151
|
Yang Y, Kong WP, Liu C, Ruckwardt TJ, Tsybovsky Y, Wang L, Wang S, Biner DW, Chen M, Liu T, Merriam J, Olia AS, Ou L, Qiu Q, Shi W, Stephens T, Yang ES, Zhang B, Zhang Y, Zhou Q, Rawi R, Koup RA, Mascola JR, Kwong PD. Enhancing Anti-SARS-CoV-2 Neutralizing Immunity by Genetic Delivery of Enveloped Virus-like Particles Displaying SARS-CoV-2 Spikes. Vaccines (Basel) 2023; 11:1438. [PMID: 37766115 PMCID: PMC10537688 DOI: 10.3390/vaccines11091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Daniel W. Biner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Jonah Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| |
Collapse
|
152
|
Jawaid MZ, Baidya A, Mahboubi-Ardakani R, Davis RL, Cox DL. SARS-CoV-2 omicron spike simulations: broad antibody escape, weakened ACE2 binding, and modest furin cleavage. Microbiol Spectr 2023; 11:e0121322. [PMID: 37650619 PMCID: PMC10580870 DOI: 10.1128/spectrum.01213-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
The recent emergence of the omicron variant of the SARS-CoV-2 virus with large numbers of mutations has raised concern about a potential new surge in infections. Here we use molecular dynamics to study the biophysics of the interface of the BA1 and BA2 omicron spike protein binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii) the furin binding domain. Our simulations suggest that while there is a significant reduction of antibody (Ab) binding strength corresponding to escape, the omicron spikes pay a cost in terms of weaker receptor binding as measured by interfacial hydrogen bonds (H-bond). The furin cleavage domain (FCD) is the same or weaker binding than the delta variant, suggesting lower fusogenicity resulting in less viral load and disease intensity than the delta variant. IMPORTANCE The BA1 and BA2 and closely related BA2.12.2 and BA.5 omicron variants of SARS-CoV-2 dominate the current global infection landscape. Given the high number of mutations, particularly those which will lead to antibody escape, it is important to establish accurate methods that can guide developing health policy responses that identify at a fundamental level whether omicron and its variants are more threatening than its predecessors, especially delta. The importance of our work is to demonstrate that simple in silico simulations can predict biochemical binding details of the omicron spike protein that have epidemiological consequences, especially for binding to the cells and for fusing the viral membrane with the cells. In each case, we predicted weaker binding of the omicron spike, which agreed with subsequent experimental results. Future virology experiments will be needed to test these predictions further.
Collapse
Affiliation(s)
- M. Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - A. Baidya
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - R. Mahboubi-Ardakani
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | | | - Daniel L. Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
- Protein Architects Corp, Penn Valley, Pennsylvania, USA
| |
Collapse
|
153
|
Soto J, Linsley C, Song Y, Chen B, Fang J, Neyyan J, Davila R, Lee B, Wu B, Li S. Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2455. [PMID: 37686965 PMCID: PMC10490511 DOI: 10.3390/nano13172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Following the global spread of COVID-19, scientists and engineers have adapted technologies and developed new tools to aid in the fight against COVID-19. This review discusses various approaches to engineering biomaterials, devices, and therapeutics, especially at micro and nano levels, for the prevention, diagnosis, and treatment of infectious diseases, such as COVID-19, serving as a resource for scientists to identify specific tools that can be applicable for infectious-disease-related research, technology development, and treatment. From the design and production of equipment critical to first responders and patients using three-dimensional (3D) printing technology to point-of-care devices for rapid diagnosis, these technologies and tools have been essential to address current global needs for the prevention and detection of diseases. Moreover, advancements in organ-on-a-chip platforms provide a valuable platform to not only study infections and disease development in humans but also allow for the screening of more effective therapeutics. In addition, vaccines, the repurposing of approved drugs, biomaterials, drug delivery, and cell therapy are promising approaches for the prevention and treatment of infectious diseases. Following a comprehensive review of all these topics, we discuss unsolved problems and future directions.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chase Linsley
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Josephine Neyyan
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Raul Davila
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
154
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
155
|
Vollenberg R, Lorentzen EU, Kühn J, Nowacki TM, Meier JA, Trebicka J, Tepasse PR. Humoral Immunity in Immunosuppressed IBD Patients after the Third SARS-CoV-2 Vaccination: A Comparison with Healthy Control Subjects. Vaccines (Basel) 2023; 11:1411. [PMID: 37766088 PMCID: PMC10536352 DOI: 10.3390/vaccines11091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic is a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination against COVID-19 is crucial for preventing severe illness and controlling the pandemic. This study aimed to examine how immunosuppressed patients with inflammatory bowel disease (IBD) responded to the third mRNA vaccination against SARS-CoV-2. The patients were undergoing treatments such as anti-TNF (infliximab, adalimumab), anti-α4ß7 integrin (vedolizumab), anti-IL12/23 (ustekinumab) and azathioprine (purine analog). Their responses were compared to those of healthy individuals. METHODS In this prospective study, 81 IBD patients and 15 healthy controls were enrolled 2-4 months after receiving the third mRNA vaccination. This study measured IgG antibody levels against the SARS-CoV-2 spike protein's receptor binding domain (RBD) and assessed potential neutralization capacity using a surrogate virus neutralization test (sVNT). RESULTS Overall, immunosuppressed IBD patients (without SARS-CoV-2 infection) exhibited significantly lower levels of anti-S-IgG (anti-RBD-IgG) and binding inhibition in the sVNT after the third vaccination compared to healthy controls. Patients under anti-TNF therapy showed notably reduced anti-S-IgG levels after the booster vaccination, in contrast to those receiving ustekinumab and azathioprine (p = 0.030, p = 0.031). IBD patients on anti-TNF therapy demonstrated significantly increased anti-S-IgG levels following prior SARS-CoV-2 infection (p = 0.020). CONCLUSION Even after the third vaccination, immunosuppressed IBD patients exhibited diminished humoral immunity compared to healthy controls, especially those on anti-TNF therapy. Cases of penetrating infections led to considerably higher antibody levels in IBD patients under anti-TNF therapy compared to uninfected patients. Further investigation through prospective studies in immunosuppressed IBD patients is needed to determine whether this effectively safeguards against future infections or severe disease.
Collapse
Affiliation(s)
- Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clincial Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (J.T.); (P.-R.T.)
| | - Eva Ulla Lorentzen
- Institute of Virology, University Hospital Muenster, 48149 Muenster, Germany (J.K.)
| | - Joachim Kühn
- Institute of Virology, University Hospital Muenster, 48149 Muenster, Germany (J.K.)
| | - Tobias Max Nowacki
- Department of Medicine, Gastroenterology, Marienhospital Steinfurt, 48565 Steinfurt, Germany
| | - Jörn Arne Meier
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clincial Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (J.T.); (P.-R.T.)
| | - Jonel Trebicka
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clincial Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (J.T.); (P.-R.T.)
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clincial Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (J.T.); (P.-R.T.)
| |
Collapse
|
156
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
157
|
Oliveira ASF, Shoemark DK, Davidson AD, Berger I, Schaffitzel C, Mulholland AJ. SARS-CoV-2 spike variants differ in their allosteric responses to linoleic acid. J Mol Cell Biol 2023; 15:mjad021. [PMID: 36990513 PMCID: PMC10563148 DOI: 10.1093/jmcb/mjad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 spike protein contains a functionally important fatty acid (FA) binding site, which is also found in some other coronaviruses, e.g. SARS-CoV and MERS-CoV. The occupancy of the FA site by linoleic acid (LA) reduces infectivity by 'locking' the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the allosteric responses of spike variants to LA removal. D-NEMD simulations show that the FA site is coupled to other functional regions of the protein, e.g. the receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and regions surrounding the fusion peptide. D-NEMD simulations also identify the allosteric networks connecting the FA site to these functional regions. The comparison between the wild-type spike and four variants (Alpha, Delta, Delta plus, and Omicron BA.1) shows that the variants differ significantly in their responses to LA removal. The allosteric connections to the FA site on Alpha are generally similar to those on the wild-type protein, with the exception of the RBM and the S71-R78 region, which show a weaker link to the FA site. In contrast, Omicron is the most different variant, exhibiting significant differences in the RBM, NTD, V622-L629, and furin cleavage site. These differences in the allosteric modulation may be of functional relevance, potentially affecting transmissibility and virulence. Experimental comparison of the effects of LA on SARS-CoV-2 variants, including emerging variants, is warranted.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Max Planck Bristol Centre for Minimal Biology, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
158
|
Li W, Zhao T, Tao B, Zhao L, Xiao H, Ding X, Li C, Chen L, Cheng H, Lou Y, Chen Y, Wu C. Monovalent Omicron COVID-19 vaccine triggers superior neutralizing antibody responses against Omicron subvariants than Delta and Omicron bivalent vaccine. Hum Vaccin Immunother 2023; 19:2264589. [PMID: 37846840 PMCID: PMC10583637 DOI: 10.1080/21645515.2023.2264589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses a challenge to determine the optimal updated composition of the coronavirus disease 2019 (COVID-19) vaccine. The present study aimed to investigate the immunogenicity of the Delta monovalent vaccine, the Omicron monovalent vaccine, and the Delta and Omicron BA.1 bivalent vaccine. Three COVID-19 vaccines were designed using the heterologous DNA prime-protein boost strategy, with each vaccine containing either Delta receptor-binding domain (RBD) of the spike protein, Omicron RBD, or both Delta and Omicron antigens. Temporal serum antibody binding titers and neutralizing antibody titers induced by the three vaccines in New Zealand White rabbits were analyzed. To further dissect the vaccine elicited antibodies (mAb) responses at the molecular level, a panel of rabbit monoclonal antibodies (RmAbs) was generated by a high-throughput single B cell sorting and discovery pipeline and further comprehensively characterized. The Omicron monovalent vaccine induced higher antibody binding titers and neutralization activities than the Delta and Omicron bivalent vaccine. Four RmAbs with robust neutralization capacity were isolated from rabbits immunized with the Omicron or Delta monovalent vaccine. Notably, 9E11 isolated from the Omicron monovalent vaccine group neutralized all the Omicron subvariants with an IC50 value ranging from 1.5 to 503.6 ng/mL; thus, this vaccine could serve as a prophylactic and therapeutic intervention. Given the increasing incidence of COVID-19 cases due to the Omicron variant, RBD from the Omicron strain could serve as a candidate immunogen that can induce higher neutralization activities against the SARS-CoV-2 Omicron sublineages.
Collapse
Affiliation(s)
- Wanting Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Tiantian Zhao
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bai Tao
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan, Hubei, China
| | - Liwei Zhao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hang Xiao
- Yurogen Biosystem LLC, Wuhan, Hubei, China
| | - Xinyu Ding
- Department of Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Cheng
- Yurogen Biosystem LLC, Wuhan, Hubei, China
| | - Yang Lou
- Yurogen Biosystem LLC, Wuhan, Hubei, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
159
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
160
|
Uppal S, Postnikova O, Villasmil R, Rogozin IB, Bocharov AV, Eggerman TL, Poliakov E, Redmond TM. Low-Density Lipoprotein Receptor (LDLR) Is Involved in Internalization of Lentiviral Particles Pseudotyped with SARS-CoV-2 Spike Protein in Ocular Cells. Int J Mol Sci 2023; 24:11860. [PMID: 37511618 PMCID: PMC10380832 DOI: 10.3390/ijms241411860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Here, we present evidence that caveolae-mediated endocytosis using LDLR is the pathway for SARS-CoV-2 virus internalization in the ocular cell line ARPE-19. Firstly, we found that, while Angiotensin-converting enzyme 2 (ACE2) is expressed in these cells, blocking ACE2 by antibody treatment did not prevent infection by SARS-CoV-2 spike pseudovirions, nor did antibody blockade of extracellular vimentin and other cholesterol-rich lipid raft proteins. Next, we implicated the role of cholesterol homeostasis in infection by showing that incubating cells with different cyclodextrins and oxysterol 25-hydroxycholesterol (25-HC) inhibits pseudovirion infection of ARPE-19. However, the effect of 25-HC is likely not via cholesterol biosynthesis, as incubation with lovastatin did not appreciably affect infection. Additionally, is it not likely to be an agonistic effect of 25-HC on LXR receptors, as the LXR agonist GW3965 had no significant effect on infection of ARPE-19 cells at up to 5 μM GW3965. We probed the role of endocytic pathways but determined that clathrin-dependent and flotillin-dependent rafts were not involved. Furthermore, 20 µM chlorpromazine, an inhibitor of clathrin-mediated endocytosis (CME), also had little effect. In contrast, anti-dynamin I/II antibodies blocked the entry of SARS-CoV-2 spike pseudovirions, as did dynasore, a noncompetitive inhibitor of dynamin GTPase activity. Additionally, anti-caveolin-1 antibodies significantly blocked spike pseudotyped lentiviral infection of ARPE-19. However, nystatin, a classic inhibitor of caveolae-dependent endocytosis, did not affect infection while indomethacin inhibited only at 10 µM at the 48 h time point. Finally, we found that anti-LDLR antibodies block pseudovirion infection to a similar degree as anti-caveolin-1 and anti-dynamin I/II antibodies, while transfection with LDLR-specific siRNA led to a decrease in spike pseudotyped lentiviral infection, compared to scrambled control siRNAs. Thus, we conclude that SARS-CoV-2 spike pseudovirion infection in ARPE-19 cells is a dynamin-dependent process that is primarily mediated by LDLR.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Thomas L Eggerman
- Clinical Center, National Institutes of Health, Bethesda, MD 20894, USA
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
161
|
Khetran SR, Mustafa R. Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e43906. [PMID: 37485046 PMCID: PMC10353769 DOI: 10.2196/43906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Background COVID-19 and Middle East Respiratory Syndrome are two pandemic respiratory diseases caused by coronavirus species. The novel disease COVID-19 caused by SARS-CoV-2 was first reported in Wuhan, Hubei Province, China, in December 2019, and became a pandemic within 2-3 months, affecting social and economic platforms worldwide. Despite the rapid development of vaccines, there have been obstacles to their distribution, including a lack of fundamental resources, poor immunization, and manual vaccine replication. Several variants of the original Wuhan strain have emerged in the last 3 years, which can pose a further challenge for control and vaccine development. Objective The aim of this study was to comprehensively analyze mutations in SARS-CoV-2 variants of concern (VoCs) using a bioinformatics approach toward identifying novel mutations that may be helpful in developing new vaccines by targeting these sites. Methods Reference sequences of the SARS-CoV-2 spike (YP_009724390) and nucleocapsid (YP_009724397) proteins were compared to retrieved sequences of isolates of four VoCs from 14 countries for mutational and evolutionary analyses. Multiple sequence alignment was performed and phylogenetic trees were constructed by the neighbor-joining method with 1000 bootstrap replicates using MEGA (version 6). Mutations in amino acid sequences were analyzed using the MultAlin online tool (version 5.4.1). Results Among the four VoCs, a total of 143 nonsynonymous mutations and 8 deletions were identified in the spike and nucleocapsid proteins. Multiple sequence alignment and amino acid substitution analysis revealed new mutations, including G72W, M2101I, L139F, 209-211 deletion, G212S, P199L, P67S, I292T, and substitutions with unknown amino acid replacement, reported in Egypt (MW533289), the United Kingdom (MT906649), and other regions. The variants B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), characterized by higher transmissibility and lethality, harbored the amino acid substitutions D614G, R203K, and G204R with higher prevalence rates in most sequences. Phylogenetic analysis among the novel SARS-CoV-2 variant proteins and some previously reported β-coronavirus proteins indicated that either the evolutionary clade was weakly supported or not supported at all by the β-coronavirus species. Conclusions This study could contribute toward gaining a better understanding of the basic nature of SARS-CoV-2 and its four major variants. The numerous novel mutations detected could also provide a better understanding of VoCs and help in identifying suitable mutations for vaccine targets. Moreover, these data offer evidence for new types of mutations in VoCs, which will provide insight into the epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Saima Rehman Khetran
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| | - Roma Mustafa
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| |
Collapse
|
162
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
163
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
164
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
165
|
Hunt AC, Vögeli B, Hassan AO, Guerrero L, Kightlinger W, Yoesep DJ, Krüger A, DeWinter M, Diamond MS, Karim AS, Jewett MC. A rapid cell-free expression and screening platform for antibody discovery. Nat Commun 2023; 14:3897. [PMID: 37400446 DOI: 10.1038/s41467-023-38965-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Madison DeWinter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
166
|
Zhang J, Tang W, Gao H, Lavine CL, Shi W, Peng H, Zhu H, Anand K, Kosikova M, Kwon HJ, Tong P, Gautam A, Rits-Volloch S, Wang S, Mayer ML, Wesemann DR, Seaman MS, Lu J, Xiao T, Xie H, Chen B. Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nat Struct Mol Biol 2023; 30:980-990. [PMID: 37430064 DOI: 10.1038/s41594-023-01023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hailong Gao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Matina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital; Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
167
|
Giron CC, Laaksonen A, Barroso da Silva FL. Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. J Biomol Struct Dyn 2023; 41:5707-5727. [PMID: 35815535 DOI: 10.1080/07391102.2022.2095305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 remains a health threat with the continuous emergence of new variants. This work aims to expand the knowledge about the SARS-CoV-2 receptor-binding domain (RBD) interactions with cell receptors and monoclonal antibodies (mAbs). By using constant-pH Monte Carlo simulations, the free energy of interactions between the RBD from different variants and several partners (Angiotensin-Converting Enzyme-2 (ACE2) polymorphisms and various mAbs) were predicted. Computed RBD-ACE2-binding affinities were higher for two ACE2 polymorphisms (rs142984500 and rs4646116) typically found in Europeans which indicates a genetic susceptibility. This is amplified for Omicron (BA.1) and its sublineages BA.2 and BA.3. The antibody landscape was computationally investigated with the largest set of mAbs so far in the literature. From the 32 studied binders, groups of mAbs were identified from weak to strong binding affinities (e.g. S2K146). These mAbs with strong binding capacity and especially their combination are amenable to experimentation and clinical trials because of their high predicted binding affinities and possible neutralization potential for current known virus mutations and a universal coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, PR China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
168
|
Shi W, Cai Y, Zhu H, Peng H, Voyer J, Rits-Volloch S, Cao H, Mayer ML, Song K, Xu C, Lu J, Zhang J, Chen B. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. Nature 2023; 619:403-409. [PMID: 37285872 DOI: 10.1038/s41586-023-06273-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.
Collapse
Affiliation(s)
- Wei Shi
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- CSL Seqirus, Waltham, MA, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jewel Voyer
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Hong Cao
- Codex BioSolutions, Rockville, MD, USA
| | - Megan L Mayer
- The Harvard Cryo-EM Center for Structural Biology, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianming Lu
- Codex BioSolutions, Rockville, MD, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
169
|
Yaniro V, Capristano S, Bailon H, Lévano J, Galarza M, García D, Cáceres O, Padilla C, Montejo H, García P, Celis M, Seraylan S, Garayar Y, Palomino M. Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in vero cell culture. Rev Peru Med Exp Salud Publica 2023; 40:287-296. [PMID: 37991032 PMCID: PMC10953648 DOI: 10.17843/rpmesp.2023.403.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE. To evaluate the serological antibody response of a llama (Lama glama) to SARS-CoV-2 (B.1.1 lineage) immunization and the neutralizing capacity of hyperimmune llama serum against SARS-CoV-2 virus (B.1.1 lineage) in Vero cells. MATERIALS AND METHODS. A llama was immunized with inactivated SARS-CoV-2 (B.1.1 lineage). Serum samples were analyzed to evaluate the level of antibodies by ELISA, as well as reactivity to SARS-CoV-2 antigens by Western Blot. In addition, viral neutralization in cell cultures was assessed by the Plate Reduction Neutralization Test (PRNT). RESULTS . Seroreactivity increased in the immunized llama from week 4 onwards. Antibody titers were the highest after the seventh immunization booster. Western blot results confirmed the positive ELISA findings, and immune serum antibodies recognized several viral proteins. The neutralization assay (PRNT) showed visible viral neutralization, which was in accordance with the ELISA and Western Blot results. CONCLUSIONS. The findings suggest that hyperimmune llama serum could constitute a source of therapeutic antibodies against SARS-CoV-2 infections (lineage B.1.1), and should be studied in further research.
Collapse
Affiliation(s)
- Verónica Yaniro
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Capristano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Henri Bailon
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Juan Lévano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Marco Galarza
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - David García
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Omar Cáceres
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Carlos Padilla
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Harrison Montejo
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Paquita García
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Mary Celis
- Laboratorio de Referencia Nacional de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú.Laboratorio de Referencia Nacional de Virus RespiratoriosCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Seraylan
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Yessica Garayar
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Miryam Palomino
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| |
Collapse
|
170
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Kawaoka Y, Kane RS. Broad Protection Against Clade 1 Sarbecoviruses After a Single Immunization with Cocktail Spike-Protein-Nanoparticle Vaccine. RESEARCH SQUARE 2023:rs.3.rs-3088907. [PMID: 37461652 PMCID: PMC10350183 DOI: 10.21203/rs.3.rs-3088907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
171
|
Wang D, Baudys J, Osman SH, Barr JR. Analysis of the N-glycosylation profiles of the spike proteins from the Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2. Anal Bioanal Chem 2023:10.1007/s00216-023-04771-y. [PMID: 37354227 DOI: 10.1007/s00216-023-04771-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
N-Glycosylation plays an important role in the structure and function of membrane and secreted proteins. Viral proteins used in cell entry are often extensively glycosylated to assist in protein folding, provide stability, and shield the virus from immune recognition by its host (described as a "glycan shield"). The SARS-CoV-2 spike protein (S) is a prime example, having 22 potential sites of N-glycosylation per protein protomer, as predicted from the primary sequence. In this report, we conducted mass spectrometric analysis of the N-glycosylation profiles of recombinant spike proteins derived from four common SARS-CoV-2 variants classified as Variant of Concern, including Alpha, Beta, Gamma, and Delta along with D614G variant spike as a control. Our data reveal that the amino acid substitutions and deletions between variants impact the abundance and type of glycans on glycosylation sites of the spike protein. Some of the N-glycosylation sequons in S show differences between SARS-CoV-2 variants in the distribution of glycan forms. In comparison with our previously reported site-specific glycan analysis on the S-D614G and its ancestral protein, glycan types on later variants showed high similarity on the site-specific glycan content to S-D614G. Additionally, we applied multiple digestion methods on each sample, and confirmed the results for individual glycosylation sites from different experiment conditions to improve the identification and quantification of glycopeptides. Detailed site-specific glycan analysis of a wide variety of SARS-CoV-2 variants provides useful information toward the understanding of the role of protein glycosylation on viral protein structure and function and development of effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah H Osman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
172
|
Yoshizue T, Brindha S, Wongnak R, Takemae H, Oba M, Mizutani T, Kuroda Y. Antisera Produced Using an E. coli-Expressed SARS-CoV-2 RBD and Complemented with a Minimal Dose of Mammalian-Cell-Expressed S1 Subunit of the Spike Protein Exhibits Improved Neutralization. Int J Mol Sci 2023; 24:10583. [PMID: 37445760 DOI: 10.3390/ijms241310583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
E. coli-expressed proteins could provide a rapid, cost-effective, and safe antigen for subunit vaccines, provided we can produce them in a properly folded form inducing neutralizing antibodies. Here, we use an E. coli-expressed SARS-CoV-2 receptor-binding domain (RBD) of the spike protein as a model to examine whether it yields neutralizing antisera with effects comparable to those generated by the S1 subunit of the spike protein (S1 or S1 subunit, thereafter) expressed in mammalian cells. We immunized 5-week-old Jcl-ICR female mice by injecting RBD (30 µg) and S1 subunit (5 µg) according to four schemes: two injections 8 weeks apart with RBD (RBD/RBD), two injections with S1 (S1/S1), one injection with RBD, and the second one with S1 (RBD/S1), and vice versa (S1/RBD). Ten weeks after the first injection (two weeks after the second injection), all combinations induced a strong immune response with IgG titer > 105 (S1/RBD < S1/S1 < RBD/S1 < RBD/RBD). In addition, the neutralization effect of the antisera ranked as S1/RBD~RBD/S1 (80%) > S1/S1 (56%) > RBD/RBD (42%). These results indicate that two injections with E. coli-expressed RBD, or mammalian-cell-produced spike S1 subunit alone, can provide some protection against SARS-CoV-2, but a mixed injection scheme yields significantly higher protection.
Collapse
Affiliation(s)
- Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
| | - Rawiwan Wongnak
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
| | - Hitoshi Takemae
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Mami Oba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Tetsuya Mizutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-shi 183-8509, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi 183-8538, Japan
| |
Collapse
|
173
|
Maglione A, Francese R, Arduino I, Rosso R, Matta M, Rolla S, Lembo D, Clerico M. Long-lasting neutralizing antibodies and T cell response after the third dose of mRNA anti-SARS-CoV-2 vaccine in multiple sclerosis. Front Immunol 2023; 14:1205879. [PMID: 37409134 PMCID: PMC10318111 DOI: 10.3389/fimmu.2023.1205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Background and objectives Long lasting immune response to anti-SARS-CoV-2 vaccination in people with Multiple Sclerosis (pwMS) is still largely unexplored. Our study aimed at evaluating the persistence of the elicited amount of neutralizing antibodies (Ab), their activity and T cell response after three doses of anti-SARS-CoV-2 vaccine in pwMS. Methods We performed a prospective observational study in pwMS undergoing SARS-CoV-2 mRNA vaccinations. Anti-Region Binding Domain (anti-RBD) of the spike (S) protein immunoglobulin G (IgG) titers were measured by ELISA. The neutralization efficacy of collected sera was measured by SARS-CoV-2 pseudovirion-based neutralization assay. The frequency of Spike-specific IFNγ-producing CD4+ and CD8+ T cells was measured by stimulating Peripheral Blood Mononuclear Cells (PBMCs) with a pool of peptides covering the complete protein coding sequence of the SARS-CoV-2 S. Results Blood samples from 70 pwMS (11 untreated pwMS, 11 under dimethyl fumarate, 9 under interferon-γ, 6 under alemtuzumab, 8 under cladribine, 12 under fingolimod and 13 under ocrelizumab) and 24 healthy donors were collected before and up to six months after three vaccine doses. Overall, anti-SARS-CoV-2 mRNA vaccine elicited comparable levels of anti-RBD IgGs, neutralizing activity and anti-S T cell response both in untreated, treated pwMS and HD that last six months after vaccination. An exception was represented by ocrelizumab-treated pwMS that showed reduced levels of IgGs (p<0.0001) and a neutralizing activity under the limit of detection (p<0.001) compared to untreated pwMS. Considering the occurrence of a SARS-CoV-2 infection after vaccination, the Ab neutralizing efficacy (p=0.04), as well as CD4+ (p=0.016) and CD8+ (p=0.04) S-specific T cells, increased in treated COVID+ pwMS compared to uninfected treated pwMS at 6 months after vaccination. Discussion Our follow-up provides a detailed evaluation of Ab, especially in terms of neutralizing activity, and T cell responses after anti-SARS-CoV-2 vaccination in MS context, over time, considering a wide number of therapies, and eventually breakthrough infection. Altogether, our observations highlight the vaccine response data to current protocols in pwMS and underline the necessity to carefully follow-up anti-CD20- treated patients for higher risk of breakthrough infections. Our study may provide useful information to refine future vaccination strategies in pwMS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Simona Rolla
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
174
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
175
|
Guenthoer J, Lilly M, Starr TN, Dadonaite B, Lovendahl KN, Croft JT, Stoddard CI, Chohan V, Ding S, Ruiz F, Kopp MS, Finzi A, Bloom JD, Chu HY, Lee KK, Overbaugh J. Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. Proc Natl Acad Sci U S A 2023; 120:e2220948120. [PMID: 37253011 PMCID: PMC10265947 DOI: 10.1073/pnas.2220948120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah, Salt Lake City, UT84112
| | | | - Klaus N. Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | - Jacob T. Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | | | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Mackenzie S. Kopp
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QCH2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QCH2X 0A9, Canada
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Seattle, WA98195
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA98195
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
176
|
Chen R, Wen Y, Yu E, Yang J, Liang Y, Song D, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. Identification of an immunodominant neutralizing epitope of porcine Deltacoronavirus spike protein. Int J Biol Macromol 2023:125190. [PMID: 37276902 DOI: 10.1016/j.ijbiomac.2023.125190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 μg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| |
Collapse
|
177
|
Jalal D, Samir O, Elzayat MG, El-Shqanqery HE, Diab AA, ElKaialy L, Mohammed AM, Hamdy D, Matar IK, Amer K, Elnakib M, Hassan W, Mansour T, Soliman S, Hassan R, Al-Toukhy GM, Hammad M, Abdo I, Sayed AA. Genomic characterization of SARS-CoV-2 in Egypt: insights into spike protein thermodynamic stability. Front Microbiol 2023; 14:1190133. [PMID: 37333655 PMCID: PMC10273679 DOI: 10.3389/fmicb.2023.1190133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
The overall pattern of the SARS-CoV-2 pandemic so far has been a series of waves; surges in new cases followed by declines. The appearance of novel mutations and variants underlie the rises in infections, making surveillance of SARS-CoV-2 mutations and prediction of variant evolution of utmost importance. In this study, we sequenced 320 SARS-CoV-2 viral genomes isolated from patients from the outpatient COVID-19 clinic in the Children's Cancer Hospital Egypt 57357 (CCHE 57357) and the Egypt Center for Research and Regenerative Medicine (ECRRM). The samples were collected between March and December 2021, covering the third and fourth waves of the pandemic. The third wave was found to be dominated by Nextclade 20D in our samples, with a small number of alpha variants. The delta variant was found to dominate the fourth wave samples, with the appearance of omicron variants late in 2021. Phylogenetic analysis reveals that the omicron variants are closest genetically to early pandemic variants. Mutation analysis shows SNPs, stop codon mutation gain, and deletion/insertion mutations, with distinct patterns of mutations governed by Nextclade or WHO variant. Finally, we observed a large number of highly correlated mutations, and some negatively correlated mutations, and identified a general inclination toward mutations that lead to enhanced thermodynamic stability of the spike protein. Overall, this study contributes genetic and phylogenetic data, as well as provides insights into SARS-CoV-2 viral evolution that may eventually help in the prediction of evolving mutations for better vaccine development and drug targets.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Omar Samir
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mariam G. Elzayat
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hend E. El-Shqanqery
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya A. Diab
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Lamiaa ElKaialy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Aya M. Mohammed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Donia Hamdy
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Islam K. Matar
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Chemistry, Saint Mary’s University, Halifax, NS, Canada
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mostafa Elnakib
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael Hassan
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Tarek Mansour
- Department of Virology and Immunology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Sonia Soliman
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reem Hassan
- Department of Clinical and Chemical Pathology, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt
- Molecular Microbiology Unit, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ghada M. Al-Toukhy
- Department of Virology and Immunology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Mahmoud Hammad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ibrahim Abdo
- Department of Clinical Pharmacy, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ahmed A. Sayed
- Department of Basic Research, Genomics and Epigenomics Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Faculty of Science, Department of Biochemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
178
|
Yang Y, Zhou L, Mo C, Hu L, Zhou Z, Fan Y, Liu W, Li X, Zhou R, Tian X. Identification of conserved linear epitopes in the SARS-CoV-2 receptor-binding region using monoclonal antibodies. Heliyon 2023; 9:e16847. [PMID: 37292282 PMCID: PMC10238280 DOI: 10.1016/j.heliyon.2023.e16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
179
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
180
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
181
|
Li F, Xu W, Zhang X, Wang W, Su S, Han P, Wang H, Xu Y, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Jiang S, Xie Y, Lu L, Yang X. A spike-targeting bispecific T cell engager strategy provides dual layer protection against SARS-CoV-2 infection in vivo. Commun Biol 2023; 6:592. [PMID: 37264086 PMCID: PMC10234585 DOI: 10.1038/s42003-023-04955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Neutralizing antibodies exert a potent inhibitory effect on viral entry; however, they are less effective in therapeutic models than in prophylactic models, presumably because of their limited efficacy in eliminating virus-producing cells via Fc-mediated cytotoxicity. Herein, we present a SARS-CoV-2 spike-targeting bispecific T-cell engager (S-BiTE) strategy for controlling SARS-CoV-2 infection. This approach blocks the entry of free virus into permissive cells by competing with membrane receptors and eliminates virus-infected cells via powerful T cell-mediated cytotoxicity. S-BiTE is effective against both the original and Delta variant of SARS-CoV2 with similar efficacy, suggesting its potential application against immune-escaping variants. In addition, in humanized mouse model with live SARS-COV-2 infection, S-BiTE treated mice showed significantly less viral load than neutralization only treated group. The S-BiTE strategy may have broad applications in combating other coronavirus infections.
Collapse
Affiliation(s)
- Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physiology, Naval Medical University, Shanghai, 200433, China
| | - Wanting Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Dai
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai, 201203, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
182
|
Buffington J, Duan Z, Kwon HJ, Hong J, Li D, Feng M, Xie H, Ho M. Identification of nurse shark V NAR single-domain antibodies targeting the spike S2 subunit of SARS-CoV-2. FASEB J 2023; 37:e22973. [PMID: 37191949 PMCID: PMC10715488 DOI: 10.1096/fj.202202099rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Antibody-based therapeutics targeting the spike protein, specifically the S1 subunit or the receptor binding domain (RBD) of SARS-CoV-2, have gained attention due to their clinical efficacy in treating patients diagnosed with COVID-19. An alternative to conventional antibody therapeutics is the use of shark new antigen variable receptor domain (VNAR ) antibodies. VNAR s are small (<15 kDa) and can reach deep into the pockets or grooves of the target antigen. Here, we have isolated 53 VNAR s that bind to the S2 subunit by phage panning from a naïve nurse shark VNAR phage display library constructed in our laboratory. Among those binders, S2A9 showed the best neutralization activity against the original pseudotyped SARS-CoV-2 virus. Several binders, including S2A9, showed cross-reactivity against S2 subunits from other β coronaviruses. Furthermore, S2A9 showed neutralization activity against all variants of concern (VOCs) from alpha to omicron (including BA1, BA2, BA4, and BA5) in both pseudovirus and live virus neutralization assays. Our findings suggest that S2A9 could be a promising lead molecule for the development of broadly neutralizing antibodies against SARS-CoV-2 and emerging variants. The nurse shark VNAR phage library offers a novel platform that can be used to rapidly isolate single-domain antibodies against emerging viral pathogens.
Collapse
Affiliation(s)
- Jesse Buffington
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyung Joon Kwon
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mingqian Feng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hang Xie
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
183
|
Abduljalil JM, Elghareib AM, Samir A, Ezat AA, Elfiky AA. How helpful were molecular dynamics simulations in shaping our understanding of SARS-CoV-2 spike protein dynamics? Int J Biol Macromol 2023:125153. [PMID: 37268078 DOI: 10.1016/j.ijbiomac.2023.125153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 spike protein (S) represents an important viral component that is required for successful viral infection in humans owing to its essential role in recognition of and entry to host cells. The spike is also an appealing target for drug designers who develop vaccines and antivirals. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. MD simulations found that the higher affinity of SARS-CoV-2-S to ACE2 is linked to its unique residues that add extra electrostatic and van der Waal interactions in comparison to the SARS-CoV S. This illustrates the spread potential of the pandemic SARS-CoV-2 relative to the epidemic SARS-CoV. Different mutations at the S-ACE2 interface, which is believed to increase the transmission of the new variants, affected the behavior and binding interactions in different simulations. The contributions of glycans to the opening of S were revealed via simulations. The immune evasion of S was linked to the spatial distribution of glycans. This help the virus to escape the immune system recognition. This article is important as it summarizes how molecular simulations successfully shaped our understanding of spike conformational behavior and its role in viral infection. This will pave the way to us preparing for the next pandemic as the computational tools are tailored to help fight new challenges.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen; Department of Botany and Microbiology, College of Science, Cairo University, Giza, Egypt
| | - Ahmed M Elghareib
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Samir
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Ezat
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
184
|
Vilibic-Cavlek T, Bogdanic M, Borko E, Hruskar Z, Zilic D, Ferenc T, Tabain I, Barbic L, Vujica Ferenc M, Ferencak I, Stevanovic V. Detection of SARS-CoV-2 Antibodies: Comparison of Enzyme Immunoassay, Surrogate Neutralization and Virus Neutralization Test. Antibodies (Basel) 2023; 12:antib12020035. [PMID: 37218901 DOI: 10.3390/antib12020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Since sensitivity and specificity vary widely between tests, SARS-CoV-2 serology results should be interpreted with caution. METHODS The study included serum samples from patients who had recovered from COVID-19 (n = 71), individuals vaccinated against SARS-CoV-2 (n = 84), and asymptomatic individuals (n = 33). All samples were tested for the presence of binding antibodies (enzyme immunoassay; EIA), neutralizing (NT) antibodies (virus neutralization test; VNT), and surrogate NT (sNT) antibodies (surrogate virus neutralization test; sVNT) of SARS-CoV-2. RESULTS SARS-CoV-2-binding antibodies were detected in 71 (100%) COVID-19 patients, 77 (91.6%) vaccinated individuals, and 4 (12.1%) control subjects. Among EIA-positive samples, VNT was positive (titer ≥ 8) in 100% of COVID-19 patients and 63 (75.0%) of the vaccinated individuals, while sVNT was positive (>30% inhibition) in 62 (87.3%) patients and 59 (70.2%) vaccinated individuals. The analysis of antibody levels showed a significant moderate positive correlation between EIA and VNT, a moderate positive correlation between EIA and sVNT, and a strong positive correlation between VNT and sVNT. The proportion of positive sVNT detection rate was associated with VNT titer. The lowest positivity (72.4%/70.8%) was detected in samples with low NT titers (8/16) and increased progressively from 88.2% in samples with titer 32 to 100% in samples with titer 256. CONCLUSIONS sVNT appeared to be a reliable method for the assessment COVID-19 serology in patients with high antibody levels, while false-negative results were frequently observed in patients with low NT titers.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Ema Borko
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | | | - Thomas Ferenc
- Clinical Department of Diagnostic and Interventional Radiology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mateja Vujica Ferenc
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Ivana Ferencak
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
185
|
An Z, Zhang Y, Yu X, Xia J, Yin Y, Li G, Lu J, Fan X, Xu Y. The Screening of Broadly Neutralizing Antibodies Targeting the SARS-CoV-2 Spike Protein by mRNA Immunization in Mice. Pharmaceutics 2023; 15:pharmaceutics15051412. [PMID: 37242654 DOI: 10.3390/pharmaceutics15051412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Neutralizing antibodies (nAbs), the popular antiviral drugs used for the treatment of COVID-19, are effective in reducing viral load and hospitalization. Currently, most nAbs are screened from convalescent or vaccinated individuals through single B-cell sequencing which requires cutting-edge facilities. Moreover, owing to the rapid mutation of SARS-CoV-2, some approved nAbs are no longer effective. In the present study, we designed a new approach to acquiring broadly neutralizing antibodies (bnAbs) from mRNA-vaccinated mice. Using the flexibility and speed of mRNA vaccine preparation, we designed a chimeric mRNA vaccine and sequential immunization strategies to acquire bnAbs in mice within a short period. By comparing different vaccination orders, we found that the initially administered vaccine had a greater effect on the neutralizing potency of mouse sera. Ultimately, we screened a strain of bnAb that neutralized wild-type, Beta, and Delta SARS-CoV-2 pseudoviruses. We synthesized the mRNAs of the heavy and light chains of this antibody and verified its neutralizing potency. This study developed a new strategy to screen for bnAbs in mRNA-vaccinated mice and identified a more effective immunization strategy for inducing bnAbs, providing valuable insights for future antibody drug development.
Collapse
Affiliation(s)
- Zhiyin An
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Lu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
186
|
Giai C, Salassa BN, Zarelli VE, Bello OD, Vanrell MC, Ojeda DS, Gamarnik A, Colombo MI. Comparative analysis of humoral immune response upon the three first vaccines applied in Argentina: IgG production and neutralizing capacity against SARS-CoV-2. Heliyon 2023; 9:e15211. [PMID: 37090429 PMCID: PMC10113595 DOI: 10.1016/j.heliyon.2023.e15211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
The population that has not received a SARS-CoV-2 vaccine is at high risk for infection whereas vaccination prevents COVID-19 severe disease, hospitalization, and death. In Argentina, to date, more than 50 million doses of vaccines against SARS-CoV-2 have been administered. The three main vaccines applied are Sputnik V, Oxford-AstraZeneca, and Sinopharm. In this study, we have compared the antibody response of voluntary individuals at day 0 (first dose vaccination day) and at 21-25 days post first and second dose. Our results indicate that at 21-25 days after the administration of the first doses of Sputnik V the large majority of the people vaccinated 80% (n = 15) presented high humoral responses as determined by the measurement of IgG against the Spike protein and the Receptor Binding Domain (RBD). In the case of those vaccinated with AstraZeneca, the percentage was 80% (n = 15) whereas this value was reduced to only 25% (n = 16) in persons that received Sinopharm. However, after the second doses, most of the recipients had significant levels of antibodies. The virus neutralizing capacity of the antibodies generated was evaluated using a pseudotyped VSV-SARS-CoV2 Spike expressing eGFP and the data was analyzed by fluorescence microscopy and flow cytometry. The results indicate that a good correlation exists between the levels of IgG and the neutralizing capacity of the antibodies against the recombinant virus. Our results stand out the importance of applying the second dose of Sinopharm. Thus, the present report provides data that will contribute to decisions making about the vaccine implementation plans of action for, not only our region but our country to support the fight against the COVID-19 global pandemic.
Collapse
Affiliation(s)
- Constanza Giai
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| | - Valeria Eugenia Zarelli
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| | - Oscar Daniel Bello
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| | - María Cristina Vanrell
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| | | | | | - María Isabel Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM)-UNCuyo-CONICET-Ciudad Universitaria, Mendoza, Argentina
| |
Collapse
|
187
|
Yu X, Juraszek J, Rutten L, Bakkers MJG, Blokland S, Melchers JM, van den Broek NJF, Verwilligen AYW, Abeywickrema P, Vingerhoets J, Neefs JM, Bakhash SAM, Roychoudhury P, Greninger A, Sharma S, Langedijk JPM. Convergence of immune escape strategies highlights plasticity of SARS-CoV-2 spike. PLoS Pathog 2023; 19:e1011308. [PMID: 37126534 PMCID: PMC10174534 DOI: 10.1371/journal.ppat.1011308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaodi Yu
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | - Lucy Rutten
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | | | - Sven Blokland
- Janssen Vaccines & Prevention BV, Leiden, the Netherlands
| | | | | | | | - Pravien Abeywickrema
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | - Johan Vingerhoets
- Janssen Pharmaceutica N.V., Clinical Microbiology and Immunology, Beerse, Belgium
| | - Jean-Marc Neefs
- Janssen Pharmaceutica N.V., Discovery Sciences, Beerse, Belgium
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington, Seattle, Washington, United States of America
| | - Sujata Sharma
- Structural & Protein Sciences, Janssen Research and Development, Spring House, Pennsylvania, United States of America
| | | |
Collapse
|
188
|
Yuan M, Zhu Y, Liu G, Wang Y, Wang G, Zhang G, Ye L, Qian Z, Liu P. An RBD bispecific antibody effectively neutralizes a SARS-CoV-2 Omicron variant. ONE HEALTH ADVANCES 2023; 1:12. [PMID: 37521533 PMCID: PMC10173222 DOI: 10.1186/s44280-023-00012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 08/01/2023]
Abstract
Potent neutralizing antibodies (nAbs) against SARS-CoV-2 are a promising therapeutic against the ongoing COVID-19 pandemic. However, the continuous emergence of neutralizing antibody escape variants makes it challenging for antibody therapeutics based on monospecific nAbs. Here, we generated an IgG-like bispecific antibody (bsAb), Bi-Nab, based on a pair of human neutralizing antibodies targeting multiple and invariant sites of the spike receptor binding domain (RBD): 35B5 and 32C7. We demonstrated that Bi-Nab exhibited higher binding affinity to the Delta spike protein than its parental antibodies and presented an extended inhibition breadth of preventing RBD binding to angiotensin-converting enzyme 2 (ACE2), the cellular receptor of SARS-CoV-2. In addition, pseudovirus neutralization results showed that Bi-Nab improved the neutralization potency and breadth with a lower half maximum inhibitory concentration (IC50) against wild-type SARS-CoV-2, variants being monitored (VBMs) and variants of concern (VOCs). Notably, the IgG-like Bi-Nab enhanced the neutralizing activity against Omicron variants with potent capabilities for transmission and immune evasion in comparison with its parental monoclonal antibody (mAb) 32C7 and a cocktail (with the lowest IC50 values of 31.6 ng/mL against the Omicron BA.1 and 399.2 ng/mL against the Omicron BA.2), showing evidence of synergistic neutralization potency of Bi-Nab against the Omicron variants. Thus, Bi-Nab represents a feasible and effective strategy against SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Mengqi Yuan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yanzhi Zhu
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Guanlan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yujie Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guanxi Wang
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lilin Ye
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038 China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176 China
| | - Pinghuang Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
189
|
Dijokaite-Guraliuc A, Das R, Zhou D, Ginn HM, Liu C, Duyvesteyn HME, Huo J, Nutalai R, Supasa P, Selvaraj M, de Silva TI, Plowright M, Newman TAH, Hornsby H, Mentzer AJ, Skelly D, Ritter TG, Temperton N, Klenerman P, Barnes E, Dunachie SJ, Roemer C, Peacock TP, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Rapid escape of new SARS-CoV-2 Omicron variants from BA.2-directed antibody responses. Cell Rep 2023; 42:112271. [PMID: 36995936 PMCID: PMC9988707 DOI: 10.1016/j.celrep.2023.112271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.
Collapse
Key Words
- CP: Immunology
- CP: Microbiology
- SARS-CoV-2, BA.2, variant, mutation, RBD, antibodies, binding site, breakthrough, neutralizing, structure, COVID-19
Collapse
Affiliation(s)
- Aiste Dijokaite-Guraliuc
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raksha Das
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Ginn
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Megan Plowright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas A H Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Department of Medicine, University of Oxford, Oxford, UK
| | - Cornelius Roemer
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Neil G Paterson
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
190
|
Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, Hernández LC, Harfoot R, Authier-Hall A, Anderson DE, Hilligan KL, Buick KH, Mbenza NM, Mittelstädt G, Maxwell S, Sinha S, Kuang J, Subbarao K, Parker EJ, Sher A, Hermans IF, Ussher JE, Quiñones-Mateu ME, Comoletti D, Connor LM. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience 2023; 26:106256. [PMID: 36845030 PMCID: PMC9940465 DOI: 10.1016/j.isci.2023.106256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Leonor C Hernández
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Danielle E Anderson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin H Buick
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Naasson M Mbenza
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gerd Mittelstädt
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Samara Maxwell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - Emily J Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | |
Collapse
|
191
|
Ivanov A, Kryshen E, Semenova E. Nonlinear interdependence of the results of measuring anti-SARS-CoV-2 IgG levels using Abbott and Euroimmun test systems. J Clin Virol 2023; 164:105448. [PMID: 37146518 PMCID: PMC10116115 DOI: 10.1016/j.jcv.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND There are significant number of tests used to determine the level of antibodies to SARS-CoV-2 which differ both in the methods underlying testing and in the antigenic targets used and classes of measured immunoglobulins. Comparison of the results obtained using various tests reveals their significant discrepancy when converted to the WHO recommended standard unit for measuring the level of specific immunoglobulins BAU/mL. The aim of this study is a comparison of anty-SARS-CoV-2 IgG levels, measured using test systems based on different methodological platforms - EuroImmun assay and Abbott assay. METHOD Abbott uses the immunochemiluminescence method CLIA, EuroImmun uses the enzyme immunoassay method ELISA. The dependences of the measurement error on the level of antibodies for the two test systems were approximated by power functions using the least squares method. The nonlinear relation of antibody levels values measured by Abbott assay and Euroimmun assay was approximated by an asymptotic function. RESULTS The study involved 112 people. Our results confirm the fallacy of using a single conversion coefficient in BAU/mL for anti-SARS-CoV-2 IgG levels measured by Abbott and EuroImmun. To describe the interdependence of anti-SARS-CoV-2 IgG Abbott and EuroImmun levels, we offer the function y = 18/π arctan(0.0009x) and a calculator that allows to easily recalculate the results obtained using these tests. CONCLUSION The non-linear nature of the interdependence of the measured anti-SARS-CoV-2 antibodies levels on the levels magnitude is one of the main reasons for the discrepancy between the tests results when converted to BAU/mL using a single conversion coefficient.
Collapse
Affiliation(s)
- Andrei Ivanov
- Saint-Petersburg State University Hospital, 154, Fontanka river embankment, Saint-Petersburg, 198103, Russian Federation; Almazov National Medical Research Centre, Saint-Petersburg, 2 Akkuratova str., 197341, Russian Federation; North-West Centre for Evidence-Based Medicine JSC, 28A Pulkovskoe shosse, Saint-Petersburg, 196247, Russian Federation.
| | - Evgeni Kryshen
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, 188300, Russian Federation
| | - Elena Semenova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, 188300, Russian Federation
| |
Collapse
|
192
|
Liu L, Casner RG, Guo Y, Wang Q, Iketani S, Chan JFW, Yu J, Dadonaite B, Nair MS, Mohri H, Reddem ER, Yuan S, Poon VKM, Chan CCS, Yuen KY, Sheng Z, Huang Y, Bloom JD, Shapiro L, Ho DD. Antibodies that neutralize all current SARS-CoV-2 variants of concern by conformational locking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536123. [PMID: 37090592 PMCID: PMC10120718 DOI: 10.1101/2023.04.08.536123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
SARS-CoV-2 continues to evolve and evade most existing neutralizing antibodies, including all clinically authorized antibodies. We have isolated and characterized two human monoclonal antibodies, 12-16 and 12-19, which exhibited neutralizing activities against all SARS-CoV-2 variants tested, including BQ.1.1 and XBB.1.5. They also blocked infection in hamsters challenged with Omicron BA.1 intranasally. Structural analyses revealed both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, revealing a previously unrecognized site of vulnerability on SARS-CoV-2 spike. These antibodies prevent viral receptor engagement by locking the receptor-binding domain of spike in the down conformation, revealing a novel mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but the responsible mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.
Collapse
|
193
|
Chi X, Xia L, Zhang G, Chi X, Huang B, Zhang Y, Chen Z, Han J, Wu L, Li Z, Sun H, Huang P, Yu C, Chen W, Zhou Q. Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies against SARS-CoV-2 Omicron variants. Cell Discov 2023; 9:37. [PMID: 37015915 PMCID: PMC10071473 DOI: 10.1038/s41421-023-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/02/2023] [Indexed: 04/06/2023] Open
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread around the world. Mutant strains of SARS-CoV-2 are constantly emerging. At present, Omicron variants have become mainstream. In this work, we carried out a systematic and comprehensive analysis of the reported spike protein antibodies, counting the epitopes and genotypes of these antibodies. We further comprehensively analyzed the impact of Omicron mutations on antibody epitopes and classified these antibodies according to their binding patterns. We found that the epitopes of the H-RBD class antibodies were significantly less affected by Omicron mutations than other classes. Binding and virus neutralization experiments showed that such antibodies could effectively inhibit the immune escape of Omicron. Cryo-EM results showed that this class of antibodies utilized a conserved mechanism to neutralize SARS-CoV-2. Our results greatly help us deeply understand the impact of Omicron mutations. Meanwhile, it also provides guidance and insights for developing Omicron antibodies and vaccines.
Collapse
Affiliation(s)
- Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lingyun Xia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Ximin Chi
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bangdong Huang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jin Han
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Liushu Wu
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zeya Li
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Qiang Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
194
|
Li W, Wang F, Li Y, Yan L, Liu L, Zhu W, Ma P, Shi X, Yang G. Potent NTD-Targeting Neutralizing Antibodies against SARS-CoV-2 Selected from a Synthetic Immune System. Vaccines (Basel) 2023; 11:vaccines11040771. [PMID: 37112683 PMCID: PMC10143083 DOI: 10.3390/vaccines11040771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
The majority of neutralizing antibodies (NAbs) against SARS-CoV-2 recognize the receptor-binding domain (RBD) of the spike (S) protein. As an escaping strategy, the RBD of the virus is highly variable, evolving mutations to thwart a natural immune response or vaccination. Targeting non-RBD regions of the S protein thus provides a viable alternative to generating potential, robust NAbs. Using a pre-pandemic combinatorial antibody library of 1011, through an alternate negative and positive screening strategy, 11 non-RBD-targeting antibodies are identified. Amongst one NAb that binds specifically to the N-terminal domain of the S protein, SA3, shows mutually non-exclusive binding of the angiotensin-converting enzyme 2 receptor with the S protein. SA3 appears to be insensitive to the conformational change and to interact with both the “open” and “closed” configurations of the trimeric S protein. SA3 shows compatible neutralization as S-E6, an RBD-targeting NAb, against the wild type and variant of concern (VOC) B.1.351 (Beta) of the SARS-CoV-2 pseudo virus. More importantly, the combination of SA3 with S-E6 is synergistic and recovers from the 10-fold loss in neutralization efficacy against the VOC B.1.351 pseudo virus.
Collapse
Affiliation(s)
- Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fulian Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
- Correspondence: (X.S.); (G.Y.); Tel.: +86-21-20685030 (G.Y.)
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (W.L.)
- Correspondence: (X.S.); (G.Y.); Tel.: +86-21-20685030 (G.Y.)
| |
Collapse
|
195
|
Shah M, Shin JY, Woo HG. Rational strategies for enhancing mAb binding to SARS-CoV-2 variants through CDR diversification and antibody-escape prediction. Front Immunol 2023; 14:1113175. [PMID: 37063859 PMCID: PMC10102385 DOI: 10.3389/fimmu.2023.1113175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Since the emergence of SARS-CoV-2, dozens of variants of interest and half a dozen variants of concern (VOCs) have been documented by the World Health Organization. The emergence of these VOCs due to the continuous evolution of the virus is a major concern for COVID-19 therapeutic antibodies and vaccines because they are designed to target prototype/previous strains and lose effectiveness against new VOCs. Therefore, there is a need for time- and cost-effective strategies to estimate the immune escape and redirect therapeutic antibodies against newly emerging variants. Here, we computationally predicted the neutralization escape of the SARS-CoV-2 Delta and Omicron variants against the mutational space of RBD-mAbs interfaces. Leveraging knowledge of the existing RBD-mAb interfaces and mutational space, we fine-tuned and redirected CT-p59 (Regdanvimab) and Etesevimab against the escaped variants through complementarity-determining regions (CDRs) diversification. We identified antibodies against the Omicron lineage BA.1 and BA.2 and Delta variants with comparable or better binding affinities to that of prototype Spike. This suggests that CDRs diversification by hotspot grafting, given an existing insight into the Ag-Abs interface, is an exquisite strategy to redirect antibodies against preselected epitopes and combat the neutralization escape of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Yon Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Korea Initiative for Fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- *Correspondence: Hyun Goo Woo,
| |
Collapse
|
196
|
Hurtado J, Rogers TF, Jaffe DB, Adams BA, Bangaru S, Garcia E, Capozzola T, Messmer T, Sharma P, Song G, Beutler N, He W, Dueker K, Musharrafieh R, Stubbington MJ, Burton DR, Andrabi R, Ward AB, McDonnell WJ, Briney B. Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534602. [PMID: 37034676 PMCID: PMC10081229 DOI: 10.1101/2023.03.28.534602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. Current strategies for developing pan-coronavirus countermeasures have largely focused on the receptor binding domain (RBD) and S2 regions of the coronavirus Spike protein; it has been unclear whether the N-terminal domain (NTD) is a viable target for universal vaccines and broadly neutralizing antibodies (Abs). Additionally, many RBD-targeting Abs have proven susceptible to viral escape. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees using multiplexed panels of uniquely barcoded antigens in a high-throughput single cell workflow to isolate over 9,000 SARS-CoV-2-specific monoclonal Abs (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. We observed many instances of clonal coalescence between individuals, suggesting that Ab responses frequently converge independently on similar genetic solutions. Among the recovered antibodies was TXG-0078, a public neutralizing mAb that binds the NTD supersite region of the coronavirus Spike protein and recognizes a diverse collection of alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy chain-dominant binding pattern seen in other NTD supersite-specific neutralizing Abs with much narrower specificity. We also report the discovery of CC24.2, a pan-sarbecovirus neutralizing mAb that targets a novel RBD epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 provides protection against in vivo challenge with SARS-CoV-2, suggesting potential future use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David B. Jaffe
- 10x Genomics, Inc. 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Bruce A. Adams
- 10x Genomics, Inc. 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pragati Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wanting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
197
|
Cong Y, Mucker EM, Perry DL, Dixit S, Kollins E, Byrum R, Huzella L, Kim R, Josleyn M, Kwilas S, Stefan C, Shoemaker CJ, Koehler J, Coyne S, Delp K, Liang J, Drawbaugh D, Hischak A, Hart R, Postnikova E, Vaughan N, Asher J, St Claire M, Hanson J, Schmaljohn C, Eakin AE, Hooper JW, Holbrook MR. Evaluation of a panel of therapeutic antibody clinical candidates for efficacy against SARS-CoV-2 in Syrian hamsters. Antiviral Res 2023; 213:105589. [PMID: 37003305 PMCID: PMC10060192 DOI: 10.1016/j.antiviral.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Eric M Mucker
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Erin Kollins
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Russ Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Louis Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Robert Kim
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Mathew Josleyn
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Steven Kwilas
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Christopher Stefan
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Charles J Shoemaker
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jeff Koehler
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Susan Coyne
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Korey Delp
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Amanda Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nick Vaughan
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jason Asher
- Leidos Supporting Department of Health and Human Services, Biomedical Advanced Research and Development Authority, Washington, DC, 20024, USA
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jarod Hanson
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Connie Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Ann E Eakin
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jay W Hooper
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
198
|
Cristina Diaconu C, Madalina Pitica I, Chivu-Economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
In the genomic medicine era, the emergence of SARS-CoV-2 was immediately followed by viral genome sequencing and world-wide sequences sharing. Almost in real-time, based on these sequences, resources were developed and applied around the world, such as molecular diagnostic tests, informed public health decisions, and vaccines. Molecular SARS-CoV-2 variant surveillance was a normal approach in this context yet, considering that the viral genome modification occurs commonly in viral replication process, the challenge is to identify the modifications that significantly affect virulence, transmissibility, reduced effectiveness of vaccines and therapeutics or failure of diagnostic tests. However, assessing the importance of the emergence of new mutations and linking them to epidemiological trend, is still a laborious process and faster phenotypic evaluation approaches, in conjunction with genomic data, are required in order to release timely and efficient control measures.
Collapse
|
199
|
Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D. An Oral Galectin Inhibitor in COVID-19—A Phase II Randomized Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040731. [PMID: 37112643 PMCID: PMC10140888 DOI: 10.3390/vaccines11040731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. Aim: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. Methods: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. Results: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. Conclusion: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.
Collapse
Affiliation(s)
- Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd., Bengaluru 560025, Karnataka, India
- Correspondence: ; Tel.: +9188-8443-1444
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hana Chen-Walden
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| | - Surendar Reddy
- Department of Pulmonology, ESIC Medical College and Hospital, Sanath Nagar, Hyderabad 500038, Telangana, India
| | - David Platt
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| |
Collapse
|
200
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|