mannan R, Wang XM, Udager A, Ravikumar V, Bankhead A, Coleman I, Lee JK, Morrissey C, Nelson PS, Chinnaiyan AM, Rao A, Xia Z, Yates JA, Alumkal JJ. LSD1 promotes prostate cancer reprogramming by repressing TP53 signaling independently of its demethylase function. JCI Insight 2023; 8:e167440. [PMID: 37440313 PMCID: PMC10445684 DOI: 10.1172/jci.insight.167440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation. The frequency of NEPC is increasing since the widespread use of potent androgen receptor signaling inhibitors. Currently, there are no effective treatments for NEPC. We previously determined that LSD1 promotes survival of prostate adenocarcinoma tumors. However, the role of LSD1 in NEPC is unknown. Here, we determined that LSD1 is highly upregulated in NEPC versus adenocarcinoma patient tumors. LSD1 suppression with RNAi or allosteric LSD1 inhibitors - but not catalytic inhibitors - reduced NEPC cell survival. RNA-Seq analysis revealed that LSD1 represses pathways linked to luminal differentiation, and TP53 was the top reactivated pathway. We confirmed that LSD1 suppressed the TP53 pathway by reducing TP53 occupancy at target genes while LSD1's catalytic function was dispensable for this effect. Mechanistically, LSD1 inhibition disrupted LSD1-HDAC interactions, increasing histone acetylation at TP53 targets. Finally, LSD1 inhibition suppressed NEPC tumor growth in vivo. These findings suggest that blocking LSD1's noncatalytic function may be a promising treatment strategy for NEPC.
Collapse
Affiliation(s)
- Anbarasu Kumaraswamy
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhi Duan
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Diana Flores
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Chao Zhang
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ya-Mei Hu
- Knight Cancer Institute and
- Biomedical Engineering Department, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Olivia A. Swaim
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- College of Literature, Science, and the Arts, and
| | - Eva Rodansky
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - William K. Storck
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua A. Kuleape
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Karan Bedi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiao-Ming Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
| | - Aaron Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Armand Bankhead
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John K. Lee
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arul M. Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zheng Xia
- Knight Cancer Institute and
- Biomedical Engineering Department, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Joel A. Yates
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshi J. Alumkal
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
| |
Collapse
|
188
|
Abd GM, Laird MC, Ku JC, Li Y. Hypoxia-induced cancer cell reprogramming: a review on how cancer stem cells arise. Front Oncol 2023; 13:1227884. [PMID: 37614497 PMCID: PMC10442830 DOI: 10.3389/fonc.2023.1227884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer stem cells are a subset of cells within the tumor that possess the ability to self-renew as well as differentiate into different cancer cell lineages. The exact mechanisms by which cancer stem cells arise is still not completely understood. However, current research suggests that cancer stem cells may originate from normal stem cells that have undergone genetic mutations or epigenetic changes. A more recent discovery is the dedifferentiation of cancer cells to stem-like cells. These stem-like cells have been found to express and even upregulate induced pluripotent stem cell markers known as Yamanaka factors. Here we discuss developments in how cancer stem cells arise and consider how environmental factors, such as hypoxia, plays a key role in promoting the progression of cancer stem cells and metastasis. Understanding the mechanisms that give rise to these cells could have important implications for the development of new strategies in cancer treatments and therapies.
Collapse
Affiliation(s)
- Genevieve M. Abd
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Madison C. Laird
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
189
|
Li X, Poire A, Jeong KJ, Zhang D, Chen G, Sun C, Mills GB. Single-cell trajectory analysis reveals a CD9 positive state to contribute to exit from stem cell-like and embryonic diapause states and transit to drug-resistant states. Cell Death Discov 2023; 9:285. [PMID: 37542044 PMCID: PMC10403509 DOI: 10.1038/s41420-023-01586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Bromo- and extra-terminal domain (BET) inhibitors (BETi) have been shown to decrease tumor growth in preclinical models and clinical trials. However, toxicity and rapid emergence of resistance have limited their clinical implementation. To identify state changes underlying acquisition of resistance to the JQ1 BETi, we reanalyzed single-cell RNAseq data from JQ1 sensitive and resistant SUM149 and SUM159 triple-negative breast cancer cell lines. Parental and JQ1-resistant SUM149 and SUM159 exhibited a stem cell-like and embryonic diapause (SCLED) cell state as well as a transitional cell state between the SCLED state that is present in both treatment naïve and JQ1 treated cells, and a number of JQ1 resistant cell states. A transitional cell state transcriptional signature but not a SCLED state transcriptional signature predicted worsened outcomes in basal-like breast cancer patients suggesting that transit from the SCLED state to drug-resistant states contributes to patient outcomes. Entry of SUM149 and SUM159 into the transitional cell state was characterized by elevated expression of the CD9 tetraspanin. Knockdown or inhibition of CD9-sensitized cells to multiple targeted and cytotoxic drugs in vitro. Importantly, CD9 knockdown or blockade sensitized SUM149 to JQ1 in vivo by trapping cells in the SCLED state and limiting transit to resistant cell states. Thus, CD9 appears to be critical for the transition from a SCLED state into treatment-resistant cell states and warrants exploration as a therapeutic target in basal-like breast cancer.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
190
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
191
|
Kar S, Niharika, Roy A, Patra SK. Overexpression of SOX2 Gene by Histone Modifications: SOX2 Enhances Human Prostate and Breast Cancer Progression by Prevention of Apoptosis and Enhancing Cell Proliferation. Oncology 2023; 101:591-608. [PMID: 37549026 DOI: 10.1159/000531195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION SOX2 plays a crucial role in tumor development, cancer stem cell maintenance, and cancer progression. Mechanisms of SOX2 gene regulation in human breast and prostate cancers are not established yet. METHODS SOX2 expression in prostate and breast cancer tissues and cell lines was determined by qRT-PCR, Western blot, and immunochemistry, followed by the investigation of pro-tumorigenic properties like cell proliferation, migration, and apoptosis by gene knockdown and treatment with epigenetic modulators and ChIP. RESULTS Prostate and breast cancer tissues showed very high expression of SOX2. All cancer cell lines DU145 and PC3 (prostate) and MCF7 and MDA-MB-231 (breast) exhibited high expression of SOX2. Inhibition of SOX2 drastically decreased cell proliferation and migration. Epigenetic modulators enhanced SOX2 gene expression in both cancer types. DNA methylation pattern in SOX2 promoter could not be appreciably counted for SOX2 overexpression. Activation of SOX2 gene promoter was due to very high deposition of H3K4me3 and H3K9acS10p and drastic decrease of H3K9me3 and H3K27me3. CONCLUSION Histone modification is crucial for the overexpression of SOX2 during tumor development and cancer progression. These findings show the avenue of co-targeting SOX2 and its active epigenetic modifier enzymes to effectively treat aggressive prostate and breast cancers.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
192
|
Quintanal-Villalonga A, Durani V, Sabet A, Redin E, Kawasaki K, Shafer M, Karthaus WR, Zaidi S, Zhan YA, Manoj P, Sridhar H, Shah NS, Chow A, Bhanot UK, Linkov I, Asher M, Yu HA, Qiu J, de Stanchina E, Patel RA, Morrissey C, Haffner MC, Koche RP, Sawyers CL, Rudin CM. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci Transl Med 2023; 15:eadf7006. [PMID: 37531417 PMCID: PMC10777207 DOI: 10.1126/scitranslmed.adf7006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidushi Durani
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amin Sabet
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenta Kawasaki
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moniquetta Shafer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yingqian A. Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harsha Sridhar
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Umesh K. Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Helena A. Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
| | - Colm Morrissey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
193
|
Van Emmenis L, Ku SY, Gayvert K, Branch JR, Brady NJ, Basu S, Russell M, Cyrta J, Vosoughi A, Sailer V, Alnajar H, Dardenne E, Koumis E, Puca L, Robinson BD, Feldkamp MD, Winkis A, Majewski N, Rupnow B, Gottardis MM, Elemento O, Rubin MA, Beltran H, Rickman DS. The Identification of CELSR3 and Other Potential Cell Surface Targets in Neuroendocrine Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1447-1459. [PMID: 37546702 PMCID: PMC10401480 DOI: 10.1158/2767-9764.crc-22-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.g., HMMR and CESLR3). We further showed that cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) knockdown results in reduced NEPC tumor cell proliferation and migration in vitro. We provide in vivo data including laser capture microdissection followed by RNA-seq data supporting a causal role of CELSR3 in the development and/or maintenance of the phenotype associated with NEPC. Finally, we provide initial data that suggests CELSR3 is a target for T-cell redirection therapeutics. Further work is now needed to fully evaluate the utility of targeting CELSR3 with T-cell redirection or other similar therapeutics as a potential new strategy for patients with NEPC. Significance The development of effective treatment for patients with NEPC remains an unmet clinical need. We have identified specific surface proteins, including CELSR3, that may serve as novel biomarkers or therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kaitlyn Gayvert
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | | | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Subhasree Basu
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Elena Koumis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Loredana Puca
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | | | | | | | - Brent Rupnow
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| |
Collapse
|
194
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
195
|
Kulkarni P, Salgia R, Rangarajan G. Intrinsically disordered proteins and conformational noise: The hypothesis a decade later. iScience 2023; 26:107109. [PMID: 37408690 PMCID: PMC10319216 DOI: 10.1016/j.isci.2023.107109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Phenotypic plasticity is the ability of individual genotypes to produce different phenotypes in response to environmental perturbations. We previously postulated how conformational noise emanating from conformational dynamics of intrinsically disordered proteins (IDPs) which is distinct from transcriptional noise, can contribute to phenotypic switching by rewiring the cellular protein interaction network. Since most transcription factors are IDPs, we posited that conformational noise is an integral component of transcriptional noise implying that IDPs may amplify total noise in the system either stochastically or in response to environmental changes. Here, we review progress in elucidating the details of the hypothesis. We highlight empirical evidence supporting the hypothesis, discuss conceptual advances that underscore its fundamental importance and implications, and identify areas for future investigations.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
196
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
197
|
Kang L, Zhang H, Wang Y, Chu M, He J, Xue M, Pan L, Zhang Y, Wang Z, Chen Z, Huang Y, Chen Z, Li E, Li J, Xu L, Zhang R, Wong J. Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells. Oncogene 2023; 42:2315-2328. [PMID: 37353616 DOI: 10.1038/s41388-023-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.
Collapse
Affiliation(s)
- Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Manyu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianzhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Liu Pan
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinzhou Medical University, Liaoning, China
| | - Yunfeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zitai Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
198
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
199
|
Zhang XW, Li JY, Li L, Hu WQ, Tao Y, Gao WY, Ye ZN, Jia HY, Wang JN, Miao XK, Yang WL, Wang R, Mou LY. Neurokinin-1 receptor drives PKCɑ-AURKA/N-Myc signaling to facilitate the neuroendocrine progression of prostate cancer. Cell Death Dis 2023; 14:384. [PMID: 37385990 PMCID: PMC10310825 DOI: 10.1038/s41419-023-05894-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing-Yi Li
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Departemnt of Biochemistry and Molecular Biology, School of basic medical sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, P. R. China
| | - Lin Li
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Qian Hu
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yan Tao
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Yan Gao
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zi-Nuo Ye
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao-Yuan Jia
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Nan Wang
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao-Kang Miao
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Le Yang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rui Wang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Ling-Yun Mou
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China.
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
200
|
Patel GK, Verma SK, Misra S, Chand G, Rao RN. Editorial: Molecular drivers of prostate cancer pathogenesis and therapy resistance. Front Cell Dev Biol 2023; 11:1239478. [PMID: 37427384 PMCID: PMC10328384 DOI: 10.3389/fcell.2023.1239478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Girijesh Kumar Patel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Santosh Kumar Verma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shagun Misra
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ram Nawal Rao
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|