151
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
152
|
Marian OC, Teo JD, Lee JY, Song H, Kwok JB, Landin-Romero R, Halliday G, Don AS. Disrupted myelin lipid metabolism differentiates frontotemporal dementia caused by GRN and C9orf72 gene mutations. Acta Neuropathol Commun 2023; 11:52. [PMID: 36967384 PMCID: PMC10041703 DOI: 10.1186/s40478-023-01544-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Heterozygous mutations in the GRN gene and hexanucleotide repeat expansions in C9orf72 are the two most common genetic causes of Frontotemporal Dementia (FTD) with TDP-43 protein inclusions. The triggers for neurodegeneration in FTD with GRN (FTD-GRN) or C9orf72 (FTD-C9orf72) gene abnormalities are unknown, although evidence from mouse and cell culture models suggests that GRN mutations disrupt lysosomal lipid catabolism. To determine how brain lipid metabolism is affected in familial FTD with TDP-43 inclusions, and how this is related to myelin and lysosomal markers, we undertook comprehensive lipidomic analysis, enzyme activity assays, and western blotting on grey and white matter samples from the heavily-affected frontal lobe and less-affected parietal lobe of FTD-GRN cases, FTD-C9orf72 cases, and age-matched neurologically-normal controls. Substantial loss of myelin-enriched sphingolipids (sulfatide, galactosylceramide, sphingomyelin) and myelin proteins was observed in frontal white matter of FTD-GRN cases. A less-pronounced, yet statistically significant, loss of sphingolipids was also observed in FTD-C9orf72. FTD-GRN was distinguished from FTD-C9orf72 and control cases by increased acylcarnitines in frontal grey matter and marked accumulation of cholesterol esters in both frontal and parietal white matter, indicative of myelin break-down. Both FTD-GRN and FTD-C9orf72 cases showed significantly increased lysosomal and phagocytic protein markers, however galactocerebrosidase activity, required for lysosomal catabolism of galactosylceramide and sulfatide, was selectively increased in FTD-GRN. We conclude that both C9orf72 and GRN mutations are associated with disrupted lysosomal homeostasis and white matter lipid loss, but GRN mutations cause a more pronounced disruption to myelin lipid metabolism. Our findings support the hypothesis that hyperactive myelin lipid catabolism is a driver of gliosis and neurodegeneration in FTD-GRN. Since FTD-GRN is associated with white matter hyperintensities by MRI, our data provides important biochemical evidence supporting the use of MRI measures of white matter integrity in the diagnosis and management of FTD.
Collapse
Affiliation(s)
- Oana C Marian
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jun Yup Lee
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Huitong Song
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ramon Landin-Romero
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Health Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Glenda Halliday
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
153
|
Zahaf A, Kassoussi A, Hutteau-Hamel T, Mellouk A, Marie C, Zoupi L, Tsouki F, Mattern C, Bobé P, Schumacher M, Williams A, Parras C, Traiffort E. Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nat Commun 2023; 14:1592. [PMID: 36949062 PMCID: PMC10033728 DOI: 10.1038/s41467-023-36846-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
Neuroprotective, anti-inflammatory, and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor (AR), have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.
Collapse
Affiliation(s)
- Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| | | | | | - Amine Mellouk
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Lida Zoupi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Pierre Bobé
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Carlos Parras
- Paris Brain Institute, Sorbonne University, Paris, France
| | | |
Collapse
|
154
|
Hasel P, Aisenberg WH, Bennett FC, Liddelow SA. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 2023; 35:555-570. [PMID: 36958329 DOI: 10.1016/j.cmet.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes and microglia are central players in a myriad of processes in the healthy and diseased brain, ranging from metabolism to immunity. The crosstalk between these two cell types contributes to pathology in many if not all neuroinflammatory and neurodegenerative diseases. Recent advancements in integrative multimodal sequencing techniques have begun to highlight how heterogeneous both cell types are and the importance of metabolism to their regulation. We discuss here the transcriptomic, metabolic, and functional heterogeneity of astrocytes and microglia and highlight their interaction in health and disease.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - William H Aisenberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - F Chris Bennett
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
155
|
Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS Ageing in Health and Neurodegenerative Disorders. J Clin Med 2023; 12:2255. [PMID: 36983254 PMCID: PMC10054919 DOI: 10.3390/jcm12062255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms. In this review, we attempt to present the already known molecular and cellular hallmarks that characterize ageing in association with their impact on the central nervous system (CNS)'s structure and function intensifying possible preexisting pathogenetic conditions. A thorough and elucidative study of the underlying mechanisms of ageing will be able to contribute further to the development of new therapeutic interventions to effectively treat age-dependent manifestations of neurodegenerative diseases.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Olympia Damianidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Natalia Konstantinidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Charilaos Taloumtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Styliani-Aggeliki Sintila
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Panagiotis Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Constantina Simeonidou
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
156
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
157
|
Galkina OV, Vetrovoy OV, Krasovskaya IE, Eschenko ND. Role of Lipids in Regulation of Neuroglial Interactions. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:337-352. [PMID: 37076281 DOI: 10.1134/s0006297923030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/28/2023]
Abstract
Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.
Collapse
Affiliation(s)
- Olga V Galkina
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Irina E Krasovskaya
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Nataliya D Eschenko
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
158
|
Xu T, Liu C, Deng S, Gan L, Zhang Z, Yang GY, Tian H, Tang Y. The roles of microglia and astrocytes in myelin phagocytosis in the central nervous system. J Cereb Blood Flow Metab 2023; 43:325-340. [PMID: 36324281 PMCID: PMC9941857 DOI: 10.1177/0271678x221137762] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Myelination is an important process in the central nervous system (CNS). Oligodendrocytes (OLs) extend multiple layers to densely sheath on axons, composing the myelin to achieve efficient electrical signal conduction. The myelination during developmental stage maintains a balanced state. However, numerous CNS diseases including neurodegenerative and cerebrovascular diseases cause demyelination and disrupt the homeostasis, resulting in inflammation and white matter deficits. Effective clearance of myelin debris is needed in the region of demyelination, which is a key step for remyelination and tissue regeneration. Microglia and astrocytes are the major resident phagocytic cells in the brain, which may play different or collaborative roles in myelination. Microglia and astrocytes participate in developmental myelination through engulfing excessive unneeded myelin. They are also involved in the clearance of degenerated myelin debris for accelerating remyelination, or engulfing healthy myelin sheath for inhibiting remyelination. This review focuses on the roles of microglia and astrocytes in phagocytosing myelin in the developmental brain and diseased brain. In addition, the interaction between microglia and astrocytes to mediate myelin engulfment is also summarized.
Collapse
Affiliation(s)
- Tongtong Xu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Chang Liu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Shiyu Deng
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Lin Gan
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Hengli Tian
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| |
Collapse
|
159
|
Zhang L, Yu F, Xia J. Trimethylamine N-oxide: role in cell senescence and age-related diseases. Eur J Nutr 2023; 62:525-541. [PMID: 36219234 DOI: 10.1007/s00394-022-03011-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Hayflick and Moorhead first demonstrated cell senescence as the irreversible growth arrest of cells after prolonged cultivation. Telomere shortening and oxidative stress are the fundamental mechanisms that drive cell senescence. Increasing studies have shown that TMAO is closely associated with cellular aging and age-related diseases. An emerging body of evidence from animal models, especially mice, has identified that TMAO contributes to senescence from multiple pathways and appears to accelerate many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, the specific mechanism of how TMAO speeds aging is still not completely clear. MATERIAL AND METHODS In this review, we summarize some key findings in TMAO, cell senescence, and age-related diseases. We focused particular attention on the potential mechanisms for clinical transformation to find ways to interfere with the aging process. CONCLUSION TMAO can accelerate cell senescence by causing mitochondrial damage, superoxide formation, and promoting the generation of pro-inflammatory factors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
160
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
161
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
162
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
163
|
You SF, Brase L, Filipello F, Iyer AK, Del-Aguila J, He J, D’Oliveira Albanus R, Budde J, Norton J, Gentsch J, Dräger NM, Sattler SM, Kampmann M, Piccio L, Morris JC, Perrin RJ, McDade E, Dominantly Inherited Alzheimer Network, Paul SM, Cashikar AG, Benitez BA, Harari O, Karch CM. MS4A4A modifies the risk of Alzheimer disease by regulating lipid metabolism and immune response in a unique microglia state. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285545. [PMID: 36798226 PMCID: PMC9934804 DOI: 10.1101/2023.02.06.23285545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Genome-wide association studies (GWAS) have identified many modifiers of Alzheimer disease (AD) risk enriched in microglia. Two of these modifiers are common variants in the MS4A locus (rs1582763: protective and rs6591561: risk) and serve as major regulators of CSF sTREM2 levels. To understand their functional impact on AD, we used single nucleus transcriptomics to profile brains from carriers of these variants. We discovered a "chemokine" microglial subpopulation that is altered in MS4A variant carriers and for which MS4A4A is the major regulator. The protective variant increases MS4A4A expression and shifts the chemokine microglia subpopulation to an interferon state, while the risk variant suppresses MS4A4A expression and reduces this subpopulation of microglia. Our findings provide a mechanistic explanation for the AD variants in the MS4A locus. Further, they pave the way for future mechanistic studies of AD variants and potential therapeutic strategies for enhancing microglia resilience in AD pathogenesis.
Collapse
Affiliation(s)
- Shih-Feng You
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Logan Brase
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Fabia Filipello
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jorge Del-Aguila
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - June He
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | | | - John Budde
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Nina M. Dräger
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M. Sattler
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Piccio
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- Charles Perkins Centre and Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
| | | | - Steven M. Paul
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Anil G. Cashikar
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Bruno A. Benitez
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
164
|
Arbaizar-Rovirosa M, Pedragosa J, Lozano JJ, Casal C, Pol A, Gallizioli M, Planas AM. Aged lipid-laden microglia display impaired responses to stroke. EMBO Mol Med 2023; 15:e17175. [PMID: 36541061 PMCID: PMC9906381 DOI: 10.15252/emmm.202217175] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice. Cerebral ischemia/reperfusion induced innate immune responses in microglia highlighted by type I interferon and metabolic changes involving lipid droplet biogenesis. Old microglia accumulated lipids under steady state and displayed exacerbated innate immune responses to stroke. Microglia repopulation in old mice reduced lipid-laden microglia, and the cells exhibited reduced inflammatory responses to ischemia. Moreover, old mice with renewed microglia showed improved motor function 2 weeks after stroke. We conclude that lipid deposits in aged microglia impair the cellular responses to ischemia and worsen functional recovery in old mice.
Collapse
Affiliation(s)
- Maria Arbaizar-Rovirosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carme Casal
- Microscopy Service, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Albert Pol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mattia Gallizioli
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
165
|
Dimovasili C, Fair AE, Garza IR, Batterman KV, Mortazavi F, Moore TL, Rosene DL. Aging compromises oligodendrocyte precursor cell maturation and efficient remyelination in the monkey brain. GeroScience 2023; 45:249-264. [PMID: 35930094 PMCID: PMC9886778 DOI: 10.1007/s11357-022-00621-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
Age-associated cognitive decline is common among otherwise healthy elderly people, even in the absence of Alzheimer's disease and neuron loss. Instead, white matter loss and myelin damage are strongly associated with cognitive decline. Myelin is subject to lifelong oxidative stress that damages the myelin sheath, which is repaired by cells of the oligodendrocyte lineage. This process is mediated by oligodendrocyte precursor cells (OPCs) that sense the damage and respond by proliferating locally and migrating to the region, where they differentiate into mature myelinating oligodendrocytes. In aging, extensive myelin damage, in combination with inefficient remyelination, leads to chronically damaged myelin and loss of efficient neuronal conduction. This study used the rhesus monkey model of normal aging to examine how myelin regeneration capacity is affected by age. Results show that older subjects have reduced numbers of new BCAS1 + myelinating oligodendrocytes, which are newly formed cells, and that this reduction is associated with poorer cognitive performance. Interestingly, this does not result from limited proliferation of progenitor OPCs. Instead, the transcription factor NKX2.2, which regulates OPCs differentiation, is significantly decreased in aged OPCs. This suggests that these OPCs have a diminished potential for differentiation into mature oligodendrocytes. In addition, mature oligodendrocytes have reduced RNA expression of two essential myelin protein markers, MBP and PLP. These data collectively suggest that in the normal aging brain, there is a reduction in regenerative OPCs as well as myelin production that impairs the capacity for remyelination.
Collapse
Affiliation(s)
- Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| | - Ashley E Fair
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Isabella R Garza
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Katelyn V Batterman
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
166
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
167
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
168
|
Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM. Ageing and multiple sclerosis. Lancet Neurol 2023; 22:66-77. [PMID: 36216015 DOI: 10.1016/s1474-4422(22)00184-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
The factor that is most relevant and strongly associated with the clinical course of multiple sclerosis is chronological age. Very young patients exclusively have relapsing remitting disease, whereas those with later onset disease face a more rapid development of permanent disability. For people with progressive multiple sclerosis, the poor response to current disease modifying therapies might be related to ageing in the immune system and CNS. Ageing is also associated with increased risks of side-effects caused by some multiple sclerosis therapies. Both somatic and reproductive ageing processes might contribute to development of progressive multiple sclerosis. Understanding the role of ageing in immune and neural cell function in patients with multiple sclerosis might be key to halting non-relapse-related progression. The growing literature on potential therapies that target senescent cells and ageing processes might provide effective strategies for remyelination and neuroprotection.
Collapse
Affiliation(s)
- Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, CA, USA; Pediatric Multiple Sclerosis Center, Rady Children's Hospital, San Diego, CA, USA; Department of Neurology, San Diego VA Hospital, San Diego, CA, USA.
| | - Kristen M Krysko
- Division of Neurology, Department of Medicine, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Le H Hua
- Department of Neurology, Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
169
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
170
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
171
|
Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer's disease. Mol Neurodegener 2022; 17:84. [PMID: 36564824 PMCID: PMC9783481 DOI: 10.1186/s13024-022-00588-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer's disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yun Chen
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gary Grajales-Reyes
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marco Colonna
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
172
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
173
|
Microglia and Cholesterol Handling: Implications for Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10123105. [PMID: 36551857 PMCID: PMC9775660 DOI: 10.3390/biomedicines10123105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.
Collapse
|
174
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J, Hua F. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci 2022; 12:106. [PMID: 35831869 PMCID: PMC9277953 DOI: 10.1186/s13578-022-00828-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of neuroglia in maintaining normal brain function under physiological and pathological conditions has been supported by growing evidence in recent years. The most important issues regarding glial metabolism and function include the cooperation between glial populations and neurons, morphological and functional changes in pathological states, and the role in the onset and progression of neurodegenerative diseases. Although lipid accumulation and further lipid droplet production in neurodegenerative disease brain models have been observed for a long time, the dynamic development of brain lipid droplet research in recent years suggests its role in the development and progression of neurodegenerative diseases was previously underestimated. First recognized as organelles of lipid storage, lipid droplets (LDs) have emerged as an important organelle in metabolic diseases, inflammation, and host defense. Dynamic changes in lipid metabolism within neurons and glial cells resulting in lipid accumulation and lipid droplet formation are present in brain models of various neurodegenerative diseases, yet their role in the brain remains largely unexplored. This paper first reviews the metabolism and accumulation of several major lipids in the brain and discusses the regulation of lipid accumulation in different types of brain cells. We explore the potential role of intracellular lipid accumulation in the pathogenesis of neurodegeneration, starting from lipid metabolism and LDs biogenesis in glial cells, and discuss several pathological factors that promote lipid droplet formation, mainly focusing on oxidative stress, energy metabolism and glial cell-neuron coupling, which are closely related to the etiology and progression of neurodegenerative diseases. Finally, the directions and challenges of intracellular lipid metabolism in glial cells in neurodegeneration are discussed.
Collapse
|
175
|
Kyriakatis GM, Besios T, Lykou PM. The effect of therapeutic exercise on depressive symptoms in people with multiple sclerosis - A systematic review. Mult Scler Relat Disord 2022; 68:104407. [PMID: 36544309 DOI: 10.1016/j.msard.2022.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The prevalence of depressive symptoms in people with Multiple Sclerosis (MS) is around 25 - 50% and affects their daily life and general quality of life. Several studies investigating therapeutic exercise have shown highly beneficial effects in preventing or reducing depressive symptoms. The present systematic review was conducted to investigate randomized controlled trials on the effectiveness of therapeutic exercise programs on depressive symptoms in people with MS. METHODS A search was performed in PubMed, Scopus, APA Psychnet and ResearchGate. The keywords used were: therapeutic exercise, physiotherapy, physiotherapy, physical therapy, rehabilitation, depression, depressive disorders and multiple sclerosis. In addition, specific inclusion and exclusion criteria were set and the study selection process was conducted by two separate reviewers. The quality of the final studies included in the systematic review was assessed using the PEDro scale. RESULTS Out of the total of 934 studies initially identified, 9 studies were finally included. The results showed that physiotherapy interventions, through aerobic exercise, robotic-assisted gait training with or without virtual reality, aerobic exercise combined with Pilates, interval training, video-games and finally clinical Pilates, improve patients' depression and in many cases with much better results compared to classic physiotherapy type interventions. CONCLUSION The effect of therapeutic exercise has a positive impact on the depressive symptoms of people with MS. However, future research in this field is necessary to find the most proven curative forms to reduce depressive symptoms and improve the daily life of these patients.
Collapse
Affiliation(s)
- Georgios Marios Kyriakatis
- Department of Physiotherapy, School of Health Sciences, University of Thessaly, 3rd km Old National Road Lamia-Athens, 35100, Lamia, Greece.
| | - Thomas Besios
- Department of Physiotherapy, Human Performance & Rehabilitation Laboratory, School of Health Sciences, University of Thessaly, 3rd km Old National Road Lamia-Athens, 35100, Lamia, Greece.
| | - Prokopia Mirka Lykou
- Department of Physiotherapy, School of Health Sciences, University of Thessaly, 3rd km Old National Road Lamia-Athens, 35100, Lamia, Greece.
| |
Collapse
|
176
|
A blast from the past: To tame time with metformin. Mech Ageing Dev 2022; 208:111743. [PMID: 36279989 DOI: 10.1016/j.mad.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The strong evidence of metformin use in subjects affected by type 2 diabetes (T2DM) on health outcomes, together with data from pre-clinical studies, has led the gerontological research to study the therapeutic potential of such a drug as a slow-aging strategy. However, despite clinical use for over fifty years as an anti-diabetic drug, the mechanisms of action beyond glycemic control remain unclear. In this review, we have deeply examined the literature, doing a narrative review from the metformin story, through mechanisms of action to slow down aging potential, from lower organisms to humans. Based on the available evidence, we conclude that metformin, as shown in lower organisms and mice, may be effective in humans' longevity. A complete analysis and follow-up of ongoing clinical trials may provide more definitive answers as to whether metformin should be promoted beyond its use to treat T2DM as a drug that enhances both healthspan and lifespan.
Collapse
|
177
|
Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
178
|
Bussi C, Heunis T, Pellegrino E, Bernard EM, Bah N, Dos Santos MS, Santucci P, Aylan B, Rodgers A, Fearns A, Mitschke J, Moore C, MacRae JI, Greco M, Reinheckel T, Trost M, Gutierrez MG. Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nat Commun 2022; 13:7338. [PMID: 36443305 PMCID: PMC9705561 DOI: 10.1038/s41467-022-34632-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Elliott M Bernard
- The Francis Crick Institute, London, UK
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | - Pierre Santucci
- The Francis Crick Institute, London, UK
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | | | | | | | - Julia Mitschke
- Institute for Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Maria Greco
- The Francis Crick Institute, London, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas Reinheckel
- Institute for Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | |
Collapse
|
179
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
180
|
Wang N, Wang M, Jeevaratnam S, Rosenberg C, Ikezu TC, Shue F, Doss SV, Alnobani A, Martens YA, Wren M, Asmann YW, Zhang B, Bu G, Liu CC. Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Mol Neurodegener 2022; 17:75. [PMID: 36419137 PMCID: PMC9682675 DOI: 10.1186/s13024-022-00577-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Wang
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Minghui Wang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Suren Jeevaratnam
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Cassandra Rosenberg
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Tadafumi C. Ikezu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Francis Shue
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Sydney V. Doss
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Alla Alnobani
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Melissa Wren
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yan W. Asmann
- grid.417467.70000 0004 0443 9942Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
181
|
Shao L, Chen B, Wu Q, Xu Y, Yi J, Guo Z, Liu B. N 6-methyladenosine-modified lncRNA and mRNA modification profiles in cerebral ischemia-reperfusion injury. Front Genet 2022; 13:973979. [PMID: 36479246 PMCID: PMC9720305 DOI: 10.3389/fgene.2022.973979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/08/2022] [Indexed: 11/03/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is common in ischemic stroke and seriously affects the prognosis of patients. At present, N6-methyladenosine (m6A) modification of lncRNAs and mRNAs has been reported in other diseases, such as cancer, but its role in CIRI has not been clarified. In this study, we aimed to investigate the m6A lncRNA and m6A mRNA modification profiles in CIRI. First, we detected the total level of m6A and the changes in related m6A methyltransferases and demethylases in the brain tissue of rats with CIRI and then identified differentially modified lncRNAs and mRNAs in CIRI by lncRNA and mRNA epigenetic transcriptomic microarray. In addition, bioinformatics analysis was used to predict the underlying functions and related pathways of related lncRNAs and mRNAs. We found that the total m6A methylation level was significantly increased, and the expression of fat mass and obesity-associated protein (FTO) was downregulated after CIRI. In addition, a large number of m6A-modified lncRNAs and mRNAs appeared after CIRI, and these genes were mainly enriched for the Toll-like receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. Our findings provide the basis and insights for further studies on m6A modification in CIRI.
Collapse
Affiliation(s)
- Le Shao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Bowei Chen
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Yaqian Xu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
182
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
183
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
184
|
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022; 110:3534-3548. [PMID: 35882229 DOI: 10.1016/j.neuron.2022.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Microglia are implicated in all stages of multiple sclerosis (MS). Microglia alterations are detected by positron emission tomography in people living with MS prior to the formation of structural lesions determined through magnetic resonance imaging. In histological specimens, clusters of microglia form in normal-appearing tissue likely predating the development of lesions. Features of degeneration-associated/pro-inflammatory states of microglia increase with chronicity of MS. However, microglia play many beneficial roles including the removal of neurotoxins and in fostering repair. The protector-gone-rogue microglia in MS is featured herein. We consider mechanisms of microglia neurotoxicity and discuss factors, including aging, osteopontin, and iron metabolism, that cause microglia to lose their protective states and become injurious. We evaluate medications to affect microglia in MS, such as the emerging class of Bruton's tyrosine kinase inhibitors. The framework of microglia-turned-destroyers may instigate new approaches to counter microglia-driven neurodegeneration in MS.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
185
|
Vanherle S, Jorissen W, Dierckx T, Loix M, Grajchen E, Mingneau F, Guns J, Gervois P, Lambrichts I, Dehairs J, Swinnen JV, Mulder MT, Remaley AT, Haidar M, Hendriks JJ, Bogie JJ. The ApoA-I mimetic peptide 5A enhances remyelination by promoting clearance and degradation of myelin debris. Cell Rep 2022; 41:111591. [DOI: 10.1016/j.celrep.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
186
|
Haidar M, Loix M, Vanherle S, Dierckx T, Vangansewinkel T, Gervois P, Wolfs E, Lambrichts I, Bogie JFJ, Hendriks JJA. Targeting lipophagy in macrophages improves repair in multiple sclerosis. Autophagy 2022; 18:2697-2710. [PMID: 35282773 PMCID: PMC9629102 DOI: 10.1080/15548627.2022.2047343] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Foamy macrophages containing abundant intracellular myelin remnants are an important pathological hallmark of multiple sclerosis. Reducing the intracellular lipid burden in foamy macrophages is considered a promising therapeutic strategy to induce a phagocyte phenotype that promotes central nervous system repair. Recent research from our group showed that sustained intracellular accumulation of myelin-derived lipids skews these phagocytes toward a disease-promoting and more inflammatory phenotype. Our data now demonstrate that disturbed lipophagy, a selective form of autophagy that helps with the degradation of lipid droplets, contributes to the induction of this phenotype. Stimulating autophagy using the natural disaccharide trehalose reduced the lipid load and inflammatory phenotype of myelin-laden macrophages. Importantly, trehalose was able to boost remyelination in the ex vivo brain slice model and the in vivo cuprizone-induced demyelination model. In summary, our results provide a molecular rationale for impaired metabolism of myelin-derived lipids in macrophages, and identify lipophagy induction as a promising treatment strategy to promote remyelination.Abbreviations: Baf: bafilomycin a1; BMDM: bone marrow-derived macrophage; CD68: CD68 antigen; CNS: central nervous system; LD: lipid droplet; LIPE/HSL: lipase, hormone sensitive; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MGLL: monoglyceride lipase; MS: multiple sclerosis; NO: nitric oxide; NOS2/iNOS: nitric oxide synthase 2, inducible; ORO: oil red o; PNPLA2: patatin-like phospholipase domain containing 2; PLIN2: perilipin 2; TEM: transmission electron microscopy; TFEB: transcription factor EB; TOH: trehalose.
Collapse
Affiliation(s)
- Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Department of Cardio and Organs Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Department of Cardio and Organs Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organs Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Cardio and Organs Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
187
|
Evangelopoulos ME, Koutsis G, Boufidou F, Markianos M. Cholesterol levels in plasma and cerebrospinal fluid in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Neurobiol Dis 2022; 174:105889. [DOI: 10.1016/j.nbd.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
|
188
|
Hirschfeld LR, Risacher SL, Nho K, Saykin AJ. Myelin repair in Alzheimer's disease: a review of biological pathways and potential therapeutics. Transl Neurodegener 2022; 11:47. [PMID: 36284351 PMCID: PMC9598036 DOI: 10.1186/s40035-022-00321-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
This literature review investigates the significant overlap between myelin-repair signaling pathways and pathways known to contribute to hallmark pathologies of Alzheimer's disease (AD). We discuss previously investigated therapeutic targets of amyloid, tau, and ApoE, as well as other potential therapeutic targets that have been empirically shown to contribute to both remyelination and progression of AD. Current evidence shows that there are multiple AD-relevant pathways which overlap significantly with remyelination and myelin repair through the encouragement of oligodendrocyte proliferation, maturation, and myelin production. There is a present need for a single, cohesive model of myelin homeostasis in AD. While determining a causative pathway is beyond the scope of this review, it may be possible to investigate the pathological overlap of myelin repair and AD through therapeutic approaches.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Shannon L Risacher
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
189
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
190
|
Rubinski A, Franzmeier N, Dewenter A, Luan Y, Smith R, Strandberg O, Ossenkoppele R, Dichgans M, Hansson O, Ewers M. Higher levels of myelin are associated with higher resistance against tau pathology in Alzheimer's disease. Alzheimers Res Ther 2022; 14:139. [PMID: 36153607 PMCID: PMC9508747 DOI: 10.1186/s13195-022-01074-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), fibrillar tau initially occurs locally and progresses preferentially between closely connected regions. However, the underlying sources of regional vulnerability to tau pathology remain unclear. Previous brain-autopsy findings suggest that the myelin levels-which differ substantially between white matter tracts in the brain-are a key modulating factor of region-specific susceptibility to tau deposition. Here, we investigated whether myelination differences between fiber tracts of the human connectome are predictive of the interregional spreading of tau pathology in AD. METHODS We included two independently recruited samples consisting of amyloid-PET-positive asymptomatic and symptomatic elderly individuals, in whom tau-PET was obtained at baseline (ADNI: n = 275; BioFINDER-1: n = 102) and longitudinally in a subset (ADNI: n = 123, mean FU = 1.53 [0.69-3.95] years; BioFINDER-1: n = 39, mean FU = 1.87 [1.21-2.78] years). We constructed MRI templates of the myelin water fraction (MWF) in 200 gray matter ROIs and connecting fiber tracts obtained from adult cognitively normal participants. Using the same 200 ROI brain-parcellation atlas, we obtained tau-PET ROI values from each individual in ADNI and BioFINDER-1. In a spatial regression analysis, we first tested the association between cortical myelin and group-average tau-PET signal in the amyloid-positive and control groups. Secondly, employing a previously established approach of modeling tau-PET spreading based on functional connectivity between ROIs, we estimated in a linear regression analysis, whether the level of fiber-tract myelin modulates the association between functional connectivity and longitudinal tau-PET spreading (i.e., covariance) between ROIs. RESULTS We found that higher myelinated cortical regions show lower tau-PET uptake (ADNI: rho = - 0.267, p < 0.001; BioFINDER-1: rho = - 0.175, p = 0.013). Fiber-tract myelin levels modulated the association between functional connectivity and tau-PET spreading, such that at higher levels of fiber-tract myelin, the association between stronger connectivity and higher covariance of tau-PET between the connected ROIs was attenuated (interaction fiber-tract myelin × functional connectivity: ADNI: β = - 0.185, p < 0.001; BioFINDER-1: β = - 0.166, p < 0.001). CONCLUSION Higher levels of myelin are associated with lower susceptibility of the connected regions to accumulate fibrillar tau. These results enhance our understanding of brain substrates that explain regional variation in tau accumulation and encourage future studies to investigate potential underlying mechanisms.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ruben Smith
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
191
|
Chen B, Yi J, Xu Y, Wen H, Tian F, Liu Y, Xiao L, Li L, Liu B. Apolipoprotein E knockout may affect cognitive function in D-galactose-induced aging mice through the gut microbiota–brain axis. Front Neurosci 2022; 16:939915. [PMID: 36188475 PMCID: PMC9520596 DOI: 10.3389/fnins.2022.939915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The gut microbiota plays an important role in central nervous system (CNS) disorders. Apolipoprotein E (ApoE) can affect the composition of the gut microbiota and is closely related to the CNS. However, the mechanism by which ApoE affects cognitive dysfunction through the gut microbiota–brain axis has thus far not been investigated. In this study, we used wild-type mice and ApoE knockout (ApoE–/–) mice to replicate the aging model and examined the effects of ApoE deletion on cognitive function, hippocampal ultrastructure, synaptophysin (SYP) and postsynaptic density 95 (PSD-95) in aging mice. We also explored whether ApoE deletion affects the gut microbiota and the metabolite profile of the hippocampus in aging mice and finally examined the effect of ApoE deletion on lipids and oxidative stress in aging mice. The results showed that the deletion of ApoE aggravated cognitive dysfunction, hippocampal synaptic ultrastructural damage and dysregulation of SYP and PSD-95 expression in aging mice. Furthermore, ApoE deletion reduced gut microbial makeup in aging mice. Further studies showed that ApoE deletion altered the hippocampal metabolic profile and aggravated dyslipidemia and oxidative stress in aging mice. In brief, our findings suggest that loss of ApoE alters the composition of the gut microbiota, which in turn may affect cognitive function in aging mice through the gut microbiota–brain axis.
Collapse
Affiliation(s)
- Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yaqian Xu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiao Wen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lisong Li
- College of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Baiyan Liu,
| |
Collapse
|
192
|
Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, Kemps H, Swinnen JV, Haidar M, Bogie JFJ, Hendriks JJA. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell Mol Life Sci 2022; 79:515. [PMID: 36100764 PMCID: PMC11803036 DOI: 10.1007/s00018-022-04547-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L McManaman
- Department of Obstetrics and Gynaecology, School of Medicine, University of Colorado, Denver, USA
| | - Hannelore Kemps
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
193
|
Caprariello AV, Adams DJ. The landscape of targets and lead molecules for remyelination. Nat Chem Biol 2022; 18:925-933. [PMID: 35995862 PMCID: PMC9773298 DOI: 10.1038/s41589-022-01115-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.
Collapse
Affiliation(s)
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
194
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
195
|
Yao XQ, Chen JY, Yu ZH, Huang ZC, Hamel R, Zeng YQ, Huang ZP, Tu KW, Liu JH, Lu YM, Zhou ZT, Pluchino S, Zhu QA, Chen JT. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Front Immunol 2022; 13:964138. [PMID: 36091018 PMCID: PMC9448857 DOI: 10.3389/fimmu.2022.964138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.
Collapse
Affiliation(s)
- Xin-Qiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Ying Chen
- Department of Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Han Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Regan Hamel
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Yong-Qiang Zeng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Wu Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Hao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan-Meng Lu
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
196
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
197
|
Benarroch E. What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration? Neurology 2022; 99:99-105. [PMID: 35851556 DOI: 10.1212/wnl.0000000000200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
|
198
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
199
|
Raffaele S, Fumagalli M. Dynamics of Microglia Activation in the Ischemic Brain: Implications for Myelin Repair and Functional Recovery. Front Cell Neurosci 2022; 16:950819. [PMID: 35899017 PMCID: PMC9309466 DOI: 10.3389/fncel.2022.950819] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is a neurological disorder representing a leading cause of death and permanent disability world-wide, for which effective regenerative treatments are missing. Oligodendrocyte degeneration and consequent myelin disruption are considered major contributing factors to stroke-associated neurological deficits. Therefore, fostering myelin reconstruction by oligodendrocyte precursor cells (OPCs) has emerged as a promising therapeutic approach to enhance functional recovery in stroke patients. A pivotal role in regulating remyelination is played by microglia, the resident immune cells of the brain. Early after stroke, microglial cells exert beneficial functions, promoting OPC recruitment toward the ischemic lesion and preserving myelin integrity. However, the protective features of microglia are lost during disease progression, contributing to remyelination failure. Unveiling the mechanisms driving the pro-remyelination properties of microglia may provide important opportunities for both reducing myelin damage and promoting its regeneration. Here, we summarize recent evidence describing microglia activation kinetics in experimental models of ischemic injury, focusing on the contribution of these innate immune cells to myelin damage and repair. Some molecular signals regulating the pro-regenerative functions of microglia after stroke have been highlighted to provide new possible therapeutic targets involved in the protective functions of these cells. Finally, we analyzed the impact of microglia-to-OPCs communication via extracellular vesicles on post-stroke remyelination and functional recovery. The results collected in this review underline the importance of supporting the pro-remyelination functions of microglial cells after stroke.
Collapse
|
200
|
Xia D, Lianoglou S, Sandmann T, Calvert M, Suh JH, Thomsen E, Dugas J, Pizzo ME, DeVos SL, Earr TK, Lin CC, Davis S, Ha C, Leung AWS, Nguyen H, Chau R, Yulyaningsih E, Lopez I, Solanoy H, Masoud ST, Liang CC, Lin K, Astarita G, Khoury N, Zuchero JY, Thorne RG, Shen K, Miller S, Palop JJ, Garceau D, Sasner M, Whitesell JD, Harris JA, Hummel S, Gnörich J, Wind K, Kunze L, Zatcepin A, Brendel M, Willem M, Haass C, Barnett D, Zimmer TS, Orr AG, Scearce-Levie K, Lewcock JW, Di Paolo G, Sanchez PE. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol Neurodegener 2022; 17:41. [PMID: 35690868 PMCID: PMC9188195 DOI: 10.1186/s13024-022-00547-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-β pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aβ content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.
Collapse
Affiliation(s)
- Dan Xia
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Steve Lianoglou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Thomas Sandmann
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Meredith Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jung H. Suh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Elliot Thomsen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jason Dugas
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Michelle E. Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sarah L. DeVos
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Timothy K. Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chia-Ching Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sonnet Davis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Connie Ha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hoang Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Roni Chau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Ernie Yulyaningsih
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Isabel Lopez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Shababa T. Masoud
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chun-chi Liang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Karin Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Giuseppe Astarita
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Nathalie Khoury
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Robert G. Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455 USA
| | - Kevin Shen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Stephanie Miller
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | | | | | | | | | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea Kunze
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Michael Willem
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig- Maximilians-Universität, München, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Daniel Barnett
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Till S. Zimmer
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Anna G. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joseph W. Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Gilbert Di Paolo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Pascal E. Sanchez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| |
Collapse
|