151
|
Chan WE, Wang YL, Lin HH, Chen SSL. Effect of extension of the cytoplasmic domain of human immunodeficiency type 1 virus transmembrane protein gp41 on virus replication. J Virol 2004; 78:5157-69. [PMID: 15113898 PMCID: PMC400382 DOI: 10.1128/jvi.78.10.5157-5169.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The biological significance of the presence of a long cytoplasmic domain in the envelope (Env) transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) is still not fully understood. Here we examined the effects of cytoplasmic tail elongation on virus replication and characterized the role of the C-terminal cytoplasmic tail in interactions with the Gag protein. Extensions with six and nine His residues but not with fewer than six His residues were found to severely inhibit virus replication through decreased Env electrophoretic mobility and reduced Env incorporation compared to the wild-type virus. These two mutants also exhibited distinct N glycosylation and reduced cell surface expression. An extension of six other residues had no deleterious effect on infectivity, even though some mutants showed reduced Env incorporation into the virus and/or decreased cell surface expression. We further show that these elongated cytoplasmic tails in a format of the glutathione S-transferase fusion protein still interacted effectively with the Gag protein. In addition, the immediate C terminus of the cytoplasmic tail was not directly involved in interactions with Gag, but the region containing the last 13 to 43 residues from the C terminus was critical for Env-Gag interactions. Taken together, our results demonstrate that HIV-1 Env can tolerate extension at its C terminus to a certain degree without loss of virus infectivity and Env-Gag interactions. However, extended elongation in the cytoplasmic tail may impair virus infectivity, Env cell surface expression, and Env incorporation into the virus.
Collapse
Affiliation(s)
- Woan-Eng Chan
- Institute of Biomedical Sciences, Academia Sinica, 128 Section 2 Yen-Chiu-Yuan Road, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | |
Collapse
|
152
|
Bhattacharya J, Peters PJ, Clapham PR. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol 2004; 78:5500-6. [PMID: 15113929 PMCID: PMC400338 DOI: 10.1128/jvi.78.10.5500-5506.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope comprises a surface gp120 and a transmembrane gp41. The cytoplasmic domain of gp41 contains cysteine residues (C764 and C837) which are targets for palmitoylation and were reported to be required for envelope association with lipid rafts and assembly on budding virions (I. Rousso, M. B. Mixon, B. K. Chen, and P. S. Kim, Proc. Natl. Acad. Sci. USA 97:13523-13525, 2000). Several infectious HIV-1 clones contain envelopes that have no gp41 cytoplasmic cysteines. Since no other gp41 amino acid is a target for palmitoylation, these clones imply that palmitoylation is not essential for envelope trafficking and assembly. Here, we show that HIV-1 envelope mutants that lack gp41 cytoplasmic cysteines are excluded from light lipid rafts. Envelopes that contained residues with bulky hydrophobic side chains instead of cysteines retained their association with heavy rafts and were nearly fully functional for incorporation into virions and infectivity. Substitution of cysteines with alanines or serines eliminated raft association and more severely reduced envelope incorporation onto virions and their infectivity. Nevertheless, the A764/A837 mutant envelope retained nearly 40% infectivity compared to the wild type, even though this envelope was excluded from lipid rafts. Our results demonstrate that gp41 cytoplasmic cysteines that are targets for palmitoylation and are required for envelope trafficking to classical lipid rafts are not essential for HIV-1 replication.
Collapse
Affiliation(s)
- Jayanta Bhattacharya
- Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
153
|
Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C. Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 2004; 78:3429-35. [PMID: 15016865 PMCID: PMC371074 DOI: 10.1128/jvi.78.7.3429-3435.2004] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retrovirus particles are not infectious until they undergo proteolytic maturation to form a functional core. Here we report a link between human immunodeficiency virus type 1 (HIV-1) core maturation and the ability of the virus to fuse with target cells. Using a recently developed reporter assay of HIV-1 virus-cell fusion, we show that immature HIV-1 particles are 5- to 10-fold less active for fusion with target cells than are mature virions. The fusion of mature and immature virions was rendered equivalent by truncating the gp41 cytoplasmic domain or by pseudotyping viruses with the glycoprotein of vesicular stomatitis virus. An analysis of a panel of mutants containing mutated cleavage sites indicated that HIV-1 fusion competence is activated by the cleavage of Gag at any site between the MA and NC segments and not as an indirect consequence of an altered core structure. These results suggest a mechanism by which binding of the gp41 cytoplasmic tail to Gag within immature HIV-1 particles inhibits Env conformational changes on the surface of the virion that are required for membrane fusion. This "inside-out" regulation of HIV-1 fusion could play an important role in the virus life cycle by preventing the entry of immature, noninfectious particles.
Collapse
Affiliation(s)
- Donald J Wyma
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Murakami T, Ablan S, Freed EO, Tanaka Y. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004; 78:1026-31. [PMID: 14694135 PMCID: PMC368813 DOI: 10.1128/jvi.78.2.1026-1031.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.
Collapse
Affiliation(s)
- Tsutomu Murakami
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | |
Collapse
|
155
|
Manrique JM, Celma CCP, Hunter E, Affranchino JL, González SA. Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N terminus of the simian immunodeficiency virus matrix protein. J Virol 2003; 77:10881-8. [PMID: 14512538 PMCID: PMC224977 DOI: 10.1128/jvi.77.20.10881-10888.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The matrix (MA) protein of the simian immunodeficiency viruses (SIVs) is encoded by the amino-terminal region of the Gag precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. Previously, we identified domains in the SIV MA that are involved in the transport of Gag to the plasma membrane and in particle assembly. In this study, we characterized the role in the SIV life cycle of highly conserved residues within the SIV MA region spanning the two N-terminal alpha-helices H1 and H2. Our analyses identified two classes of MA mutants: (i) viruses encoding amino acid substitutions within alpha-helices H1 or H2 that were defective in envelope (Env) glycoprotein incorporation and exhibited impaired infectivity and (ii) viruses harboring mutations in the beta-turn connecting helices H1 and H2 that were more infectious than the wild-type virus and displayed an enhanced ability to incorporate the Env glycoprotein. Remarkably, among the latter group of MA mutants, the R22L/G24L double amino acid substitution increased virus infectivity eightfold relative to the wild-type virus in single-cycle infectivity assays, an effect that correlated with a similar increase in Env incorporation. Furthermore, the R22L/G24L MA mutation partially or fully complemented single-point MA mutations that severely impair or block Env incorporation and virus infectivity. Our finding that the incorporation of the Env glycoprotein into virions can be upregulated by specific mutations within the SIV MA amino terminus strongly supports the notion that the SIV MA domain mediates Gag-Env association during particle formation.
Collapse
Affiliation(s)
- Julieta M Manrique
- Centro de Virología Animal (CEVAN-CONICET), C1414DEM Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
156
|
Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J Virol 2003; 77:10131-8. [PMID: 12941925 PMCID: PMC224611 DOI: 10.1128/jvi.77.18.10131-10138.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the absence of a hepatitis C virus (HCV) culture system, the use of a Semliki Forest virus replicon expressing genes encoding HCV structural proteins that assemble into HCV-like particles provides an opportunity to study HCV morphogenesis. Using this system, we showed that the HCV core protein constitutes the budding apparatus of the virus and that its targeting to the endoplasmic reticulum by means of the signal sequence of E1 protein is essential for budding. In addition, the aspartic acid at position 111 in the HCV core protein sequence was found to be crucial for virus assembly, demonstrating the usefulness of this system for mapping amino acids critical to HCV morphogenesis.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- Laboratoire de Virologie, Faculté de Médecine et Centre Hospitalier Universitaire, 2 bis Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Casado G, Thomson MM, Delgado E, Sierra M, Vázquez-De Parga E, Pérez-Alvarez L, Ocampo A, Nájera R. Near full-length genome characterization of an HIV type 1 CRF05_DF virus from Spain. AIDS Res Hum Retroviruses 2003; 19:719-25. [PMID: 14506788 DOI: 10.1089/088922203322280955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the near full-length sequence characterization of a HIV-1 DF intersubtype recombinant virus from Spain, X492, directly amplified from peripheral blood mononuclear cells' DNA. This isolate shares an identical mosaic structure and exhibits consistent phylogenetic clustering along the genome with VI961, a previously characterized DF recombinant virus. By contrast, VI1310, which may represent the same recombinant form as VI961 (CRF05_DF), is only partially homologous to VI961 and X492. Of three additional DF recombinant viruses previously characterized in gag-pol, only one, VI1267, clusters uniformly with VI961 and X492; the other two branch separately in a segment of pol. These results allow us to define an HIV-1 circulating recombinant form (CRF05_DF), characterized in near full-length genomes of two isolates (VI961 and X492) and in partial gag-pol sequences of a third virus (VI1267). Three other reported DF recombinant viruses, including the fully sequenced VI1310, exhibit incomplete homology to VI961 and X492.
Collapse
Affiliation(s)
- Gema Casado
- National Microbiology Center, Carlos III Institute of Health, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C. Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 2003; 77:6931-45. [PMID: 12768012 PMCID: PMC156179 DOI: 10.1128/jvi.77.12.6931-6945.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here, we report that human immunodeficiency virus type 1 (HIV-1) Env glycoprotein is located mainly in the trans-Golgi network (TGN) due to determinants present in the cytoplasmic domain of the transmembrane gp41 glycoprotein (TMgp41). Internalization assays demonstrated that Env present at the cell surface returns to the TGN. We found that the cytoplasmic domain of TMgp41 binds to TIP47, a protein required for the transport of mannose-6-phosphate receptors from endosomes to the TGN. Overexpression of a mutant of TIP47 affected the transport of Env from endosomes to the TGN. Retrograde transport of Env to the TGN requires a Y(802)W(803) diaromatic motif present in the TMgp41 cytoplasmic domain. Mutation of this motif abolished both targeting to the TGN as well as interaction with TIP47. These data support the view that binding of TIP47 to HIV-1 Env facilitates its delivery to the TGN. Lastly, we show that virus mutated in the Y(802)W(803) motif is poorly infectious and presents a defect in Env incorporation, supporting a model in which retrograde transport of Env is implicated in the optimization of fully infectious HIV-1 production.
Collapse
Affiliation(s)
- Guillaume Blot
- Department of Infectious Diseases, Institut Cochin, INSERM U567, CNRS UMR 8104, Université R. Descartes Paris V, 75014 Paris, France
| | | | | | | | | |
Collapse
|
159
|
Song C, Dubay SR, Hunter E. A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 2003; 77:5192-200. [PMID: 12692221 PMCID: PMC153939 DOI: 10.1128/jvi.77.9.5192-5200.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
160
|
Cleveland SM, McLain L, Cheung L, Jones TD, Hollier M, Dimmock NJ. A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion. J Gen Virol 2003; 84:591-602. [PMID: 12604810 DOI: 10.1099/vir.0.18630-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The approximately 150 amino acid C-terminal tail of the gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 (HIV-1) is generally thought to be located inside the virion. However, we show here that both monoclonal IgG and polyclonal epitope-purified IgG specific for the (746)ERDRD(750) epitope that lies within the C-terminal tail neutralized infectious virus. IgG was mapped to the C-terminal tail by its failure to neutralize tail-deleted virus, and by sequencing of antibody-escape mutants. The fact that antibody does not cross lipid membranes, and infectious virus is by definition intact, suggested that ERDRD was exposed on the surface of the virion. This was confirmed by reacting virus and IgG, separating virus and unbound IgG by centrifugation, and showing that virus was neutralized to essentially the same extent as virus that had been in constant contact with antibody. Epitope exposure on virions was independent of temperature and therefore constitutive. Monoclonal antibodies specific to epitopes PDRPEG and IEEE, upstream of ERDRD, also bound to virions, suggesting that they too were located externally. Protease digestion destroyed the ERDRD and PDRPEG epitopes, consistent with their proposed external location. Altogether these data are consistent with part of the C-terminal tail of gp41 being exposed on the outside of the virion. Possible models of the structure of the gp41 tail, taking these observations into account, are discussed.
Collapse
Affiliation(s)
- S Matthew Cleveland
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lesley McLain
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Linda Cheung
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Tim D Jones
- Axis Genetics, Babraham, Cambridge CB2 4AZ, UK
| | - Mark Hollier
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
161
|
Kalia V, Sarkar S, Gupta P, Montelaro RC. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 2003; 77:3634-46. [PMID: 12610139 PMCID: PMC149489 DOI: 10.1128/jvi.77.6.3634-3646.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.
Collapse
Affiliation(s)
- Vandana Kalia
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
162
|
Sandrin V, Boson B, Salmon P, Gay W, Nègre D, Le Grand R, Trono D, Cosset FL. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100:823-32. [PMID: 12130492 DOI: 10.1182/blood-2001-11-0042] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system, and their host range. We have investigated the capacity of a panel of GPs of both retroviral (amphotropic murine leukemia virus [MLV-A]; gibbon ape leukemia virus [GALV]; RD114, feline endogenous virus) and nonretroviral (fowl plague virus [FPV]; Ebola virus [EboV]; vesicular stomatitis virus [VSV]; lymphocytic choriomeningitis virus [LCMV]) origins to pseudotype lentiviral vectors derived from simian immunodeficiency virus (SIVmac251). SIV vectors were efficiently pseudotyped with the FPV hemagglutinin, VSV-G, LCMV, and MLV-A GPs. In contrast, the GALV and RD114 GPs conferred much lower infectivity to the vectors. Capitalizing on the conservation of some structural features in the transmembrane domains and cytoplasmic tails of the incorporation-competent MLV-A GP and in RD114 and GALV GPs, we generated chimeric GPs encoding the extracellular and transmembrane domains of GALV or RD114 GPs fused to the cytoplasmic tail (designated TR) of MLV-A GP. Importantly, SIV-derived vectors pseudotyped with these GALV/TR and RD114/TR GP chimeras had significantly higher titers than vectors coated with the parental GPs. Additionally, RD114/TR-pseudotyped vectors were efficiently concentrated and were resistant to inactivation induced by the complement of both human and macaque sera, indicating that modified RD114 GP-pseudotyped lentiviral vectors may be of particular interest for in vivo gene transfer applications. Furthermore, as compared to vectors pseudotyped with other retroviral GPs or with VSV-G, RD114/TR-pseudotyped vectors showed augmented transduction of human and macaque primary blood lymphocytes and CD34+ cells.
Collapse
Affiliation(s)
- Virginie Sandrin
- Vectorologie Rétrovirale & Thérapie Génique, U412 INSERM, IFR 74, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Kowolik CM, Yee JK. Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol Ther 2002; 5:762-9. [PMID: 12027561 DOI: 10.1006/mthe.2002.0603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
One of the major challenges facing gene therapy is the development of vectors targeting specific cell types. Restricting gene delivery to the relevant cell type leads to reduced T-cell responses to transgene products and prolonged gene expression. In this study, we demonstrate that vectors derived from human immunodeficiency virus (HIV) can be pseudotyped with Sendai virus fusion protein F. Such vectors transduced human hepatoma cells and primary human hepatocytes efficiently, but not non-liver cells. Several different approaches were also taken to significantly increase the titer of the pseudotyped vector. These studies may facilitate HIV vector-mediated gene delivery into liver in vivo.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Virology, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | | |
Collapse
|
164
|
Affiliation(s)
- H G Göttlinger
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Masachusetts, USA.
| |
Collapse
|
165
|
Lee SF, Ko CY, Wang CT, Chen SSL. Effect of point mutations in the N terminus of the lentivirus lytic peptide-1 sequence of human immunodeficiency virus type 1 transmembrane protein gp41 on Env stability. J Biol Chem 2002; 277:15363-75. [PMID: 11859090 DOI: 10.1074/jbc.m201479200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of the lentivirus lytic peptide-1 region of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp) 41 in viral infection, we examined the effects on virus replication of single amino acid deletions spanning this region in an infectious provirus of the HXB2 strain. Among the mutants analyzed, only the deletion of one of the two adjacent valine residues located at positions 832 and 833 (termed the Delta 833 mutant for simplicity) greatly reduced the steady-state, cell-associated levels of the Env precursor and gp120, as opposed to the wild-type virus. The altered Env phenotype resulted in severely impaired virus infectivity and gp120 incorporation into this mutant virion. Analyses of additional mutants with deletions at Ile-830, Ala-836, and Ile-840 demonstrated that the Delta 830 mutant exhibited the most significant inhibitory effect on Env steady-state expression. These results indicate that the N terminus of the lentivirus lytic peptide-1 region is critical for Env steady-state expression. Among the mutant viruses encoding Env proteins in which residues Val-832 and Val-833 were individually substituted by nonconserved amino acids Ala, Ser, or Pro, which were expected to disrupt the alpha-helical structure in the increasingly severe manner of Pro > Ser > Ala, only the 833P mutant exhibited significantly reduced steady-state Env expression. Pulse labeling and pulse-chase studies demonstrated that the Delta 830, Delta 833, and 833P mutants of Env proteins degraded more rapidly in a time-dependent manner after biosynthesis than did the wild-type Env. The results indicate that residue 830 and 833 mutations are likely to induce a conformational change in Env that targets the mutant protein for cellular degradation. Our study has implications about the structural determinants located at the N terminus of the lentivirus lytic peptide-1 sequence of gp41 that affect the fate of Env in virus-infected cells.
Collapse
Affiliation(s)
- Sheau-Fen Lee
- Division of Infectious Diseases, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | |
Collapse
|
166
|
Affiliation(s)
- M Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
167
|
Chou JJ, Kaufman JD, Stahl SJ, Wingfield PT, Bax A. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J Am Chem Soc 2002; 124:2450-1. [PMID: 11890789 DOI: 10.1021/ja017875d] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of a water-insoluble fragment encompassing residues 282-304 of the HIV envelope protein gp41 is studied when solubilized by dihexanoyl phosphatidylcholine (DHPC) and by small bicelles, consisting of a 4:1 molar ratio of DHPC and dimyristoyl phosphatidylcholine (DMPC). Weak alignment with the magnetic field was accomplished in a stretched polyacrylamide gel, permitting measurement of one-bond (1)H-(15)N, (13)Ca-(13)C', and (13)C'-(15)N dipolar couplings, which formed the basis for determining the peptide structure. In both detergent systems, the peptide adopts an alpha-helical conformation from residue 4 through 18. In the presence of the DHPC micelles the helix is strongly curved towards the hydrophobic surface, whereas in the presence of bicelles a much weaker curvature in the opposite direction is observed.
Collapse
Affiliation(s)
- James J Chou
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
168
|
Kim JT, Kim EM, Lee KH, Choi JE, Jhun BH, Kim JW. Leucine zipper domain of HIV-1 gp41 interacted specifically with alpha-catenin. Biochem Biophys Res Commun 2002; 291:1239-44. [PMID: 11883950 DOI: 10.1006/bbrc.2002.6583] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between viral and cellular proteins could explain the molecular mechanisms behind the viral life cycle of HIV-1. The envelope protein gp41 of HIV-1 specifically interacted with alpha-catenin, not with beta-catenin. This interaction was shown by in vitro protein assay and in vivo transfected cell systems. Microinjection of the DNA expressing HIV-1 gp160 and alpha-catenin, into the HeLa cell, resulted in the colocalization of gp41 and alpha-catenin. Interestingly the noncleavable mutant of gp160 and alpha-catenin were found to be colocalized in the cell membrane. Mapping of the interaction sites between these two proteins revealed that the leucine zipper-like structure, located between the first and second alpha-helix domains from the carboxy terminus of HIV-1 gp41, interacted strongly with the carboxy terminus of alpha-catenin.
Collapse
Affiliation(s)
- Jong Tae Kim
- Bio-Med RRC, Division of Life Sciences, Pai Chai University, Taejon 302-735, Korea
| | | | | | | | | | | |
Collapse
|
169
|
Edwards TG, Wyss S, Reeves JD, Zolla-Pazner S, Hoxie JA, Doms RW, Baribaud F. Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 2002; 76:2683-91. [PMID: 11861835 PMCID: PMC135967 DOI: 10.1128/jvi.76.6.2683-2691.2002] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have described a CD4-independent variant of HXBc2, termed 8x, that binds directly to CXCR4 and mediates CD4-independent virus infection. Determinants for CD4 independence map to residues in the V3 and V4-C4 domains together with a single nucleotide deletion in the transmembrane domain which introduces a frameshift (FS) at position 706. This FS results in a truncated cytoplasmic domain of 27 amino acids. We demonstrate here that while introduction of the 8x FS mutation into heterologous R5, X4, or R5X4 Env proteins did not impart CD4 independence, it did affect the conformation of the gp120 surface subunit, exposing highly conserved domains involved in both coreceptor and CD4 binding. In addition, antigenic changes in the gp41 ectodomain were also observed, consistent with the idea that the effects of cytoplasmic domain truncation must in some way be transmitted to the external gp120 subunit. Truncation of gp41 also resulted in the marked neutralization sensitivity of all Env proteins tested to human immunodeficiency virus-positive human sera and monoclonal antibodies directed against the CD4 or coreceptor-binding sites. These results demonstrate a structural interdependence between the cytoplasmic domain of gp41 and the ectodomain of the Env protein. They also may help explain why the length of the gp41 cytoplasmic domain is retained in vivo and may provide a way to genetically trigger the exposure of neutralization determinants in heterologous Env proteins that may prove useful for vaccine development.
Collapse
Affiliation(s)
- Terri G Edwards
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Demirov DG, Orenstein JM, Freed EO. The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 2002; 76:105-17. [PMID: 11739676 PMCID: PMC135729 DOI: 10.1128/jvi.76.1.105-117.2002] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The p6 domain of human immunodeficiency virus type 1 (HIV-1) is located at the C terminus of the Gag precursor protein Pr55(Gag). Previous studies indicated that p6 plays a critical role in HIV-1 particle budding from virus-expressing HeLa cells. In this study, we performed a detailed mutational analysis of the N terminus of p6 to map the sequences required for efficient virus release. We observed that the highly conserved P-T/S-A-P motif located near the N terminus of p6 is remarkably sensitive to change; even conservative mutations in this sequence imposed profound virus release defects in HeLa cells. In contrast, single and double amino acid substitutions outside the P-T/S-A-P motif had no significant effect on particle release. The introduction of stop codons one or two residues beyond the P-T/S-A-P motif markedly impaired virion release, whereas truncation four residues beyond P-T/S-A-P had no effect on particle production in HeLa cells. By examining the effects of p6 mutation in biological and biochemical analyses and by electron microscopy, we defined the role of p6 in particle release and virus replication in a panel of T-cell and adherent cell lines and in primary lymphocytes and monocyte-derived macrophages. We demonstrated that the effects of p6 mutation on virus replication are markedly cell type dependent. Intriguingly, even in T-cell lines and primary lymphocytes in which p6 mutations block virus replication, these changes had little or no effect on particle release. However, p6-mutant particles produced in T-cell lines and primary lymphocytes exhibited a defect in virion-virion detachment, resulting in the production of tethered chains of virions. Virus release in monocyte-derived macrophages was markedly inhibited by p6 mutation. To examine further the cell type-specific virus release defect in HeLa versus T cells, transient heterokaryons were produced between HeLa cells and the Jurkat T-cell line. These heterokaryons display a T-cell-like phenotype with respect to the requirement for p6 in particle release. The results described here define the role of p6 in virus replication in a wide range of cell types and reveal a strong cell type-dependent requirement for p6 in virus particle budding.
Collapse
Affiliation(s)
- Dimiter G Demirov
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
171
|
Evans DT, Tillman KC, Desrosiers RC. Envelope glycoprotein cytoplasmic domains from diverse lentiviruses interact with the prenylated Rab acceptor. J Virol 2002; 76:327-37. [PMID: 11739697 PMCID: PMC135700 DOI: 10.1128/jvi.76.1.327-337.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentivirus envelope glycoproteins have unusually long cytoplasmic domains compared to those of other retroviruses. To identify cellular binding partners of the simian immunodeficiency virus (SIV) envelope transmembrane protein (gp41) cytoplasmic domain (CD), we performed a yeast two-hybrid screen of a phytohemagglutinin-activated human T-cell cDNA library with the SIV gp41 CD. The majority of positive clones (50 of 54) encoded the prenylated Rab acceptor (PRA1). PRA1 is a 21-kDa protein associated with Golgi membranes that binds to prenylated Rab proteins in their GTP-bound state. While the cellular function of PRA1 is presently unknown, this protein appears to participate in intracellular vesicular trafficking, based on its cellular localization and ability to bind multiple members of the Rab protein family. Mammalian two-hybrid assays confirmed the interaction between the SIV gp41 CD and PRA1. Furthermore, gp41 sequences important for PRA1 binding were mapped to a central leucine-rich, amphipathic alpha-helix in the SIV gp41 cytoplasmic tail. Although the human immunodeficiency virus (HIV-1) gp41 CD failed to interact with PRA1 in the yeast two-hybrid system, its interaction with PRA1 was significantly better than that of the SIV gp41 CD in mammalian two-hybrid assays. Interestingly, PRA1 also interacted with the Env CDs of HIV-2, bovine immunodeficiency virus, equine infectious anemia virus, and feline immunodeficiency virus. Thus, PRA1 associates with envelope glycoproteins from widely divergent lentiviruses.
Collapse
Affiliation(s)
- David T Evans
- New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | |
Collapse
|
172
|
Thomson MM, Delgado E, Herrero I, Villahermosa ML, Vázquez-de Parga E, Cuevas MT, Carmona R, Medrano L, Pérez-Álvarez L, Cuevas L, Nájera R. Diversity of mosaic structures and common ancestry of human immunodeficiency virus type 1 BF intersubtype recombinant viruses from Argentina revealed by analysis of near full-length genome sequences. J Gen Virol 2002; 83:107-119. [PMID: 11752707 DOI: 10.1099/0022-1317-83-1-107] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The findings that BF intersubtype recombinant human immunodeficiency type 1 viruses (HIV-1) with coincident breakpoints in pol are circulating widely in Argentina and that non-recombinant F subtype viruses have failed to be detected in this country were reported recently. To analyse the mosaic structures of these viruses and to determine their phylogenetic relationship, near full-length proviral genomes of eight of these recombinant viruses were amplified by PCR and sequenced. Intersubtype breakpoints were analysed by bootscanning and examining the signature nucleotides. Phylogenetic relationships were determined with neighbour-joining trees. Five viruses, each with predominantly subtype F genomes, exhibited mosaic structures that were highly similar. Two intersubtype breakpoints were shared by all viruses and seven by the majority. Of the consensus breakpoints, all nine were present in two viruses, which exhibited identical recombinant structures, and four to eight breakpoints were present in the remaining viruses. Phylogenetic analysis of partial sequences supported both a common ancestry, at least in part of their genomes, for all recombinant viruses and the phylogenetic relationship of F subtype segments with F subtype viruses from Brazil. A common ancestry of the recombinants was supported also by the presence of shared signature amino acids and nucleotides, either unreported or highly unusual in F and B subtype viruses. These results indicate that HIV-1 BF recombinant viruses with diverse mosaic structures, including a circulating recombinant form (which are widespread in Argentina) derive from a common recombinant ancestor and that F subtype segments of these recombinants are related phylogenetically to the F subtype viruses from Brazil.
Collapse
MESH Headings
- Argentina
- Base Sequence
- DNA, Viral
- Female
- Gene Products, gag/genetics
- Gene Products, gag/physiology
- Gene Products, rev/genetics
- Gene Products, rev/physiology
- Genetic Variation
- Genome, Viral
- HIV Antigens/genetics
- HIV Antigens/physiology
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/physiology
- HIV Infections/virology
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/physiology
- HIV-1/classification
- HIV-1/genetics
- Human Immunodeficiency Virus Proteins
- Humans
- Male
- Molecular Sequence Data
- Mosaicism
- Phylogeny
- Protein Structure, Tertiary
- Recombination, Genetic
- Sequence Analysis, Protein
- Sequence Analysis, RNA
- Viral Proteins
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/physiology
- gag Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Michael M Thomson
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Elena Delgado
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Isabel Herrero
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - María Luisa Villahermosa
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Elena Vázquez-de Parga
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - María Teresa Cuevas
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Rocío Carmona
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Leandro Medrano
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Lucía Pérez-Álvarez
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Laureano Cuevas
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| | - Rafael Nájera
- Department of Viral Pathogenesis, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220 Majadahonda, Madrid, Spain1
| |
Collapse
|
173
|
Wang JJ, Sandefur S, Spearman P, Chiou CT, Chiang PH, Ratner L. Tracking the assembly pathway of human immunodeficiency virus type 1 Gag deletion mutants by immunogold labeling. Appl Immunohistochem Mol Morphol 2001; 9:371-9. [PMID: 11759066 DOI: 10.1097/00129039-200112000-00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Pr55gag gene product of human immunodeficiency virus type 1 (HIV-1) is sufficient to direct the formation of retrovirus-like particles (RVLPs). Recent biochemical evidence has indicated the presence of Gag intermediates in the cytoplasm; however, the Gag assembly process into RVLPs remains incompletely defined. The authors present here the subcellular localization of Gag mutant proteins in BSC40 and Jurkat cells by immunoelectron microscopy (IEM). The full Gag/Pol and Gag precursors, a C-terminal deletion mutant lacking a portion of nucleocapsid (NC), and all p6Gag gave rise to similar levels of RVLPs at the cell surface. A C-terminal deletion of all NC and p6Gag abrogated particle formation, whereas p24 was found in patches at the cell surface. Deletion of matrix (MA) sequences from Gag resulted in intracellular particles, and myristylation was not required for particle formation in the context of the MA deletion. Matrix expression was enhanced with Gag/Pol or Env coexpression as determined by semiquantitative IEM. p24 protein was targeted at vacuolar and mitochondrial membranes, but not at Golgi cisternae. In addition, aggregations of Gag intermediates and RVLPs in the cytoplasm, rough endoplasmic reticulum, cisternae, and mitochondria were noted. These results provide defined in situ evidence that HIV-1 particle assembly occurs in the cytosol in addition to budding at most intracellular membranes.
Collapse
Affiliation(s)
- J J Wang
- Department and Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
174
|
Manrique JM, Celma CC, Affranchino JL, Hunter E, González SA. Small variations in the length of the cytoplasmic domain of the simian immunodeficiency virus transmembrane protein drastically affect envelope incorporation and virus entry. AIDS Res Hum Retroviruses 2001; 17:1615-24. [PMID: 11779349 DOI: 10.1089/088922201753342022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simian immunodeficiency viruses (SIVs) have an envelope (Env) glycoprotein with an unusually long cytoplasmic domain of 164 amino acids. In this article, we have characterized a series of SIV Env truncation mutants in which the cytoplasmic domain was progressively shortened from its carboxyl terminus by 20 amino acids. Expression by means of the vaccinia virus system showed that all of the SIV Env mutants were expressed and processed into the surface and transmembrane (TM) subunits. When the ability of the Env mutants to associate with SIV Gag particles was examined, we found that deletion of 20 to 80 residues from the carboxyl terminus of the SIV TM cytoplasmic tail abrogated the incorporation of the Env glycoprotein into particles. By contrast, further truncation of the SIV TM protein by 100 to 140 amino acids restored the ability of the Env protein to associate with Gag particles. Interestingly, mutants bearing a 44- or 24-amino acid cytoplasmic domain were incorporated at levels significantly higher than those of the wild-type Env. Single-cycle infectivity assays showed that Env mutants bearing cytoplasmic tails of 144 to 64 amino acids were highly inefficient at mediating virus entry. By contrast, truncation of the cytoplasmic domain to 44 or 24 amino acids drastically enhanced virus infectivity with respect to that conferred by the full-length Env protein. Our results demonstrate that small variations in the length of the SIV Env cytoplasmic domain dramatically influence Env-mediated viral functions.
Collapse
Affiliation(s)
- J M Manrique
- Centro de Virología Animal (CEVAN-CONICET), Serrano 669, (C1414DMEM) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
175
|
Zheng NN, Daniels RS. Maintenance of glycoprotein-determined phenotype in an HIV type 1 (pNL43) env gene-cassetting system. AIDS Res Hum Retroviruses 2001; 17:1501-6. [PMID: 11709094 DOI: 10.1089/08892220152644205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we report the construction and use of a full-length env gene-cassetting system, C2, based on the HIV-1 infectious molecular clone NL43. C2 produces virus with the same phenotype as NL43 but with 2-fold lower growth kinetics. The latter probably relates to alteration in the vpu and/or nef genes. C2-env chimeras of macrophage-tropic and T cell-tropic laboratory strains and primary HIV-1 isolates retain the glycoprotein-determined phenotypes of their parent viruses. The cassette will assist studies of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- N N Zheng
- Virology Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
176
|
Wilk T, Geiselhart V, Frech M, Fuller SD, Flügel RM, Löchelt M. Specific interaction of a novel foamy virus Env leader protein with the N-terminal Gag domain. J Virol 2001; 75:7995-8007. [PMID: 11483744 PMCID: PMC115043 DOI: 10.1128/jvi.75.17.7995-8007.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 05/31/2001] [Indexed: 02/03/2023] Open
Abstract
Cryoelectron micrographs of purified human foamy virus (HFV) and feline foamy virus (FFV) particles revealed distinct radial arrangements of Gag proteins. The capsids were surrounded by an internal Gag layer that in turn was surrounded by, and separated from, the viral membrane. The width of this layer was about 8 nm for HFV and 3.8 nm for FFV. This difference in width is assumed to reflect the different sizes of the HFV and FFV MA domains: the HFV MA domain is about 130 residues longer than that of FFV. The distances between the MA layer and the edge of the capsid were identical in different particle classes. In contrast, only particles with a distended envelope displayed an invariant, close spacing between the MA layer and the Env membrane which was absent in the majority of particles. This indicates a specific interaction between MA and Env at an unknown step of morphogenesis. This observation was supported by surface plasmon resonance studies. The purified N-terminal domain of FFV Gag specifically interacted with synthetic peptides and a defined protein domain derived from the N-terminal Env leader protein. The specificity of this interaction was demonstrated by using peptides varying in the conserved Trp residues that are known to be required for HFV budding. The interaction with Gag required residues within the novel virion-associated FFV Env leader protein of about 16.5 kDa.
Collapse
Affiliation(s)
- T Wilk
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
Specific interactions between envelope and core proteins govern the membrane assembly of most enveloped viruses. Despite this, mixed infections lead to pseudotyping, the association of the viral cores of one virus with the envelopes of another. How does this occur? We show here that the detergent-insoluble lipid rafts of the plasma membrane function as a natural meeting point for the transmembrane and core components of a phylogenetically diverse collection of enveloped viruses. As a result, viral particles preferentially incorporate both the envelope components of other viruses as well as the extra- and intracellular constituents of host cell lipid rafts, including gangliosides, glycosyl phosphatidylinositol-anchored surface proteins, and intracellular signal transduction molecules. Pharmacological disruption of lipid rafts interferes with virus production.
Collapse
Affiliation(s)
- W F Pickl
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
178
|
Iwatani Y, Kawano K, Ueno T, Tanaka M, Ishimoto A, Ito M, Sakai H. Analysis of dominant-negative effects of mutant Env proteins of human immunodeficiency virus type 1. Virology 2001; 286:45-53. [PMID: 11448157 DOI: 10.1006/viro.2001.0944] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Env protein of human immunodeficiency virus type 1 is assembled into a stable trimer, and oligomerization is required for maintenance of viral infectivity. This property of Env suggests that Env mutants may have a dominant-negative effect on virus infectivity. To investigate this possibility, we established a packaging cell line in which both wild-type and mutant Env proteins could be expressed simultaneously in a single cell. We analyzed the effects of two types of Env mutants: cytoplasmic tail-truncated TM mutants and a mutant defective in gp120/gp41 cleavage. The cytoplasmic tail-truncated proteins were found to be incorporated into virions by forming an oligomer with wild-type TM, but could not inhibit the wild-type function. In contrast, phenotypic mixing of cleavage-defective Env with the wild-type protein caused dramatic inhibition of infectivity, indicating that this mutant has a strong dominant-negative phenotype.
Collapse
Affiliation(s)
- Y Iwatani
- Department of Microbiology, Yamanashi Medical University, Tamaho-cho, Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | |
Collapse
|
179
|
Celma CC, Manrique JM, Affranchino JL, Hunter E, González SA. Domains in the simian immunodeficiency virus gp41 cytoplasmic tail required for envelope incorporation into particles. Virology 2001; 283:253-61. [PMID: 11336550 DOI: 10.1006/viro.2001.0869] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which lentivirus envelope (Env) glycoproteins are packaged into budding virions is poorly understood. Simian immunodeficiency virus (SIV) contains an Env protein with an unusually long cytoplasmic tail. To investigate the role of this domain in the incorporation of the SIV Env into virions, we generated a series of SIV Env mutants carrying small in-frame deletions within the cytoplasmic domain. The effects of these mutations on Env synthesis, processing, and association with Gag particles were analyzed by means of the vaccinia virus expression system. All of the mutant Env glycoproteins were synthesized and processed in a manner similar to that of the wild-type Env. However, deletions affecting domains C-terminal to residue 832 in the SIV Env protein significantly impaired Env incorporation into particles. Cell surface biotinylation assays showed that this phenotype could not be attributed to inefficient cell surface expression of the Env mutants. Furthermore, when the Env deletion mutants were tested for their ability to mediate virus entry in single-cycle infectivity assays, those mutations that impaired Env incorporation also caused a severe defect in virus infectivity. Our results suggest that domains in the C-terminal third of the SIV Env protein are required for Env incorporation into particles and Env-mediated virus entry.
Collapse
Affiliation(s)
- C C Celma
- Centro de Virología Animal (CEVAN-CONICET), Serrano 669, (C1414DEM) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
180
|
Gupta S, Arora K, Gupta A, Chaudhary VK. Gag-derived proteins of HIV-1 isolates from Indian patients: cloning, expression, and purification of p17 of B- and C-subtypes. Protein Expr Purif 2001; 21:378-85. [PMID: 11281711 DOI: 10.1006/prep.2001.1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple and efficient method for expression in Escherichia coli and purification of matrix protein, p17, of human immunodeficiency virus type 1 (HIV-1) of both B- and C-subtypes is described. DNA sequences encoding p17 of B- and C-subtype were cloned from respective gag sequences. The gag sequences were obtained by PCR amplification using DNA extracted from peripheral blood lymphocytes of an HIV-1 infected patient from India. A T7-promoter-based expression system was optimized for expression of p17 in soluble form. p17 (B- and C-subtype) was purified to near homogeneity using conventional chromatographic techniques. Purification of p17 (C-subtype) is described for the first time with yield of 7.7 mg from a 1-liter culture. The yield of p17 (B-subtype) is 14.7 mg from a 1-liter culture, which is severalfold better than that reported earlier. N-terminal sequencing and CD spectra of the purified proteins, p17B and p17C, show that the proteins are properly processed and well-folded. The immunoreactivity of both types of p17 to sera from HIV-infected individuals is comparable.
Collapse
Affiliation(s)
- S Gupta
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | | | |
Collapse
|
181
|
Schaeffer E, Geleziunas R, Greene WC. Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J Virol 2001; 75:2993-3000. [PMID: 11222724 PMCID: PMC115925 DOI: 10.1128/jvi.75.6.2993-3000.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef protein of the type 1 human immunodeficiency virus (HIV-1) plays a key although poorly understood role in accelerating the progression of clinical disease in vivo. Nef exerts several biological effects in vitro, including enhancement of virion infectivity, downregulation of CD4 and major histocompatibility complex class I receptor expression, and modulation of various intracellular signaling pathways. The positive effect of Nef on virion infectivity requires its expression in the producer cell, although its effect is manifested in the subsequent target cell of infection. Prior studies suggest that Nef does not alter viral entry into target cells; nevertheless, it enhances proviral DNA synthesis, arguing for an action of Nef at the level of viral uncoating or reverse transcription. However, these early studies discounting an effect of Nef on virion entry may be confounded by the recent finding that HIV enters cells by both fusion and endocytosis. Using epifluorescence microscopy to monitor green fluorescent protein-Vpr-labeled HIV virion entry into HeLa cells, we find that endocytosis forms a very active pathway for virus uptake. Virions entering via the endocytic pathway do not support productive infection of the host cell, presumably reflecting their inability to escape from the endosomes. Conversely, our studies now demonstrate that HIV Nef significantly enhances CD4- and chemokine receptor-dependent entry of HIV virions into the cytoplasmic compartment of target cells. Mutations in Nef either impairing its ability to downregulate CD4 or disrupting its polyproline helix compromise virion entry into the cytoplasm. We conclude that Nef acts at least in part as a regulator of cytosolic viral entry and that this action contributes to its positive effects on viral infectivity.
Collapse
Affiliation(s)
- E Schaeffer
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA
| | | | | |
Collapse
|
182
|
Fultz PN, Vance PJ, Endres MJ, Tao B, Dvorin JD, Davis IC, Lifson JD, Montefiori DC, Marsh M, Malim MH, Hoxie JA. In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail. J Virol 2001; 75:278-91. [PMID: 11119598 PMCID: PMC113922 DOI: 10.1128/jvi.75.1.278-291.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Accepted: 09/27/2000] [Indexed: 11/20/2022] Open
Abstract
Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxphi) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (DeltaGY). To assess the in vivo replication competence, all viruses contained a stop codon in nef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239DeltaGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4(+) T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239DeltaGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nef stop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxphi signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.
Collapse
Affiliation(s)
- P N Fultz
- Department of Microbiology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Wyma DJ, Kotov A, Aiken C. Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 2000; 74:9381-7. [PMID: 11000206 PMCID: PMC112366 DOI: 10.1128/jvi.74.20.9381-9387.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55(Gag) in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55(Gag) in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55(Gag) in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55(Gag) at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55(Gag) and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55(Gag) with gp41 may regulate the function of the envelope proteins during HIV-1 maturation.
Collapse
Affiliation(s)
- D J Wyma
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | |
Collapse
|