151
|
Lu Y, Jiang Z, Wang K, Yu S, Hao C, Ma Z, Fu X, Qin MQ, Xu Z, Fan L. Blockade of the amino acid transporter SLC6A14 suppresses tumor growth in colorectal Cancer. BMC Cancer 2022; 22:833. [PMID: 35907820 PMCID: PMC9339205 DOI: 10.1186/s12885-022-09935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background The amino acid transporter SLC6A14, which transports 18 of the 20 proteinogenic amino acids, is too low to be detected in healthy normal tissues but is significantly increased in some solid cancers. However, little is known about the roles of SLC6A14 in colorectal cancer (CRC). Methods The mRNA and protein levels of SLC6A14 were detected using TCGA database, real-time polymerase chain reaction, western blot, and tissue microarrays, respectively. Amino acids concentration was determined by LC-MS/MS. Cell proliferation and apoptosis were determined using MTT assay and flow cytometry. Transwell invasion assay and wound healing assay were employed to analyze cell migration and invasion. The protein levels of Akt-mTOR signaling pathway and MMPs proteins were detected by western blot. Results Both of the mRNA and protein levels of SLC6A14 were upregulated in CRC tissues, and the protein levels of SLC6A14 were closely related to the tumor cells differentiation: the higher the expression of SLC6A14 was, the poorer the differentiation of the tumor cells was. Further knockdown SLC6A14 with siRNA or treatment with α-MT in CRC cell lines reduced cell proliferation and migration in vitro and inhibited xenograft tumor growth in vivo. Mechanistically, SLC6A14 was demonstrated to regulate the expression and phosphorylation of Akt-mTOR, which mediates the promoting tumor growth function of SLC6A14. Blockade of SLC6A14 with α-MT inhibited the activation of mTOR signaling. Conclusion SLC6A14 was upregulated in CRC and could promote tumor progression by activating the Akt-mTOR signaling pathway, which may serve as an effective molecular target for the treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09935-0.
Collapse
Affiliation(s)
- Ying Lu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China. .,Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi Province, China.
| | - Ziting Jiang
- Department of Endoscopy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kaijing Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Chongbo Hao
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zuan Ma
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Xuelian Fu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Ming Qing Qin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zengguang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| |
Collapse
|
152
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
153
|
Crisafulli G, Sartore-Bianchi A, Lazzari L, Pietrantonio F, Amatu A, Macagno M, Barault L, Cassingena A, Bartolini A, Luraghi P, Mauri G, Battuello P, Personeni N, Zampino MG, Pessei V, Vitiello PP, Tosi F, Idotta L, Morano F, Valtorta E, Bonoldi E, Germano G, Di Nicolantonio F, Marsoni S, Siena S, Bardelli A. Temozolomide Treatment Alters Mismatch Repair and Boosts Mutational Burden in Tumor and Blood of Colorectal Cancer Patients. Cancer Discov 2022; 12:1656-1675. [PMID: 35522273 PMCID: PMC9394384 DOI: 10.1158/2159-8290.cd-21-1434] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023]
Abstract
The majority of metastatic colorectal cancers (mCRC) are mismatch repair (MMR) proficient and unresponsive to immunotherapy, whereas MMR-deficient (MMRd) tumors often respond to immune-checkpoint blockade. We previously reported that the treatment of colorectal cancer preclinical models with temozolomide (TMZ) leads to MMR deficiency, increased tumor mutational burden (TMB), and sensitization to immunotherapy. To clinically translate these findings, we designed the ARETHUSA clinical trial whereby O6-methylguanine-DNA-methyltransferase (MGMT)-deficient, MMR-proficient, RAS-mutant mCRC patients received priming therapy with TMZ. Analysis of tissue biopsies and circulating tumor DNA (ctDNA) revealed the emergence of a distinct mutational signature and increased TMB after TMZ treatment. Multiple alterations in the nucleotide context favored by the TMZ signature emerged in MMR genes, and the p.T1219I MSH6 variant was detected in ctDNA and tissue of 94% (16/17) of the cases. A subset of patients whose tumors displayed the MSH6 mutation, the TMZ mutational signature, and increased TMB achieved disease stabilization upon pembrolizumab treatment. SIGNIFICANCE MMR-proficient mCRCs are unresponsive to immunotherapy. We provide the proof of concept that inactivation of MMR genes can be achieved pharmacologically with TMZ and molecularly monitored in the tissue and blood of patients with mCRC. This strategy deserves additional evaluation in mCRC patients whose tumors are no longer responsive to standard-of-care treatments. See related commentary by Willis and Overman, p. 1612. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Giovanni Crisafulli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Lazzari
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ludovic Barault
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Paolo Luraghi
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Pietro Paolo Vitiello
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Idotta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.,Corresponding Author: Alberto Bardelli, University of Turin, Department of Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, 10060, Candiolo, Torino, Italy. Phone/Fax: 39-011-993-3235; E-mail:
| |
Collapse
|
154
|
Russo M, Pompei S, Sogari A, Corigliano M, Crisafulli G, Puliafito A, Lamba S, Erriquez J, Bertotti A, Gherardi M, Di Nicolantonio F, Bardelli A, Cosentino Lagomarsino M. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat Genet 2022; 54:976-984. [PMID: 35817983 PMCID: PMC9279152 DOI: 10.1038/s41588-022-01105-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/25/2022] [Indexed: 12/16/2022]
Abstract
Compelling evidence shows that cancer persister cells represent a major limit to the long-term efficacy of targeted therapies. However, the phenotype and population dynamics of cancer persister cells remain unclear. We developed a quantitative framework to study persisters by combining experimental characterization and mathematical modeling. We found that, in colorectal cancer, a fraction of persisters slowly replicates. Clinically approved targeted therapies induce a switch to drug-tolerant persisters and a temporary 7- to 50-fold increase of their mutation rate, thus increasing the number of persister-derived resistant cells. These findings reveal that treatment may influence persistence and mutability in cancer cells and pinpoint inhibition of error-prone DNA polymerases as a strategy to restrict tumor recurrence.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simone Pompei
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Sogari
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mattia Corigliano
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Physics, University of Milan and INFN, Milan, Italy
| | - Giovanni Crisafulli
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Puliafito
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Lamba
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Andrea Bertotti
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marco Gherardi
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Physics, University of Milan and INFN, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Turin, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Turin, Candiolo, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Marco Cosentino Lagomarsino
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Physics, University of Milan and INFN, Milan, Italy.
| |
Collapse
|
155
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
156
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
157
|
Alves JM, Prado-López S, Tomás L, Valecha M, Estévez-Gómez N, Alvariño P, Geisel D, Modest DP, Sauer IM, Pratschke J, Raschzok N, Sers C, Mamlouk S, Posada D. Clonality and timing of relapsing colorectal cancer metastasis revealed through whole-genome single-cell sequencing. Cancer Lett 2022; 543:215767. [PMID: 35688262 DOI: 10.1016/j.canlet.2022.215767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
Recurrence of tumor cells following local and systemic therapy is a significant hurdle in cancer. Most patients with metastatic colorectal cancer (mCRC) will relapse, despite resection of the metastatic lesions. A better understanding of the evolutionary history of recurrent lesions is required to identify the spatial and temporal patterns of metastatic progression and expose the genetic and evolutionary determinants of therapeutic resistance. With this goal in mind, here we leveraged a unique single-cell whole-genome sequencing dataset from recurrent hepatic lesions of an mCRC patient. Our phylogenetic analysis confirms that the treatment induced a severe demographic bottleneck in the liver metastasis but also that a previously diverged lineage survived this surgery, possibly after migration to a different site in the liver. This lineage evolved very slowly for two years under adjuvant drug therapy and diversified again in a very short period. We identified several non-silent mutations specific to this lineage and inferred a substantial contribution of chemotherapy to the overall, genome-wide mutational burden. All in all, our study suggests that mCRC subclones can migrate locally and evade resection, keep evolving despite rounds of chemotherapy, and re-expand explosively.
Collapse
Affiliation(s)
- Joao M Alves
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Dominik Geisel
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Dominik Paul Modest
- Department of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soulafa Mamlouk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
158
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
159
|
Early Steps of Resistance to Targeted Therapies in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112613. [PMID: 35681591 PMCID: PMC9179469 DOI: 10.3390/cancers14112613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with lung cancer benefit from more effective treatments, such as targeted therapies, and the overall survival has increased in the past decade. However, the efficacy of targeted therapies is limited due to the emergence of resistance. Growing evidence suggests that resistances may arise from a small population of drug-tolerant persister (DTP) cells. Understanding the mechanisms underlying DTP survival is therefore crucial to develop therapeutic strategies to prevent the development of resistance. Herein, we propose an overview of the current scientific knowledge about the characterisation of DTP, and summarise the new therapeutic strategies that are tested to target these cells. Abstract Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Collapse
|
160
|
Gutierrez C, Vilas CK, Wu CJ, Al'Khafaji AM. Functionalized Lineage Tracing Can Enable the Development of Homogenization-Based Therapeutic Strategies in Cancer. Front Immunol 2022; 13:859032. [PMID: 35603167 PMCID: PMC9120583 DOI: 10.3389/fimmu.2022.859032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic landscape across many cancers has dramatically improved since the introduction of potent targeted agents and immunotherapy. Nonetheless, success of these approaches is too often challenged by the emergence of therapeutic resistance, fueled by intratumoral heterogeneity and the immense evolutionary capacity inherent to cancers. To date, therapeutic strategies have attempted to outpace the evolutionary tempo of cancer but frequently fail, resulting in lack of tumor response and/or relapse. This realization motivates the development of novel therapeutic approaches which constrain evolutionary capacity by reducing the degree of intratumoral heterogeneity prior to treatment. Systematic development of such approaches first requires the ability to comprehensively characterize heterogeneous populations over the course of a perturbation, such as cancer treatment. Within this context, recent advances in functionalized lineage tracing approaches now afford the opportunity to efficiently measure multimodal features of clones within a tumor at single cell resolution, enabling the linkage of these features to clonal fitness over the course of tumor progression and treatment. Collectively, these measurements provide insights into the dynamic and heterogeneous nature of tumors and can thus guide the design of homogenization strategies which aim to funnel heterogeneous cancer cells into known, targetable phenotypic states. We anticipate the development of homogenization therapeutic strategies to better allow for cancer eradication and improved clinical outcomes.
Collapse
Affiliation(s)
- Catherine Gutierrez
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Caroline K Vilas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Catherine J Wu
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | |
Collapse
|
161
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
162
|
Highlights from the 2022 ASCO Gastrointestinal Cancer Symposium: an overview by the EORTC Gastrointestinal Tract Cancer Group. Clin Colorectal Cancer 2022; 21:188-197. [DOI: 10.1016/j.clcc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022]
|
163
|
Ali M, Lu M, Ang HX, Soderquist RS, Eyler CE, Hutchinson HM, Glass C, Bassil CF, Lopez OM, Kerr DL, Falcon CJ, Yu HA, Hata AN, Blakely CM, McCoach CE, Bivona TG, Wood KC. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci Transl Med 2022; 14:eabc7480. [PMID: 35353542 PMCID: PMC9516479 DOI: 10.1126/scitranslmed.abc7480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.
Collapse
Affiliation(s)
- Moiez Ali
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Min Lu
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Hazel Xiaohui Ang
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Ryan S. Soderquist
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Christine E. Eyler
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Haley M. Hutchinson
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Christopher F. Bassil
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Omar M. Lopez
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - D. Lucas Kerr
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina J. Falcon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Helena A. Yu
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Collin M. Blakely
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Caroline E. McCoach
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trever G. Bivona
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
164
|
Shimizu Y, Okada K, Adachi J, Abe Y, Narumi R, Uchibori K, Yanagitani N, Koike S, Takagi S, Nishio M, Fujita N, Katayama R. GSK3 inhibition circumvents and overcomes acquired lorlatinib resistance in ALK-rearranged non-small-cell lung cancer. NPJ Precis Oncol 2022; 6:16. [PMID: 35301419 PMCID: PMC8931094 DOI: 10.1038/s41698-022-00260-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion is found in ~3%–5% of patients with non-small-cell lung cancers (NSCLCs). Although the third-generation ALK tyrosine kinase inhibitor (TKI) lorlatinib shows high clinical efficacy in ALK-positive NSCLC, most of the patients eventually relapse with acquired resistance. Recently, drug-tolerant persister (DTP) cells have been considered an important seed of acquired resistance cells. In this study, we established lorlatinib intermediate resistant cells from a patient-derived cell model. Glycogen synthase kinase 3 (GSK3) inhibitions significantly suppressed lorlatinib intermediate resistant cell growth. GSK3 inhibition also sensitized acquired resistance cells derived from alectinib-treated patients with or without secondary mutations to lorlatinib. Therefore, GSK3 plays a crucial role in developing acquired resistance against lorlatinib in ALK-positive NSCLC mediated by lorlatinib intermediate resistant cells and could be a potential molecular target to prevent acquired lorlatinib resistance and overcome ALK-TKI resistance.
Collapse
Affiliation(s)
- Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koutaroh Okada
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumie Koike
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Director, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
165
|
Zhang Z, Zheng M, Ding Q, Liu M. CD93 Correlates With Immune Infiltration and Impacts Patient Immunotherapy Efficacy: A Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:817965. [PMID: 35242761 PMCID: PMC8886047 DOI: 10.3389/fcell.2022.817965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1, and PD-L1 has revolutionized the treatment of cancer. However, the majority of patients do not derive clinical benefit. Further development is needed to optimize the approach of ICI therapy. Immunotherapy combined with other forms of treatment is a rising strategy for boosting antitumor responses. CD93 was found to sensitize tumors to immune-checkpoint blocker therapy after the blockade of its pathway. However, its role in immune and ICB therapy across pan-cancer has remained unexplored. Methods: In this study, we provide a comprehensive investigation of CD93 expression in a pan-cancer manner involving 33 cancer types. We evaluated the association of CD93 expression with prognosis, mismatch repair, tumor mutation burden, and microsatellite instability, immune checkpoints, tumor microenvironment, and immune using multiple online datasets, including The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Tumor Immune Estimation Resource database, and Tumor Immune Single-cell Hub. Results: CD93 expression varied strongly among cancer types, and increased CD93 gene expression was associated with poor prognosis as well as higher immune factors in most cancer types. Additionally, the level of CD93 was significantly correlated with MMR, TMB, MSI, immune checkpoints, TME, and immune cell infiltration. Noticeably, our results mediated a strong positive contact between CD93 and CAFs, endothelial cells, myeloid dendritic cells, hematopoietic stem cells, mononuclear/macrophage subsets, and neutrophils while a negative correlation with Th1, MDSC, NK, and T-cell follicular helper in almost all cancers. Function analysis on CD93 revealed a link between itself and promoting cancers, inflammation, and angiogenesis. Conclusion: CD93 can function as a prognostic marker in various malignant tumors and is integral in TME and immune infiltration. Inhibition of the CD93 pathway may be a novel and promising strategy for immunotherapy in human cancer. Further explorations of the mechanisms of CD93 in the immune system may help improve cancer therapy methods.
Collapse
Affiliation(s)
- Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
166
|
Romaniello D, Gelfo V, Pagano F, Ferlizza E, Sgarzi M, Mazzeschi M, Morselli A, Miano C, D'Uva G, Lauriola M. Senescence-associated reprogramming induced by interleukin-1 impairs response to EGFR neutralization. Cell Mol Biol Lett 2022; 27:20. [PMID: 35236282 PMCID: PMC8903543 DOI: 10.1186/s11658-022-00319-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background EGFR targeting is currently the main treatment strategy for metastatic colorectal cancer (mCRC). Results of different clinical trials show that patients with wild-type KRAS and BRAF benefit from anti-EGFR monoclonal antibodies (moAbs) cetuximab (CTX) or panitumumab. Unfortunately, despite initial response, patients soon became refractory. Tumor heterogeneity and multiple escaping routes have been addressed as the main culprit, and, behind genomic alterations already described, changes in signaling pathways induced by drug pressure are emerging as mechanisms of acquired resistance. We previously reported an association between reduced sensitivity to CTX and increased expression of IL-1. However, how IL-1 mediates CTX resistance in mCRC is still unclear. Methods Under CTX treatment, the upregulation of IL-1R1 expression and a senescence program in sensitive colorectal cancer (CRC) cell lines is examined over time using qPCR, immunoblotting, and immunofluorescence. Results In sensitive CRC cells, IL-1 appeared responsible for a CTX-mediated G0 phase arrest. On the contrary, CTX-resistant CRC cells (CXR) maintained high mRNA levels of IL-1R1 and a post-senescence reprogramming, as indicated by increased SNAIL expression. Interestingly, treatment of CXR cells with a recombinant decoy, able to sequester the soluble form of IL-1, pushed CTX-resistant CRC cells back into a stage of senescence, thus blocking their proliferation. Our model suggests a trans-regulatory mechanism mediated by IL-1 on EGFR signaling. By establishing senescence and regulating EGFR activity and expression, IL-1 exposure ultimately bestows resistance. Conclusions To sum up, our findings point to the combined blockage of IL-1R and EGFR as a promising therapeutical approach to restore sensitivity to EGFR-targeting monoclonal antibodies. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00319-7.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy. .,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138, Bologna, Italy.
| |
Collapse
|
167
|
Zhu L, Zong X, Xiao X, Cheng Y, Fu J, Lu Z, Jin M, Wang F, Wang Y. Multi-Omics Analysis of the Gut-Liver Axis Reveals the Mechanism of Liver Injury in Colitis Mice. Front Immunol 2022; 12:773070. [PMID: 35069545 PMCID: PMC8770869 DOI: 10.3389/fimmu.2021.773070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a common complication of inflammatory bowel disease (IBD). However, the mechanisms of liver injury development are not clear in IBD patients. Gut microbiota is thought to be engaged in IBD pathogenesis. Here, by an integrated analysis of host transcriptome and colonic microbiome, we have attempted to reveal the mechanism of liver injury in colitis mice. In this study, dextran sulfate sodium (DSS) -induced mice colitis model was constructed. Liver transcriptome showed significant up- and down-regulation of pathways linked to immune response and lipid metabolism, respectively. Whilst the colon transcriptome exhibited dramatic alterations in immune response and pathways associated with cell growth and death. The microbiota of DSS-treated mice underwent strong transitions. Correlation analyses identified genes associated with liver and colon injury, whose expression was associated with the abundance of liver and gut health-related bacteria. Collectively, the results indicate that the liver injury in colitis mice may be related to the intestinal dysbiosis and host-microbiota interactions. These findings may provide new insights for identifying potential targets for the treatment of IBD and its induced liver injury.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuanzhi Cheng
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Department of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
168
|
Ler AAL, Carty MP. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol 2022; 11:822500. [PMID: 35198436 PMCID: PMC8859465 DOI: 10.3389/fonc.2021.822500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.
Collapse
Affiliation(s)
- Ashlynn Ai Li Ler
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
| | - Michael P. Carty
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
- DNA Damage Response Laboratory, Centre for Chromosome Biology, NUI Galway, Galway, Ireland
- *Correspondence: Michael P. Carty,
| |
Collapse
|
169
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
170
|
Zhang L, Chen J, He M, Su X. Molecular dynamics simulation-guided toehold mediated strand displacement probe for single-nucleotide variants detection. EXPLORATION (BEIJING, CHINA) 2022; 2:20210265. [PMID: 37324584 PMCID: PMC10190925 DOI: 10.1002/exp.20210265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
Single nucleotide variant (SNV) has become an emerging biomarker for various diseases such as cancers and infectious diseases. Toehold-mediated strand displacement (TMSD), the core reaction of DNA nanotechnology, has been widely leveraged to identify SNVs. However, inappropriate choice of mismatch location results in poor discrimination ability. Here, we comprehensively investigate the effect of mismatch location on TMSD kinetics by molecular dynamic simulation tool oxDNA through umbrella sampling and forward flux sampling disclosing that mismatches at the border of the toehold and branch migration domain yield the lowest TMSD reaction rate. Nine disease-related SNVs (SARS-CoV-2-D614G, EGFR-L858R, EGFR-T790M, KRAS-G12R, etc.) were tested experimentally showing a good agreement with simulation. The best choice of mismatch location enables high discrimination factor with a median of 124 for SNV and wild type. Coupling with a probe-sink system, a low variant allele frequency of 0.1% was detected with 3 S/N. We successfully used the probes to detect SNVs with high confidence in the PCR clones of constructed plasmids. This work provides mechanistic insights into TMSD process at the single-nucleotide level and can be a guidance for the design of TMSD system with fine-tuning kinetics for various applications in biosensors and nanotechnology.
Collapse
Affiliation(s)
- Linghao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jing Chen
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Mengya He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xin Su
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
171
|
Sun X, Bieber JM, Hammerlindl H, Chalkley RJ, Li KH, Burlingame AL, Jacobson MP, Wu LF, Altschuler SJ. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. SCIENCE ADVANCES 2022; 8:eabi7711. [PMID: 35089788 PMCID: PMC8797778 DOI: 10.1126/sciadv.abi7711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lani F. Wu
- Corresponding author. (S.J.A.); (L.F.W.)
| | | |
Collapse
|
172
|
Whale AJ, King M, Hull RM, Krueger F, Houseley J. Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Res 2022; 50:915-936. [PMID: 35018465 PMCID: PMC8789084 DOI: 10.1093/nar/gkab1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.
Collapse
Affiliation(s)
- Alex J Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Ryan M Hull
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
173
|
Wang W, Xu H, Ye Q, Tao F, Wheeldon I, Yuan A, Hu Y, Wu J. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat Biomed Eng 2022; 6:44-53. [PMID: 35058589 DOI: 10.1038/s41551-021-00834-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/18/2021] [Indexed: 01/09/2023]
Abstract
Because the tumour microenvironment is typically immunosuppressive, the release of tumour antigens mediated by radiotherapy or chemotherapy does not sufficiently activate immune responses. Here we show that, following radiotherapy, the intratumoural injection of a genetically attenuated strain of Salmonella coated with antigen-adsorbing cationic polymer nanoparticles caused the accumulation of tumour antigens at the tumour's periphery. This enhanced the crosstalk between the antigens and dendritic cells, and resulted in large increases in activated ovalbumin-specific dendritic cells in vitro and in systemic antitumour effects, and extended survival in multiple tumour models in mice, including a model of metastasis and recurrence. The antitumour effects were abrogated by the antibody-mediated depletion of CD8+ T cells, indicating that systemic tumour regression was caused by adaptive immune responses. Leveraging flagellate bacteria to transport tumour antigens to the periphery of tumours to potentiate the activation of dendritic cells may open up new strategies for in situ cancer vaccination.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China. .,Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
174
|
Liu C, Papukashvili D, Dong Y, Wang X, Hu X, Yang N, Cai J, Xie F, Rcheulishvili N, Wang PG. Identification of Tumor Antigens and Design of mRNA Vaccine for Colorectal Cancer Based on the Immune Subtype. Front Cell Dev Biol 2022; 9:783527. [PMID: 35127707 PMCID: PMC8811447 DOI: 10.3389/fcell.2021.783527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
mRNA vaccines have become a promising alternative to conventional cancer immunotherapy approaches. However, its application on colorectal cancer (CRC) remains poorly understood. We herein identified potential antigens for designing an effective mRNA vaccine, further to build an immune landscape for the accurate selection of patients for mRNA vaccine therapy. Raw transcriptome data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were retrieved. Consensus clustering algorithm was applied to divide the CRC samples into four immune subtypes. Immunogenomics analysis was further integrated to characterize the immune microenvironment of each immune subtype. Six tumor antigens were found to be associated with poor prognosis and infiltration of antigen-presenting cells (APCs) in CRC patients. Furthermore, each of the immune subtypes showed differential cellular and molecular features. The IS2 and IS4 exhibited significantly improved survival and higher immune cell infiltration compared with IS1 and IS3. Immune checkpoint molecules and human leukocyte antigen also showed significant differential expression in four immune subtypes. Moreover, we performed graph structure learning-based dimensionality reduction to visualize the immune landscape of CRC. Our results revealed a complex immune landscape that may provide directions for mRNA vaccine treatment of CRC and define appropriate vaccination patients.
Collapse
Affiliation(s)
- Cong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dimitri Papukashvili
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xingyun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Hu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nuo Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengfei Xie
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nino Rcheulishvili
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Peng George Wang,
| |
Collapse
|
175
|
Fournier L, de Geus-Oei LF, Regge D, Oprea-Lager DE, D’Anastasi M, Bidaut L, Bäuerle T, Lopci E, Cappello G, Lecouvet F, Mayerhoefer M, Kunz WG, Verhoeff JJC, Caruso D, Smits M, Hoffmann RT, Gourtsoyianni S, Beets-Tan R, Neri E, deSouza NM, Deroose CM, Caramella C. Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper. Front Oncol 2022; 11:800547. [PMID: 35083155 PMCID: PMC8784734 DOI: 10.3389/fonc.2021.800547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
Collapse
Affiliation(s)
- Laure Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Université de Paris, Assistance Publique–Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Department of Radiology, Paris Cardiovascular Research Center (PARCC) Unité Mixte de Recherche (UMRS) 970, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Daniele Regge
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Daniela-Elena Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers [Vrije Universiteit (VU) University], Amsterdam, Netherlands
| | - Melvin D’Anastasi
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Medical Imaging Department, Mater Dei Hospital, University of Malta, Msida, Malta
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Tobias Bäuerle
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine Unit, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) – Humanitas Research Hospital, Milan, Italy
| | - Giovanni Cappello
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Radiology Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-Istituto Di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy
| | - Frederic Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marius Mayerhoefer
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang G. Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Joost J. C. Verhoeff
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Damiano Caruso
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marion Smits
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus Medical Centre (MC) Cancer Institute, Rotterdam, Netherlands
| | - Ralf-Thorsten Hoffmann
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl-Gustav-Carus Technical University Dresden, Dresden, Germany
| | - Sofia Gourtsoyianni
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Regina Beets-Tan
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- School For Oncology and Developmental Biology (GROW) School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Emanuele Neri
- European Society of Oncologic Imaging (ESOI), European Society of Radiology, Vienna, Austria
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, United States
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph Centre International des Cancers Thoraciques, Université Paris-Saclay, Le Plessis-Robinson, France
| |
Collapse
|
176
|
Voskarides K. An evolutionary explanation for antibiotics’ association with increased colon cancer risk. Evol Med Public Health 2022; 10:214-220. [PMID: 35539898 PMCID: PMC9081870 DOI: 10.1093/emph/eoac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
More than 10 studies have confirmed the association of antibiotic overuse with colorectal cancer. The exact cause is unknown, but most authors hypothesize that disturbance of colon microbiota is the main culprit. In this commentary, an evolutionary explanation is proposed. It is well known that antibiotics can induce antibiotic resistance in bacteria through selection of mutators—DNA mismatch repair deficient (dMMR) strains. Mutators have an increased survival potential due to their high mutagenesis rate. Antibiotics can also cause stress in human cells. Selection of dMMR colon cells may be advantageous under this stress, mimicking selection of bacterial mutators. Concomitantly, mismatch repair deficiency is a common cause of cancer, this may explain the increased cancer risk after multiple cycles of oral antibiotics. This proposed rationale is described in detail, along with supporting evidence from the peer-reviewed literature and suggestions for testing hypothesis validity. Treatment schemes could be re-evaluated, considering toxicity and somatic selection mechanisms. Lay Summary The association of antibiotics with colon cancer is well established but of unknown cause. Under an evolutionary framework, antibiotics may select for stress-resistant cancerous cells that lack mechanisms for DNA mismatch repair (MMR). This mimics the selection of antibiotic resistant ‘mutators’—MMR-deficient micro-organisms—highly adaptive due to their increased mutagenesis rate.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
177
|
Anisman H, Kusnecov AW. Cancer biology and pathology. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
178
|
Randon G, Intini R, Cremolini C, Elez E, Overman MJ, Lee J, Manca P, Bergamo F, Pagani F, Antista M, Angerilli V, Ros Montaña FJ, Lavacchi D, Boccaccino A, Fucà G, Brich S, Cattaneo L, Fassan M, Pietrantonio F, Lonardi S. Tumour mutational burden predicts resistance to EGFR/BRAF blockade in BRAF-mutated microsatellite stable metastatic colorectal cancer. Eur J Cancer 2022; 161:90-98. [PMID: 34933155 DOI: 10.1016/j.ejca.2021.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
AIM To unveil genomic and immunohistochemical expression profiles associated with primary resistance to EGFR/BRAF targeted therapy in patients with BRAF-mutated and microsatellite stable (MSS) metastatic colorectal cancer. EXPERIMENTAL DESIGN In this multicenter case-control study on patients treated with EGFR/BRAF ± MEK blockade, we compared a primary resistance cohort (N = 20; RECISTv1.1 PD/SD, and progression-free survival [PFS] <16 weeks) versus a sensitive one (N = 19; RECISTv1.1 PR/CR, and PFS ≥16 weeks) in terms of clinical and genomic/expression data by means of comprehensive genomic profiling, tumour mutational burden (TMB), BRAF-mutant transcriptional subtypes (BM) classification and PTEN expression. RESULTS Left-sided tumours (28% of the total) were enriched in the sensitive versus resistant cohort (53% versus 10%, P = 0.010). Genomic alterations in the PIK3CA/MTOR pathway, BM1 status and PTEN loss were similarly distributed among patients with resistant and sensitive tumours. Amplification of CCND1-3 genes were found only in patients with primary resistance (20% versus 0%, P = 0.106). TMB and prevalence of intermediate TMB (TMB-I 6-20 mutations/Mb) were higher in the resistant versus sensitive cohort (median TMB: 6 [IQR, 3-7.29] versus 3 [IQR, 1.26-3.5]; P = 0.013; TMB-I/H: 60% versus 11%; P = 0.001). Patients with TMB-I had shorter PFS (3.3 versus 5.9 months; HR = 2.19, 95%CI, 1.07-4.47, P = 0.031) and overall survival (6.3 versus 10.5 months; HR = 2.22, 95%CI, 1.02-4.81, P = 0.044). CONCLUSION Despite the small sample size, the association of a relatively higher TMB with limited benefit from EGFR/BRAF blockade in patients with MSS and BRAF-mutated mCRC deserves prospective validation.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Rossana Intini
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Elez
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, South Korea
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Francesca Bergamo
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Maria Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | | | - Daniele Lavacchi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milan, Italy
| | - Laura Cattaneo
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milan, Italy
| | - Matteo Fassan
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy; Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumouri di Milano, Milano, Italy.
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| |
Collapse
|
179
|
Pignochino Y, Crisafulli G, Giordano G, Merlini A, Berrino E, Centomo ML, Chiabotto G, Brusco S, Basiricò M, Maldi E, Pisacane A, Leuci V, Sangiolo D, D’Ambrosio L, Aglietta M, Kasper B, Bardelli A, Grignani G. PARP1 Inhibitor and Trabectedin Combination Does Not Increase Tumor Mutational Burden in Advanced Sarcomas-A Preclinical and Translational Study. Cancers (Basel) 2021; 13:cancers13246295. [PMID: 34944915 PMCID: PMC8699802 DOI: 10.3390/cancers13246295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Immunotherapy has revolutionized cancer treatment, but not for all tumor types. Indeed, sarcomas are considered “immune-cold” tumors, which are relatively unresponsive to immunotherapy. One strategy to potentiate immunotherapy efficacy is to increase tumor immunogenicity, for instance by boosting the number of candidate targets (neoantigens) to be recognized by the immune system. Tumor mutational burden indicates the number of somatic mutations identified in the tumor and normalized per megabase. Tumor mutational burden is considered as an acceptable, measurable surrogate of tumor neoantigens. Here, we explored whether the combination of two DNA-damaging agents, trabectedin and olaparib, could increase tumor mutational burden in sarcomas, to prime subsequent immunotherapy. We found no variation in tumor mutational burden after trabectedin + olaparib in preclinical and clinical samples. Therefore, other aspects should be considered to increase sarcoma immunogenicity, by exploiting different pathways such as the potential modulation of the tumor microenvironment induced by trabectedin + olaparib. Abstract Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively “immune-cold” tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5–6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use.
Collapse
Affiliation(s)
- Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
- Correspondence: ; Tel.: +39-0119933623
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Marco Basiricò
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Alberto Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Bernd Kasper
- Sarcoma Unit, Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany;
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| |
Collapse
|
180
|
Catania F, Rothering R, Vitali V. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium. Genome Biol Evol 2021; 13:6443145. [PMID: 34849843 PMCID: PMC8670300 DOI: 10.1093/gbe/evab263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia’s elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany.,Institute of Environmental Radioactivity, Fukushima University, Japan
| | - Rebecca Rothering
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Germany
| |
Collapse
|
181
|
Guerrera LP, Napolitano S, De Falco V, Giunta EF, Vitiello PP, Gravina AG, Suarato G, Perrone A, Napolitano R, Martinelli E, Ciardiello F, Troiani T. Multiple Acquired Mutations Captured by Liquid Biopsy in the EGFR Addicted Metastatic Colorectal Cancer. Clin Colorectal Cancer 2021; 20:354-358. [PMID: 34454840 DOI: 10.1016/j.clcc.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Luigi Pio Guerrera
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Stefania Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Vincenzo De Falco
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Emilio Francesco Giunta
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | | | - Antonietta Gerarda Gravina
- Unità di Epatogastroenterologia, Dipartimento di Medicina di Precisione. Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Gabriella Suarato
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Alessandra Perrone
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Rossella Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia
| | - Teresa Troiani
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italia.
| |
Collapse
|
182
|
Chen T, Zhang Q, Song Y, Isak AN, Tang X, Wang H, Ma Z, Sun F, Pan Q, Zhu X. Spatial confinement of chemically engineered cancer cells using large graphene oxide sheets: a new mode of cancer therapy. NANOSCALE HORIZONS 2021; 6:979-986. [PMID: 34542134 DOI: 10.1039/d1nh00350j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treating cancer with high efficacy while eliminating side effects has been the holy grail of cancer research. The challenge, however, arises from the similarity in molecular traits of cancer cells and normal cells because truly specific cancer biomarkers are extremely scarce if not entirely unavailable. Often, biomarkers serving as the therapeutic targets are present on both healthy cells and cancers, but at different levels, causing not only off-target side effects but also on-target side effects. This work has reported a new concept of cancer treatment, spatial confinement of cells to inhibit cell migration and invasion, which directly addresses the defining trait of cancer on the cellular level, unchecked division. Using large sized graphene oxide (LS-GO), cell surfaces can be patched. Unlike conventional chemotherapy, this spatial confinement does not affect the viability of non-dividing cells but significantly inhibits tumor cell migration and invasion in vitro and in vivo. This new concept has the potential to become a general therapeutic for many cancer types with reduced side effects.
Collapse
Affiliation(s)
- Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Qianqian Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Albertina N Isak
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Zhongliang Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| |
Collapse
|
183
|
Zaborowski AM, Winter DC, Lynch L. The therapeutic and prognostic implications of immunobiology in colorectal cancer: a review. Br J Cancer 2021; 125:1341-1349. [PMID: 34302062 PMCID: PMC8575924 DOI: 10.1038/s41416-021-01475-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer represents the second leading cause of cancer-related death worldwide. The therapeutic field of immuno-oncology has rapidly gained momentum, with strikingly promising results observed in clinical practice. Increasing emphasis has been placed on the role of the immune response in tumorigenesis, therapy and predicting prognosis. Enhanced understanding of the dynamic and complex tumour-immune microenvironment has enabled the development of molecularly directed, individualised treatment. Analysis of intra-tumoural lymphocyte infiltration and the dichotomisation of colorectal cancer into microsatellite stable and unstable disease has important therapeutic and prognostic implications, with potential to capitalise further on this data. This review discusses the latest evidence surrounding the tumour biology and immune landscape of colorectal cancer, novel immunotherapies and the interaction of the immune system with each apex of the tripartite of cancer management (oncotherapeutics, radiotherapy and surgery). By utilising the synergy of chemotherapeutic agents and immunotherapies, and identifying prognostic and predictive immunological biomarkers, we may enter an era of unprecedented disease control, survivorship and cure rates.
Collapse
Affiliation(s)
- Alexandra M. Zaborowski
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des C. Winter
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Lydia Lynch
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland ,grid.38142.3c000000041936754XHarvard Institutes of Medicine, Harvard Medical School, Boston, MA USA
| |
Collapse
|
184
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
185
|
Targa A, Larrimore KE, Wong CK, Chong YL, Fung R, Lee J, Choi H, Rancati G. Non-genetic and genetic rewiring underlie adaptation to hypomorphic alleles of an essential gene. EMBO J 2021; 40:e107839. [PMID: 34528284 PMCID: PMC8561638 DOI: 10.15252/embj.2021107839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.
Collapse
Affiliation(s)
- Altea Targa
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Katherine E Larrimore
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Cheng Kit Wong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yu Lin Chong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ronald Fung
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Lee
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Hyungwon Choi
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
186
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
187
|
Hong J, Guo F, Lu SY, Shen C, Ma D, Zhang X, Xie Y, Yan T, Yu T, Sun T, Qian Y, Zhong M, Chen J, Peng Y, Wang C, Zhou X, Liu J, Liu Q, Ma X, Chen YX, Chen H, Fang JY. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021; 70:2123-2137. [PMID: 33318144 DOI: 10.1136/gutjnl-2020-322780] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Microbiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC. DESIGN 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1. RESULTS We have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function. CONCLUSION F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.
Collapse
Affiliation(s)
- Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Yuan Lu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Ma
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Xie
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yan
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - TaChung Yu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Sun
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanshen Peng
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
188
|
Mitola G, Falvo P, Bertolini F. New Insight to Overcome Tumor Resistance: An Overview from Cellular to Clinical Therapies. Life (Basel) 2021; 11:1131. [PMID: 34833007 PMCID: PMC8621237 DOI: 10.3390/life11111131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Disease relapse caused by drug resistance still represents a major clinical hurdle in cancer treatments. Tumor cells may take advantage of different intracellular and genetic systems attenuating the drug effects. Resistant cells or minimal residual disease (MRD) cells have strong clinical relevance, as they might give rise to secondary tumors when the therapy is concluded. Thus, MRDs are crucial therapeutic targets in order to prevent tumor relapse. Therefore, several groups aim at understanding how MRDs are orginated, characterizing their molecular features, and eradicating them. In this review, we will describe MRD from a genetic, evolutionary, and molecular point of view. Moreover, we will focus on the new in vitro, in vivo, preclinical, and clinical studies that aim at eradicating tumor resistance.
Collapse
Affiliation(s)
| | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, IEO European Institute of Oncology IRCCS, 16, 20139 Milan, Italy;
| |
Collapse
|
189
|
Rosendahl Huber A, Van Hoeck A, Van Boxtel R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front Genet 2021; 12:760039. [PMID: 34745228 PMCID: PMC8565797 DOI: 10.3389/fgene.2021.760039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
During life, the DNA of our cells is continuously exposed to external damaging processes. Despite the activity of various repair mechanisms, DNA damage eventually results in the accumulation of mutations in the genomes of our cells. Oncogenic mutations are at the root of carcinogenesis, and carcinogenic agents are often highly mutagenic. Over the past decade, whole genome sequencing data of healthy and tumor tissues have revealed how cells in our body gradually accumulate mutations because of exposure to various mutagenic processes. Dissection of mutation profiles based on the type and context specificities of the altered bases has revealed a variety of signatures that reflect past exposure to environmental mutagens, ranging from chemotherapeutic drugs to genotoxic gut bacteria. In this review, we discuss the latest knowledge on somatic mutation accumulation in human cells, and how environmental mutagenic factors further shape the mutation landscapes of tissues. In addition, not all carcinogenic agents induce mutations, which may point to alternative tumor-promoting mechanisms, such as altered clonal selection dynamics. In short, we provide an overview of how environmental factors induce mutations in the DNA of our healthy cells and how this contributes to carcinogenesis. A better understanding of how environmental mutagens shape the genomes of our cells can help to identify potential preventable causes of cancer.
Collapse
Affiliation(s)
- Axel Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
190
|
Imyanitov E, Kuligina E. Molecular testing for colorectal cancer: Clinical applications. World J Gastrointest Oncol 2021; 13:1288-1301. [PMID: 34721767 PMCID: PMC8529925 DOI: 10.4251/wjgo.v13.i10.1288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/19/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular genetic analysis is an integral part of colorectal cancer (CRC) management. The choice of systemic therapy for CRC is largely based on the results of tumor molecular testing. Evaluation of the KRAS and NRAS gene status is mandatory for consideration of anti-epidermal growth factor receptor (EGFR) therapy. Tumors with the BRAF V600E substitution are characterized by aggressive behaviour, may require intensified cytotoxic regimens and benefit from combined BRAF and EGFR inhibition. The inactivation of DNA mismatch repair (MMR), or MUTYH gene, or DNA polymerase epsilon results in excessive tumor mutational burden; these CRCs are highly antigenic and therefore sensitive to immune checkpoint inhibitors. Some CRCs are characterized by overexpression of the HER2 oncogene and respond to the appropriate targeted therapy. There are CRCs with clinical signs of hereditary predisposition to this disease, which require germline genetic testing. Liquid biopsy is an emerging technology that has the potential to assist CRC screening, control the efficacy of surgical intervention and guide disease monitoring. The landscape of CRC molecular diagnosis is currently undergoing profound changes due to the increasing use of next generation sequencing.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg 191015, Russia
| | - Ekaterina Kuligina
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| |
Collapse
|
191
|
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S, Hong T. Immune Infiltration of MMP14 in Pan Cancer and Its Prognostic Effect on Tumors. Front Oncol 2021; 11:717606. [PMID: 34604053 PMCID: PMC8484967 DOI: 10.3389/fonc.2021.717606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. Methods In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Results MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Conclusion MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
192
|
Bussey KJ, Davies PCW. Reverting to single-cell biology: The predictions of the atavism theory of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:49-55. [PMID: 34371024 PMCID: PMC8833046 DOI: 10.1016/j.pbiomolbio.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.
Collapse
Affiliation(s)
- Kimberly J Bussey
- Precision Medicine, Midwestern University, Glendale, AZ, USA; The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Paul C W Davies
- The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
193
|
Feng L, Li M, Hu X, Li Y, Zhu L, Chen M, Wei Q, Xu W, Zhou Q, Wang W, Chen D, Wang X, Jin H. CK1δ stimulates ubiquitination-dependent proteasomal degradation of ATF4 to promote chemoresistance in gastric Cancer. Clin Transl Med 2021; 11:e587. [PMID: 34709767 PMCID: PMC8516343 DOI: 10.1002/ctm2.587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Chemoresistance remains a major obstacle to successful cancer therapy, especially for advanced cancers. It used to be recognised as a stable outcome resulting from genetic changes. However, recent studies showed that chemoresistance can also be unstable and reversible with the involvement of non-genetic alterations. In the present study, we found that activating transcription factor 4 (ATF4) is downregulated in chemoresistant gastric cancer cells. The over-expression of ATF4 reversed chemoresistance by activating CHOP transcription to enhance drug-induced apoptosis, and vice versa. Moreover, casein kinase 1 delta (CK1δ) was identified as the kinase responsible for ATF4-S219 phosphorylation, which triggered βTrCP-mediated ATF4 polyubiquitination to promote its proteasomal degradation subsequently. Interestingly, drug withdrawal gradually restored chemosensitivity as well as ATF4 expression in chemoresistant cells, highlighting the dependence of dynamic drug resistance on ATF4 protein expression. In line with these findings, the inhibition of ATF4 protein degradation by CK1δ or proteasome inhibitors overcame chemoresistance both in vitro and in vivo. Taken together, these results indicate that CK1δ stimulates βTrCP-dependent ATF4 polyubiquitination and subsequent proteasomal degradation to promote chemoresistance in gastric cancer. Stabilisation of the ATF4 protein with bortezomib (BTZ), an anticancer drug that inhibits proteasomal degradation, might be a rational strategy to improve chemotherapeutic efficacy in gastric cancer.
Collapse
Affiliation(s)
- Lifeng Feng
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Muchun Li
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Xinyang Hu
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Yiling Li
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Liyuan Zhu
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Miaoqin Chen
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Qi Wei
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Wenxia Xu
- Central LaboratoryAffiliated Jinhua HospitalMedical School of Zhejiang UniversityJinhuaZhejiangChina
| | - Qiyin Zhou
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Weikai Wang
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Dingwei Chen
- Department of General SurgerySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Xian Wang
- Department of Medical OncologySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Hongchuan Jin
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| |
Collapse
|
194
|
Jacob Berger A, Gigi E, Kupershmidt L, Meir Z, Gavert N, Zwang Y, Prior A, Gilad S, Harush U, Haviv I, Stemmer SM, Blum G, Merquiol E, Mardamshina M, Kaminski Strauss S, Friedlander G, Bar J, Kamer I, Reizel Y, Geiger T, Pilpel Y, Levin Y, Tanay A, Barzel B, Reuveni H, Straussman R. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. NATURE CANCER 2021; 2:1055-1070. [PMID: 35121883 DOI: 10.1038/s43018-021-00261-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.
Collapse
Affiliation(s)
- Adi Jacob Berger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elinor Gigi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lana Kupershmidt
- TyrNovo Ltd, Rehovot, Israel.,Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Zohar Meir
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Zwang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomit Gilad
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Uzi Harush
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhak Haviv
- TyrNovo Ltd, Rehovot, Israel.,Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,AID Genomics and Gensort Ltd, Rehovot, Israel
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Felsenstien Medical Research Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Blum
- Institute of Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Emmanuelle Merquiol
- Institute of Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Gilgi Friedlander
- Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Jair Bar
- Sheba Medical Center, Ramat Gan, Israel
| | | | - Yitzhak Reizel
- Department of Genetics and Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Baruch Barzel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadas Reuveni
- TyrNovo Ltd, Rehovot, Israel.,Purple Biotech Ltd, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
195
|
Duchmann M, Laplane L, Itzykson R. Clonal Architecture and Evolutionary Dynamics in Acute Myeloid Leukemias. Cancers (Basel) 2021; 13:4887. [PMID: 34638371 PMCID: PMC8507870 DOI: 10.3390/cancers13194887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) results from the accumulation of genetic and epigenetic alterations, often in the context of an aging hematopoietic environment. The development of high-throughput sequencing-and more recently, of single-cell technologies-has shed light on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the multiple sources of genetic, epigenetic, and functional heterogeneity of leukemic cells and discuss the definition of a leukemic clone extending its definition beyond genetics. After introducing the two dimensions contributing to clonal diversity, namely, richness (number of leukemic clones) and evenness (distribution of clone sizes), we discuss the mechanisms at the origin of clonal emergence (mutation rate, number of generations, and effective size of the leukemic population) and the causes of clonal dynamics. We discuss the possible role of neutral drift, but also of cell-intrinsic and -extrinsic influences on clonal fitness. After reviewing available data on the prognostic role of genetic and epigenetic diversity of leukemic cells on patients' outcome, we discuss how a better understanding of AML as an evolutionary process could lead to the design of novel therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Laboratoire d’Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| | - Lucie Laplane
- Institut d’Histoire et Philosophie des Sciences et des Techniques UMR 8590, CNRS, Université Paris 1 Panthéon-Sorbonne, 75010 Paris, France;
- Gustave Roussy Cancer Center, UMR1287, 94805 Villejuif, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| |
Collapse
|
196
|
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021; 373:1474-1479. [PMID: 34554797 DOI: 10.1126/science.abh1645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2010, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore 138672, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
197
|
Brägelmann J, Lorenz C, Borchmann S, Nishii K, Wegner J, Meder L, Ostendorp J, Ast DF, Heimsoeth A, Nakasuka T, Hirabae A, Okawa S, Dammert MA, Plenker D, Klein S, Lohneis P, Gu J, Godfrey LK, Forster J, Trajkovic-Arsic M, Zillinger T, Haarmann M, Quaas A, Lennartz S, Schmiel M, D'Rozario J, Thomas ES, Li H, Schmitt CA, George J, Thomas RK, von Karstedt S, Hartmann G, Büttner R, Ullrich RT, Siveke JT, Ohashi K, Schlee M, Sos ML. MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nat Commun 2021; 12:5505. [PMID: 34535668 PMCID: PMC8448826 DOI: 10.1038/s41467-021-25728-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Carina Lorenz
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Sven Borchmann
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Else-Kröner-Forschungskolleg Clonal Evolution in Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Julia Wegner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lydia Meder
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Jenny Ostendorp
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - David F Ast
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Alena Heimsoeth
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Hirabae
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marcel A Dammert
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sebastian Klein
- Else-Kröner-Forschungskolleg Clonal Evolution in Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Jianing Gu
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Laura K Godfrey
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Jan Forster
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Marija Trajkovic-Arsic
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Mareike Haarmann
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Stefanie Lennartz
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Marcel Schmiel
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Joshua D'Rozario
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Emily S Thomas
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Imperial College London, London, UK
| | - Henry Li
- Crown Bioscience, San Diego, CA, USA
| | - Clemens A Schmitt
- Department of Hematology, Oncology and Tumor Immunology, Charité - University Medical Center, Virchow Campus, and Molekulares Krebsforschungszentrum, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Julie George
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Head and Neck Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Roland T Ullrich
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Kadoaki Ohashi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Respiratory Medicine, Okayama University Hospital, Japan, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
198
|
Vendramin R, Litchfield K, Swanton C. Cancer evolution: Darwin and beyond. EMBO J 2021; 40:e108389. [PMID: 34459009 PMCID: PMC8441388 DOI: 10.15252/embj.2021108389] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Clinical and laboratory studies over recent decades have established branched evolution as a feature of cancer. However, while grounded in somatic selection, several lines of evidence suggest a Darwinian model alone is insufficient to fully explain cancer evolution. First, the role of macroevolutionary events in tumour initiation and progression contradicts Darwin's central thesis of gradualism. Whole-genome doubling, chromosomal chromoplexy and chromothripsis represent examples of single catastrophic events which can drive tumour evolution. Second, neutral evolution can play a role in some tumours, indicating that selection is not always driving evolution. Third, increasing appreciation of the role of the ageing soma has led to recent generalised theories of age-dependent carcinogenesis. Here, we review these concepts and others, which collectively argue for a model of cancer evolution which extends beyond Darwin. We also highlight clinical opportunities which can be grasped through targeting cancer vulnerabilities arising from non-Darwinian patterns of evolution.
Collapse
Affiliation(s)
- Roberto Vendramin
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
- Cancer Evolution and Genome Instability LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
199
|
Extrinsic interactions in the microenvironment in vivo activate an antiapoptotic multidrug-resistant phenotype in CLL. Blood Adv 2021; 5:3497-3510. [PMID: 34432864 DOI: 10.1182/bloodadvances.2020003944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The Bcl-2 inhibitor venetoclax has yielded exceptional clinical responses in chronic lymphocytic leukemia (CLL). However, de novo resistance can result in failure to achieve negative minimal residual disease and predicts poor treatment outcomes. Consequently, additional proapoptotic drugs, such as inhibitors of Mcl-1 and Bcl-xL, are in development. By profiling antiapoptotic proteins using flow cytometry, we find that leukemic B cells that recently emigrated from the lymph node (CD69+/CXCR4Low) in vivo are enriched for cell clusters simultaneously overexpressing multiple antiapoptotic proteins (Mcl-1High/Bcl-xLHigh/Bcl-2High) in both treated and treatment-naive CLL patients. These cells exhibited antiapoptotic resistance to multiple BH-domain antagonists, including inhibitors of Bcl-2, Mcl-1, and Bcl-xL, when tested as single agents in a flow cytometry-based functional assay. Antiapoptotic multidrug resistance declines ex vivo, consistent with resistance being generated in vivo by extrinsic microenvironmental interactions. Surviving "persister" cells in patients undergoing venetoclax treatment are enriched for CLL cells displaying the functional and molecular properties of microenvironmentally induced multidrug resistance. Overcoming this resistance required simultaneous inhibition of multiple antiapoptotic proteins, with potential for unwanted toxicities. Using a drug screen performed using patient peripheral blood mononuclear cells cultured in an ex vivo microenvironment model, we identify novel venetoclax drug combinations that induce selective cytotoxicity in multidrug-resistant CLL cells. Thus, we demonstrate that antiapoptotic multidrug-resistant CLL cells exist in patients de novo and show that these cells persist during proapoptotic treatment, such as venetoclax. We validate clinically actionable approaches to selectively deplete this reservoir in patients.
Collapse
|
200
|
Mowat C, Mosley SR, Namdar A, Schiller D, Baker K. Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med 2021; 218:e20210108. [PMID: 34297038 PMCID: PMC8313406 DOI: 10.1084/jem.20210108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | - Afshin Namdar
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Daniel Schiller
- Department of Surgery, Royal Alexandra Hospital, Edmonton, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|