151
|
Zimbwa P, Milicic A, Frater J, Scriba TJ, Willis A, Goulder PJR, Pillay T, Gunthard H, Weber JN, Zhang HT, Phillips RE. Precise identification of a human immunodeficiency virus type 1 antigen processing mutant. J Virol 2007; 81:2031-8. [PMID: 17108020 PMCID: PMC1797578 DOI: 10.1128/jvi.00968-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/09/2006] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evokes a strong immune response, but the virus persists. Polymorphisms within known antigenic sites result in loss of immune recognition and can be positively selected. Amino acid variation outside known HLA class I restricted epitopes can also enable immune escape by interfering with the processing of the optimal peptide antigen. However, the lack of precise rules dictating epitope generation and the enormous genetic diversity of HIV make prediction of processing mutants very difficult. Polymorphism E169D in HIV-1 reverse transcriptase (RT) is significantly associated with HLA-B*0702 in HIV-1-infected individuals. This polymorphism does not map within a known HLA-B*0702 epitope; instead, it is located five residues downstream of a HLA-B*0702-restricted epitope SPAIFQSSM (SM9). Here we investigate the association between E169D and HLA-B*0702 for immune escape via the SM9 epitope. We show that this single amino acid variation prevents the immune recognition of the flanked SM9 epitope by cytotoxic T cells through lack of generation of the epitope, which is a result of aberrant proteasomal cleavage. The E169D polymorphism also maps within and abrogates the recognition of an HLA-A*03-restricted RT epitope MR9. This study highlights the potential for using known statistical associations as indicators for viral escape but also the complexity involved in interpreting the immunological consequences of amino acid changes in HIV sequences.
Collapse
Affiliation(s)
- Peter Zimbwa
- The James Martin 21st Century School at The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Yu XG, Lichterfeld M, Chetty S, Williams KL, Mui SK, Miura T, Frahm N, Feeney ME, Tang Y, Pereyra F, Labute MX, Pfafferott K, Leslie A, Crawford H, Allgaier R, Hildebrand W, Kaslow R, Brander C, Allen TM, Rosenberg ES, Kiepiela P, Vajpayee M, Goepfert PA, Altfeld M, Goulder PJR, Walker BD. Mutually exclusive T-cell receptor induction and differential susceptibility to human immunodeficiency virus type 1 mutational escape associated with a two-amino-acid difference between HLA class I subtypes. J Virol 2007; 81:1619-31. [PMID: 17121793 PMCID: PMC1797559 DOI: 10.1128/jvi.01580-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022] Open
Abstract
The relative contributions of HLA alleles and T-cell receptors (TCRs) to the prevention of mutational viral escape are unclear. Here, we examined human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T-cell responses restricted by two closely related HLA class I alleles, B*5701 and B*5703, that differ by two amino acids but are both associated with a dominant response to the same HIV-1 Gag epitope KF11 (KAFSPEVIPMF). When this epitope is presented by HLA-B*5701, it induces a TCR repertoire that is highly conserved among individuals, cross-recognizes viral epitope variants, and is rarely associated with mutational escape. In contrast, KF11 presented by HLA-B*5703 induces an entirely different, more heterogeneous TCR beta-chain repertoire that fails to recognize specific KF11 escape variants which frequently arise in clade C-infected HLA-B*5703(+) individuals. These data show the influence of HLA allele subtypes on TCR selection and indicate that extensive TCR diversity is not a prerequisite to prevention of allowable viral mutations.
Collapse
Affiliation(s)
- Xu G Yu
- Partners AIDS Research Center, Massachusetts General Hospital, 149 13th Street, Room 5212, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Friedrich TC, Valentine LE, Yant LJ, Rakasz EG, Piaskowski SM, Furlott JR, Weisgrau KL, Burwitz B, May GE, León EJ, Soma T, Napoe G, Capuano SV, Wilson NA, Watkins DI. Subdominant CD8+ T-cell responses are involved in durable control of AIDS virus replication. J Virol 2007; 81:3465-76. [PMID: 17251286 PMCID: PMC1866056 DOI: 10.1128/jvi.02392-06] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Elite controllers" are individuals that durably control human immunodeficiency virus or simian immunodeficiency virus replication without therapeutic intervention. The study of these rare individuals may facilitate the definition of a successful immune response to immunodeficiency viruses. Here we describe six Indian-origin rhesus macaques that have controlled replication of the pathogenic virus SIVmac239 for 1 to 5 years. To determine which lymphocyte populations were responsible for this control, we transiently depleted the animals' CD8+ cells in vivo. This treatment resulted in 100- to 10,000-fold increases in viremia. When the CD8+ cells returned, control was reestablished and the levels of small subsets of previously subdominant CD8+ T cells expanded up to 2,500-fold above pre-depletion levels. This wave of CD8+ T cells was accompanied by robust Gag-specific CD4 responses. In contrast, CD8+ NK cell frequencies changed no more than threefold. Together, our data suggest that CD8+ T cells targeting a small number of epitopes, along with broad CD4+ T-cell responses, can successfully control the replication of the AIDS virus. It is likely that subdominant CD8+ T-cell populations play a key role in maintaining this control.
Collapse
Affiliation(s)
- Thomas C Friedrich
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Boutwell CL, Essex M. Identification of HLA class I-associated amino acid polymorphisms in the HIV-1C proteome. AIDS Res Hum Retroviruses 2007; 23:165-74. [PMID: 17263647 DOI: 10.1089/aid.2006.0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evasion of host cytotoxic T lymphocyte (CTL) targeting is linked to the expression of variant amino acid residues, or escape mutations, in positions that alter the normal processing, presentation, or recognition of targeted epitopes. The combined genetic variability of HIV and the class I human leukocyte antigen (HLA) loci makes it difficult to characterize CTL escape mutations on a population level. However, a role in CTL escape may be inferred by identifying HIV amino acid polymorphisms that are specifically associated with particular HLA class I alleles. We describe here the results of a comprehensive analysis of HIV-1 subtype C (HIV-1C) to identify HLA class I-associated amino acid polymorphisms. We identified 94 HLA-associated amino acid polymorphisms distributed across the 15 major viral proteins analyzed. HLA-B alleles were involved in more associations (50%) than alleles from either the HLA-A (27%) or HLA-C (24%) loci. HLA-associated polymorphisms were identified in 18 of 26 previously described HIV-1C CTL immunoreactive regions including 7 of the 8 classified as immunodominant. Comparison to known HIV-1 CTL epitopes revealed that 19 of the HLA-associated polymorphisms were located in CTL epitopes restricted by the associated HLA allele. These results suggest that HIV-1C retains the potential for CTL escape across the entire proteome including regions that are broadly targeted on a population scale. The impact of CTL escape on natural and vaccine-induced CTL immunity warrants the continued characterization of the role of such HLA-associated polymorphisms in this process.
Collapse
Affiliation(s)
- Christian L Boutwell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
155
|
Loffredo JT, Burwitz BJ, Rakasz EG, Spencer SP, Stephany JJ, Vela JPG, Martin SR, Reed J, Piaskowski SM, Furlott J, Weisgrau KL, Rodrigues DS, Soma T, Napoé G, Friedrich TC, Wilson NA, Kallas EG, Watkins DI. The antiviral efficacy of simian immunodeficiency virus-specific CD8+ T cells is unrelated to epitope specificity and is abrogated by viral escape. J Virol 2006; 81:2624-34. [PMID: 17192314 PMCID: PMC1866004 DOI: 10.1128/jvi.01912-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD8(+) T lymphocytes appear to play a role in controlling human immunodeficiency virus (HIV) replication, yet routine immunological assays do not measure the antiviral efficacy of these cells. Furthermore, it has been suggested that CD8+ T cells that recognize epitopes derived from proteins expressed early in the viral replication cycle can be highly efficient. We used a functional in vitro assay to assess the abilities of different epitope-specific CD8+ T-cell lines to control simian immunodeficiency virus (SIV) replication. We compared the antiviral efficacies of 26 epitope-specific CD8+ T-cell lines directed against seven SIV epitopes in Tat, Nef, Gag, Env, and Vif that were restricted by either Mamu-A*01 or Mamu-A*02. Suppression of SIV replication varied depending on the epitope specificities of the CD8+ T cells and was unrelated to whether the targeted epitope was derived from an early or late viral protein. Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines were consistently superior at suppressing viral replication compared to the other five SIV-specific CD8+ T-cell lines. We also investigated the impact of viral escape on antiviral efficacy by determining if Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines could suppress the replication of an escaped virus. Viral escape abrogated the abilities of Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T cells to control viral replication. However, gamma interferon (IFN-gamma) enzyme-linked immunospot and IFN-gamma/tumor necrosis factor alpha intracellular-cytokine-staining assays detected cross-reactive immune responses against the Gag escape variant. Understanding antiviral efficacy and epitope variability, therefore, will be important in selecting candidate epitopes for an HIV vaccine.
Collapse
Affiliation(s)
- John T Loffredo
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Gaudieri S, Rauch A, Park LP, Freitas E, Herrmann S, Jeffrey G, Cheng W, Pfafferott K, Naidoo K, Chapman R, Battegay M, Weber R, Telenti A, Furrer H, James I, Lucas M, Mallal SA. Evidence of viral adaptation to HLA class I-restricted immune pressure in chronic hepatitis C virus infection. J Virol 2006; 80:11094-104. [PMID: 17071929 PMCID: PMC1642167 DOI: 10.1128/jvi.00912-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.
Collapse
Affiliation(s)
- Silvana Gaudieri
- Centre for Clinical Immunology and Biomedical Statistics, Level 2, North Block, Royal Perth Hospital, Wellington St., Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Racape J, Connan F, Hoebeke J, Choppin J, Guillet JG. Influence of dominant HIV-1 epitopes on HLA-A3/peptide complex formation. Proc Natl Acad Sci U S A 2006; 103:18208-13. [PMID: 17116886 PMCID: PMC1654130 DOI: 10.1073/pnas.0609029103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Indexed: 11/18/2022] Open
Abstract
The binding of peptides to MHC class I molecules induces MHC/peptide complexes that have specific conformational features. Little is known about the molecular and structural bases required for an optimal MHC/peptide association able to induce a dominant T cell response. We sought to characterize the interaction between purified HLA-A3 molecules and four well known CD8 epitopes from HIV-1 proteins. To define the characteristics of HLA-peptide complex formation and to identify potential structural changes, we used biochemical assays that detect well formed complexes. We tested the amplitude, stability, and kinetic parameters of the interaction between HLA-A3, peptides, and anti-HLA mAbs. Our results show that the four epitopes Nef73-82, Pol325-333, Env37-46, and Gag20-28 bind strongly to HLA-A3 molecules and form very stable complexes that are detected with differential patterns of mAb reactivity. The most striking result is the nonrecognition of the HLA-A3/Gag20-28 complex by the A11.1M mAb specific to HLA-A3/-A11 alleles. To explain this observation, from the data published on HLA-A11 crystallographic structure, we propose molecular models of the HLA-A3 molecule complexed with Nef73-82, Pol325-333, and Gag20-28 epitopes. In the HLA-A3/Gag20-28 complex, we suggest that Arg at position P1 of the peptide may push the alpha2 helix residue Trp-167 of HLA-A3 and affect mAb recognition. Such observations may have great implications for T cell antigen receptor recognition and the immunogenicity of HLA/peptide complexes.
Collapse
Affiliation(s)
- Judith Racape
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Francine Connan
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Johan Hoebeke
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Propre de la Recherche 9021, 15 Rue René Descartes, F67084 Strasbourg, France
| | - Jeannine Choppin
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| | - Jean-Gérard Guillet
- Département d'Immunologie, Institut Cochin, F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 567, F-75014 Paris, France
- Faculté de Médecine René Descartes, Université Paris 5, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and
| |
Collapse
|
158
|
Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, Kelleher AD, Allen TM. Rapid reversion of sequence polymorphisms dominates early human immunodeficiency virus type 1 evolution. J Virol 2006; 81:193-201. [PMID: 17065207 PMCID: PMC1797245 DOI: 10.1128/jvi.01231-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The error-prone replication of human immunodeficiency virus type 1 (HIV-1) enables it to continuously evade host CD8+ T-cell responses. The observed transmission, and potential accumulation, of CD8+ T-cell escape mutations in the population may suggest a gradual adaptation of HIV-1 to immune pressures. Recent reports, however, have highlighted the propensity of some escape mutations to revert upon transmission to a new host in order to restore efficient replication capacity. To more specifically address the role of reversions in early HIV-1 evolution, we examined sequence polymorphisms arising across the HIV-1 genome in seven subjects followed longitudinally 1 year from primary infection. As expected, numerous nonsynonymous mutations were associated with described CD8+ T-cell epitopes, supporting a prominent role for cellular immune responses in driving early HIV-1 evolution. Strikingly, however, a substantial proportion of substitutions (42%) reverted toward the clade B consensus sequence, with nearly one-quarter of them located within defined CD8 epitopes not restricted by the contemporary host's HLA. More importantly, these reversions arose significantly faster than forward mutations, with the most rapidly reverting mutations preferentially arising within structurally conserved residues. These data suggest that many transmitted mutations likely incur a fitness cost that is recovered through retrieval of an optimal, or ancestral, form of the virus. The propensity of mutations to revert may limit the accumulation of immune pressure-driven mutations in the population, thus preserving critical CD8+ T-cell epitopes as vaccine targets, and argue against an unremitting adaptation of HIV-1 to host immune pressures.
Collapse
Affiliation(s)
- Bin Li
- Partners AIDS Research Center, MGH-East, CNY 6616, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Liu Y, McNevin J, Cao J, Zhao H, Genowati I, Wong K, McLaughlin S, McSweyn MD, Diem K, Stevens CE, Maenza J, He H, Nickle DC, Shriner D, Holte SE, Collier AC, Corey L, McElrath MJ, Mullins JI. Selection on the human immunodeficiency virus type 1 proteome following primary infection. J Virol 2006; 80:9519-29. [PMID: 16973556 PMCID: PMC1617227 DOI: 10.1128/jvi.00575-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typically during human immunodeficiency virus type 1 (HIV-1) infection, a nearly homogeneous viral population first emerges and then diversifies over time due to selective forces that are poorly understood. To identify these forces, we conducted an intensive longitudinal study of viral genetic changes and T-cell immunity in one subject at < or =17 time points during his first 3 years of infection, and in his infecting partner near the time of transmission. Autologous peptides covering amino acid sites inferred to be under positive selection were powerful for identifying HIV-1-specific cytotoxic-T-lymphocyte (CTL) epitopes. Positive selection and mutations resulting in escape from CTLs occurred across the viral proteome. We detected 25 CTL epitopes, including 14 previously unreported. Seven new epitopes mapped to the viral Env protein, emphasizing Env as a major target of CTLs. One-third of the selected sites were associated with epitopic mutational escapes from CTLs. Most of these resulted from replacement with amino acids found at low database frequency. Another one-third represented acquisition of amino acids found at high database frequency, suggesting potential reversions of CTL epitopic sites recognized by the immune system of the transmitting partner and mutation toward improved viral fitness in the absence of immune targeting within the recipient. A majority of the remaining selected sites occurred in the envelope protein and may have been subjected to humoral immune selection. Hence, a majority of the amino acids undergoing selection in this subject appeared to result from fitness-balanced CTL selection, confirming CTLs as a dominant selective force in HIV-1 infection.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Altfeld M, Kalife ET, Qi Y, Streeck H, Lichterfeld M, Johnston MN, Burgett N, Swartz ME, Yang A, Alter G, Yu XG, Meier A, Rockstroh JK, Allen TM, Jessen H, Rosenberg ES, Carrington M, Walker BD. HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial CD8(+) T Cell Response against HIV-1. PLoS Med 2006; 3:e403. [PMID: 17076553 PMCID: PMC1626551 DOI: 10.1371/journal.pmed.0030403] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 08/01/2006] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Very little is known about the immunodominance patterns of HIV-1-specific T cell responses during primary HIV-1 infection and the reasons for human lymphocyte antigen (HLA) modulation of disease progression. METHODS AND FINDINGS In a cohort of 104 individuals with primary HIV-1 infection, we demonstrate that a subset of CD8(+) T cell epitopes within HIV-1 are consistently targeted early after infection, while other epitopes subsequently targeted through the same HLA class I alleles are rarely recognized. Certain HLA alleles consistently contributed more than others to the total virus-specific CD8(+) T cell response during primary infection, and also reduced the absolute magnitude of responses restricted by other alleles if coexpressed in the same individual, consistent with immunodomination. Furthermore, individual HLA class I alleles that have been associated with slower HIV-1 disease progression contributed strongly to the total HIV-1-specific CD8(+) T cell response during primary infection. CONCLUSIONS These data demonstrate consistent immunodominance patterns of HIV-1-specific CD8(+) T cell responses during primary infection and provide a mechanistic explanation for the protective effect of specific HLA class I alleles on HIV-1 disease progression.
Collapse
Affiliation(s)
- Marcus Altfeld
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Elizabeth T Kalife
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Ying Qi
- Basic Research Program, SAIC-Frederick, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Hendrik Streeck
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
- Gemeinschaftspraxis Jessen, Berlin, Germany
| | - Mathias Lichterfeld
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Mary N Johnston
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Nicole Burgett
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Martha E Swartz
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Amy Yang
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Galit Alter
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Xu G Yu
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Angela Meier
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | | | - Todd M Allen
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | | | - Eric S Rosenberg
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
| | - Mary Carrington
- Basic Research Program, SAIC-Frederick, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bruce D Walker
- Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School Boston, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
161
|
López M, Soriano V, Lozano S, Martinez P, Sempere J, González-Lahoz J, Benito J. Impact of Gag sequence variability on level, phenotype, and function of anti-HIV Gag-specific CD8(+) cytotoxic T lymphocytes in untreated chronically HIV-infected patients. AIDS Res Hum Retroviruses 2006; 22:884-92. [PMID: 16989614 DOI: 10.1089/aid.2006.22.884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The role of cytotoxic T lymphocyte responses in controlling viral replication during chronic HIV infection remains controversial. Viral escape mutations driven by immune pressure have been postulated to be an important mechanism contributing to the evasion of CD8(+) T cell responses. To explore this issue in more detail, HIV-1 p17 sequence variability was examined in chronically HIV-infected patients, in parallel with the level, phenotype, and function of HIV-SL9-specific CD8(+) T cell. Thirty-one HLA-A*0201(+) (A2(+)) and 10 HLAA* 02() (A2()) patients were included. The phenotype of SL9-specific CD8(+) T cell and their ability to produce IFN-gamma were analyzed by multiparameter flow cytometry. The HIV Gag p17 was sequenced and the mean variability score for each residue within SL9 and the two epitope flanking regions were calculated using Shannon entropy. The mean variability of SL9 and the proportion of patients with amino acid changes within SL9 were similar in A2(+) and A2() patients. Patients without Tet(+) cells had a significantly higher prevalence of aminoacid changes in SL9 than patients with Tet(+) cells. Interestingly, in patients with Tet(+) cells, the Y79F mutation within SL9 tended to be associated with lower levels of Tet(+) cells. We did not find any association between amino acid changes within SL9 and the differentiation stage of Tet(+) cells, or with IFN-gamma production. A similar analysis within the epitope flanking sequences did not reveal differences in the variability of these regions. These results suggest that viral mutations driven by immune selection pressure may play an important role in evading the immunological response in chronically HIV-infected individuals.
Collapse
Affiliation(s)
- Mariola López
- Infectious Diseases and Haematology Unit, Hospital Carlos III, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
162
|
Arruda LB, Sim D, Chikhlikar PR, Maciel M, Akasaki K, August JT, Marques ETA. Dendritic cell-lysosomal-associated membrane protein (LAMP) and LAMP-1-HIV-1 gag chimeras have distinct cellular trafficking pathways and prime T and B cell responses to a diverse repertoire of epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:2265-75. [PMID: 16887987 DOI: 10.4049/jimmunol.177.4.2265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag processing is a critical step in defining the repertoire of epitope-specific immune responses. In the present study, HIV-1 p55Gag Ag was synthesized as a DNA plasmid with either lysosomal-associated membrane protein-1 (LAMP/gag) or human dendritic cell-LAMP (DC-LAMP/gag) and used to immunize mice. Analysis of the cellular trafficking of these two chimeras demonstrated that both molecules colocalized with MHC class II molecules but differed in their overall trafficking to endosomal/lysosomal compartments. Following DNA immunization, both chimeras elicited potent Gag-specific T and B cell immune responses in mice but differ markedly in their IL-4 and IgG1/IgG2a responses. The DC-LAMP chimera induced a stronger Th type 1 response. ELISPOT analysis of T cell responses to 122 individual peptides encompassing the entire p55gag sequence (15-aa peptides overlapping by 11 residues) showed that DNA immunization with native gag, LAMP/gag, or DC-LAMP/gag induced responses to identical immunodominant CD4+ and CD8+ peptides. However, LAMP/gag and DC-LAMP/gag plasmids also elicited significant responses to 23 additional cryptic epitopes that were not recognized after immunization with native gag DNA. The three plasmids induced T cell responses to a total of 39 distinct peptide sequences, 13 of which were induced by all three DNA constructs. Individually, DC-LAMP/gag elicited the most diverse response, with a specific T cell response against 35 peptides. In addition, immunization with LAMP/gag and DC-LAMP/gag chimeras also promoted Ab secretion to an increased number of epitopes. These data indicate that LAMP-1 and DC-LAMP Ag chimeras follow different trafficking pathways, induce distinct modulatory immune responses, and are able to present cryptic epitopes.
Collapse
Affiliation(s)
- Luciana B Arruda
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Frater AJ, Edwards CTT, McCarthy N, Fox J, Brown H, Milicic A, Mackie N, Pillay T, Drijfhout JW, Dustan S, Clarke JR, Holmes EC, Zhang HT, Pfafferott K, Goulder PJ, McClure MO, Weber J, Phillips RE, Fidler S. Passive sexual transmission of human immunodeficiency virus type 1 variants and adaptation in new hosts. J Virol 2006; 80:7226-34. [PMID: 16809328 PMCID: PMC1489048 DOI: 10.1128/jvi.02014-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 04/05/2006] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genetic diversity is a major obstacle for the design of a successful vaccine. Certain viral polymorphisms encode human leukocyte antigen (HLA)-associated immune escape, potentially overcoming limited vaccine protection. Although transmission of immune escape variants has been reported, the overall extent to which this phenomenon occurs in populations and the degree to which it contributes to HIV-1 viral evolution are unknown. Selection on the HIV-1 env gene at transmission favors neutralization-sensitive variants, but it is not known to what degree selection acts on the internal HIV-1 proteins to restrict or enhance the transmission of immune escape variants. Studies have suggested that HLA class I may determine susceptibility to HIV-1 infection, but a definitive role for HLA at transmission remains unproven. Comparing populations of acute seroconverters and chronically infected patients, we found no evidence of selection acting to restrict transmission of HIV-1 variants. We found that statistical associations previously reported in chronic infection between viral polymorphisms and HLA class I alleles are not present in acute infection, suggesting that the majority of viral polymorphisms in these patients are the result of transmission rather than de novo adaptation. Using four episodes of HIV-1 transmission in which the donors and recipients were both sampled very close to the time of infection we found that, despite a transmission bottleneck, genetic variants of HIV-1 infection are transmitted in a frequency-dependent manner. As HIV-1 infections are seeded by unique donor-adapted viral variants, each episode is a highly individual antigenic challenge. Host-specific, idiosyncratic HIV-1 antigenic diversity will seriously tax the efficacy of immunization based on consensus sequences.
Collapse
Affiliation(s)
- A J Frater
- The James Martin 21st Century School, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Dönnes P, Kohlbacher O. SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 2006; 34:W194-7. [PMID: 16844990 PMCID: PMC1538857 DOI: 10.1093/nar/gkl284] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/02/2006] [Accepted: 04/05/2006] [Indexed: 11/13/2022] Open
Abstract
Identification of MHC-binding peptides is a prerequisite in rational design of T-cell based peptide vaccines. During the past decade a number of computational approaches have been introduced for the prediction of MHC-binding peptides, efficiently reducing the number of candidate binders that need to be experimentally verified. Here the SVMHC server for prediction of both MHC class I and class II binding peptides is presented. SVMHC offers fast analysis of a wide range of alleles and prediction results are given in several comprehensive formats. The server can be used to find the most likely binders in a protein sequence and to investigate the effects of single nucleotide polymorphisms in terms of MHC-peptide binding. The SVMHC server is accessible at http://www-bs.informatik.uni-tuebingen.de/SVMHC/.
Collapse
Affiliation(s)
- Pierre Dönnes
- Division for Simulation of Biological Systems, WSI/ZBIT, Eberhard Karls University, Tübingen Sand 14, D-72076 Tübingen, Germany.
| | | |
Collapse
|
165
|
Turnbull EL, Lopes AR, Jones NA, Cornforth D, Newton P, Aldam D, Pellegrino P, Turner J, Williams I, Wilson CM, Goepfert PA, Maini MK, Borrow P. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. THE JOURNAL OF IMMUNOLOGY 2006; 176:6130-46. [PMID: 16670322 DOI: 10.4049/jimmunol.176.10.6130] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.
Collapse
Affiliation(s)
- Emma L Turnbull
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Brander C, Frahm N, Walker BD. The challenges of host and viral diversity in HIV vaccine design. Curr Opin Immunol 2006; 18:430-7. [PMID: 16777397 DOI: 10.1016/j.coi.2006.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/31/2006] [Indexed: 02/03/2023]
Abstract
Rational HIV vaccine design is crucially dependent on a number of factors, including a detailed understanding of the immune responses that control infection in individuals that have non-progressing disease, the impact of host genetics on these responses, and the degree of immunological cross-reactivity between the vaccine immunogen and the encountered virus antigens. Significant progress has been made in a number of these areas over the past five years, which might help in the generation of a more effective immunogen design and will provide opportunities for novel vaccine delivery options. However, the understanding of immune response(s) that can mediate protection from infection or, if infection ensues, that slow the rate of HIV disease progression is still incomplete and will require detailed studies in unprecedentedly large populations infected with different HIV clades, combining advances in virology, immunology, human host genetics and bioinformatics analyses for the optimal design of vaccine immunogens.
Collapse
Affiliation(s)
- Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School Charlestown, 02192, USA.
| | | | | |
Collapse
|
167
|
Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne I, Crawford H, Matthews P, Pillay T, Rousseau C, Mullins JI, Brander C, Walker BD, Stuart DI, Kiepiela P, Goulder P. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 2006; 80:3617-23. [PMID: 16537629 PMCID: PMC1440414 DOI: 10.1128/jvi.80.7.3617-3623.2006] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 12/09/2005] [Indexed: 12/26/2022] Open
Abstract
Mutational escape by human immunodeficiency virus (HIV) from cytotoxic T-lymphocyte (CTL) recognition is a major challenge for vaccine design. However, recent studies suggest that CTL escape may carry a sufficient cost to viral replicative capacity to facilitate subsequent immune control of a now attenuated virus. In order to examine how limitations can be imposed on viral escape, the epitope TSTLQEQIGW (TW10 [Gag residues 240 to 249]), presented by two HLA alleles associated with effective control of HIV, HLA-B*57 and -B*5801, was investigated. The in vitro experiments described here demonstrate that the dominant TW10 escape mutation, T242N, reduces viral replicative capacity. Structural analysis reveals that T242 plays a critical role in defining the start point and in stabilizing helix 6 within p24 Gag, ensuring that escape occurs at a significant cost. A very similar role is played by Thr-180, which is also an escape residue, but within a second p24 Gag epitope associated with immune control. Analysis of HIV type 1 gag in 206 B*57/5801-positive subjects reveals three principle alternative TW10-associated variants, and each is strongly linked to concomitant additional variants within p24 Gag, suggesting that functional constraints operate against their occurrence alone. The extreme conservation of p24 Gag and the predictable nature of escape variation resulting from these tight functional constraints indicate that p24 Gag may be a critical immunogen in vaccine design and suggest novel vaccination strategies to limit viral escape options from such epitopes.
Collapse
|
168
|
Ganusov VV, De Boer RJ. Estimating Costs and Benefits of CTL Escape Mutations in SIV/HIV Infection. PLoS Comput Biol 2006; 2:e24. [PMID: 16604188 PMCID: PMC1420660 DOI: 10.1371/journal.pcbi.0020024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/13/2006] [Indexed: 11/19/2022] Open
Abstract
Mutations that allow SIV/HIV to avoid the cytotoxic T lymphocyte (CTL) response are well documented. Recently, there have been a few attempts at estimating the costs of CTL escape mutations in terms of the reduction in viral fitness and the killing rate at which the CTL response specific to one viral epitope clears virus-infected cells. Using a mathematical model we show that estimation of both parameters depends critically on the underlying changes in the replication rate of the virus and the changes in the killing rate over time (which in previous studies were assumed to be constant). We provide a theoretical basis for estimation of these parameters using in vivo data. In particular, we show that 1) by assuming unlimited virus growth one can obtain a minimal estimate of the fitness cost of the escape mutation, and 2) by assuming no virus growth during the escape, one can obtain a minimal estimate of the average killing rate. We also discuss the conditions under which better estimates of the average killing rate can be obtained. Due to their high mutation rate, RNA viruses—like SIV and HIV—can avoid recognition by the host immune response by evolving new variants (i.e., immune escape mutants). Avoiding the cytotoxic T lymphocyte (CTL) immune responses is one of the major obstacles for the development of vaccines to HIV, and this avoidance seems a major mechanism of HIV disease progression to AIDS. Using a relatively general mathematical model, Ganusov and De Boer suggest a simple technique by which two main parameters determining the likelihood of viral escape can be estimated. First is the “cost” of the escape mutation, which is the relative fitness reduction in the virus replication rate. Second is the rate at which the CTL response specific for one epitope “clears” virus-infected cells. Application of their technique to data on virus escape helps to quantify the costs and benefits of CTL escape mutations in SIV/HIV infection.
Collapse
|
169
|
Draenert R, Allen TM, Liu Y, Wrin T, Chappey C, Verrill CL, Sirera G, Eldridge RL, Lahaie MP, Ruiz L, Clotet B, Petropoulos CJ, Walker BD, Martinez-Picado J. Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. ACTA ACUST UNITED AC 2006; 203:529-39. [PMID: 16533886 PMCID: PMC2118231 DOI: 10.1084/jem.20052116] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The predictability of virus–host interactions and disease progression in rapidly evolving human viral infections has been difficult to assess because of host and genetic viral diversity. Here we examined adaptive HIV-specific cellular and humoral immune responses and viral evolution in adult monozygotic twins simultaneously infected with the same virus. CD4 T cell counts and viral loads followed similar trajectories over three years of follow up. The initial CD8 T cell response targeted 17 epitopes, 15 of which were identical in each twin, including two immunodominant responses. By 36 months after infection, 14 of 15 initial responses were still detectable in both, whereas all new responses were subdominant and remained so. Of four responses that declined in both twins, three demonstrated mutations at the same residue. In addition, the evolving antibody responses cross-neutralized the other twin's virus, with similar changes in the pattern of evolution in the envelope gene. These results reveal considerable concordance of adaptive cellular and humoral immune responses and HIV evolution in the same genetic environment, suggesting constraints on mutational pathways to HIV immune escape.
Collapse
Affiliation(s)
- Rika Draenert
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Novitsky VA, Gilbert PB, Shea K, McLane MF, Rybak N, Klein I, Thior I, Ndung'u T, Lee TH, Essex ME. Interactive association of proviral load and IFN-gamma-secreting T cell responses in HIV-1C infection. Virology 2006; 349:142-55. [PMID: 16519915 DOI: 10.1016/j.virol.2006.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/22/2005] [Accepted: 02/06/2006] [Indexed: 12/01/2022]
Abstract
We investigated the interactive relationship between proviral DNA load and virus-specific IFN-gamma-secreting T cell responses in HIV-1C infection. The presence or absence of correlation, and inverse or direct type of correlation, if any, were dependent on targeted viral gene product. Responses to Gag p24 or to Pol were associated with lower proviral DNA load. Associations between proviral DNA load and T cell responses did not necessarily mirror relationships between plasma RNA load and T cell responses. An interaction analysis showed a synergy in that lower proviral DNA and lower plasma RNA load were associated with high Gag p24-specific IFN-gamma-secreting T cell response (interaction test P = 0.0003). Our findings support the idea that HIV proteins have differential value for vaccine design, and suggest that, for HIV-1C, Gag p24 may be one of the most attractive regions to include in vaccine designs to control both plasma RNA load and cell-associated proviral DNA load.
Collapse
Affiliation(s)
- Vladimir A Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zuñiga R, Lucchetti A, Galvan P, Sanchez S, Sanchez C, Hernandez A, Sanchez H, Frahm N, Linde CH, Hewitt HS, Hildebrand W, Altfeld M, Allen TM, Walker BD, Korber BT, Leitner T, Sanchez J, Brander C. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 2006; 80:3122-5. [PMID: 16501126 PMCID: PMC1395458 DOI: 10.1128/jvi.80.6.3122-3125.2006] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 12/21/2005] [Indexed: 01/02/2023] Open
Abstract
Conflicting data on the role of total virus- and protein-specific cytotoxic-T-lymphocyte (CTL) responses in the control of human immunodeficiency virus (HIV) disease progression exist. We present data generated from a Peruvian cohort of untreated, clade B-infected subjects, demonstrating that the proportion of Gag-specific, and in particular p24-reactive, CTL responses among the total virus-specific CTL activity is associated with individuals' CD4 counts and viral loads. Analyses in a second cohort in the United States confirm these findings and point towards a dominant role of Gag-specific immunity in effective control of HIV infection, providing important guidance for HIV vaccine development.
Collapse
|
172
|
Herbeck JT, Nickle DC, Learn GH, Gottlieb GS, Curlin ME, Heath L, Mullins JI. Human immunodeficiency virus type 1 env evolves toward ancestral states upon transmission to a new host. J Virol 2006; 80:1637-44. [PMID: 16439520 PMCID: PMC1367147 DOI: 10.1128/jvi.80.4.1637-1644.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selecting human immunodeficiency virus (HIV) sequences for inclusion within vaccines has been a difficult problem, as circulating HIV strains evolve relentlessly and become increasingly divergent over time. We report an assessment of this divergence from three perspectives: (i) across different hosts as a function of time of infection, (ii) between donors and recipients in known transmission pairs, and (iii) within individual hosts over time in relation to the initially replicating virus and to the deduced ancestral sequence of the intrahost viral population. Surprisingly, we consistently found less divergence between viruses from different individuals sampled in primary infection than in individuals sampled at more advanced stages of illness. Furthermore, longitudinal analysis of intrahost divergence revealed a 2- to 3-year period of evolution toward a common ancestral sequence at the start of infection, indicating that HIV recovers certain ancestral features when infecting a new host. These results have important implications for the study of HIV population genetics and rational vaccine design, including favoring the inclusion of viral gene sequences taken early in infection.
Collapse
Affiliation(s)
- Joshua T Herbeck
- Department of Microbiology, SC 42, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Human immunodeficiency viruses (HIV) have exhibited an extraordinary capacity for genetic change, exploring new evolutionary space after each transmission to a new host. This presents a great challenge to the prevention and management of HIV-1 infection. At the same time, the relentless diversification of HIV-1, developing as it does under the constraints imposed by the human immune system and other selective forces, contains within it information useful for understanding HIV epidemiology and pathogenesis. Comparing the sheer mutational potential of HIV with actual data representing viral lineages that can survive selection suggests that HIV does not have unlimited capacity for change. Rather, clinical and bioinformatic data suggest that, even in the most diverse gene of the most highly variable organism, natural selection places severe limits on the portion of amino acid sequence space that ensures viability. This suggests some optimism for those attempting to identify sets of antigens that can generate effective humoral and cellular immune responses against HIV.
Collapse
Affiliation(s)
- J I Mullins
- Departments of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070, USA.
| | | |
Collapse
|
174
|
Snyder-Cappione JE, Divekar AA, Maupin GM, Jin X, Demeter LM, Mosmann TR. HIV-Specific Cytotoxic Cell Frequencies Measured Directly Ex Vivo by the Lysispot Assay Can Be Higher or Lower Than the Frequencies of IFN-γ-Secreting Cells: Anti-HIV Cytotoxicity Is Not Generally Impaired Relative to Other Chronic Virus Responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:2662-8. [PMID: 16456029 DOI: 10.4049/jimmunol.176.4.2662] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells in HIV-infected patients are believed to contribute to the containment of the virus and the delay of disease progression. However, the frequencies of HIV-specific CD8(+) T cells, as measured by IFN-gamma secretion and tetramer binding, often do not correlate with a delay in disease progression during chronic infection. Using the Lysispot and ELISPOT assays, we measured the frequencies of cytotoxic and IFN-gamma-secreting T cells responding to overlapping peptides from Gag, Nef, Env, and Pol consensus HIV-1 clade B sequences. PBMC from the majority of HIV-infected subjects have significant frequencies of HIV-specific cells that killed targets within 5 h directly ex vivo. The relative frequencies of IFN-gamma-secreting and cytotoxic cells varied markedly between different HIV peptide pools within the same patient, and some T cells lysed targets without secreting IFN-gamma. These results indicate that measurement of IFN-gamma production alone may be insufficient to evaluate the breadth of the HIV-specific T cell response. Also, neither the CTL to IFN-gamma ratios nor the ex vivo CTL frequencies specific for different HIV proteins were consistently lower than responses specific for two other chronic viral infections, human CMV and EBV, within the same subjects. Thus ex vivo cytotoxic T cell frequencies do not provide evidence for a model of "preterminal differentiation" of HIV-specific CD8(+) T cells during chronic HIV infection. Analysis of the frequency of directly cytotoxic HIV-specific T cells may be of considerable value in the assessment of disease progression and the potential efficacy of HIV vaccines.
Collapse
Affiliation(s)
- Jennifer E Snyder-Cappione
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, University of Rochester Medical Center, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
175
|
Milicic A, Edwards CTT, Hué S, Fox J, Brown H, Pillay T, Drijfhout JW, Weber JN, Holmes EC, Fidler SJ, Zhang HT, Phillips RE. Sexual transmission of single human immunodeficiency virus type 1 virions encoding highly polymorphic multisite cytotoxic T-lymphocyte escape variants. J Virol 2006; 79:13953-62. [PMID: 16254331 PMCID: PMC1280182 DOI: 10.1128/jvi.79.22.13953-13962.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigenic variation inherent in human immunodeficiency virus type 1 (HIV-1) virions that successfully instigate new infections transferred by sex has not been well defined. Yet this is the viral "challenge" which any vaccine-induced immunity must deal with. Closely timed comparisons of the virus circulating in the "donor" and that which initiates new infection are difficult to carry out rigorously, as suitable samples are very hard to get in the face of ethical hurdles. Here we investigate HIV-1 variation in four homosexual couples where we sampled blood from both parties within several weeks of the estimated transmission event. We analyzed variation within highly immunogenic HIV-1 internal proteins encoding epitopes recognized by cytotoxic T lymphocytes (CTLs). These responses are believed to be crucial as a means of containing viral replication. In the donors we detected virions capable of evading host CTL recognition at several linked epitopes of distinct HLA class I restriction. When a donor transmitted escape variants to a recipient with whom he had HLA class I molecules in common, the recipient's CTL response to those epitopes was prevented, thus impeding adequate viral control. In addition, we show that even when HLA class I alleles are disparate in the transmitting couple, a single polymorphism can abolish CTL recognition of an overlapping epitope of distinct restriction and so confer immune escape properties to the recipient's seroconversion virus. In donors who are themselves controlling an early, acute infection, the precise timing of onward transmission is a crucial determinant of the viral variants available to compose the inoculum.
Collapse
Affiliation(s)
- Anita Milicic
- The Peter Medawar Building for Pathogen Research and The James Martin 21st Century School, Nuffield Department of Clinical Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Smith MZ, Kent SJ. Genetic influences on HIV infection: implications for vaccine development. Sex Health 2006; 2:53-62. [PMID: 16335742 DOI: 10.1071/sh04057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human HIV infection is characterised by great variability in outcome. Much of this variability is due either to viral variation or host genetic factors, particularly major histocompatibility complex differences within genetically diverse populations. The study of non-human primates infected with well characterised simian immunodeficiency virus strains has recently allowed further dissection of the critical role of genetic influences on both susceptibility to infection and progression to AIDS. This review summarises the important role of many host genetic factors on HIV infection and highlights important variables that will need to be taken into account in evaluating effective HIV vaccines.
Collapse
Affiliation(s)
- Miranda Z Smith
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic. 3010, Australia
| | | |
Collapse
|
177
|
Puls RL, Emery S. Therapeutic vaccination against HIV: current progress and future possibilities. Clin Sci (Lond) 2005; 110:59-71. [PMID: 16336205 DOI: 10.1042/cs20050157] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although effective in reducing mortality, current antiretroviral therapy for HIV infection involves complex and expensive drug regimens that are toxic and difficult to take. Eradication of HIV reservoirs is not possible with existing therapies. The concept of therapeutic vaccination has been investigated to increase the potency and breadth of anti-HIV immune responses in order to delay or reduce antiretroviral therapy use. A variety of approaches targeted to both cell- and antibody-mediated immunity have been developed, including whole inactivated HIV-1, protein subunits and synthetic peptides, DNA vaccines and a number of viral vectors expressing HIV-1. These investigations have occurred in the absence of a clear understanding of disease pathogenesis or the correlates of protective immunity. At this time, there is no licensed therapeutic vaccine for any viral disease, including HIV; however, this review will consider recent progress in the field and summarize the challenges faced in the development of a therapeutic HIV vaccine.
Collapse
Affiliation(s)
- Rebekah L Puls
- National Centre in HIV Epidemiology and Clinical Research (NCHECR), University of New South Wales (UNSW), 376 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | | |
Collapse
|
178
|
Gao X, Bashirova A, Iversen AKN, Phair J, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Altfeld M, O'Brien SJ, Carrington M. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med 2005; 11:1290-2. [PMID: 16288280 DOI: 10.1038/nm1333] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/12/2005] [Indexed: 11/09/2022]
Abstract
An effective acquired immune response to infectious agents mediated by HLA-restricted T-cell recognition can target different stages of disease pathogenesis. We show here that three distinct HLA alleles known to alter the overall rate of AIDS progression act during distinct intervals after HIV-1 infection. The discrete timing of HLA allele influence suggests alternative functional mechanisms in immune defense against this dynamic and chronic immunosuppressive disease.
Collapse
Affiliation(s)
- Xiaojiang Gao
- Laboratory of Genomic Diversity, NCI-Frederick, Basic Research Program, SAIC Frederick, P.O. Box B, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O'sullivan KM, Desouza I, Feeney ME, Eldridge RL, Maier EL, Kaufmann DE, Lahaie MP, Reyor L, Tanzi G, Johnston MN, Brander C, Draenert R, Rockstroh JK, Jessen H, Rosenberg ES, Mallal SA, Walker BD. Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 2005; 79:13239-49. [PMID: 16227247 PMCID: PMC1262562 DOI: 10.1128/jvi.79.21.13239-13249.2005] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.
Collapse
Affiliation(s)
- Todd M Allen
- Howard Hughes Medical Institute, Partners AIDS Research Center, and Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Allen TM, Yu XG, Kalife ET, Reyor LL, Lichterfeld M, John M, Cheng M, Allgaier RL, Mui S, Frahm N, Alter G, Brown NV, Johnston MN, Rosenberg ES, Mallal SA, Brander C, Walker BD, Altfeld M. De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. J Virol 2005; 79:12952-60. [PMID: 16188997 PMCID: PMC1235830 DOI: 10.1128/jvi.79.20.12952-12960.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.
Collapse
Affiliation(s)
- Todd M Allen
- Partners AIDS Research Center, Massachusetts General Hospital, Boston, 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Derdeyn CA, Silvestri G. Viral and host factors in the pathogenesis of HIV infection. Curr Opin Immunol 2005; 17:366-73. [PMID: 15955686 DOI: 10.1016/j.coi.2005.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 06/01/2005] [Indexed: 01/02/2023]
Abstract
Recent studies suggest that the pathogenesis of HIV infection and AIDS involves two distinct phases. During acute infection, massive depletion of CD4+CCR5+ memory T cells within the mucosal-associated lymphoid tissue leads to major and potentially irreversible damage to CD4+ T-cell-mediated immune functions. The emergence of potent, but ultimately ineffective, cell-mediated and humoral responses to HIV leads to the chronic phase of infection, which is characterized by partial control of viral replication, chronic immune activation, progressive decline of the naïve and memory T-cell pool, and systemic CD4+ T-cell depletion. The identification of these two pathogenic phases of HIV infection could have important implications in terms of HIV therapy and vaccine development.
Collapse
Affiliation(s)
- Cynthia A Derdeyn
- Division of Infectious Diseases, Department of Pathology, and Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
182
|
Peyerl FW, Barouch DH, Bazick HS, Manuel E, Letvin NL. Use of molecular beacons for rapid, real-time, quantitative monitoring of cytotoxic T-lymphocyte epitope mutations in simian immunodeficiency virus. J Clin Microbiol 2005; 43:4773-9. [PMID: 16145140 PMCID: PMC1234110 DOI: 10.1128/jcm.43.9.4773-4779.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune pressure on lentiviruses exerted by cytotoxic T lymphocytes (CTL) selects for virus CTL epitope mutations. Currently employed methods for monitoring emerging CTL epitope mutations rely on the labor-intensive and time-consuming techniques of virus population or clonal sequencing. Here we describe the development of a high-throughput quantitative reverse transcription-PCR assay that facilitates large-scale CTL epitope monitoring. This approach utilizes both sequence-specific molecular beacons and the sequence-independent double-stranded DNA binding dye Sybr Green. We show that this assay detects single-nucleotide mutations in an immunodominant CTL epitope in viral RNA isolated from both viral culture supernatants and plasma samples from simian immunodeficiency virus (SIV)-infected rhesus monkeys. Furthermore, mutant viruses can be detected even when they represent as few as 500 mutant copies in a sample containing 10,000 total copies. This real-time PCR technique for evaluating CTL epitope mutations may prove to be a useful tool for monitoring the genetic drift of human immunodeficiency virus and SIV in infected individuals.
Collapse
Affiliation(s)
- Fred W Peyerl
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
183
|
Geels MJ, Jansen CA, Baan E, De Cuyper IM, van Schijndel GJM, Schuitemaker H, Goudsmit J, Pollakis G, Miedema F, Paxton WA, van Baarle D. CTL escape and increased viremia irrespective of HIV-specific CD4+ T-helper responses in two HIV-infected individuals. Virology 2005; 345:209-19. [PMID: 16246391 DOI: 10.1016/j.virol.2005.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 08/26/2005] [Accepted: 09/15/2005] [Indexed: 12/15/2022]
Abstract
We investigated whether development of mutations leads to loss of CD8 T-cell recognition in HIV-1 infection and is possibly linked to alterations in HIV-1-specific CD4(+) T-cell responses in 2 HIV-infected individuals. In patient, H434 full genome sequencing of HIV-1 biological clones at early and late time points during disease progression showed development of fixed mutations in 16 predicted HIV-specific CTL epitopes. Loss of T-cell recognition and reactivity against wild-type and mutant epitopes was observed primarily for the HLA-B27-restricted KK10 epitope and HLA-A2-restricted SL9 epitope. Similarly, in patient H671, decreasing numbers of HLA-A3-restricted CD8(+) T cells specific for the wild-type RK9 epitope was observed after CTL escape. Only in patient H434 loss of CTL responses was paralleled by a decrease in HIV-specific IL-2(+) CD4(+) T-helper responses. This suggests that loss of T-cell reactivity may not be directly linked to HIV-specific CD4(+) T-cell responses but that increased viremia after CTL escape may influence CD4(+) T-helper responses.
Collapse
Affiliation(s)
- Mark J Geels
- Department of Human Retrovirology, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kent SJ, Fernandez CS, Dale CJ, Davenport MP. Reversion of immune escape HIV variants upon transmission: insights into effective viral immunity. Trends Microbiol 2005; 13:243-6. [PMID: 15936652 DOI: 10.1016/j.tim.2005.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 02/15/2005] [Accepted: 03/18/2005] [Indexed: 11/30/2022]
Abstract
Many viruses that cause chronic viremic infections, such as human immunodeficiency virus type 1 (HIV-1), mutate extensively to avoid effective control by the host immune system. However, each immune escape mutation probably results in some fitness cost to the virus. The most effective immune responses might be those that target the regions of the virus where escape mutation inflicts the largest fitness cost to the virus. A virus crippled by immune escape mutations would result in reduced viral load and delayed disease. Such knowledge could be used to rationally design more effective vaccines.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
185
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Bernardin F, Kong D, Peddada L, Baxter-Lowe LA, Delwart E. Human immunodeficiency virus mutations during the first month of infection are preferentially found in known cytotoxic T-lymphocyte epitopes. J Virol 2005; 79:11523-8. [PMID: 16103205 PMCID: PMC1193571 DOI: 10.1128/jvi.79.17.11523-11528.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The full protein coding region of human immunodeficiency virus (HIV) genomes were sequenced using plasma collected from nine African-Americans prior to seroconversion and 7 to 28 days later. HIV mutations emerged in seven of these subjects at a genomewide rate of 2% per year. The location of nonsynonymous (NS) HIV mutations within these subjects was compared to their potential HLA-A and B types restricted CTL epitopes reported in the Los Alamos National Laboratory HIV immunology database. A statistically significant (P < 0.005) number of the early NS mutations (13.5%) were found within previously reported CTL epitopes. A virus sequencing and reported CTL epitopes database analysis therefore support a model where a significant proportion of very early nonsynonymous HIV mutations are selected by CTL.
Collapse
|
187
|
Frahm N, Adams S, Kiepiela P, Linde CH, Hewitt HS, Lichterfeld M, Sango K, Brown NV, Pae E, Wurcel AG, Altfeld M, Feeney ME, Allen TM, Roach T, St John MA, Daar ES, Rosenberg E, Korber B, Marincola F, Walker BD, Goulder PJR, Brander C. HLA-B63 presents HLA-B57/B58-restricted cytotoxic T-lymphocyte epitopes and is associated with low human immunodeficiency virus load. J Virol 2005; 79:10218-25. [PMID: 16051815 PMCID: PMC1182636 DOI: 10.1128/jvi.79.16.10218-10225.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several HLA class I alleles have been associated with slow human immunodeficiency virus (HIV) disease progression, supporting the important role HLA class I-restricted cytotoxic T lymphocytes (CTL) play in controlling HIV infection. HLA-B63, the serological marker for the closely related HLA-B*1516 and HLA-B*1517 alleles, shares the epitope binding motif of HLA-B57 and HLA-B58, two alleles that have been associated with slow HIV disease progression. We investigated whether HIV-infected individuals who express HLA-B63 generate CTL responses that are comparable in breadth and specificity to those of HLA-B57/58-positive subjects and whether HLA-B63-positive individuals would also present with lower viral set points than the general population. The data show that HLA-B63-positive individuals indeed mounted responses to previously identified HLA-B57-restricted epitopes as well as towards novel, HLA-B63-restricted CTL targets that, in turn, can be presented by HLA-B57 and HLA-B58. HLA-B63-positive subjects generated these responses early in acute HIV infection and were able to control HIV replication in the absence of antiretroviral treatment with a median viral load of 3,280 RNA copies/ml. The data support an important role of the presented epitope in mediating relative control of HIV replication and help to better define immune correlates of controlled HIV infection.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, No. 5214, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Edwards CTT, Pfafferott KJ, Goulder PJR, Phillips RE, Holmes EC. Intrapatient escape in the A*0201-restricted epitope SLYNTVATL drives evolution of human immunodeficiency virus type 1 at the population level. J Virol 2005; 79:9363-6. [PMID: 15994836 PMCID: PMC1168780 DOI: 10.1128/jvi.79.14.9363-9366.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hypothesis that the intrapatient emergence of cytotoxic T-lymphocyte escape variants contributes to the evolution of human immunodeficiency virus type 1 at the population (interpatient) level was tested using the HLA-A*0201-restricted gag p17 epitope SLYNTVATL. Using a simple experimental design, we investigated the evolutionary processes operating within this epitope among patients while compensating for the confounding influence of intrapatient natural selection. Using this approach, we revealed a pattern of A*0201-driven escape within patients, followed by the sustained transmission of these escape variants among patients irrespective of their HLA type.
Collapse
Affiliation(s)
- Charles T T Edwards
- Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
189
|
Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH, Yang HC, Sidney J, Sette A, Pardoll D, Thomas DL, Ray SC. Cellular immune selection with hepatitis C virus persistence in humans. J Exp Med 2005; 201:1741-52. [PMID: 15939790 PMCID: PMC2213263 DOI: 10.1084/jem.20050121] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 04/12/2005] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific cellular immune responses. To determine if immunologically driven sequence variation occurs with HCV persistence, we coordinately analyzed sequence evolution and CD8+ T cell responses to epitopes covering the entire HCV polyprotein in subjects who were followed prospectively from before infection to beyond the first year. There were no substitutions in T cell epitopes for a year after infection in a subject who cleared viremia. In contrast, in subjects with persistent viremia and detectable T cell responses, we observed substitutions in 69% of T cell epitopes, and every subject had a substitution in at least one epitope. In addition, amino acid substitutions occurred 13-fold more often within than outside T cell epitopes (P < 0.001, range 5-38). T lymphocyte recognition of 8 of 10 mutant peptides was markedly reduced compared with the initial sequence, indicating viral escape. Of 16 nonenvelope substitutions that occurred outside of known T cell epitopes, 8 represented conversion to consensus (P = 0.015). These findings reveal two distinct mechanisms of sequence evolution involved in HCV persistence: viral escape from CD8+ T cell responses and optimization of replicative capacity.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, Pillay T, Hilton L, Thobakgale C, Ramduth D, Draenert R, Le Gall S, Luzzi G, Edwards A, Brander C, Sewell AK, Moore S, Mullins J, Moore C, Mallal S, Bhardwaj N, Yusim K, Phillips R, Klenerman P, Korber B, Kiepiela P, Walker B, Goulder P. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. ACTA ACUST UNITED AC 2005; 201:891-902. [PMID: 15781581 PMCID: PMC2213090 DOI: 10.1084/jem.20041455] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of “negatively associated” or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.
Collapse
Affiliation(s)
- Alasdair Leslie
- Peter Medawar Building, University of Oxford, Oxford OX13SY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Altfeld M, Allen TM, Kalife ET, Frahm N, Addo MM, Mothe BR, Rathod A, Reyor LL, Harlow J, Yu XG, Perkins B, Robinson LK, Sidney J, Alter G, Lichterfeld M, Sette A, Rosenberg ES, Goulder PJR, Brander C, Walker BD. The majority of currently circulating human immunodeficiency virus type 1 clade B viruses fail to prime cytotoxic T-lymphocyte responses against an otherwise immunodominant HLA-A2-restricted epitope: implications for vaccine design. J Virol 2005; 79:5000-5. [PMID: 15795285 PMCID: PMC1069570 DOI: 10.1128/jvi.79.8.5000-5005.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) mutates to escape immune selection pressure, but there is little evidence of selection mediated through HLA-A2, the dominant class I allele in persons infected with clade B virus. Moreover, HLA-A2-restricted responses are largely absent in the acute phase of infection as the viral load is being reduced, suggesting that circulating viruses may lack immunodominant epitopes targeted through HLA-A2. Here we demonstrate an A2-restricted epitope within Vpr (Vpr59-67) that is targeted by acute-phase HIV-1-specific CD8+ T cells, but only in a subset of persons expressing HLA-A2. Individuals in the acute stage of infection with viruses containing the most common current sequence within this epitope (consensus sequence) were unable to mount epitope-specific T-cell responses, whereas subjects infected with the less frequent I60L variant all developed these responses. The I60L variant epitope was a stronger binder to HLA-A2 and was recognized by epitope-specific T cells at lower peptide concentrations than the consensus sequence epitope. These data demonstrate that HLA-A2 is capable of contributing to the acute-phase cytotoxic T-lymphocyte response in infected subjects, but that most currently circulating viruses lack a dominant immunogenic epitope presented by this allele, and suggest that immunodominant epitopes restricted by common HLA alleles may be lost as the epidemic matures.
Collapse
Affiliation(s)
- Marcus Altfeld
- Partners AIDS Research Center, Massachusetts General Hospital, 149 13th St., Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Lichterfeld M, Yu XG, Le Gall S, Altfeld M. Immunodominance of HIV-1-specific CD8(+) T-cell responses in acute HIV-1 infection: at the crossroads of viral and host genetics. Trends Immunol 2005; 26:166-71. [PMID: 15745859 DOI: 10.1016/j.it.2005.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of HIV-1-specific CD8(+) T-cell responses during acute HIV-1 infection is associated with a dramatic decline in HIV-1 replication and the resolution of the acute retroviral syndrome. These HIV-1-specific CD8(+) T cells typically target a small number of viral epitopes in a distinct hierarchical order, and high-level viremia in chronic progressive infection leads to broadly diversified HIV-1-specific CD8(+) T-cell responses with a less clear immunodominance pattern. It is argued here that the specific hierarchical pattern of immune responses in acute HIV-1 infection is the result of a tightly regulated process that, among other factors, is critically impacted by the kinetics of viral protein expression, the HLA class I background of the infected individual and the autologous sequence of the infecting virus.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Partners AIDS Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
193
|
Sadagopal S, Amara RR, Montefiori DC, Wyatt LS, Staprans SI, Kozyr NL, McClure HM, Moss B, Robinson HL. Signature for long-term vaccine-mediated control of a Simian and human immunodeficiency virus 89.6P challenge: stable low-breadth and low-frequency T-cell response capable of coproducing gamma interferon and interleukin-2. J Virol 2005; 79:3243-53. [PMID: 15731219 PMCID: PMC1075739 DOI: 10.1128/jvi.79.6.3243-3253.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2001, we reported 20 weeks of control of challenge with the virulent 89.6P chimera of simian and human immunodeficiency viruses (SHIV-89.6P) by a Gag-Pol-Env vaccine consisting of DNA priming and modified vaccinia virus Ankara boosting. Here we report that 22 out of 23 of these animals successfully controlled their viremia until their time of euthanasia at 200 weeks postchallenge. At euthanasia, all animals had low to undetectable viral loads and normal CD4 counts. During the long period of viral control, gamma interferon (IFN-gamma)-producing antiviral T cells were present at unexpectedly low breadths and frequencies. Most animals recognized two CD8 and one CD4 epitope and had frequencies of IFN-gamma-responding T cells from 0.01 to 0.3% of total CD8 or CD4 T cells. T-cell responses were remarkably stable over time and, unlike responses in most immunodeficiency virus infections, maintained good functional characteristics, as evidenced by coproduction of IFN-gamma and interleukin-2. Overall, high titers of binding and neutralizing antibody persisted throughout the postchallenge period. Encouragingly, long-term control was effective in macaques of diverse histocompatibility types.
Collapse
Affiliation(s)
- Shanmugalakshmi Sadagopal
- Yerkes National Primate Research Center of Emory University, 954 Gatewood Dr., Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
The immune-viral dynamics of the transmission of HIV-1 from mother to child are poorly understood, despite 20 years of research. Here we review evidence that the maternal immune response against HIV-1 can select forms of the virus that evade immunity and when transmitted have negative consequences in the child. Moreover, recent studies indicate that when wild-type virus is transmitted, an early immune response in the child can lead to the selection of viral escape forms in the first few months of life. These data suggest that adaptive immune surveillance in both mother and child contributes to the pathogenesis of early perinatal HIV-1. These observations augment our general understanding of the processes that determine the evolution of HIV-1 as it passes from one host to another.
Collapse
|
195
|
|
196
|
Casazza JP, Betts MR, Hill BJ, Brenchley JM, Price DA, Douek DC, Koup RA. Immunologic pressure within class I-restricted cognate human immunodeficiency virus epitopes during highly active antiretroviral therapy. J Virol 2005; 79:3653-63. [PMID: 15731259 PMCID: PMC1075692 DOI: 10.1128/jvi.79.6.3653-3663.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/22/2004] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) and highly active antiretroviral therapy (HAART) are known to exert strong evolutionary pressures on the virus population during human immunodeficiency virus (HIV) infection. However, it is not known whether CTL responses continue to substantially affect viral evolution during treatment. To study the effect of immunologic pressure on viral sequences during HAART, we identified 10 targeted HIV-specific CD8+-T-cell epitopes in five treatment-naive patients, sequenced each epitope in plasma-derived viruses, and then identified evidence of immunologic pressure at these epitopes by comparing the frequency of viral variants in plasma to the frequency of the CD8+-T-cell response for each variant identified. For one of the five patients, evidence of viral evolution was found during therapy. The sequence of the CTL-targeted epitope changed from an apparent escape variant prior to the initiation of therapy, to the sequence that is best recognized by the CTL response after the initiation of therapy, and then finally to a new escape variant during continued therapy. These data show that CTL-mediated pressure can continue to affect viral evolution after the initiation of HAART, even when treatment drives the viral load below detectable levels, and suggest that antiretroviral therapy may preferentially inhibit those virus variants that escape the CTL response.
Collapse
Affiliation(s)
- Joseph P Casazza
- Immunology Laboratory, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Slyker JA, Lohman BL, Mbori-Ngacha DA, Reilly M, Wee EGT, Dong T, McMichael AJ, Rowland-Jones SL, Hanke T, John-Stewart G. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine 2005; 23:4711-9. [PMID: 16043269 PMCID: PMC3382083 DOI: 10.1016/j.vaccine.2005.01.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/25/2022]
Abstract
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p=1.0) and magnitude (mean 176 versus 385 HIVSFU/10(6), p=0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.
Collapse
|
198
|
Abstract
The development of an HIV vaccine remains one of the most difficult challenges confronting biomedical research today. A new international collaboration shares its plan to address the challenge
Collapse
|
199
|
Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY, Lucas M, Pillay T, Ouchi K, Reyor LL, Schulze zur Wiesch J, Gandhi RT, Chung RT, Bhardwaj N, Klenerman P, Walker BD, Allen TM. CD8 epitope escape and reversion in acute HCV infection. J Exp Med 2004; 200:1593-604. [PMID: 15611288 PMCID: PMC2212005 DOI: 10.1084/jem.20041006] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the setting of acute hepatitis C virus (HCV) infection, robust HCV-specific CD8+ cytotoxic T lymphocyte (CTL) responses are associated with initial control of viremia. Despite these responses, 70-80% of individuals develop persistent infection. Although viral escape from CD8 responses has been illustrated in the chimpanzee model of HCV infection, the effect of CD8 selection pressure on viral evolution and containment in acute HCV infection in humans remains unclear. Here, we examined viral evolution in an immunodominant human histocompatibility leukocyte antigen (HLA)-B8-restricted NS3 epitope in subjects with acute HCV infection. Development of mutations within the epitope coincided with loss of strong ex vivo tetramer and interferon gamma enzyme-linked immunospot responses, and endogenous expression of variant NS3 sequences suggested that the selected mutations altered processing and presentation of the variant epitope. Analysis of NS3 sequences from 30 additional chronic HCV-infected subjects revealed a strong association between sequence variation within this region and expression of HLA-B8, supporting reproducible allele-specific selection pressures at the population level. Interestingly, transmission of an HLA-B8-associated escape mutation to an HLA-B8 negative subject resulted in rapid reversion of the mutation. Together, these data indicate that viral escape from CD8+ T cell responses occurs during human HCV infection and that acute immune selection pressure is of sufficient magnitude to influence HCV evolution.
Collapse
Affiliation(s)
- Joerg Timm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Bldg. 149, 13th St., Rm. 6618 B, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Affiliation(s)
- Philip J R Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, UK.
| | | |
Collapse
|