151
|
Cellular source and molecular form of TNF specify its distinct functions in organization of secondary lymphoid organs. Blood 2010; 116:3456-64. [PMID: 20634375 DOI: 10.1182/blood-2009-10-249177] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secondary lymphoid organs provide a unique microenvironment for generation of immune responses. Using a cell type-specific conditional knockout approach, we have dissected contributions of tumor necrosis factor (TNF) produced by B cells (B-TNF) or T cells (T-TNF) to the genesis and homeostatic organization of secondary lymphoid organs. In spleen, lymph nodes and Peyer patches, the cellular source of TNF, and its molecular form (soluble versus membrane-bound) appeared distinct. In spleen, in addition to major B-TNF signal, a complementary T-TNF signal contributed to the microstructure. In contrast, B-TNF predominantly controlled the development of follicular dendritic cells and B-cell follicles in Peyer patches. In lymph nodes, cooperation between TNF expressed by B and T cells was necessary for the maintenance of microarchitecture and for generation of an efficient humoral immune response. Unexpectedly, soluble but not membrane TNF expressed by B cells was essential for the organization of the secondary lymphoid organs. Thus, the maintenance of each type of secondary lymphoid organ is orchestrated by distinct contributions of membrane-bound and soluble TNF produced by B and T lymphocytes.
Collapse
|
152
|
The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 2010; 29:5006-18. [PMID: 20603617 DOI: 10.1038/onc.2010.260] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cytokines lymphotoxin (LT) alpha, beta and their receptor (LTbetaR) belong to the tumor necrosis factor (TNF) superfamily, whose founder-TNFalpha-was initially discovered due to its tumor necrotizing activity. LTbetaR signaling serves pleiotropic functions including the control of lymphoid organ development, support of efficient immune responses against pathogens due to maintenance of intact lymphoid structures, induction of tertiary lymphoid organs, liver regeneration or control of lipid homeostasis. Signaling through LTbetaR comprises the noncanonical/canonical nuclear factor-kappaB (NF-kappaB) pathways thus inducing chemokine, cytokine or adhesion molecule expression, cell proliferation and cell survival. Blocking LTbetaR signaling or Fcgamma-receptor mediated immunoablation of LT-expressing cells was demonstrated to be beneficial in various infectious or noninfectious inflammatory or autoimmune disorders. Only recently, LTbetaR signaling was shown to initiate inflammation-induced carcinogenesis, to influence primary tumorigenesis and to control reemergence of carcinoma in various cancer models through distinct mechanisms. Indeed, LTbetaR signaling inhibition has already been used as efficient anti-inflammatory, anti-cancer therapy in some experimental models. Here, we review the pleiotropic functions attributed to LT, the effects of its deregulation and extensively discuss the recent literature on LT's link to carcinogenesis.
Collapse
|
153
|
Sethi G, Sung B, Kunnumakkara AB, Aggarwal BB. Targeting TNF for Treatment of Cancer and Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:37-51. [PMID: 19760065 DOI: 10.1007/978-0-387-89520-8_3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) was first isolated two decades ago as a macrophageproduced protein that can effectively kill tumor cells. TNF-alpha is also an essential component of the immune system and is required for hematopoiesis, for protection from bacterial infection and for immune cell-mediated cytotoxicity. Extensive research, however, has revealed that TNF-alpha is one of the major players in tumor initiation, proliferation, invasion, angiogenesis and metastasis. The proinflammatory activities link TNF-alpha with a wide variety of autoimmune diseases, including psoriasis, inflammatory bowel disease, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, multiple sclerosis, diabetes and ankylosing spondylitis. Systemic inhibitors of TNF such as etanercept (Enbrel) (a soluble TNF receptor) and infliximab (Remicade) and adalimumab (Humira) (anti-TNF antibodies) have been approved for the treatment inflammatory bowel disease, psoriasis and rheumatoid arthritis. These drugs, however, exhibit severe side effects and are expensive. Hence orally active blockers of TNF-alpha that are safe, efficacious and inexpensive are urgently needed. Numerous products from fruits, vegetable and traditional medicinal plants have been described which can suppress TNF expression and TNF signaling but their clinical potential is yet uncertain.
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 143, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | | | | | | |
Collapse
|
154
|
Kanodia S, Da Silva DM, Karamanukyan T, Bogaert L, Fu YX, Kast WM. Expression of LIGHT/TNFSF14 combined with vaccination against human papillomavirus Type 16 E7 induces significant tumor regression. Cancer Res 2010; 70:3955-64. [PMID: 20460520 PMCID: PMC2873073 DOI: 10.1158/0008-5472.can-09-3773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LIGHT, a ligand for the lymphotoxin-beta receptor, establishes lymphoid-like tissues inside tumor sites and recruits naïve T cells into the tumor. However, whether these infiltrating T cells are specific for tumor antigens is not known. We hypothesized that therapy with LIGHT can expand functional tumor-specific CD8(+) T cells that can be boosted using HPV16E6E7-Venezuelan equine encephalitis virus replicon particles (HPV16-VRP) and that this combined therapy can eradicate human papillomavirus 16 (HPV16)-induced tumors. Our data show that forced expression of LIGHT in tumors results in an increase in expression of IFNgamma and chemoattractant cytokines such as interleukin-1a, MIG, and macrophage inflammatory protein-2 within the tumor and that this tumor microenvironment correlates with an increase in frequency of tumor-infiltrating CD8(+) T cells. Forced expression of LIGHT also results in the expansion of functional T cells that recognize multiple tumor antigens, including HPV16 E7, and these T cells prevent the outgrowth of tumors on secondary challenge. Subsequent boosting of E7-specific T cells by vaccination with HPV16-VRP significantly increases their frequency in both the periphery and the tumor and leads to the eradication of large well-established tumors, for which either treatment alone is not successful. These data establish the safety of Ad-LIGHT as a therapeutic intervention in preclinical studies and suggest that patients with HPV16(+) tumors may benefit from combined immunotherapy with LIGHT and antigen-specific vaccination.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
- Department of Gynecology & Obstetrics, University of Southern California, Los Angeles, CA 90033
| | - Tigran Karamanukyan
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
| | - Lies Bogaert
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Yang-Xin Fu
- Department of Pathology, University of Chicago, Chicago, IL, 60637
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
- Department of Gynecology & Obstetrics, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
155
|
Abstract
B and T lymphocyte associated (BTLA) is an Ig domain superfamily protein with cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Its ligand, herpesvirus entry mediator (HVEM), is a tumor necrosis factor receptor superfamily member. The unique interaction between BTLA and HVEM allows for a system of bidirectional signaling that must be appropriately regulated to balance the outcome of the immune response. HVEM engagement of BTLA produces inhibitory signals through SH2 domain-containing protein tyrosine phosphatase 1 (Shp-1) and Shp-2 association, whereas BTLA engagement of HVEM produces proinflammatory signals via activation of NF-kappaB. The BTLA-HVEM interaction is intriguing and quite complex given that HVEM has four other ligands that also influence immune responses, the conventional TNF ligand LIGHT and lymphotoxin alpha, as well as herpes simplex virus glycoprotein D and the glycosylphosphatidylinositol-linked Ig domain protein CD160. BTLA-HVEM interactions have been shown to regulate responses in several pathogen and autoimmune settings, but our understanding of this complex system of interactions is certainly incomplete. Recent findings of spontaneous inflammation in BTLA-deficient mice may provide an important clue.
Collapse
Affiliation(s)
- Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
156
|
Gryspeerdt AC, Vandekerckhove A, Garré B, Barbé F, Van de Walle G, Nauwynck H. Differences in replication kinetics and cell tropism between neurovirulent and non-neurovirulent EHV1 strains during the acute phase of infection in horses. Vet Microbiol 2010; 142:242-53. [DOI: 10.1016/j.vetmic.2009.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022]
|
157
|
Wang Y, Koroleva EP, Kruglov AA, Kuprash DV, Nedospasov SA, Fu YX, Tumanov AV. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 2010; 32:403-13. [PMID: 20226692 PMCID: PMC2878123 DOI: 10.1016/j.immuni.2010.02.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/16/2009] [Accepted: 01/21/2010] [Indexed: 11/26/2022]
Abstract
Epithelial cells provide the first line of defense against mucosal pathogens; however, their coordination with innate and adaptive immune cells is not well understood. Using mice with conditional gene deficiencies, we found that lymphotoxin (LT) from innate cells expressing transcription factor RORgammat, but not from adaptive T and B cells, was essential for the control of mucosal C. rodentium infection. We demonstrate that the LTbetaR signaling was required for the regulation of the early innate response against infection. Furthermore, we have revealed that LTbetaR signals in gut epithelial cells and hematopoietic-derived cells coordinate to protect the host from infection. We further determined that LTbetaR signaling in intestinal epithelial cells was required for recruitment of neutrophils to the infection site early during infection via production of CXCL1 and CXCL2 chemokines. These results support a model wherein LT from RORgammat(+) cells orchestrates the innate immune response against mucosal microbial infection.
Collapse
Affiliation(s)
- Yugang Wang
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | | | - Andrei A. Kruglov
- German Rheumatism Research Center (DRFZ), the Leibnitz Institute, Berlin, Germany
| | - Dmitry V. Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A. Nedospasov
- German Rheumatism Research Center (DRFZ), the Leibnitz Institute, Berlin, Germany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yang-Xin Fu
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | - Alexei V. Tumanov
- The University of Chicago, Department of Pathology, Chicago, Illinois
| |
Collapse
|
158
|
Gil M, Park SJ, Chung YS, Park CS. Interleukin-15 enhances proliferation and chemokine secretion of human follicular dendritic cells. Immunology 2010; 130:536-44. [PMID: 20331472 DOI: 10.1111/j.1365-2567.2010.03252.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The germinal centre (GC) is a specialized microenvironment where high-affinity antibodies are produced through hypermutation and isotype switching. Follicular dendritic cells (FDCs) are the stromal cells of the GC. The timely expansion and establishment of an FDC network is essential for a protective GC reaction; however, only a few factors modulating FDC development have been recognized. In this study, we report that interleukin-15 (IL-15) enhances human primary FDC proliferation and regulates cytokine secretion. The FDCs express IL-15 receptor complexes for IL-15 signal transduction as well as for specific binding. Moreover, the secretion of chemokines CCL-2, CCL-5, CXCL-5 and CXCL-8 was reduced by blocking IL-15 signalling while the secretion of other cytokines, and the expression of CD14, CD44, CD54 (ICAM-1) and CD106 (VCAM-1) proteins remained unchanged. These results suggest that IL-15 plays a crucial role in the development of FDC networks during GC reaction, offering a new target for immune modulation.
Collapse
Affiliation(s)
- Minchan Gil
- Department of Pathology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
159
|
Delivery of cytokines by recombinant virus in early life alters the immune response to adult lung infection. J Virol 2010; 84:5294-302. [PMID: 20200251 DOI: 10.1128/jvi.02503-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of bronchiolitis, the major cause of hospitalization of infants. An ideal RSV vaccine would be effective for neonates, but the immune responses of infants differ markedly from those of adults, often showing a bias toward T-helper 2 (Th2) responses and reduced gamma interferon (IFN-gamma) production. We previously developed recombinant RSV vectors expressing IFN-gamma and interleukin-4 (IL-4) that allow us to explore the role of these key Th1 and Th2 cytokines during infection. The aim of the current study was to explore whether an immunomodulation of infant responses could enhance protection. The expression of IFN-gamma by a recombinant RSV vector (RSV/IFN-gamma) attenuated primary viral replication in newborn mice without affecting the development of specific antibody or T-cell responses. Upon challenge, RSV/IFN-gamma mice were protected from the exacerbated disease observed for mice primed with wild-type RSV; however, antiviral immunity was not enhanced. Conversely, the expression of IL-4 by recombinant RSV did not affect virus replication in neonates but greatly enhanced Th2 immune responses upon challenge without affecting weight loss. These studies demonstrate that it is possible to manipulate infant immune responses by using cytokine-expressing recombinant viruses and that neonatal deficiency in IFN-gamma responses may lead to enhanced disease during secondary infection.
Collapse
|
160
|
Davoodi-Semiromi A, Schreiber M, Nallapali S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:223-42. [PMID: 20051036 PMCID: PMC2807910 DOI: 10.1111/j.1467-7652.2009.00479.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Chloroplasts/immunology
- Chloroplasts/metabolism
- Cholera/immunology
- Cholera/prevention & control
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Cholera Vaccines/biosynthesis
- Cholera Vaccines/genetics
- Cholera Vaccines/immunology
- Cross Reactions
- Female
- Immunity, Humoral
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Injections, Subcutaneous
- Lactuca/genetics
- Lactuca/immunology
- Malaria/immunology
- Malaria/prevention & control
- Malaria Vaccines/biosynthesis
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Merozoite Surface Protein 1/genetics
- Merozoite Surface Protein 1/immunology
- Mice
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Recombinant Fusion Proteins/immunology
- Nicotiana/genetics
- Nicotiana/immunology
Collapse
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melissa Schreiber
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Samson Nallapali
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Robert K. Banks
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Debopam Chakrabarti
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
161
|
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125:S3-23. [PMID: 20176265 PMCID: PMC2923430 DOI: 10.1016/j.jaci.2009.12.980] [Citation(s) in RCA: 1175] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
Abstract
The immune system has evolved to protect the host from a universe of pathogenic microbes that are themselves constantly evolving. The immune system also helps the host eliminate toxic or allergenic substances that enter through mucosal surfaces. Central to the immune system's ability to mobilize a response to an invading pathogen, toxin, or allergen is its ability to distinguish self from nonself. The host uses both innate and adaptive mechanisms to detect and eliminate pathogenic microbes, and both of these mechanisms include self-nonself discrimination. This overview identifies key mechanisms used by the immune system to respond to invading microbes and other exogenous threats and identifies settings in which disturbed immune function exacerbates tissue injury.
Collapse
Affiliation(s)
- David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
162
|
Lane PJL, McConnell FM, Withers D, Gaspal F, Saini M, Anderson G. Lymphoid tissue inducer cells and the evolution of CD4 dependent high-affinity antibody responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:159-74. [PMID: 20800820 DOI: 10.1016/s1877-1173(10)92007-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phylogeny indicates that in mammals memory CD4-dependent antibody responses evolved after monotremes split from the common ancestor of marsupial and eutherian mammals. This was strongly associated with the development of segregated B and T cell areas and the development of a linked lymph node network. The evolution of the lymphotoxin beta receptor in these higher mammals was key to the development of these new functions. Here, we argue that lymphoid tissue inducer cells played a pivotal role not only in the development of organized lymphoid structures but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses that depend on an organized infrastructure to work. In this review, we concentrate on the role of this cell type in the making of a tolerant CD4 T cell repertoire and in the sustenance of CD4 T cell responses for protective immunity.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Birmingha Medical School, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
163
|
Liepinsh DJ, Kruglov AA, Galimov AR, Shakhov AN, Shebzukhov YV, Kuchmiy AA, Grivennikov SI, Tumanov AV, Drutskaya MS, Feigenbaum L, Kuprash DV, Nedospasov SA. Accelerated thymic atrophy as a result of elevated homeostatic expression of the genes encoded by the TNF/lymphotoxin cytokine locus. Eur J Immunol 2009; 39:2906-15. [PMID: 19735075 DOI: 10.1002/eji.200839191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TNF, lymphotoxin (LT)-alpha, LT-beta and LIGHT are members of a larger superfamily of TNF-related cytokines that can cross-utilize several receptors. Although LIGHT has been implicated in thymic development and function, the role of TNF and LT remains incompletely defined. To address this, we created a model of modest homeostatic overexpression of TNF/LT cytokines using the genomic human TNF/LT locus as a low copy number Tg. Strikingly, expression of Tg TNF/LT gene products led to profound early thymic atrophy characterized by decreased numbers of thymocytes and cortical thymic epithelial cells, partial block of thymocyte proliferation at double negative (DN) 1 stage, increased apoptosis of DN2 thymocytes and severe decline of T-cell numbers in the periphery. Results of backcrossing to TNFR1-, LTbetaR- or TNF/LT-deficient backgrounds and of reciprocal bone marrow transfers implicated both LT-alpha/LT-beta to LTbetaR and TNF/LT-alpha to TNFR1 signaling in accelerated thymus degeneration. We hypothesize that chronic infections can promote thymic atrophy by upregulating LT and TNF production.
Collapse
Affiliation(s)
- Dmitry J Liepinsh
- Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol 2009; 2:472-7. [PMID: 19741599 DOI: 10.1038/mi.2009.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phylogeny indicates that adaptive immunity evolved first in diffusely distributed lymphoid tissues found in the lamina propria (LP) of the gut. B follicular structures appeared later, probably initially in isolated lymphoid follicles in the LP and then in organized lymphoid tissues such as lymph nodes and Peyer's patches. The development of these new lymphoid structures was enabled by gene duplication and evolution of new tumor necrosis family members. Here, we argue that lymphoid tissue inducer cells (LTis) had a pivotal role, not only in the development of organized lymphoid structures, but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses. In this review, we concentrate on the latter function: the sustenance by LTis of CD4 T-cell responses for protective immunity.
Collapse
|
165
|
Kaiser P, Wu Z, Rothwell L, Fife M, Gibson M, Poh TY, Shini A, Bryden W, Shini S. Prospects for understanding immune-endocrine interactions in the chicken. Gen Comp Endocrinol 2009; 163:83-91. [PMID: 18957294 DOI: 10.1016/j.ygcen.2008.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 11/28/2022]
Abstract
Despite occupying the same habitats as mammals, having similar ranges of body mass and longevity, and facing similar pathogen challenges, birds have a different repertoire of organs, cells, molecules and genes of the immune system when compared to mammals. In other words, birds are not "mice with feathers", at least not in terms of their immune systems. Here we discuss differences between immune gene repertoires of birds and mammals, particularly those known to play a role in immune-endocrine interactions in mammals. If we are to begin to understand immune-endocrine interactions in the chicken, we need to understand these repertoires and also the biological function of the proteins encoded by these genes. We also discuss developments in our ability to understand the function of dendritic cells in the chicken; the function of these professional antigen-presenting cells is affected by stress in mammals. With regard to the endocrine system, we describe relevant chicken pituitary-adrenal hormones, and review recent findings on the expression of their receptors, as these receptors play a crucial role in modulating immune-endocrine interactions. Finally, we review the (albeit limited) work that has been carried out to understand immune-endocrine interactions in the chicken in the post-genome era.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. Blood 2009; 114:4989-97. [PMID: 19713459 DOI: 10.1182/blood-2009-06-229567] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Afferent lymph is transported throughout lymph nodes (LNs) by the conduit system. Whereas this conduit network is dense in the T-cell zone, it is sparse in B-cell follicles. In this study, we show that this differential organization emerges during lymph node development. Neonatal LNs lack B follicles, but have a developed T-cell zone and a dense conduit network. As new T and B cells enter the developing LN, the conduit network density is maintained in the T, but not the B zone, leading to a profound remodeling of the follicular network that nevertheless maintains its connectivity. In adults, the residual follicular conduits transport soluble antigen to deep regions, where follicular dendritic cells are abundant and appear to replace the fibroblastic reticular cells that enwrap conduits in the T zone. This strategic location correlates with the capacity of the follicular dendritic cells to capture antigen even in the absence of antigen-specific antibodies. Together, these results describe how the stromal organization of the T and B regions of LNs diverges during development, giving rise to distinct antigen transport and delivery modes in the 2 compartments.
Collapse
|
167
|
Pereira JP, Kelly LM, Xu Y, Cyster JG. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 2009; 460:1122-6. [PMID: 19597478 PMCID: PMC2809436 DOI: 10.1038/nature08226] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/23/2009] [Indexed: 01/22/2023]
Abstract
B cell follicles are specialized microenvironments that support events necessary for humoral immunity. After antigen encounter, activated B cells initially seek T-cell help at the follicle-T-zone boundary and then move to interfollicular and T-zone distal (outer) regions of the follicle. Subsequently, some cells move to the follicle centre, become germinal centre B cells and undergo antibody affinity maturation. Although germinal centres within follicles were described in 1885 (ref. 12), the molecular cues mediating segregation of B cells between the outer and centre follicle have remained undefined. Here we present a role for the orphan G-protein-coupled receptor, Epstein-Barr virus induced molecule-2 (EBI2, also known as GPR183), in this process. EBI2 is expressed in mature B cells and increases in expression early after activation, before being downregulated in germinal centre B cells. EBI2 deficiency in mice led to a reduction in the early antibody response to a T-dependent antigen. EBI2-deficient B cells failed to move to the outer follicle at day 2 of activation, and instead were found in the follicle centre, whereas EBI2 overexpression was sufficient to promote B cell localization to the outer follicle. In mixed bone marrow chimaeras, EBI2-deficient B cells phenocopied germinal centre B cells in preferentially localizing to the follicle centre. When downregulation of EBI2 in wild-type B cells was antagonized, participation in the germinal centre reaction was impaired. These studies identify an important role for EBI2 in promoting B cell localization in the outer follicle, and show that differential expression of this receptor helps position B cells appropriately for mounting T-dependent antibody responses.
Collapse
Affiliation(s)
- João P Pereira
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
168
|
Carrasco YR. The missing link in the affinity maturation chain. Immunol Cell Biol 2009; 87:505-6. [PMID: 19621024 DOI: 10.1038/icb.2009.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yolanda R Carrasco
- Department of Immunology and Oncology, National Centre of Biotechnology-CSIC Darwin 3, UAM-Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
169
|
Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol 2009; 10:786-93. [PMID: 19503106 PMCID: PMC2776777 DOI: 10.1038/ni.1745] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/23/2009] [Indexed: 12/15/2022]
Abstract
Subcapsular sinus (SCS) macrophages capture antigens from lymph and present them intact for B cell encounter and follicular delivery. However, the properties of SCS macrophages are poorly defined. Here we show SCS macrophage development depended on lymphotoxin-alpha1beta2, and the cells had low lysosomal enzyme expression and retained opsonized antigens on their surface. Intravital imaging revealed immune complexes moving along macrophage processes into the follicle. Moreover, noncognate B cells relayed antigen opsonized by newly produced antibodies from the subcapsular region to the germinal center, and affinity maturation was impaired when this transport process was disrupted. Thus, we characterize SCS macrophages as specialized antigen-presenting cells functioning at the apex of an antigen transport chain that promotes humoral immunity.
Collapse
Affiliation(s)
- Tri Giang Phan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
- Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, Sydney NSW 2010, Australia
| | - Jesse A. Green
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Elizabeth E. Gray
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| |
Collapse
|
170
|
Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 2009; 229:244-58. [DOI: 10.1111/j.1600-065x.2009.00783.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
171
|
Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun 2009; 77:3004-13. [PMID: 19364836 DOI: 10.1128/iai.01114-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brucella abortus is an intracellular pathogen that persists within phagocytic cells of the reticuloendothelial system. To identify in vivo interactions between B. abortus and the host that lead to persistent infection, we studied the persistence of B. abortus and an isogenic virB mutant deficient in the VirB type IV secretion system (T4SS) in knockout mice. In contrast to control mice, mice lacking B cells (Igh6(-/-)) were permissive for infection with the attenuated virB mutant. To determine the basis for this phenotype, we characterized immune functions of Igh6(-/-) mice in the context of B. abortus infection. Igh6(-/-) mice had greater numbers of extracellular bacteria in the spleen and increased early expression of proinflammatory cytokines during B. abortus infection. Further, a virB mutant, despite its wild-type level of survival, failed to elicit microgranuloma formation in the spleens of Igh6(-/-) mice, suggesting a requirement for the T4SS to elicit this pathological change. Passive transfer of immunoglobulin G from naïve mice restored the ability of Igh6(-/-) mice to control the persistence of the virB mutant by a complement-independent mechanism. Further, adoptive transfer of CD11b(+) cells from C57BL/6 mice to Igh6(-/-) mice restored the ability of the knockout mice to limit the replication of the virB mutant in the spleen, suggesting that the Igh6(-)(/)(-) mutation affects phagocyte function and that phagocyte function can be restored by natural antibody.
Collapse
|
172
|
Bekiaris V, Gaspal F, Kim MY, Withers DR, McConnell FM, Anderson G, Lane PJL. CD30 Is Required for CCL21 Expression and CD4 T Cell Recruitment in the Absence of Lymphotoxin Signals. THE JOURNAL OF IMMUNOLOGY 2009; 182:4771-5. [DOI: 10.4049/jimmunol.0803481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
173
|
Zindl CL, Kim TH, Zeng M, Archambault AS, Grayson MH, Choi K, Schreiber RD, Chaplin DD. The lymphotoxin LTalpha(1)beta(2) controls postnatal and adult spleen marginal sinus vascular structure and function. Immunity 2009; 30:408-20. [PMID: 19303389 PMCID: PMC2874947 DOI: 10.1016/j.immuni.2009.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 11/28/2008] [Accepted: 01/07/2009] [Indexed: 01/21/2023]
Abstract
The lymphotoxin LTalpha(1)beta(2) supports the development and maintenance of several aspects of spleen structure, but its significance for marginal sinus (MS) vascular organization is unclear. We showed here that, in early postnatal lymphotoxin-deficient mice, the developing Flk-1+ white pulp vessels failed to organize or upregulate MAdCAM-1, leading to altered spatial rearrangement of both the white pulp endothelial cells and the smooth muscle actin-expressing cells. In vitro, MAdCAM-1 directed the reorganization of LTbeta receptor+ endothelial cells grown on Matrigel. LTalpha(1)beta(2) also regulated the maintenance of both MAdCAM-1 expression and mature MS structure in adult mice, contributing importantly to normal trafficking of CD11b+ cells in response to bacterial antigens. Together, our studies demonstrate that LTalpha(1)beta(2) and LTbeta receptor signals control proper development and maintenance of the mature MS structure and implicate MAdCAM-1 in the structuring of the MS endothelial cells that is important for the movement of immune cells within the spleen.
Collapse
Affiliation(s)
- Carlene L. Zindl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tea Hyun Kim
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meiqin Zeng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela S. Archambault
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell H. Grayson
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D. Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
174
|
CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 2009; 21:467-76. [DOI: 10.1093/intimm/dxp014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
175
|
Key role of macrophages in the pathogenesis of CD18 hypomorphic murine model of psoriasis. J Invest Dermatol 2009; 129:1100-14. [PMID: 19242511 DOI: 10.1038/jid.2009.43] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Psoriasis is a chronic skin disorder of unsolved pathogenesis affecting skin in 2-3% of the general population. Research into the pathogenesis of psoriasis has profited from suitable animal models. Previously, we reported on the CD18 hypomorphic (CD18(hypo)) PL/J mouse model clinically resembling human psoriasis, which is characterized by reduced expression of the common chain of beta(2)-integrins (CD11/CD18) to only 2-16% of wild-type levels. Aside from common clinical and pathophysiological features shared with human psoriasis, the psoriasiform skin disease in CD18(hypo) PL/J mice also depends on the presence of CD4(+) T-cells. This review focuses on the role of activated macrophages in the pathogenesis of CD18(hypo) T-cell-mediated mouse model of psoriasis, and extends our understanding in unrestrained pathogenic T-cells whose activation may be crucial for the recruitment and activation of macrophages within skin. The findings in the CD18(hypo) PL/J model are discussed in the context of current literatures of human and other autoimmune disorders.
Collapse
|
176
|
Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R. Requirement of B cells for generating CD4+ T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1868-76. [PMID: 19201839 PMCID: PMC2658628 DOI: 10.4049/jimmunol.0802501] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells can influence T cell responses by directly presenting Ag or by secreting Ab that binds to Ag to form immunogenic complexes. Conflicting evidence suggests that persisting Ag-Ab complexes propagate long-term T cell memory; yet, other data indicate that memory cells can survive without specific Ag or MHC. In this study, the roles of B cells and Ag-Ab complexes in T cell responses to lymphocytic choriomeningitis virus (LCMV) infection were investigated using B cell-deficient or B cell-competent mice. Despite normal lymphocyte expansion after acute infection, B cell-deficient mice rapidly lost CD4(+) T cell memory, but not CD8(+) T cell memory, during the contraction phase. To determine whether Ag-Ab complexes sustain CD4(+) T cell memory, T cell responses were followed in B cell-transgenic (mIg-Tg) mice that have B cells but neither LCMV-specific Ab nor LCMV-immune complex deposition. In contrast to B cell-deficient mice, mIg-Tg mice retained functional Th cell memory, indicating that B cells selectively preserve CD4(+) T cell memory independently of immune complex formation. An in vivo consequence of losing CD4(+) T cell memory was that B cell-deficient mice were unable to resolve chronic virus infection. These data implicate a B cell function other than Ab production that induces long-term protective immunity.
Collapse
Affiliation(s)
- Jason K Whitmire
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
177
|
Victoratos P, Kollias G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 2009; 30:130-42. [PMID: 19119026 DOI: 10.1016/j.immuni.2008.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/30/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022]
Abstract
Follicular dendritic cells (FDCs) are important for the induction of protective T cell-dependent humoral responses, but their contribution to autoimmunity remains elusive. Here, gene-targeted interruption of FDC development was combined with the K/BxN mouse model of arthritis. We found that FDCs were essential for autoantibody production through two distinct but cooperative functions. In a T cell-independent fashion, FDCs loaded with autoantigen-containing immune complexes supported germinal center (GC) B cell development. Additionally, the integrity of FDC networks was required for the recruitment of arthritogenic follicular helper T cells, a process that drove T-B cell interactions and productive GC reactivity. Importantly, pharmacological interference in the maintenance of FDCs ameliorated disease development, suggesting the FDC as a potential target for dampening autoimmunity.
Collapse
Affiliation(s)
- Panayiotis Victoratos
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Attica, Greece.
| | | |
Collapse
|
178
|
Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 2009; 1143:123-50. [PMID: 19076348 DOI: 10.1196/annals.1443.016] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone-related diseases, such as osteoporosis and rheumatoid arthritis, affect hundreds of millions of people worldwide and pose a tremendous burden to health care. By deepening our understanding of the molecular mechanisms of bone metabolism and bone turnover, it became possible over the past years to devise new and promising strategies for treating such diseases. In particular, three tumor necrosis factor (TNF) family molecules, the receptor activator of NF-kappaB (RANK), its ligand RANKL, and the decoy receptor of RANKL, osteoprotegerin (OPG), have attracted the attention of scientists and pharmaceutical companies alike. Genetic experiments revolving around these molecules established their pivotal role as central regulators of osteoclast development and osteoclast function. RANK-RANKL signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. In addition, RANKL and RANK have essential roles in lymph node formation, establishment of the thymic microenvironment, and development of a lactating mammary gland during pregnancy. Consequently, novel drugs specifically targeting RANK, RANKL, and their signaling pathways in osteoclasts are expected to revolutionize the treatment of various ailments associated with bone loss, such as arthritis, periodontal disease, cancer metastases, and osteoporosis.
Collapse
Affiliation(s)
- Andreas Leibbrandt
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
179
|
Tumanov AV, Koroleva EP, Christiansen PA, Khan MA, Ruddy MJ, Burnette B, Papa S, Franzoso G, Nedospasov SA, Fu YX, Anders RA. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 2009; 136:694-704.e4. [PMID: 18952083 PMCID: PMC3060763 DOI: 10.1053/j.gastro.2008.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/19/2008] [Accepted: 09/11/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The ability of the liver to regenerate hepatic mass is essential to withstanding liver injury. The process of liver regeneration is tightly regulated by distinct signaling cascades involving components of the innate immune system, cytokines, and growth factors. However, the role of the adaptive immune system in regulation of liver regeneration is not well-defined. The role of adaptive immune system in liver regeneration was investigated in lymphocyte-deficient mice and in conditional lymphotoxin-deficient mice. METHODS A model of liver regeneration after 70% partial hepatectomy was used, followed by examination of liver pathology, survival, DNA synthesis, and cytokine expression. RESULTS We found that mice deficient in T cells show a reduced capacity for liver regeneration following partial hepatectomy. Furthermore, surface lymphotoxin, provided by T cells, is critical for liver regeneration. Mice specifically deficient in T-cell lymphotoxin had increased liver damage and a reduced capacity to initiate DNA synthesis after partial hepatectomy. Transfer of splenocytes from wild-type but not lymphotoxin-deficient mice improved liver regeneration in T cell-deficient mice. We found that an agonistic antibody against the lymphotoxin beta receptor was able to facilitate liver regeneration by reducing liver injury, increasing interleukin-6 production, hepatocyte DNA synthesis, and survival of lymphocyte-deficient (Rag) mice after partial hepatectomy. CONCLUSIONS The adaptive immune system directly regulates liver regeneration via a T cell-derived lymphotoxin axis, and pharmacological stimulation of lymphotoxin beta receptor might represent a novel therapeutic approach to improve liver regeneration.
Collapse
Affiliation(s)
- Alexei V Tumanov
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
A functional immune system depends on the appropriate activation of lymphocytes following antigen encounter. In this Review, we summarize studies that have used high-resolution imaging approaches to visualize antigen presentation to B cells in secondary lymphoid organs. These studies illustrate that encounters of B cells with antigen in these organs can be facilitated by diffusion of the antigen or by the presentation of antigen by macrophages, dendritic cells and follicular dendritic cells. We describe cell-surface molecules that might be important in mediating antigen presentation to B cells and also highlight the key role of B cells themselves in antigen transport. Data obtained from the studies discussed here highlight the predominance, importance and variety of the cell-mediated processes that are involved in presenting antigen to B cells in vivo.
Collapse
|
181
|
Sharova NP, Zakharova LA, Astakhova TM, Karpova YD, Melnikova VI, Dmitrieva SB, Lyupina YV, Erokhov PA. New approach to study of T cellular immunity development: Parallel investigation of lymphoid organ formation and changes in immune proteasome amount in rat early ontogenesis. Cell Immunol 2009; 256:47-55. [DOI: 10.1016/j.cellimm.2009.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/11/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
182
|
Leibbrandt A, Penninger JM. Novel functions of RANK(L) signaling in the immune system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 658:77-94. [PMID: 19950018 DOI: 10.1007/978-1-4419-1050-9_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TNF family members RANKL and its receptor RANK have initially been described as factors expressed on T cells and dendritic cells (DCs), respectively, and have been shown to augment the ability of DCs to stimulate naive T cell proliferation and enhance DC survival. Since another, yet soluble receptor for RANKL, namely OPG, was initially characterized as a factor inhibiting osteoclast development and bone resorption, it was somewhat enigmatic at first why one and the same genes would be essential both for the immune system and bone development - two processes that on first sight do not have much in common. However, in a series of experiments it was conclusively shown that RANKL-expressing T cells can also activate RANK-expressing osteoclasts, and thereby in principal mimicking RANKL-expressing osteoblasts. These findings lead to a paradigm shift and helped to coin the term osteoimmunology in order to account for the crosstalk of immune cells and bone. More importantly was that these findings also provided a rationale for the bone loss observed in patients with a chronically activated immune system such as in rheumatoid arthritis, leukemias, or the like, arguing that T cells, which were activated during the course of the disease to fight it off, also express RANKL, which induces osteoclastogenesis and thereby shifts the intricate balance of bone deposition and resorption in favor of the latter. Through knockout mice it became also clear that the RANKL-RANK-OPG system is involved in other processes such as in controlling autoimmunity or immune responses in the skin. We will briefly summarize the role of RANK(L) signaling in the immune system before we discuss some of the recent data we and others have obtained on the role of RANK(L) in controlling autoimmunity and immune responses in the skin.
Collapse
Affiliation(s)
- Andreas Leibbrandt
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | | |
Collapse
|
183
|
Abstract
Published work links adult lymphoid tissue-inducer cells (LTi) with T cell-dependent antibody responses. In this issue of Immunity, Tsuji et al. (2008) associate LTi with T cell-independent IgA antibody responses in the gut.
Collapse
Affiliation(s)
- Peter J L Lane
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Birmingham Medical School, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
184
|
Katakai T, Suto H, Sugai M, Gonda H, Togawa A, Suematsu S, Ebisuno Y, Katagiri K, Kinashi T, Shimizu A. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6189-200. [PMID: 18941209 DOI: 10.4049/jimmunol.181.9.6189] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells are crucial components of secondary lymphoid organs (SLOs). Organogenesis of SLOs involves specialized stromal cells, designated lymphoid tissue organizer (LTo) in the embryonic anlagen; in the adult, several distinct stromal lineages construct elaborate tissue architecture and regulate lymphocyte compartmentalization. The relationship between the LTo and adult stromal cells, however, remains unclear, as does the precise number of stromal cell types that constitute mature SLOs are unclear. From mouse lymph nodes, we established a VCAM-1(+)ICAM-1(+)MAdCAM-1(+) reticular cell line that can produce CXCL13 upon LTbetaR stimulation and support primary B cell adhesion and migration in vitro. A similar stromal population sharing many characteristics with the LTo, designated marginal reticular cells (MRCs), was found in the outer follicular region immediately underneath the subcapsular sinus of lymph nodes. Moreover, MRCs were commonly observed at particular sites in various SLOs even in Rag2(-/-) mice, but were not found in ectopic lymphoid tissues, suggesting that MRCs are a developmentally determined element. These findings lead to a comprehensive view of the stromal composition and architecture of SLOs.
Collapse
Affiliation(s)
- Tomoya Katakai
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Follicular dendritic cells and human immunodeficiency virus type 1 transcription in CD4+ T cells. J Virol 2008; 83:150-8. [PMID: 18971284 DOI: 10.1128/jvi.01652-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV replication occurs throughout the natural course of infection in secondary lymphoid tissues and in particular within the germinal centers (GCs), where follicular dendritic cells (FDCs) are adjacent to CD4(+) T cells. Because FDCs provide signaling that increases lymphocyte activation, we postulated that FDCs could increase human immunodeficiency virus (HIV) replication. We cultured HIV-infected CD4(+) T cells alone or with FDCs and measured subsequent virus expression using HIV-p24 production and reverse transcription-PCR analyses. When cultured with FDCs, infected CD4(+) T cells produced almost fourfold more HIV than when cultured alone, and the rate of virus transcription was doubled. Both FDCs and their supernatant increased HIV transcription and resulted in nuclear translocation of NF-kappaB and phosphorylated c-Jun in infected cells. FDCs produced soluble tumor necrosis factor alpha (TNF-alpha) ex vivo, and the addition of a blocking soluble TNF receptor ablated FDC-mediated HIV transcription. Furthermore, TNF-alpha was found highly expressed within GCs, and ex vivo GC CD4(+) T cells supported greater levels of HIV-1 replication than other CD4(+) T cells. These data indicated that FDCs increase HIV transcription and production by a soluble TNF-alpha-mediated mechanism. This FDC-mediated effect may account, at least in part, for the presence of persistent HIV replication in GCs. Therefore, in addition to providing an important reservoir of infectious virus, FDCs increase HIV production, contributing to a tissue microenvironment that is highly conducive to HIV transmission and expression.
Collapse
|
186
|
Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A. The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 2008; 38:2419-25. [PMID: 18792398 DOI: 10.1002/eji.200838439] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resting T lymphocytes can internalize reduced cysteine (Cys) but not cystine, the oxidized form of the amino acid that predominates extracellularly. In vitro studies have shown that DC provide Cys to T cells during antigen presentation, allowing their activation. Here, we show that increased thiol production is a hallmark of immune response in vivo. Indeed, the thiol content of LN increases dramatically after antigen injection. Non-protein thiols co-distribute with DC and are highly abundant in germinal centers. In agreement, activated but not resting B lymphocytes and macrophages release free thiols. Increased thiol release following activation requires thioredoxin and is paralleled by increased thioredoxin expression. The T zones of LN are consistently less stained, and both resting and activated T cells are unable to release thiols. Interestingly, the cystine/glutamate transporter x(c) (-) is absent in resting T lymphocytes but is rapidly induced by TCR triggering in vitro, indicating that the release of T cells from the need of exogenous Cys occurs early after activation. These results indicate that a reducing microenvironment is essential to start the immune response but dispensable for its evolution, and support the emerging concept that extracellular redox is implicated in the control of crucial cellular functions.
Collapse
|
187
|
Cantaert T, Kolln J, Timmer T, van der Pouw Kraan TC, Vandooren B, Thurlings RM, Cañete JD, Catrina AI, Out T, Verweij CL, Zhang Y, Tak PP, Baeten D. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. THE JOURNAL OF IMMUNOLOGY 2008; 181:785-94. [PMID: 18566445 DOI: 10.4049/jimmunol.181.1.785] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocyte autoimmunity plays a crucial role in the pathogenesis of rheumatoid arthritis. The local production of autoantibodies and the presence of ectopic lymphoid neogenesis in the rheumatoid synovium suggest that these dedicated microenvironments resembling canonical lymphoid follicles may regulate the initiation and maturation of B cell autoimmunity. In this study, we assessed experimentally the relevance of ectopic lymphoid neogenesis for B cell autoimmunity by a detailed structural, molecular, and serological analysis of seropositive and seronegative human synovitis. We demonstrate that synovial lymphoid neogenesis is a reversible process associated with inflammation which is neither restricted to nor preferentially associated with autoantibody positive rheumatic conditions. Despite the abundant expression of key chemokines and cytokines required for full differentiation toward germinal center reactions, synovial lymphoid neogenesis in rheumatoid arthritis only occasionally progresses toward fully differentiated follicles. In agreement with that observation, we could not detect Ag-driven clonal expansion and affinity maturation of B lymphocytes. Furthermore, ectopic lymphoid neogenesis is not directly associated with local production of anti-citrullinated protein Abs and rheumatoid factor in the rheumatoid joint. Therefore, we conclude that synovial lymphoid neogenesis is not a major determinant of these rheumatoid arthritis-specific autoantibody responses.
Collapse
Affiliation(s)
- Tineke Cantaert
- Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Yu S, Dunn R, Kehry MR, Braley-Mullen H. B cell depletion inhibits spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:7706-13. [PMID: 18490774 DOI: 10.4049/jimmunol.180.11.7706] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
B cells are important for the development of most autoimmune diseases. B cell depletion immunotherapy has emerged as an effective treatment for several human autoimmune diseases, although it is unclear whether B cells are necessary for disease induction, autoantibody production, or disease progression. To address the role of B cells in a murine model of spontaneous autoimmune thyroiditis (SAT), B cells were depleted from adult NOD.H-2h4 mice using anti-mouse CD20 mAb. Anti-CD20 depleted most B cells in peripheral blood and cervical lymph nodes and 50-80% of splenic B cells. Flow cytometry analysis showed that marginal zone B cells in the spleen were relatively resistant to depletion by anti-CD20, whereas most follicular and transitional (T2) B cells were depleted after anti-CD20 treatment. When anti-CD20 was administered before development of SAT, development of SAT and anti-mouse thyroglobulin autoantibody responses were reduced. Anti-CD20 also reduced SAT severity and inhibited further increases in anti-mouse thyroglobulin autoantibodies when administered to mice that already had autoantibodies and thyroid inflammation. The results suggest that B cells are necessary for initiation as well as progression or maintenance of SAT in NOD.H-2h4 mice.
Collapse
Affiliation(s)
- Shiguang Yu
- Research Service, Harry S. Truman Memorial Veteran's Affairs Hospital, Columbia, MO 65201, USA
| | | | | | | |
Collapse
|
189
|
Malaspina A, Moir S, DiPoto AC, Ho J, Wang W, Roby G, O'Shea MA, Fauci AS. CpG oligonucleotides enhance proliferative and effector responses of B Cells in HIV-infected individuals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1199-206. [PMID: 18606673 PMCID: PMC2670450 DOI: 10.4049/jimmunol.181.2.1199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stimulation through TLR represents a new therapeutic approach for enhancing Ab responses to vaccination. Considering that Ab responses are decreased in HIV disease and that B cells express TLR9 and respond to TLR9 agonists, we investigated the responsiveness of B cell subpopulations from HIV-infected and uninfected individuals to the TLR9 agonist CpG oligonucleotide type B (CpG-B) in the presence and absence of BCR ligation and T cell help (CD40L). CpG-B was equally effective in stimulating the proliferation of naive B cells of HIV-infected individuals and HIV-negative individuals, and, when combined with BCR and CD40 ligation, cytokine secretion by naive B cells was also comparable in HIV-infected and uninfected individuals. In contrast, CD27(+) memory/activated B cells of HIV-infected individuals with active disease were less responsive to CpG-B in terms of proliferation and cytokine secretion when compared with CD27(+) B cells of HIV-negative and HIV-infected individuals whose viremia was controlled by antiretroviral therapy. These findings suggest that despite abnormalities in memory B cells of HIV-infected individuals with active disease, naive B cells of HIV-infected individuals, irrespective of disease status, can respond to TLR9 agonists and that the incorporation of such agents in vaccine formulations may enhance their Ab responses to vaccination.
Collapse
Affiliation(s)
- Angela Malaspina
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Tesciuba AG, Shilling RA, Agarwal MD, Bandukwala HS, Clay BS, Moore TV, Weinstock JV, Welcher AA, Sperling AI. ICOS costimulation expands Th2 immunity by augmenting migration of lymphocytes to draining lymph nodes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1019-24. [PMID: 18606653 PMCID: PMC2560985 DOI: 10.4049/jimmunol.181.2.1019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The T cell costimulatory molecule ICOS regulates Th2 effector function in allergic airway disease. Recently, several studies with ICOS(-/-) mice have also demonstrated a role for ICOS in Th2 differentiation. To determine the effects of ICOS on the early immune response, we investigated augmenting ICOS costimulation in a Th2-mediated immune response to Schistosoma mansoni Ags. We found that augmenting ICOS costimulation with B7RP-1-Fc increased the accumulation of T and B cells in the draining lymph nodes postimmunization. Interestingly, the increased numbers were due in part to increased migration of undivided Ag-specific TCR transgenic T cells and surprisingly B cells, as well as non-TCR transgenic T cells. B7RP-1-Fc also increased the levels of the chemokines CCL21 and CXCL13 in the draining lymph node, suggesting ICOS costimulation contributes to migration by direct or indirect effects on dendritic cells, stromal cells and high endothelial venules. Further, the effects of B7RP-1-Fc were not dependent on immunization. Our data support a model in which ICOS costimulation augments the pool of lymphocytes in the draining lymph nodes, leading to an increase in the frequency of potentially reactive T and B cells.
Collapse
Affiliation(s)
| | - Rebecca A. Shilling
- Committee on Immunology, The University of Chicago, Chicago, IL
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL
| | | | | | - Bryan S. Clay
- Committee on Immunology, The University of Chicago, Chicago, IL
| | - Tamson V. Moore
- Committee on Immunology, The University of Chicago, Chicago, IL
| | - Joel V. Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts New England Medical Center, Boston, MA
| | | | - Anne I. Sperling
- Committee on Immunology, The University of Chicago, Chicago, IL
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
191
|
The absence of cutaneous lymph nodes results in a Th2 response and increased susceptibility to Leishmania major infection in mice. Infect Immun 2008; 76:4241-50. [PMID: 18625738 DOI: 10.1128/iai.01714-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymph nodes (LNs) are important sentinel organs where antigen-presenting cells interact with T cells to induce adaptive immune responses. In cutaneous infection of mice with Leishmania major, resistance depends on the induction of a T-helper-cell-1 (Th1)-mediated cellular immune response in draining, peripheral LNs. We investigated whether draining, peripheral LNs are absolutely required for resistance against L. major infection. We investigated the course of experimental leishmaniasis in wild-type (wt) mice lacking peripheral LNs (pLNs), which we generated by in utero blockade of membrane-bound lymphotoxin, and in mice lacking pLNs or all LNs due to genetic deletion of lymphotoxin ligands or receptors. wt mice of the resistant C57BL/6 strain without local skin-draining LNs were still able to generate specific T-cell responses, but this yielded Th2 cells. This switch to a Th2 response resulted in severe systemic infection. We also confirmed these results with mice lacking pLNs due to genetic depletion of lymphotoxin-beta. The complete absence of LNs due to a genetic depletion of the lymphotoxin-beta receptor also resulted in a marked deterioration of disease and a Th2 response. Thus, in the absence of pLNs, an L. major-specific Th2 response is induced in the remaining secondary lymphoid organs, such as the spleen and non-skin-draining LNs. This indicates a critical requirement for pLNs to induce protective Th1 immunity and suggests that whether Th1 or Th2 priming to the same antigen occurs depends on the site of the primary antigen recognition.
Collapse
|
192
|
Togbe D, Loureiro de Sousa P, Fauconnier M, Boissay V, Fick L, Scheu S, Pfeffer K, Menard R, Grau GE, Doan BT, Beloeil JC, Renia L, Hansen AM, Ball HJ, Hunt NH, Ryffel B, Quesniaux VFJ. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria. PLoS One 2008; 3:e2608. [PMID: 18612394 PMCID: PMC2442868 DOI: 10.1371/journal.pone.0002608] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/04/2008] [Indexed: 12/19/2022] Open
Abstract
Background TNF-related lymphotoxin α (LTα) is essential for the development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). The pathway involved has been attributed to TNFR2. Here we show a second arm of LTα-signaling essential for ECM development through LTβ-R, receptor of LTα1β2 heterotrimer. Methodology/Principal Findings LTβR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTαβ deficient mice. Resistance of LTαβ or LTβR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin+ CD8+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTβR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. Conclusions/Significance LTβR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTβR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.
Collapse
Affiliation(s)
- Dieudonnée Togbe
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | | | - Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | - Victorine Boissay
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
| | - Lizette Fick
- Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
| | | | | | | | - Georges E. Grau
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Bich-Thuy Doan
- CNRS CBM (Centre de Biophysique Moléculaire), Orleans, France
| | | | - Laurent Renia
- The University of Sydney, Department of Pathology, Camperdown, Australia
- Inserm, U567, Paris, France
| | - Anna M. Hansen
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Helen J. Ball
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Nicholas H. Hunt
- The University of Sydney, Department of Pathology, Camperdown, Australia
| | - Bernhard Ryffel
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
- * E-mail: (BR); (VQ)
| | - Valerie F. J. Quesniaux
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orleans, France
- * E-mail: (BR); (VQ)
| |
Collapse
|
193
|
Abstract
The nomenclature "embryonic lymphoid tissue inducer (LTi) cell" reflects the fundamental role of the cell in secondary lymphoid tissue organization. In addition, it is equally important in primary lymphoid tissue development as it regulates central tolerance to self-antigens in the thymus. An adult LTi cell constitutively expresses two sets of tumor necrosis factor (TNF) family members, whereas its embryonic counterpart expresses only one. The first set is lymphotoxin (LT)alpha, LTbeta, and TNalpha, which are essential for the secondary lymphoid organogenesis during embryogenesis and for maintaining an organized secondary lymphoid structure during adulthood. The second set is OX40- and CD30-ligands, which are critical for memory T cell generation. Adult LTi cells regulate adaptive immune responses by providing LTbetaR signals to stromal cells to maintain secondary lymphoid tissue structure, and determine adaptive immune responses by providing OX40 and CD30 survival signals to activated T cells in memory T cell generation. Along with the consideration of the roles of embryonic LTi cells in primary and secondary lymphoid tissues, this review highlights the roles of adult LTi cells in secondary lymphoid tissue function.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul 156-743, Korea.
| |
Collapse
|
194
|
Aloisi F, Columba-Cabezas S, Franciotta D, Rosicarelli B, Magliozzi R, Reynolds R, Ambrosini E, Coccia E, Salvetti M, Serafini B. Lymphoid chemokines in chronic neuroinflammation. J Neuroimmunol 2008; 198:106-12. [PMID: 18539341 PMCID: PMC7125843 DOI: 10.1016/j.jneuroim.2008.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 12/21/2022]
Abstract
Lymphoid chemokines play an essential role in the establishment and maintenance of lymphoid tissue microarchitecture and have been implicated in the formation of tertiary (or ectopic) lymphoid tissue in chronic inflammatory conditions. Here, we review recent advances in lymphoid chemokine research in central nervous system inflammation, focusing on multiple sclerosis and the animal model experimental autoimmune encephalomyelitis. We also highlight how the study of lymphoid chemokines, particularly CXCL13, has led to the identification of intrameningeal B-cell follicles in the multiple sclerosis brain paving the way to the discovery that these abnormal structures are highly enriched in Epstein–Barr virus-infected B cells and plasma cells.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Metastatic diseases cause the majority of morbidity and mortality of cancer patients. Established tumors form both physical and immunological barriers to limit immune detection and destruction. Current immunotherapy of vaccination and adoptive transfer shows limited effect at least in part due to the existing barriers in the tumors and depending on the knowledge of tumor antigens. Tumor necrosis factor (TNF) superfamily (TNFSF) member 14 (TNFSF14) LIGHT interacts with stromal cells, dendritic cells (DCs), NK cells, naïve and activated T cells and tumor cells inside the tumor tissues via its two functional receptors, HVEM and lymphotoxin beta receptor (LTbetaR). Targeting tumor tissues with LIGHT leads to augmentation of priming, recruitment, and retention of effector cells at tumor sites, directly or indirectly, to induce strong anti-tumor immunity to inhibit the growth of primary tumors as well as eradicate metastases. Intratumor treatment would break tumor barriers and allow strong immunity against various tumors without defining tumor antigens. This review summarizes recent findings to support that LIGHT is a promising candidate for an effective cancer immunotherapy.
Collapse
Affiliation(s)
- Ping Yu
- Department of Dermatology, University of Chicago, MC3083, Chicago, Illinois, 60637, USA
| | - Yang-Xin Fu
- Committee on Immunology, and Department of Pathology, University of Chicago, MC3083, Chicago, Illinois, 60637, USA
| |
Collapse
|
196
|
Katakai T, Shimizu A. Undesired meeting of lymphocytes: Organ-specific infiltration and the organization of ectopic lymphoid tissue in a murine experimental autoimmune gastritis. Immunol Lett 2008; 118:103-9. [DOI: 10.1016/j.imlet.2008.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/17/2008] [Accepted: 03/21/2008] [Indexed: 01/13/2023]
|
197
|
Estes JD, Haase AT, Schacker TW. The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol 2008; 20:181-6. [PMID: 18595731 PMCID: PMC2650387 DOI: 10.1016/j.smim.2008.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 04/16/2008] [Indexed: 10/21/2022]
Abstract
The hallmark of HIV/SIV infections is the progressive depletion of CD4+ T cells that ultimately renders the host incapable of defending against AIDS defining opportunistic infections and malignancies. Although many potential mechanisms have been proposed to explain CD4+ T cell loss, we review here the growing evidence that fibrotic 'scarring' and consequent damage to the lymphatic tissue niche contributes to CD4+ T cell decline and limits CD4+ T cell re-population with retroviral therapy.
Collapse
Affiliation(s)
- Jacob D Estes
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, Frederick, MD, USA
| | | | | |
Collapse
|
198
|
Abstract
The nuclear factor kappaB (NF-kappaB) family of transcription factors consists of 15 possible dimers whose activity is controlled by a family of inhibitor proteins, known as IkappaBs. A variety of cellular stimuli, many of them transduced by members of the tumor necrosis factor receptor (TNFR) superfamily, induce degradation of IkappaBs to activate an overlapping subset of NF-kappaB dimers. However, generation and stimulus-responsive activation of NF-kappaB dimers are intimately linked via various cross-regulatory mechanisms that allow crosstalk between different signaling pathways through the NF-kappaB signaling system. In this review, we summarize these mechanisms and discuss physiological and pathological consequences of crosstalk between apparently distinct inflammatory and developmental signals. We argue that a systems approach will be valuable for understanding questions of specificity and emergent properties of highly networked cellular signaling systems.
Collapse
Affiliation(s)
- Soumen Basak
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| | | |
Collapse
|
199
|
Heikenwalder M, Prinz M, Zeller N, Lang KS, Junt T, Rossi S, Tumanov A, Schmidt H, Priller J, Flatz L, Rülicke T, Macpherson AJ, Holländer GA, Nedospasov SA, Aguzzi A. Overexpression of lymphotoxin in T cells induces fulminant thymic involution. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1555-70. [PMID: 18483211 PMCID: PMC2408416 DOI: 10.2353/ajpath.2008.070572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2008] [Indexed: 01/12/2023]
Abstract
Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Dhawan P, Su Y, Thu YM, Yu Y, Baugher P, Ellis DL, Sobolik-Delmaire T, Kelley M, Cheung TC, Ware CF, Richmond A. The lymphotoxin-beta receptor is an upstream activator of NF-kappaB-mediated transcription in melanoma cells. J Biol Chem 2008; 283:15399-408. [PMID: 18347013 PMCID: PMC2397477 DOI: 10.1074/jbc.m708272200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/04/2008] [Indexed: 12/11/2022] Open
Abstract
The pleiotropic transcription factor nuclear factor-kappaB (NF-kappaB (p50/p65)) regulates the transcription of genes involved in the modulation of cell proliferation, apoptosis, and oncogenesis. Furthermore, a host of solid and hematopoietic tumor types exhibit constitutive activation of NF-kappaB (Basseres, D. S., and Baldwin, A. S. (2006) 25, 6817-6830). However, the mechanism for this constitutive activation of NF-kappaB has not been elucidated in the tumors. We have previously shown that NF-kappaB-inducing kinase (NIK) protein and its association with Inhibitor of kappaB kinase alphabeta are elevated in melanoma cells compared with their normal counterpart, leading to constitutive activation of NF-kappaB. Moreover, expression of dominant negative NIK blocked this base-line NF-kappaB activity in melanoma cells. Of the three receptors that require NIK for activation of NF-kappaB, only the lymphotoxin-beta receptor (LTbeta-R) is expressed in melanoma. We show in this manuscript that for melanoma there is a strong relationship between expression of the LTbeta-R and constitutive NF-kappaB transcriptional activity. Moreover, we show that activation of the LTbeta-R can drive NF-kappaB activity to regulate gene expression that leads to enhanced cell growth. The inhibition by LTbeta-R shRNA resulted in decreased NF-kappaB promoter activity, decreased growth, and decreased invasiveness as compared with control. These results indicate that the LTbeta-R constitutively induces NF-kappaB activation, and this event may be associated with autonomous growth of melanoma cells.
Collapse
Affiliation(s)
- Punita Dhawan
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Yingjun Su
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Yee Mon Thu
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Yingchun Yu
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Paige Baugher
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Darrel L. Ellis
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Tammy Sobolik-Delmaire
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Mark Kelley
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Timothy C. Cheung
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Carl F. Ware
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Ann Richmond
- Department of Veterans Affairs, Nashville, Tennessee 37212,Department of Cancer Biology, Surgical Oncology Research Laboratories, Department of Surgery, and Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| |
Collapse
|