151
|
Edwards V, Smith DL, Meylan F, Tiffany L, Poncet S, Wu WW, Phue JN, Santana-Quintero L, Clouse KA, Gabay O. Analyzing the Role of Gut Microbiota on the Onset of Autoimmune Diseases Using TNF ΔARE Murine Model. Microorganisms 2021; 10:73. [PMID: 35056521 PMCID: PMC8779571 DOI: 10.3390/microorganisms10010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Very little is known about disease transmission via the gut microbiome. We hypothesized that certain inflammatory features could be transmitted via the gut microbiome and tested this hypothesis using an animal model of inflammatory diseases. Twelve-week-old healthy C57 Bl/6 and Germ-Free (GF) female and male mice were fecal matter transplanted (FMT) under anaerobic conditions with TNFΔARE-/+ donors exhibiting spontaneous Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) or with conventional healthy mice control donors. The gut microbiome analysis was performed using 16S rRNA sequencing amplification and bioinformatics analysis with the HIVE bioinformatics platform. Histology, immunohistochemistry, ELISA Multiplex analysis, and flow cytometry were conducted to confirm the inflammatory transmission status. We observed RA and IBD features transmitted in the GF mice cohort, with gut tissue disruption, cartilage alteration, elevated inflammatory mediators in the tissues, activation of CD4/CD8+ T cells, and colonization and transmission of the gut microbiome similar to the donors' profile. We did not observe a change or transmission when conventional healthy mice were FMT with TNFΔARE-/+ donors, suggesting that a healthy microbiome might withstand an unhealthy transplant. These findings show the potential involvement of the gut microbiome in inflammatory diseases. We identified a cluster of bacteria playing a role in this mechanism.
Collapse
Affiliation(s)
- Vivienne Edwards
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Dylan L. Smith
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Francoise Meylan
- Translational Immunology Section, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA;
| | - Linda Tiffany
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Sarah Poncet
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Luis Santana-Quintero
- U.S. Food and Drug Administration, Center for Biologics Evaluation & Research, Office of Biostatistics and Epidemiology, HIVE, Silver Spring, MD 20993, USA;
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Hematology and Oncology Products, Silver Spring, MD 20993, USA
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Odile Gabay
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| |
Collapse
|
152
|
Hart L, Verburgt CM, Wine E, Zachos M, Poppen A, Chavannes M, Van Limbergen J, Pai N. Nutritional Therapies and Their Influence on the Intestinal Microbiome in Pediatric Inflammatory Bowel Disease. Nutrients 2021; 14:nu14010004. [PMID: 35010879 PMCID: PMC8746384 DOI: 10.3390/nu14010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, autoimmune disorder of the gastrointestinal tract with numerous genetic and environmental risk factors. Patients with Crohn’s disease (CD) or ulcerative colitis (UC) often demonstrate marked disruptions of their gut microbiome. The intestinal microbiota is strongly influenced by diet. The association between the increasing incidence of IBD worldwide and increased consumption of a westernized diet suggests host nutrition may influence the progression or treatment of IBD via the microbiome. Several nutritional therapies have been studied for the treatment of CD and UC. While their mechanisms of action are only partially understood, existing studies do suggest that diet-driven changes in microbial composition and function underlie the diverse mechanisms of nutritional therapy. Despite existing therapies for IBD focusing heavily on immune suppression, nutrition is an important treatment option due to its superior safety profile, potentially low cost, and benefits for growth and development. These benefits are increasingly important to patients. In this review, we will describe the clinical efficacy of the different nutritional therapies that have been described for the treatment of CD and UC. We will also describe the effects of each nutritional therapy on the gut microbiome and summarize the strength of the literature with recommendations for the practicing clinician.
Collapse
Affiliation(s)
- Lara Hart
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Charlotte M. Verburgt
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Eytan Wine
- Edmonton Paediatric IBD Clinic, Division of Paediatric Gastroenterology and Nutrition, Departments of Paediatrics & Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Mary Zachos
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Alisha Poppen
- College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mallory Chavannes
- Department of Paediatrics, Division of Paediatric Gastroenterology and Nutrition, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Johan Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Correspondence: ; Tel.: +905-521-2100 (ext. 73587); Fax: +905-521-2655
| |
Collapse
|
153
|
Taguer M, Darbinian E, Wark K, Ter-Cheam A, Stephens DA, Maurice CF. Changes in Gut Bacterial Translation Occur before Symptom Onset and Dysbiosis in Dextran Sodium Sulfate-Induced Murine Colitis. mSystems 2021; 6:e0050721. [PMID: 34874778 PMCID: PMC8651081 DOI: 10.1128/msystems.00507-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Longitudinal studies on the gut microbiome that follow the effect of a perturbation are critical in understanding the microbiome's response and succession to disease. Here, we use a dextran sodium sulfate (DSS) mouse model of colitis as a tractable perturbation to study how gut bacteria change their physiology over the course of a perturbation. Using single-cell methods such as flow cytometry, bioorthogonal noncanonical amino acid tagging (BONCAT), and population-based cell sorting combined with 16S rRNA sequencing, we determine the diversity of physiologically distinct fractions of the gut microbiota and how they respond to a controlled perturbation. The physiological markers of bacterial activity studied here include relative nucleic acid content, membrane damage, and protein production. There is a distinct and reproducible succession in bacterial physiology, with an increase in bacteria with membrane damage and diversity changes in the translationally active fraction, both, critically, occurring before symptom onset. Large increases in the relative abundance of Akkermansia were seen in all physiological fractions, most notably in the translationally active bacteria. Performing these analyses within a detailed, longitudinal framework determines which bacteria change their physiology early on, focusing therapeutic efforts in the future to predict or even mitigate relapse in diseases like inflammatory bowel diseases. IMPORTANCE Most studies on the gut microbiome focus on the composition of this community and how it changes in disease. However, how the community transitions from a healthy state to one associated with disease is currently unknown. Additionally, common diversity metrics do not provide functional information on bacterial activity. We begin to address these two unknowns by following bacterial activity over the course of disease progression, using a tractable mouse model of colitis. We find reproducible changes in gut bacterial physiology that occur before symptom onset, with increases in the proportion of bacteria with membrane damage, and changes in community composition of the translationally active bacteria. Our data provide a framework to identify possible windows of intervention and which bacteria to target in microbiome-based therapeutics.
Collapse
Affiliation(s)
- M. Taguer
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - E. Darbinian
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - K. Wark
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - A. Ter-Cheam
- Department of Mathematics and Statistics, Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - D. A. Stephens
- Department of Mathematics and Statistics, Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - C. F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
154
|
Bodden C, Pang TY, Feng Y, Mridha F, Kong G, Li S, Watt MJ, Reichelt AC, Hannan AJ. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J 2021; 36:e21981. [PMID: 34907601 DOI: 10.1096/fj.202100920rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yingshi Feng
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Faria Mridha
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Kong
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shanshan Li
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
155
|
Watanabe M, Sianoya A, Mishima R, Therdtatha P, Rodriguez A, Ramos DC, Lee YK, Dalmacio LM, Nakayama J. Gut microbiome status of urban and rural Filipino adults in relation to diet and metabolic disorders. FEMS Microbiol Lett 2021; 368:6445026. [PMID: 34849762 DOI: 10.1093/femsle/fnab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Here, we aim to understand the condition of the gut microbiome of Filipino adults in relation to their diet and metabolic status. Compared to rural Albay (n = 67), the gut microbiome of subjects living in urban Manila (n = 25) was more colonized by the order Clostridiales, which was negatively correlated with host carbohydrate consumption. Principal component analysis using the genus composition of the 92 total subjects indicated four microbiome types: one type driven by Prevotella, which was associated with high rice consumption and mainly consisted of healthy Albay subjects, one Clostridiales-driven group containing a number of type 2 diabetes mellitus (T2D) subjects from both Manila and Albay who showed lower butyrate levels in association with a decrease in Mediterraneibacter faecis, and the other two types showing dysbiosis-like microbiomes with Lactobacillus and Bifidobacterium overgrowth, with a high ratio of T2D and obese subjects. Multivariate logistic regression analysis suggested high dietary energy intake, and two Veillonellaeae genera, Dialister and Megasphaera, as T2D risk factors, while Prevotella and M. faecis as anti-T2D factors. In conclusion, low-carbohydrate diets restructured the Prevotella-driven gut microbiome, which may predispose Filipino people with high energy diet to T2D.
Collapse
Affiliation(s)
- Mai Watanabe
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Abraham Sianoya
- Department of Biochemistry and Molecular Biology (DBMB), College of Medicine, University of the Philippines Manila, 547 Pedro Gil Street, Ermita, Manila 1000 Philippines
| | - Riko Mishima
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Phatthanaphong Therdtatha
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Abigail Rodriguez
- Department of Biochemistry and Molecular Biology (DBMB), College of Medicine, University of the Philippines Manila, 547 Pedro Gil Street, Ermita, Manila 1000 Philippines
| | - Donna Christene Ramos
- Department of Biochemistry and Molecular Biology (DBMB), College of Medicine, University of the Philippines Manila, 547 Pedro Gil Street, Ermita, Manila 1000 Philippines
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Leslie Michelle Dalmacio
- Department of Biochemistry and Molecular Biology (DBMB), College of Medicine, University of the Philippines Manila, 547 Pedro Gil Street, Ermita, Manila 1000 Philippines
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
156
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
157
|
Zhang Y, Mu T, Yang Y, Zhang J, Ren F, Wu Z. Lactobacillus johnsonii Attenuates Citrobacter rodentium-Induced Colitis by Regulating Inflammatory Responses and Endoplasmic Reticulum Stress in Mice. J Nutr 2021; 151:3391-3399. [PMID: 34383918 DOI: 10.1093/jn/nxab250] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
158
|
Kim D, Jung JY, Oh HS, Jee SR, Park SJ, Lee SH, Yoon JS, Yu SJ, Yoon IC, Lee HS. Comparison of sampling methods in assessing the microbiome from patients with ulcerative colitis. BMC Gastroenterol 2021; 21:396. [PMID: 34686128 PMCID: PMC8614001 DOI: 10.1186/s12876-021-01975-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Dysbiosis of ulcerative colitis (UC) has been frequently investigated using readily accessible stool samples. However, stool samples might insufficiently represent the mucosa-associated microbiome status. We hypothesized that luminal contents including loosely adherent luminal bacteria after bowel preparation may be suitable for diagnosing the dysbiosis of UC. Methods This study included 16 patients with UC (9 men and 7 women, mean age: 52.13 ± 14.09 years) and 15 sex- and age-matched healthy individuals (8 men and 7 women, mean age: 50.93 ± 14.11 years). They donated stool samples before colonoscopy and underwent luminal content aspiration and endoscopic biopsy during the colonoscopy. Then, the composition of each microbiome sample was analyzed by 16S rRNA-based next-generation sequencing. Results The microbiome between stool, luminal contents, and biopsy was significantly different in alpha and beta diversities. However, a correlation existed between stool and luminal contents in the Procrustes test (p = 0.001) and Mantel test (p = 0.0001). The stool microbiome was different between patients with UC and the healthy controls. Conversely, no difference was found in the microbiome of luminal content and biopsy samples between the two subject groups. The microbiome of stool and lavage predicted UC, with AUC values of 0.85 and 0.81, respectively. Conclusion The microbiome of stool, luminal contents, and biopsy was significantly different. However, the microbiome of luminal contents during colonoscopy can predict UC, with AUC values of 0.81. Colonoscopic luminal content aspiration analysis could determine microbiome differences between patients with UC and the healthy control, thereby beneficial in screening dysbiosis via endoscopy. Trial registration: This trial was registered at http://cris.nih.go.kr. Registration No.: KCT0003352), Date: 2018–11-13.
Collapse
Affiliation(s)
- Dan Kim
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Jun-Young Jung
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Hyun-Seok Oh
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea.,ChunLab Inc, Seoul, 06725, Korea
| | - Sam-Ryong Jee
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Sung Jae Park
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Sang-Heon Lee
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Jun-Sik Yoon
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - Seung Jung Yu
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea
| | - In-Cheol Yoon
- Department of Gastroenterology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Hong Sub Lee
- Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 47392, Korea.
| |
Collapse
|
159
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
160
|
Wu Z, Pan D, Jiang M, Sang L, Chang B. Selenium-Enriched Lactobacillus acidophilus Ameliorates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Regulating Inflammatory Cytokines and Intestinal Microbiota. Front Med (Lausanne) 2021; 8:716816. [PMID: 34532332 PMCID: PMC8439139 DOI: 10.3389/fmed.2021.716816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
Aim: To evaluate the effect of Selenium-enriched Lactobacillus acidophilus (Se-enriched L. acidophilus) on dextran sulfate sodium (DSS)-induced colitis in mice. Methods: Mice were randomly divided into four groups: a control group, a control + Se-enriched L. acidophilus group, a chronic colitis group, and a chronic colitis + Se-enriched L. acidophilus group (n = 10 each group). The mice were sacrificed on the 26th day. The disease activity index, survival rates, and histological injury score were determined. Cytokines produced by lamina propria lymphocytes (LPLs), the selenium (Se) concentrations in serum and colon tissue and the mouse intestinal microbiota were evaluated. Results: Se-enriched L. acidophilus can improve histological injury and the disease activity index in mice with chronic colitis and reduce IL-1β, IL-6, IL-12p70, TNF-α, IL-23, IFN-γ, IL-17A, and IL-21 (P < 0.05) and increase IL-10 (P < 0.05) expression levels. Moreover, Se-enriched L. acidophilus can increase the β diversity of intestinal microbiota in mice with chronic colitis, significantly reduce the relative abundance of Lactobacillus and Romboutsia (P < 0.05), and significantly increase the relative abundance of Parasutterella (P < 0.05). Conclusions: Se-enriched L. acidophilus can improve DSS-induced chronic colitis by regulating inflammatory cytokines and intestinal microbiota.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
161
|
Ullah H, De Filippis A, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Beneficial Effects of Plant Extracts and Bioactive Food Components in Childhood Supplementation. Nutrients 2021; 13:3157. [PMID: 34579034 PMCID: PMC8464764 DOI: 10.3390/nu13093157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The pivotal role of childhood nutrition has always roused a growing interest from the scientific community. Plant extracts and bioactive dietary components play a significant role in the maintenance of human health and wellness, with the potential to modulate risk factors and manage symptoms for a large number of common childhood disorders such as memory impairment, respiratory illnesses, gastrointestinal disorders, metabolic derangements, and pathologies related to the oral cavity. This review is designed to highlight the health benefits of botanical extracts and bioactive dietary components in children as evidenced by clinical trials, considering their safety with regards to childhood sensibilities. The supplementation of children with the herbal extracts or bioactive components mentioned in this review leads to the conclusion that they are useful for treating various ailments, with no serious adverse events being reported. However, for the limited number of investigations specifically focused on the safety of such products in children, time is needed to expand the literature data covering the safety of childhood supplementation with botanical extract and bioactive food components.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Alessandra Baldi
- Tefarco Innova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
162
|
Morales Fénero C, Amaral MA, Xavier IK, Padovani BN, Paredes LC, Takiishi T, Lopes-Ferreira M, Lima C, Colombo A, Saraiva Câmara NO. Short chain fatty acids (SCFAs) improves TNBS-induced colitis in zebrafish. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:142-154. [PMID: 35492385 PMCID: PMC9040093 DOI: 10.1016/j.crimmu.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
The short-chain fatty acids (SCFAs) are metabolites originated from the fermentation of dietary fibers and amino acids produced by the bacteria of the intestinal microbiota. The most abundant SCFAs, acetate, propionate, and butyrate, have been proposed as a treatment for inflammatory bowel diseases (IBDs) due to their anti-inflammatory properties. This work aimed to analyze the effects of the treatment of three combined SCFAs in TNBS-induced intestinal inflammation in zebrafish larvae. Here, we demonstrated that SCFAs significantly increased the survival of TNBS-exposed larvae, preserved the intestinal endocytic function, reduced the expression of inflammatory cytokines and the intestinal recruitment of neutrophils caused by TNBS. However, SCFAs treatment did not appear to avoid TNBS-induced tissue damage in the intestinal wall and did not restore the number of mucus-producing goblet cells. Finally, exposure to TNBS induced dysbiosis of the microbiota with an increase in Betaproteobacteria and Actinobacteria, while the treatment with SCFAs maintained these population levels similar to control. Thus, we demonstrate that the treatment of three combined SCFAs presented anti-inflammatory properties previously seen in mammals, opening an opportunity to use zebrafish to explore the potential benefit of these and other metabolites to treat inflammation.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Izabella Karina Xavier
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lais Cavalieri Paredes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Takiishi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Mônica Lopes-Ferreira
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Carla Lima
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alicia Colombo
- Department of Pathologic Anatomy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Federal University of São Paulo, Brazil
| |
Collapse
|
163
|
Konjar Š, Pavšič M, Veldhoen M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int J Mol Sci 2021; 22:ijms22179170. [PMID: 34502078 PMCID: PMC8431628 DOI: 10.3390/ijms22179170] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood and the presence of a steep oxygen gradient across the epithelial surface. These characteristics require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that are reflected in changes in mitochondrial function. In recent years, it has become widely accepted that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health and disease.
Collapse
Affiliation(s)
- Špela Konjar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
- Correspondence:
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
164
|
What Links an Increased Cardiovascular Risk and Inflammatory Bowel Disease? A Narrative Review. Nutrients 2021; 13:nu13082661. [PMID: 34444821 PMCID: PMC8398182 DOI: 10.3390/nu13082661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Several studies have shown increased rates of cardiovascular disease (CVD) in patients suffering from inflammatory bowel disease (IBD), particularly in cases of early atherosclerosis and myocardial infarction. IBD most frequently begins at an early age, patients usually present normal weight and remain under constant care of a physician, as well as of a nutritionist. Therefore, the classical risk factors of CVD are not reflected in the higher prevalence of CVD in the IBD population. Still, both groups are characterised by chronic inflammation and display similar physiopathological mechanisms. In the course of IBD, increased concentrations of pro-inflammatory cytokines, such as C-reactive protein (CRP) and homocysteine, may lead to endothelial dysfunctions and the development of CVD. Furthermore, gut microbiota dysbiosis in patients with IBD also constitutes a risk factor for an increased susceptibility to cardiovascular disease and atherosclerosis. Additionally, diet is an essential factor affecting both positively and negatively the course of the aforementioned diseases, whereas several dietary patterns may also influence the association between IBD and CVD. Thus, it is essential to investigate the factors responsible for the increased cardiovascular (CV) risk in this group of patients. Our paper attempts to review the role of potential inflammatory and nutritional factors, as well as intestinal dysbiosis and pharmacotherapy, in the increased risk of CVD in IBD patients.
Collapse
|
165
|
Wang D, Du Y, Wang S, You Z, Liu Y. Effects of sodium humate and glutamine combined supplementation on growth performance, diarrhea incidence, blood parameters, and intestinal microflora of weaned calves. Anim Sci J 2021; 92:e13584. [PMID: 34269503 DOI: 10.1111/asj.13584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
This experiment was conducted to investigate the effects of sodium humate (HNa) and glutamine (Gln) alone or combined supplementation on growth performance, diarrhea incidence, blood parameters, and intestinal microflora of weaned Holstein calves. In a 14-day experiment, 40 calves at 51 ± 3 days of age were randomly allocated to four treatment groups: (1) NC (basal diet), (2) NC + 5% HNa, (3) NC + 1% Gln, and (4) NC + 5% HNa + 1% Gln. Calves combined supplementation with HNa and Gln had a higher (P < .05) ADG, serum concentration of glucose (GLU), IgA, and IgG but lower fecal scores, diarrhea incidence, serum concentration of TNF-α, and IL-10 compared with NC group (P < .05). Compared with NC group, HNa + Gln group showed higher (P < .05) serum GSH and T-AOC activities but lower (P < .05) concentration of MDA and D-lac. Furthermore, the abundances of Prevotella ruminicola, Bifidobacterium, and Lactobacillus in rectal digesta were increased (P < .05), but the Escherichia coli was significantly decreased. In conclusion, combined supplementation with HNa and Gln can effectively improve the immune status, antioxidant capacity, and intestinal microflora of the weaned calves while reducing diarrhea incidence.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuanyi Du
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuang Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhendong You
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
166
|
Altered Profile of Fecal Microbiota in Newly Diagnosed Systemic Lupus Erythematosus Egyptian Patients. Int J Microbiol 2021; 2021:9934533. [PMID: 34257666 PMCID: PMC8249152 DOI: 10.1155/2021/9934533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/16/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dysbiosis of gut microbiota could promote autoimmune disorders including systemic lupus erythematosus (SLE). Clarifying this point would be of great importance in understanding the pathogenesis and hence the development of new strategies for SLE treatment. Aim This study aimed to determine the fecal microbiota profile in newly diagnosed SLE patients compared to healthy subjects and to investigate the correlation of this profile with disease activity. Methods Newly diagnosed SLE patients who fulfilled at least four of the American College of Rheumatology (ACR) criteria were enrolled during the study period. Patients with lupus were matched to healthy subjects. SLE activity was evaluated using the Systemic Lupus Disease Activity Index (SLEDAI-2K). Fresh fecal samples were collected from each subject. Genomic DNA was extracted from fecal samples. Quantitative real-time PCR was applied for quantitation of Firmicutes phylum, Bacteroidetes phylum, and Lactobacillus genus in comparison to the total fecal microbiota. Results of patients' samples were compared to those of healthy subjects and were correlated to patients' SLEDAI-2K score. Results Twenty SLE patients' samples were compared with 20 control samples. There was a significant alteration in SLE patients' gut microbiota. A significantly lower (p ≤ 0.001) Firmicutes/Bacteroidetes (F/B) ratio in SLE patients (mean ratio: 0.66%) compared to healthy subjects (mean ratio: 1.79%) was found. Lactobacillus showed a significant decrease in SLE patients (p=0.006) in comparison to healthy controls. An inverse significant correlation between SLEDAI-2K scores for disease activity and F/B ratio (r = -0.451; p=0.04) was found. However, an inverse nonsignificant correlation between SLEDAI-2K scores for disease activity and Lactobacillus (r = -0.155; p=0.51) was detected. Conclusion Compared to healthy controls, recently diagnosed SLE Egyptian patients have an altered fecal microbiota profile with significant lowering of both F/B ratio and Lactobacillus abundance, which is weakly correlated with disease activity.
Collapse
|
167
|
Elias AE, McBain AJ, O'Neill CA. The role of the skin microbiota in the modulation of cutaneous inflammation-Lessons from the gut. Exp Dermatol 2021; 30:1509-1516. [PMID: 34173265 DOI: 10.1111/exd.14420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Inflammation is a vital defense mechanism used to protect the body from invading pathogens, but dysregulation can lead to chronic inflammatory disorders such as psoriasis and atopic dermatitis. Differences in microbiota composition have been observed in patients with inflammatory skin conditions compared with healthy individuals, particularly within lesions. There is also increasing evidence accumulating to support the notion that the microbiome contributes to the onset or modulates the severity of inflammatory diseases. Despite the known protective effects of orally administered lactic acid bacteria against inflammation, few studies have investigated the potential protective effects of topical application of bacteria on skin health and even fewer have looked at the potential anti-inflammatory effects of skin commensals. If lack of diversity and reduction in the abundance of specific commensal strains is observed in inflammatory skin lesions, and it is known that commensal bacteria can produce anti-inflammatory compounds, we suggest that certain members of the skin microbiota have anti-inflammatory properties that can be harnessed for use as topical therapeutics in inflammatory skin disorders.
Collapse
Affiliation(s)
- Abigail E Elias
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
168
|
Nishida A, Nishino K, Sakai K, Owaki Y, Noda Y, Imaeda H. Can control of gut microbiota be a future therapeutic option for inflammatory bowel disease? World J Gastroenterol 2021; 27:3317-3326. [PMID: 34163114 PMCID: PMC8218353 DOI: 10.3748/wjg.v27.i23.3317] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract encompassing two main clinical entities, Crohn’s disease and ulcerative colitis. Accumulated evidence indicates that an aberrant immune activation caused by the interplay of genetic susceptibility and environmental impact on the gut microbiota may be involved in the pathogenesis of IBD. Rapid advances in next-generation sequencing technology have enabled a number of studies to identify the alteration of the gut microbiota, termed dysbiosis, in IBD. Moreover, the alteration in the metabolites derived from the gut microbiota in IBD has also been described in many studies. Therefore, microbiota-based interventions such as fecal microbiota transplantation (FMT) have attracted attention as a novel therapeutic option in IBD. However, in clinical trials, the efficacy of FMT for IBD remains controversial. Additional basic and clinical studies are required to validate whether FMT can assume a complementary role in the treatment of IBD. The present review provides a synopsis on dysbiosis in IBD and on the association between the gut microbiota and the pathogenesis of IBD. In addition, we summarize the use of probiotics in IBD and the results of current clinical trials of FMT for IBD.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 5268580, Shiga, Japan
| |
Collapse
|
169
|
Mohamed SS, Abdeltawab NF, Wadie W, Ahmed LA, Ammar RM, Rabini S, Abdel-Aziz H, Khayyal MT. Effect of the standard herbal preparation, STW5, treatment on dysbiosis induced by dextran sodium sulfate in experimental colitis. BMC Complement Med Ther 2021; 21:168. [PMID: 34103031 PMCID: PMC8188707 DOI: 10.1186/s12906-021-03337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The standardized herbal preparation, STW 5, is effective clinically in functional gastrointestinal disorders and experimentally in ulcerative colitis (UC). The present study explores whether the beneficial effect of STW 5 involves influencing the intestinal microbiota. METHODS UC was induced in Wistar rats by feeding them 5% dextran sodium sulfate (DSS) in drinking water for 7 days. Rats were treated concurrently with STW 5 and sacrificed 24 h after last drug administration. Fecal samples were used to determine changes in the abundance of selected microbial phyla and genera using real-time PCR. RESULTS Induction of UC led to dysbiosis and changes in the gut microbiota. The changes included an increase in some genera of the Firmicutes, namely Enterococcus, and a decrease in others, namely Blautia, Clostridium, and Lactobacillus. DSS further induced a marked increase in the abundance of Bacteroidetes and Proteobacteria as well as in the relative abundance of Actinobacteria and its genus Bifidobacterium. Methanobrevibacter levels (phylum Euryarchaeota) were also increased. Microbial dysbiosis was associated with changes in various parameters of colonic inflammation. STW 5 effectively guarded against those changes and significantly affected the indices of edema and inflammation in the UC model. Changes in colon length, colon mass index, inflammatory and apoptotic markers, and histological changes induced by DSS were also prevented. CONCLUSIONS Dysbiosis plays a contributing role in the development of DSS-induced UC. Derangements in the microbial flora and associated inflammatory processes were largely prevented by STW 5, suggesting that this effect might contribute towards its beneficial usefulness in this condition.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Ramy M Ammar
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
- Pharmacology Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sabine Rabini
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Heba Abdel-Aziz
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Mohamed T Khayyal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
170
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
171
|
Chang TE, Luo JC, Yang UC, Huang YH, Hou MC, Lee FY. Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. J Chin Med Assoc 2021; 84:580-587. [PMID: 33871395 DOI: 10.1097/jcma.0000000000000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with complicated interaction between immune, gut microbiota, and environmental factors in a genetically vulnerable host. Dysbiosis is often seen in patients with IBD. We aimed to investigate the fecal microbiota in patients with IBD and compared them with a control group in Taiwan. METHODS In this cross-sectional study, we investigated fecal microbiota in 20 patients with IBD and 48 healthy controls. Fecal samples from both IBD patients and controls were analyzed by the next-generation sequencing method and relevant software. RESULTS The IBD group showed lower bacterial richness and diversity compared with the control group. The principal coordinate analysis also revealed the significant structural differences between the IBD group and the control group. These findings were consistent whether the analysis was based on an operational taxonomic unit or amplicon sequence variant. However, no significant difference was found when comparing the composition of fecal microbiota between ulcerative colitis (UC) and Crohn's disease (CD). Further analysis showed that Lactobacillus, Enterococcus, and Bifidobacterium were dominant in the IBD group, whereas Faecalibacterium and Subdoligranulum were dominant in the control group at the genus level. When comparing UC, CD, and control group, Lactobacillus, Bifidobacterium, and Enterococcus were identified as dominant genera in the UC group. Fusobacterium and Escherichia_Shigella were dominant in the CD group. CONCLUSION Compared with the healthy control, the IBD group showed dysbiosis with a significant decrease in both richness and diversity of gut microbiota.
Collapse
Affiliation(s)
- Tien-En Chang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Endoscopic Center for Diagnosis and Therapy, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
- Keelung Hospital, Ministry of Health Welfare, Keelung, Taiwan, ROC
| | - Ueng-Cheng Yang
- National Yang Ming Chiao Tung University, School of Medicine, Institute of Biomedical Informatics, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
172
|
Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path? Vaccines (Basel) 2021; 9:584. [PMID: 34206053 PMCID: PMC8230289 DOI: 10.3390/vaccines9060584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant's microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother-fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant's microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant's health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.
Collapse
Affiliation(s)
- Natalia Nunez
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Louis Réot
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Elisabeth Menu
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
- MISTIC Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
173
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
174
|
Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021; 12:658354. [PMID: 34122415 PMCID: PMC8187770 DOI: 10.3389/fimmu.2021.658354] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
175
|
Scarpellini E, Basilico M, Rinninella E, Carbone F, Schol J, Rasetti C, Abenavoli L, Santori P. Probiotics and gut health. Minerva Gastroenterol (Torino) 2021; 67:314-325. [PMID: 33978391 DOI: 10.23736/s2724-5985.21.02910-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Gut microbiota is a complex ecosystem of bacteria, viruses, archea, protozoa and yeasts in our intestine. It has several functions maintaining human body equilibrium. Microbial " dysbiosis " can be responsible for several gastrointestinal diseases. METHODS to build a narrative review we performed a Pubmed, Medline, EMBASE search for English language papers, reviews, meta-analyses, case series, and randomized controlled trials (RCTs) by keywords and their associations: gut microbiota, dysbiosis, gastrointestinal diseases, probiotics. RESULTS gut microbiota is altered in several gastrointestinal diseases with very different pathophysiology. They range from multi-factorial diseases such as irritable bowel syndrome (IBS), non-alcoholic fatty liver disease (NAFLD) and gastric and colorectal cancers, immunemediated such as celiac disease, inflammatory bowel diseases (IBD), antibioticrelated such as Clostridium Difficile infection (CDI). Microbial dysbiosis re-modulation by probiotics is feasible and safe in some of them. CONCLUSIONS gut microbial dysbiosis is statistically associated with several gastro-intestinal diseases, affecting their pathophysiology. Its reverse by probiotics has some promising evidences of efficacy.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, Madonna del Soccorso General Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy - .,T.A.R.G.I.D., Gasthuisberg University Hospital, KULeuven, Leuven, Belgium -
| | - Martina Basilico
- Clinical Nutrition Unit, and Internal Medicine Unit, Madonna del Soccorso General Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Florencia Carbone
- T.A.R.G.I.D., Gasthuisberg University Hospital, KULeuven, Leuven, Belgium
| | - Jolien Schol
- T.A.R.G.I.D., Gasthuisberg University Hospital, KULeuven, Leuven, Belgium
| | - Carlo Rasetti
- Clinical Nutrition Unit, and Internal Medicine Unit, Madonna del Soccorso General Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierangelo Santori
- Clinical Nutrition Unit, and Internal Medicine Unit, Madonna del Soccorso General Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| |
Collapse
|
176
|
Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies. GASTROENTEROLOGY INSIGHTS 2021. [DOI: 10.3390/gastroent12020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.
Collapse
|
177
|
Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2021; 15:813-826. [PMID: 33175138 DOI: 10.1093/ecco-jcc/jjaa227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The inflammatory bowel diseases [IBD], Crohn's disease and ulcerative colitis, are chronic, idiopathic gastrointestinal diseases. Although their precise aetiology is unknown, it is thought to involve a complex interaction between genetic predisposition and an abnormal host immune response to environmental exposures, probably microbial. Microbial dysbiosis has frequently been documented in IBD. Metabolomics [the study of small molecular intermediates and end products of metabolism in biological samples] provides a unique opportunity to characterize disease-associated metabolic changes and may be of particular use in quantifying gut microbial metabolism. Numerous metabolomic studies have been undertaken in IBD populations, identifying consistent alterations in a range of molecules across several biological matrices. This systematic review aims to summarize these findings. METHODS A comprehensive, systematic search was carried out using Medline and Embase. All studies were reviewed by two authors independently using predefined exclusion criteria. Sixty-four relevant papers were assessed for quality and included in the review. RESULTS Consistent metabolic perturbations were identified, including increases in levels of branched chain amino acids and lipid classes across stool, serum, plasma and tissue biopsy samples, and reduced levels of microbially modified metabolites in both urine [such as hippurate] and stool [such as secondary bile acids] samples. CONCLUSIONS This review provides a summary of metabolomic research in IBD to date, highlighting underlying themes of perturbed gut microbial metabolism and mammalian-microbial co-metabolism associated with disease status.
Collapse
Affiliation(s)
- Kate Gallagher
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Alexandra Catesson
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Julian L Griffin
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Institute of Health Futures, Murdoch University, Perth, WA, Australia
| | - Horace R T Williams
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Department of Gastroenterology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
178
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
179
|
Cardoneanu A, Cozma S, Rezus C, Petrariu F, Burlui AM, Rezus E. Characteristics of the intestinal microbiome in ankylosing spondylitis. Exp Ther Med 2021; 22:676. [PMID: 33986841 PMCID: PMC8112129 DOI: 10.3892/etm.2021.10108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of intestinal microbiota in the development of various systemic diseases has been highlighted over time. Ankylosing spondylitis (AS) is a systemic disease with a complex pathogenesis involving a particular genetic marker and distinctive environmental triggers such as a specific gut dysbiosis. We conducted a prospective case-control study which included 60 subjects from Iasi Rehabilitation Hospital: 28 AS cases and 32 healthy controls. Intestinal microbiota analysis was performed by real-time polymerase chain reaction (qPCR) in stool samples. We performed the quantitative analysis of gut microbiome, focusing both on anti-inflammatory (Bifidobacterium, Lactobacillus, Faecalibacterium prausnitzii) and pro-inflammatory (Bacteroides, Escherichia coli) species. Overall, intestinal bacterial diversity in the AS group was decreased compared to that noted in the control. A significantly decreased level of Clostridium leptum was observed, associated with an increased level of Escherichia coli. We showed correlations between laboratory tests (liver and kidney functional tests, inflammatory syndrome), the presence of HLA-B27, smoker status, the forms of AS with peripheral arthritis vs. pure axial forms and bacterial structures. No significant correlations were shown for disease activity scores, radiological stage of sacroiliitis or for body mass index. Our findings support that the intestinal microbiome in AS patients has a special signature characterized by an inflammatory status. Numerous environmental, genetical, clinical and paraclinical factors can lead to changes in gut bacterial diversity in these cases.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Sebastian Cozma
- Department of Surgery (II), Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Florin Petrariu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| |
Collapse
|
180
|
Levi I, Gurevich M, Perlman G, Magalashvili D, Menascu S, Bar N, Godneva A, Zahavi L, Chermon D, Kosower N, Wolf BC, Malka G, Lotan-Pompan M, Weinberger A, Yirmiya E, Rothschild D, Leviatan S, Tsur A, Didkin M, Dreyer S, Eizikovitz H, Titngi Y, Mayost S, Sonis P, Dolev M, Stern Y, Achiron A, Segal E. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep Med 2021; 2:100246. [PMID: 33948576 PMCID: PMC8080254 DOI: 10.1016/j.xcrm.2021.100246] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease whose precise etiology is unknown. Several studies found alterations in the microbiome of individuals with MS, but the mechanism by which it may affect MS is poorly understood. Here we analyze the microbiome of 129 individuals with MS and find that they harbor distinct microbial patterns compared with controls. To study the functional consequences of these differences, we measure levels of 1,251 serum metabolites in a subgroup of subjects and unravel a distinct metabolite signature that separates affected individuals from controls nearly perfectly (AUC = 0.97). Individuals with MS are found to be depleted in butyrate-producing bacteria and in bacteria that produce indolelactate, an intermediate in generation of the potent neuroprotective antioxidant indolepropionate, which we found to be lower in their serum. We identify microbial and metabolite candidates that may contribute to MS and should be explored further for their causal role and therapeutic potential.
Collapse
Affiliation(s)
- Izhak Levi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Gal Perlman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Magalashvili
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liron Zahavi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Danyel Chermon
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Noa Kosower
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bat Chen Wolf
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Malka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Yirmiya
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daphna Rothschild
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avishag Tsur
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Maria Didkin
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Sapir Dreyer
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Hen Eizikovitz
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Yamit Titngi
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Sue Mayost
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Yael Stern
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan 526200, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
181
|
Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front Physiol 2021; 12:662739. [PMID: 33897470 PMCID: PMC8060628 DOI: 10.3389/fphys.2021.662739] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by the bacterial fermentation of dietary fiber, and they play a critical role in the maintenance of intestinal health. SCFAs are also essential for modulating different processes, and they have anti-inflammatory properties and immunomodulatory effects. As the inflammatory process predisposes the development of cancer and promotes all stages of tumorigenesis, an antitumor effect has also been associated with SCFAs. This is strongly supported by epidemiological studies showing that a diet rich in fiber is linked to a reduced risk of colon cancer and has significant clinical benefits in patients with inflammatory bowel disease (IBD). SCFAs may signal through the metabolite-sensing G protein-coupled receptors free fatty acid receptor 3 [FFAR3 or G protein-coupled receptor 41 (GPR41)], FFAR2 (GPR43), and GPR109A (also known as hydroxycarboxylic acid receptor 2 or HCAR2) expressed in the gut epithelium and immune cells. This review summarizes the existing knowledge regarding the SCFA-mediated suppression of inflammation and carcinogenesis in IBD and colon cancer.
Collapse
Affiliation(s)
- María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
182
|
Gryaznova MV, Solodskikh SA, Panevina AV, Syromyatnikov MY, Dvoretskaya YD, Sviridova TN, Popov ES, Popov VN. Study of microbiome changes in patients with ulcerative colitis in the Central European part of Russia. Heliyon 2021; 7:e06432. [PMID: 33748490 PMCID: PMC7970149 DOI: 10.1016/j.heliyon.2021.e06432] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that affects the colon and rectum. Recently, evidence has emerged about the influence of microbiota on the development of this disease. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been incomplete. In addition, there are no comprehensive studies of the causes of ulcerative colitis and data on the microbiological composition of the intestines of patients with ulcerative colitis in Russia. We carried out a study of the microbiological composition of the intestines of patients with ulcerative colitis and healthy individuals. We found significant changes in the bacteria genera and species in patients with UC compared with the control group using sequencing on the IonTorrent PGM system and subsequent data analysis. In our study we observed a significant increase of the genus Haemophilus, Olsenella, Prevotella, Cedecea, Peptostreptococcus, Faecalibacterium, Lachnospira, Negativibacillus, Butyrivibrio, and the species Bacteroides coprocola, Phascolarctobacterium succinatutens, Dialister succinatiphilus, Sutterella wadsworthensis, Faecalibacterium prausnitzii in patients with ulcerative colitis. In addition, in patients with ulcerative colitis there was a significant decrease in the genus Fusicatenibacter, Butyricimonas, Lactococcus, Eisenbergiella, Coprobacter, Cutibacterium, Falsochrobactrum, Brevundimonas, Yersinia, Leuconostoc and in the species Fusicatenibacter saccharivorans. We found confirmation of our data with literary sources and studies of UC. In addition, we discovered a few taxa such as Negativibacillus spp. and Falsochrobactrum spp. that have not been previously found in human stool samples. Our data confirm that more research is needed to understand the role of microbiome changes in the development of UC in different people populations.
Collapse
Affiliation(s)
- M V Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - S A Solodskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - A V Panevina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - M Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yu D Dvoretskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - T N Sviridova
- Department of Hospital Therapy and Endocrinology, Voronezh State Medical University Named After N.N. Burdenko, 394036 Voronezh, Russia.,Family Medicine Center "Olympus of Health", 394036 Voronezh, Russia
| | - E S Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - V N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
183
|
Aldars-García L, Marin AC, Chaparro M, Gisbert JP. The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22063076. [PMID: 33802883 PMCID: PMC8002696 DOI: 10.3390/ijms22063076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The importance of the gut microbiota in human health is currently well established. It contributes to many vital functions such as development of the host immune system, digestion and metabolism, barrier against pathogens or brain–gut communication. Microbial colonization occurs during infancy in parallel with maturation of the host immune system; therefore, an adequate cross-talk between these processes is essential to generating tolerance to gut microbiota early in life, which is crucial to prevent allergic and immune-mediated diseases. Inflammatory bowel disease (IBD) is characterized by an exacerbated immune reaction against intestinal microbiota. Changes in abundance in the gut of certain microorganisms such as bacteria, fungi, viruses, and archaea have been associated with IBD. Microbes that are commonly found in high abundance in healthy gut microbiomes, such as F. prausnitzii or R. hominis, are reduced in IBD patients. E. coli, which is usually present in a healthy gut in very low concentrations, is increased in the gut of IBD patients. Microbial taxa influence the immune system, hence affecting the inflammatory status of the host. This review examines the IBD microbiome profile and presents IBD as a model of dysbiosis.
Collapse
Affiliation(s)
- Laila Aldars-García
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence:
| | - Alicia C. Marin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (A.C.M.); (M.C.); (J.P.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| |
Collapse
|
184
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
185
|
Shi XR, Chen BY, Lin WZ, Li YL, Wang YL, Liu Y, Huang JJ, Zhang WW, Ma XX, Shao S, Li RG, Duan SZ. Microbiota in Gut, Oral Cavity, and Mitral Valves Are Associated With Rheumatic Heart Disease. Front Cell Infect Microbiol 2021; 11:643092. [PMID: 33768014 PMCID: PMC7985333 DOI: 10.3389/fcimb.2021.643092] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatic heart disease refers to the long-term damage of heart valves and results from an autoimmune response to group A Streptococcus infection. This study aimed to analyze the microbiota composition of patients with rheumatic heart disease and explore potential function of microbiota in this disease. First, we revealed significant alterations of microbiota in feces, subgingival plaques, and saliva of the patients compared to control subjects using 16S rRNA gene sequencing. Significantly different microbial diversity was observed in all three types of samples between the patients and control subjects. In the gut, the patients possessed higher levels of genera including Bifidobacterium and Eubacterium, and lower levels of genera including Lachnospira, Bacteroides, and Faecalibacterium. Coprococcus was identified as a super-generalist in fecal samples of the patients. Significant alterations were also observed in microbiota of subgingival plaques and saliva of the patients compared to control subjects. Second, we analyzed microbiota in mitral valves of the patients and identified microbes that could potentially transmit from the gut or oral cavity to heart valves, including Streptococcus. Third, we further analyzed the data using random forest model and demonstrated that microbiota in the gut, subgingival plaque or saliva could distinguish the patients from control subjects. Finally, we identified gut/oral microbes that significantly correlated with clinical indices of rheumatic heart disease. In conclusion, patients with rheumatic heart disease manifested important alterations in microbiota that might distinguish the patients from control subjects and correlated with severity of this disease.
Collapse
Affiliation(s)
- Xue-Rui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing-Juan Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Wei Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xin Ma
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuai Shao
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
186
|
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B, Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2021; 320:G328-G337. [PMID: 33439104 PMCID: PMC8828266 DOI: 10.1152/ajpgi.00360.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the availability of various diagnostic tests for inflammatory bowel diseases (IBD), misdiagnosis of IBD occurs frequently, and thus, there is a clinical need to further improve the diagnosis of IBD. As gut dysbiosis is reported in patients with IBD, we hypothesized that supervised machine learning (ML) could be used to analyze gut microbiome data for predictive diagnostics of IBD. To test our hypothesis, fecal 16S metagenomic data of 729 subjects with IBD and 700 subjects without IBD from the American Gut Project were analyzed using five different ML algorithms. Fifty differential bacterial taxa were identified [linear discriminant analysis effect size (LEfSe): linear discriminant analysis (LDA) score > 3] between the IBD and non-IBD groups, and ML classifications trained with these taxonomic features using random forest (RF) achieved a testing area under the receiver operating characteristic curves (AUC) of ∼0.80. Next, we tested if operational taxonomic units (OTUs), instead of bacterial taxa, could be used as ML features for diagnostic classification of IBD. Top 500 high-variance OTUs were used for ML training, and an improved testing AUC of ∼0.82 (RF) was achieved. Lastly, we tested if supervised ML could be used for differentiating Crohn's disease (CD) and ulcerative colitis (UC). Using 331 CD and 141 UC samples, 117 differential bacterial taxa (LEfSe: LDA score > 3) were identified, and the RF model trained with differential taxonomic features or high-variance OTU features achieved a testing AUC > 0.90. In summary, our study demonstrates the promising potential of artificial intelligence via supervised ML modeling for predictive diagnostics of IBD using gut microbiome data.NEW & NOTEWORTHY Our study demonstrates the promising potential of artificial intelligence via supervised machine learning modeling for predictive diagnostics of different types of inflammatory bowel diseases using fecal gut microbiome data.
Collapse
Affiliation(s)
- Ishan Manandhar
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmad Alimadadi
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sachin Aryal
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Patricia B. Munroe
- 2Clinical Pharmacology, William Harvey Research Institute &
National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts
and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bina Joe
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
187
|
Kim ES, Tarassishin L, Eisele C, Barre A, Nair N, Rendon A, Hawkins K, Debebe A, White S, Thjømøe A, Mørk E, Bento-Miranda M, Panchal H, Agrawal M, Patel A, Chen CL, Kornbluth A, George J, Legnani P, Maser E, Loudon H, Mella MT, Stone J, Dubinsky M, Sabino J, Torres J, Colombel JF, Peter I, Hu J. Longitudinal Changes in Fecal Calprotectin Levels Among Pregnant Women With and Without Inflammatory Bowel Disease and Their Babies. Gastroenterology 2021; 160:1118-1130.e3. [PMID: 33307026 DOI: 10.1053/j.gastro.2020.11.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The effect of pregnancy on inflammatory bowel disease (IBD) remains poorly understood. We aimed to monitor intestinal inflammation using fecal calprotectin (FC) in pregnant women and their babies during early life. METHODS Pregnant women with or without IBD and their infants were prospectively enrolled. FC levels were measured at each trimester of pregnancy and in babies throughout the first 3 years of life. Repeated-measures analysis was applied to investigate changes in FC levels while adjusting for confounders. The FC levels were correlated with the bacterial abundance in both mothers and babies. RESULTS Six hundred and fourteen fecal samples from 358 mothers (98 with IBD) and 1005 fecal samples from 289 infants (76 born to IBD mothers) were analyzed. Pregnant Patients with IBD maintained higher FC levels through pregnancy compared with controls (P = 7.5 × 10-54). FC gradually increased in controls and declined in Patients with IBD throughout pregnancy (P for interaction = 5.8 × 10-7). Babies born to mothers with IBD presented with significantly higher FC levels than those born to controls up to 3 years of age, after adjusting for sex, delivery mode, feeding behavior, and antibiotics exposure (2 weeks to 3 months of age, P = .015; 12-36 months of age, P = .00003). Subdoligranulum, Roseburia, Fusicatenibacter, and Alistipes negatively correlated, and Streptococcus, Prevotella, Escherichia-Shigella, and Bifidobacterium positively correlated with maternal FC levels at T3. Faecalibacterium, Bifidobacterium, and Alistipes showed negative correlations, and Streptococcus were positively correlated with FC levels within 3 months of birth. CONCLUSIONS Pregnancy is associated with decreased inflammatory activity in mothers with IBD. Higher FC levels in babies born to mothers with IBD suggest subclinical inflammation in early life, the long-term consequences of which are uncertain.
Collapse
Affiliation(s)
- Eun Soo Kim
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Leonid Tarassishin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caroline Eisele
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amelie Barre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Cochin Hospital, Université de Paris, Paris, France
| | - Nilendra Nair
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alexa Rendon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kelly Hawkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anketse Debebe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sierra White
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Mario Bento-Miranda
- Division of Gastroenterology, Hospital and University Center of Coimbra, Coimbra, Portugal
| | - Hinaben Panchal
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anish Patel
- Division of Gastroenterology, Brooke Army Medical Center, San Antonio, Texas
| | - Ching-Lynn Chen
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Asher Kornbluth
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James George
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Legnani
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elana Maser
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Holly Loudon
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria-Teresa Mella
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joanne Stone
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marla Dubinsky
- Department of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, New York
| | - João Sabino
- Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Joana Torres
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Surgical Department, Hospital Beatriz Ângelo, Loures, Portugal
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | |
Collapse
|
188
|
Du G, Dong W, Yang Q, Yu X, Ma J, Gu W, Huang Y. Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington's Disease. Front Immunol 2021; 11:603594. [PMID: 33679692 PMCID: PMC7933529 DOI: 10.3389/fimmu.2020.603594] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that gut dysbiosis may play a regulatory role in the onset and progression of Huntington’s disease (HD). However, any alterations in the fecal microbiome of HD patients and its relation to the host cytokine response remain unknown. The present study investigated alterations and host cytokine responses in patients with HD. We enrolled 33 HD patients and 33 sex- and age- matched healthy controls. Fecal microbiota communities were determined through 16S ribosomal DNA gene sequencing, from which we analyzed fecal microbial richness, evenness, structure, and differential abundance of individual taxa between HD patients and healthy controls. HD patients were evaluated for their clinical characteristics, and the relationships of fecal microbiota with these clinical characteristics were analyzed. Plasma concentrations of interferon gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor necrosis factor alpha were measured by Meso Scale Discovery (MSD) assays, and relationships between microbiota and cytokine levels were analyzed in the HD group. HD patients showed increased α-diversity (richness), β-diversity (structure), and altered relative abundances of several taxa compared to those in healthy controls. HD-associated clinical characteristics correlated with the abundances of components of fecal microbiota at the genus level. Genus Intestinimonas was correlated with total functional capacity scores and IL-4 levels. Our present study also revealed that genus Bilophila were negatively correlated with proinflammatory IL-6 levels. Taken together, our present study represents the first to demonstrate alterations in fecal microbiota and inflammatory cytokine responses in HD patients. Further elucidation of interactions between microbial and host immune responses may help to better understand the pathogenesis of HD.
Collapse
Affiliation(s)
- Gang Du
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueying Yu
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Neurology Department, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Weihong Gu
- Neurology Department, China-Japan Friendship Hospital, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
189
|
Lo Sasso G, Khachatryan L, Kondylis A, Battey JND, Sierro N, Danilova NA, Grigoryeva TV, Markelova MI, Khusnutdinova DR, Laikov AV, Salafutdinov II, Romanova YD, Siniagina MN, Vasiliev IY, Boulygina EA, Solovyeva VV, Garanina EE, Kitaeva KV, Ivanov KY, Chulpanova DS, Kletenkov KS, Valeeva AR, Odintsova AK, Ardatskaya MD, Abdulkhakov RA, Ivanov NV, Peitsch MC, Hoeng J, Abdulkhakov SR. Inflammatory Bowel Disease-Associated Changes in the Gut: Focus on Kazan Patients. Inflamm Bowel Dis 2021; 27:418-433. [PMID: 32766755 PMCID: PMC7885336 DOI: 10.1093/ibd/izaa188] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Lusine Khachatryan
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James N D Battey
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Natalia A Danilova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Tatiana V Grigoryeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Maria I Markelova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Dilyara R Khusnutdinova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Alexander V Laikov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ilnur I Salafutdinov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Yulia D Romanova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Mariia N Siniagina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ilya Yu Vasiliev
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Eugenia A Boulygina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Valeriya V Solovyeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Ekaterina E Garanina
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Kristina V Kitaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Konstantin Y Ivanov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Darja S Chulpanova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Konstantin S Kletenkov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| | - Alina R Valeeva
- Department of Clinical Immunology and Allergology, Kazan State Medical University, Kazan, Tatarstan, Russian Federation
| | - Alfiya Kh Odintsova
- Department of Gastroenterology, Republican Clinical Hospital of Tatarstan Republic, Kazan, Tatarstan, Russian Federation
| | - Maria D Ardatskaya
- Central State Medical Academy of Administrative Department of the President of the Russian Federation, Moscow, Russian Federation
| | - Rustam A Abdulkhakov
- Department of Clinical Immunology and Allergology, Kazan State Medical University, Kazan, Tatarstan, Russian Federation
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sayar R Abdulkhakov
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Tatarstan, Russian Federation
| |
Collapse
|
190
|
Cao X, Liu K, Liu J, Liu YW, Xu L, Wang H, Zhu Y, Wang P, Li Z, Wen J, Shen C, Li M, Nie Z, Kong XJ. Dysbiotic Gut Microbiota and Dysregulation of Cytokine Profile in Children and Teens With Autism Spectrum Disorder. Front Neurosci 2021; 15:635925. [PMID: 33642989 PMCID: PMC7902875 DOI: 10.3389/fnins.2021.635925] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation and the gut-brain axis have been implicated in the pathogenesis of autism spectrum disorders (ASDs). To further understand the relationship between aberrant immune responses and dysbiotic features of the gut microbiome in ASD, we enrolled 45 ASD individuals and 41 healthy control subjects with ages ranging from 2 to 19 years. We found that ASD group subjects have significantly higher plasma levels of IL-2, IL-4, IL-5, IL-6, IL-10, TNF-α, TNF-β, and IFN-γ when compared to healthy controls (FDR-adjusted p < 0.05). The plasma levels of pro-inflammatory cytokines IFN-γ and IL-6 are found to be further associated with several largely pathogenic gut microbiota uniquely detected in subjects with ASD. Furthermore, the ASD gut microbiome is characterized by reduced levels of several beneficial microbiota, including Bacteroides (FDR-adjusted p < 0.01) and Lachnospiraceae (FDR-adjusted p < 0.001). Analysis of Lachnospiraceae family and genus level taxa suggested that relative abundances of such taxa are negatively correlated with pro-inflammatory signaling cytokines IFN-γ and IL-6, particularly in subjects with severe ASD as defined by CARS (p < 0.05). Several largely pathogenic genera are determined to be associated with the pro-inflammatory cytokines IFN-γ and IL-6 (FDR-adjusted p < 0.1). Additionally, IL-4 is significantly negatively correlated with CARS total score (p < 0.05). Based on such results, we propose that the association between the disturbances of specific cytokines and alterations in gut microbiota abundance observed in children and adolescents with ASD provides additional evidence on the induction of aberrant pro-inflammatory mechanisms in ASD and its early diagnosis.
Collapse
Affiliation(s)
- Xia Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Li Xu
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Wang
- Hong-Ta District Maternal and Child Health Hospital, Yuxi, China
| | - Yunhui Zhu
- Hong-Ta District Maternal and Child Health Hospital, Yuxi, China
| | - Pengfei Wang
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiwei Li
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Wen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Shen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng Li
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zuqing Nie
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
191
|
Single Donor FMT Reverses Microbial/Immune Dysbiosis and Induces Clinical Remission in a Rat Model of Acute Colitis. Pathogens 2021; 10:pathogens10020152. [PMID: 33540919 PMCID: PMC7913212 DOI: 10.3390/pathogens10020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Deviation in the gut microbial composition is involved in various pathologies, including inflammatory bowel disease (IBD). Faecal microbiota transplant (FMT) can act as a promising approach to treat IBD by which changes in microbiome can be reversed and homeostasis restored. Therefore, the aim of this study was to investigate the effect of FMT on the remission of acute inflammatory response using dextran sulfate sodium (DSS)-induced rat colitis model. Faecal microbial communities were analysed using the 16S rRNA approach, and clinical manifestations together with histological/haematological/biochemical/immunological analyses were assessed. Our study demonstrated significant shifts in the dominant species of microbiota under inflammatory conditions induced by DSS and evident restoration effect of FMT treatment on microbial composition. These faecal microbial alterations in FMT-treated rats led to a relative restoration of colon length, and a significant decrease in both epithelium damage and disease severity, which was reflected in lower serum pro-inflammatory cytokine levels. Haematological/biochemical parameters in DSS-treated animals showed signs of anaemia with a significant reduction in red blood cell count together with increasing levels of total bilirubin, creatinine and phosphorus suggesting potential protective effect of FMT. These results support FMT as a valuable therapeutic strategy to control inflammation during acute colitis.
Collapse
|
192
|
Boland K, Bedrani L, Turpin W, Kabakchiev B, Stempak J, Borowski K, Nguyen G, Steinhart AH, Smith MI, Croitoru K, Silverberg MS. Persistent Diarrhea in Patients With Crohn's Disease After Mucosal Healing Is Associated With Lower Diversity of the Intestinal Microbiome and Increased Dysbiosis. Clin Gastroenterol Hepatol 2021; 19:296-304.e3. [PMID: 32220613 PMCID: PMC7511440 DOI: 10.1016/j.cgh.2020.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In patients with inflammatory bowel diseases (IBDs), symptoms do not always associate with the severity of endoscopic inflammation and can persist after mucosal healing. We investigated whether symptoms in patients with successfully treated IBD are related to the composition of the intestinal microbiome. METHODS We analyzed 590 tissue biopsy specimens from 215 patients with IBD and 48 healthy individuals (controls). We obtained mucosal biopsy specimens from 2 colon sites (ascending and rectosigmoid) and from the terminal ileum along with clinical data. Bacterial DNA was extracted from the biopsy specimens and the V4 region of 16s ribosomal RNA sequenced by Miseq and processed using the QIIME v1.9 pipeline. RESULTS Mucosal biopsy specimens from patients with Crohn's disease (CD) who achieved mucosal healing (Mayo scores of 0-1 or segmental endoscopic severity CD scores of 0-5) had lower Chao1 diversity than biopsy specimens from patients with ulcerative colitis (UC) or unclassified IBD (IBD-U), or controls. After endoscopic evidence of improvement in patients with UC or IBD-U, diversity of the tissue-associated microbiota did not differ significantly from that of controls. Colon biopsy specimens from patients with CD had lower microbial diversity, before and after healing (segmental endoscopic severity CD scores, 0-2), than colon biopsy specimens from controls (P < .002). In patients with CD who achieved mucosal healing, residual clinical activity (CD activity index scores >150; P = .03) and persistent diarrhea were associated with reduced microbial diversity (P = .01). Continued diarrhea was associated with a trend toward dysbiosis, based on the microbial dysbiosis index (P = .059). In patients with UC or IBD-U with moderate to severe inflammation, increasing severity of diarrhea was associated with reduced microbial diversity (P = .03). CONCLUSIONS In an analysis of biopsy specimens from patients with IBD and controls, we found that despite endoscopic evidence of improvement or remission, α-diversity of the tissue-associated intestinal microbiome remained lower in patients with CD than in controls. This observation, along with the reduced Chao1 diversity and greater dysbiosis in intestinal microbiota of patients with residual symptoms of IBD, indicates that microbiome composition could be associated with persistent diarrhea.
Collapse
Affiliation(s)
- Karen Boland
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| | - Larbi Bedrani
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Joanne Stempak
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Krzysztof Borowski
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Geoffrey Nguyen
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada
| | - A Hillary Steinhart
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada,Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Mark S Silverberg
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada,Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| |
Collapse
|
193
|
Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol 2021; 36:320-328. [PMID: 32815163 DOI: 10.1111/jgh.15222] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM We comprehensively carry out a systematic review and meta-analysis of previous studies to determine the association between intestinal Faecalibacterium prausnitzii (F. prausnitzii) and inflammatory bowel disease (IBD) in human studies. METHODS A systematic literature search of PubMed, Embase, and the Cochrane Library database was conducted until April 1, 2020. Inclusion criteria were studies involving patients with Crohn's disease (CD) or ulcerative colitis (UC) with abundance of F. prausnitzii. The quality of the studies was assessed by the modified Newcastle-Ottawa scale. RESULTS A total of 1669 subjects (427 CD patients, 560 UC patients, and 682 healthy controls) were enrolled from 16 studies. Both CD (standardized mean difference [SMD]: -1.36; 95% CI, -1.74 to -0.98; P < 0.00001) and UC patients (SMD: -0.81; 95% CI, -1.21 to -0.42; P < 0.0001) had a lower abundance of F. prausnitzii than the healthy controls. Compared with the IBD remission patients, the IBD active patients had lower levels of F. prausnitzii (SMD: -0.56; 95% CI, -0.91 to -0.21; P = 0.002). In the subgroup analyses, the abundance of F. prausnitzii was reduced in both active CD patients (SMD: -0.78; 95% CI, -1.51 to -0.04; P = 0.04) and active UC patients (SMD:-0.44; 95%CI, -0.81 to -0.07; P = 0.02) when compared with the patients with CD or UC in remission, respectively. CONCLUSION A negative association between abundance of F. prausnitzii and IBD activity is observed, but a cut-off level of F. prausnitzii to diagnose and/or to start treating IBD is not determined.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuzhen Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie He
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
194
|
Effenberger M, Reider S, Waschina S, Bronowski C, Enrich B, Adolph TE, Koch R, Moschen AR, Rosenstiel P, Aden K, Tilg H. Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. J Crohns Colitis 2021; 15:88-98. [PMID: 32687146 DOI: 10.1093/ecco-jcc/jjaa152] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The microbial ecosystem seems to be an important player for therapeutic intervenption in inflammatory bowel disease [IBD]. We assessed longitudinal microbiome changes in IBD patients undergoing therapy with either azathioprine [AZA] or anti-tumour necrosis factor [anti-TNF] antibodies. We predicted the metabolic microbial community exchange and linked it to clinical outcome. METHODS Faecal and blood samples were collected from 65 IBD patients at baseline and after 12 and 30 weeks on therapy. Clinical remission was defined as Crohn's Disease Activity Index [CDAI] < 150 in Crohn´s disease [CD], partial Mayo score <2 in ulcerative colitis [UC], and faecal calprotectin values <150 µg/g and C-reactive protein <5 mg/dl. 16S rRNA amplicon sequencing was performed. To predict microbial community metabolic processes, we constructed multispecies genome-scale metabolic network models. RESULTS Paired Bray-Curtis distance between baseline and follow-up time points was significantly different for UC patients treated with anti-TNF antibodies. Longitudinal changes in taxa composition at phylum level showed a significant decrease of Proteobacteria and an increase of Bacteroidetes in CD patients responding to both therapies. At family level, Lactobacilli were associated with persistent disease and Bacteroides abundance with remission in CD. In-silico simulations of microbial metabolite exchange predicted a 1.7-fold higher butyrate production capacity of patients in remission compared with patients without remission [p = 0.041]. In this model, the difference in butyrate production between patients in remission and patients without remission was most pronounced in the CD group treated with AZA [p = 0.008]. CONCLUSIONS In-silico simulation identifies microbial butyrate synthesis predictive of therapeutic efficacy in IBD.
Collapse
Affiliation(s)
- M Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Reider
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Waschina
- Institute for Human Nutrition and Food Science, Division Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - C Bronowski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - B Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - T E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - R Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - A R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - P Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - K Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - H Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
195
|
Xie Z, Wang Y, Yang G, Han J, Zhu L, Li L, Zhang S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis 2021; 12:79. [PMID: 33436549 PMCID: PMC7804279 DOI: 10.1038/s41419-021-03395-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder that primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Owing to its increasing prevalence in Eastern countries and the intractable challenges faced during IBD treatment, extensive research on IBD has been carried out over the last few years. Although the precise aetiology of IBD is undefined, the currently accepted hypothesis for IBD pathogenesis considers it to be a combination of environment, genetic predisposition, gut microbiota, and abnormal immunity. A recently emerged signalling pathway, the Hippo pathway, acts as a key regulator of cell growth, tissue homoeostasis, organ size, and has been implicated in several human cancers. In the past few years, studies have revealed the importance of the Hippo pathway in gastrointestinal tract physiology and gastrointestinal diseases, such as colorectal cancer and IBD. However, the role of the Hippo pathway and its exact impact in IBD remains to be elucidated. This review summarises the latest scientific literature on the involvement of this pathway in IBD from the following perspectives that account for the IBD pathogenesis: intestinal epithelial cell regeneration, immune regulation, gut microbiota, and angiogenesis. A comprehensive understanding of the specific role of the Hippo pathway in IBD will provide novel insights into future research directions and clinical implications of the Hippo pathway.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guang Yang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liguo Zhu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
196
|
Pandit L, Cox LM, Malli C, D'Cunha A, Rooney T, Lokhande H, Willocq V, Saxena S, Chitnis T. Clostridium bolteae is elevated in neuromyelitis optica spectrum disorder in India and shares sequence similarity with AQP4. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e907. [PMID: 33148687 PMCID: PMC7643530 DOI: 10.1212/nxi.0000000000000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To understand the role of gut microbiome in influencing the pathogenesis of neuromyelitis optica spectrum disorders (NMOSDs) among patients of south Indian origin. METHODS In this case-control study, stool and blood samples were collected from 39 patients with NMOSD, including 17 with aquaporin 4 IgG antibodies (AQP4+) and 36 matched controls. 16S ribosomal RNA (rRNA) sequencing was used to investigate the gut microbiome. Peripheral CD4+ T cells were sorted in 12 healthy controls, and in 12 patients with AQP4+ NMOSD, RNA was extracted and immune gene expression was analyzed using the NanoString nCounter human immunology kit code set. RESULTS Microbiota community structure (beta diversity) differed between patients with AQP4+ NMOSD and healthy controls (p < 0.001, pairwise PERMANOVA test). Linear discriminatory analysis effect size identified several members of the microbiota that were altered in patients with NMOSD, including an increase in Clostridium bolteae (effect size 4.23, p 0.00007). C bolteae was significantly more prevalent (p = 0.02) among patients with AQP4-IgG+ NMOSD (n = 8/17 subjects) compared with seronegative patients (n = 3/22) and was absent among healthy stool samples. C bolteae has a highly conserved glycerol uptake facilitator and related aquaporin protein (p59-71) that shares sequence homology with AQP4 peptide (p92-104), positioned within an immunodominant (AQP4 specific) T-cell epitope (p91-110). Presence of C bolteae correlated with expression of inflammatory genes associated with both innate and adaptive immunities and particularly involved in plasma cell differentiation, B cell chemotaxis, and Th17 activation. CONCLUSION Our study described elevated levels of C bolteae associated with AQP4+ NMOSD among Indian patients. It is possible that this organism may be causally related to the immunopathogenesis of this disease in susceptible individuals.
Collapse
Affiliation(s)
- Lekha Pandit
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Cox
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chaithra Malli
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anitha D'Cunha
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy Rooney
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hrishikesh Lokhande
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valerie Willocq
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shrishti Saxena
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
197
|
Wilmanski T, Rappaport N, Diener C, Gibbons SM, Price ND. From taxonomy to metabolic output: what factors define gut microbiome health? Gut Microbes 2021; 13:1-20. [PMID: 33890557 PMCID: PMC8078686 DOI: 10.1080/19490976.2021.1907270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Many studies link the composition of the human gut microbiome to aberrant health states. However, our understanding of what constitutes a 'healthy' gut ecosystem, and how to effectively monitor and maintain it, are only now emerging. Here, we review current approaches to defining and monitoring gut microbiome health, and outline directions for developing targeted ecological therapeutics. We emphasize the importance of identifying which ecological features of the gut microbiome are most resonant with host molecular phenotypes, and highlight certain gut microbial metabolites as potential biomarkers of gut microbiome health. We further discuss how multi-omic measurements of host phenotypes, dietary information, and gut microbiome profiles can be integrated into increasingly sophisticated host-microbiome mechanistic models that can be leveraged to design personalized interventions. Overall, we summarize current progress on defining microbiome health and highlight a number of paths forward for engineering the ecology of the gut to promote wellness.
Collapse
Affiliation(s)
| | | | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Onegevity Health, New York, NY, USA
| |
Collapse
|
198
|
Wu C, Li M, Chen W. Characteristics of Gut Microbiota in Cerulein-Induced Chronic Pancreatitis. Diabetes Metab Syndr Obes 2021; 14:285-294. [PMID: 33536770 PMCID: PMC7850397 DOI: 10.2147/dmso.s291822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although clinical trials and animal models have evaluated the alterations of the microbiome in chronic pancreatitis (CP), the gut microbiota composition and diversity in cerulein-induced CP is unknown. This study aimed to evaluate the changes of gut microbiota in a CP mice model, and to determine whether these gut microbiota changes were consistent with those in patients with CP. METHODS A total of ten male C57BL/6j mice were randomly divided into two groups. The experimental group were injected intraperitoneally with cerulein, while the normal control group received comparable injections of saline, the entire molding process lasted 6 weeks. Histology analysis was used to assess pancreatic morphological changes and fibrosis, meanwhile the gut microbiota composition and diversity were analyzed by high throughput sequencing. Spearman correlation analysis was used to determine whether body weight and weight changes were associated with changes in gut microbial abundance. RESULTS The bacterial richness and diversity of CP mice decreased, and the gut microbiota changed, including lower levels of Firmicutes, decreased Firmicutes/Bacteroidetes ratio and increased abundance of Bacteroidetes, Actinobacteria and Verrucomicrobia. We found statistically significant differences in body weight and weight changes between the two groups. However, there was no significant correlation between alterations of gut microbiota and in body weight and weight changes. CONCLUSION Our results showed that the gut microbiota in cerulein-induced CP was changed.
Collapse
Affiliation(s)
- Chunhua Wu
- Department of General Practice, Zhongda Hospital, Medical School, Southeast University, Nanjing210009, People’s Republic of China
| | - Mengmeng Li
- Department of Ophthalmology, Xuzhou First People’s Hospital, Xuzhou221000, People’s Republic of China
| | - Wenji Chen
- Department of General Practice, Zhongda Hospital, Medical School, Southeast University, Nanjing210009, People’s Republic of China
- Correspondence: Wenji Chen Email
| |
Collapse
|
199
|
Vetreno RP, Massey V, Crews FT. Long-lasting microbial dysbiosis and altered enteric neurotransmitters in adult rats following adolescent binge ethanol exposure. Addict Biol 2021; 26:e12869. [PMID: 31880056 PMCID: PMC7319904 DOI: 10.1111/adb.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Human alcoholism and ethanol exposure of adult mice cause acute microbial dysbiosis. Adolescent binge drinking is common, but the effect of adolescent ethanol exposure on the adult microbiome and enteric neurotransmitters has not been studied. In the current study, male Wistar rats received adolescent intermittent ethanol (AIE) treatment, and fecal samples were collected on postnatal day (P)54 and P95 for bacterial 16S rRNA amplicon sequencing. Cecal tissue was collected on P95 for analysis of innate immune and neurotransmitter marker expression. At the genus level, AIE treatment altered the relative abundance of several microbes, including decreased relative abundance of Dehalobacterium and CF231 (a member of the Paraprevotellaceae family) that persisted into adulthood. Across aging, the relative abundance of several microbes was altered in both control- and AIE-treated rats. At P95, AIE exposure was associated with increased cecal serotonin levels and reduced choline acetyltransferase gene expression. Taxonomic shifts at P54 and at P95 suggest that AIE causes both immediate and lasting microbial dysbiosis. The lasting microbial dysbiosis was accompanied by alterations of enteric neurotransmitters.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hi, Chapel Hill, North Carolina, USA
| | - Veronica Massey
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hi, Chapel Hill, North Carolina, USA
| |
Collapse
|
200
|
Xu N, Bai X, Cao X, Yue W, Jiang W, Yu Z. Changes in intestinal microbiota and correlation with TLRs in ulcerative colitis in the coastal area of northern China. Microb Pathog 2020; 150:104707. [PMID: 33352216 DOI: 10.1016/j.micpath.2020.104707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the communities of fecal microbiota and the role of Toll-like receptors in patients with ulcerative colitis in the coastal area of northern China. METHODS Stool samples from 31 patients with ulcerative colitis and 12 healthy individuals were collected. The total bacterial genomic DNA was extracted, and the V3+V4 hypervariable region in the bacterial 16S rRNA gene sequence was amplified by polymerase chain reaction (PCR). High-throughput sequencing analysis was performed on the Illumina Hiseq platform. The expression of TLR2, TLR4, Tollip, PPAR-γ, IL-6, and TNF-α in the colonic mucosa was measured by Western blots. RESULTS The diversity of the fecal microbiota in patients with ulcerative colitis was significantly less than that in healthy control individuals (p < 0.05). The proportion of Bacteroidetes was significantly reduced (p < 0.01), whereas Proteobacteria was prevalent (p < 0.01) in patients with ulcerative colitis. At the genus level, the relative abundance of Streptococcus and Anaerostipes was significantly increased (p < 0.05), whereas the proportion of Bacteroides, Lachnospira, Ruminococcus, Phascolarctobacterium, and Coprococcus was significantly decreased in patients with ulcerative colitis (p < 0.05). The diversity indexes of fecal microbiota in patients with ulcerative colitis were negatively correlated with disease severity (p < 0.05). The relative abundance of Enterobacteriaceae was positively correlated with disease severity, and the relative abundance of Phascolarctobacterium, Anaerostipes, Fusobacterium, Parabacteroides, Oscillospira, and Ochrobactrum were negatively correlated with disease severity. The expression levels of TLR2 and TLR4 in the intestinal mucosa were positively correlated with the relative abundance of Streptococcus and Enterobacteriaceae, respectively (r = 0.481, p = 0.007; r = 0.455, p = 0.017). CONCLUSION There were significant changes in the diversity and composition of the fecal microbiota in patients with ulcerative colitis compared to healthy individuals. The dysbiosis of gut microbiota and correlation with TLRs might play important roles in the pathogenesis and progression of ulcerative colitis.
Collapse
Affiliation(s)
- Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Xuelian Bai
- Department of Microbiology, College of Basic Medical Sciences, Binzhou Medical University, 264100, PR China
| | - Xiaoling Cao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Wenjing Yue
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Weiwei Jiang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 264100, PR China
| | - Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, 264100, PR China.
| |
Collapse
|