151
|
Ting E, Guerrero ATG, Cunha TM, Verri WA, Taylor SM, Woodruff TM, Cunha FQ, Ferreira SH. Role of complement C5a in mechanical inflammatory hypernociception: potential use of C5a receptor antagonists to control inflammatory pain. Br J Pharmacol 2007; 153:1043-53. [PMID: 18084313 DOI: 10.1038/sj.bjp.0707640] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE C5a, a complement activation product, exhibits a broad spectrum of inflammatory activities particularly neutrophil chemoattraction. Herein, the role of C5a in the genesis of inflammatory hypernociception was investigated in rats and mice using the specific C5a receptor antagonist PMX53 (AcF-[OP(D-Cha)WR]). EXPERIMENTAL APPROACH Mechanical hypernociception was evaluated with a modification of the Randall-Selitto test in rats and electronic pressure meter paw test in mice. Cytokines were measured by ELISA and neutrophil migration was determined by myeloperoxidase activity. KEY RESULTS Local pretreatment of rats with PMX53 (60-180 microg per paw) inhibited zymosan-, carrageenan-, lipopolysaccharide (LPS)- and antigen-induced hypernociception. These effects were associated with C5a receptor blockade since PMX53 also inhibited the hypernociception induced by zymosan-activated serum and C5a but not by the direct-acting hypernociceptive mediators, prostaglandin E(2) and dopamine. Underlying the C5a hypernociceptive mechanisms, PMX53 did not alter the cytokine release induced by inflammatory stimuli. However, PMX53 inhibited cytokine-induced hypernociception. PMX53 also inhibited the recruitment of neutrophils induced by zymosan but not by carrageenan or LPS, indicating an involvement of neutrophils in the hypernociceptive effect of C5a. Furthermore, the C5a-induced hypernociception was reduced in neutrophil-depleted rats. Extending these findings in rats, blocking C5a receptors also reduced zymosan-induced joint hypernociception in mice. CONCLUSIONS AND IMPLICATIONS These results suggest that C5a is an important inflammatory hypernociceptive mediator, acting by a mechanism independent of hypernociceptive cytokine release, but dependent on the presence of neutrophils. Therefore, we suggest that inhibiting the action of C5a has therapeutic potential in the control of inflammatory pain.
Collapse
Affiliation(s)
- E Ting
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Bastos JLD, Gigante DP, Peres KG, Nedel FB. Determinação social da odontalgia em estudos epidemiológicos: revisão teórica e proposta de um modelo conceitual. CIENCIA & SAUDE COLETIVA 2007; 12:1611-21. [DOI: 10.1590/s1413-81232007000600022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 02/05/2007] [Indexed: 11/21/2022] Open
Abstract
A literatura epidemiológica se caracteriza por limitada abordagem teórica acerca dos mecanismos complexos de determinação das doenças e condições de saúde. No campo da epidemiologia da saúde bucal, isto não tem sido diferente, uma vez que a cárie dentária a doença bucal mais investigada no mundo é comumente vista sob um ponto de vista biologicista/reducionista. Uma das mais importantes conseqüências da cárie é a dor de origem dentária ou odontalgia, a qual tem recebido pouca atenção em investigações com refinamento teórico e delineamento de maior capacidade para inferência causal. O objetivo deste trabalho foi rever a literatura científica sobre os determinantes da odontalgia e colocar em debate teorias pertinentes à explicação do fenômeno. São revistos modelos de determinação e correntes de pensamento emergentes no estudo de morbidades bucais, estabelecendo-se interface com o modelo biopsicossocial da dor e almejando-se a elaboração de um modelo conceitual abrangente da odontalgia. Sugere-se que a ligação entre estrutura social e saúde bucal se dá por meio de vias materiais, comportamentais e psicossociais. Aspectos da estrutura social são levantados na tentativa de relacioná-los com o desfecho de interesse, destacando sua importância nas discussões acerca da causalidade dos fenômenos de saúde bucal.
Collapse
|
153
|
Abstract
The electrophysiological properties of peripheral neurons activated by noxious stimuli, the primary afferent nociceptors, have been investigated intensively, and our knowledge about the molecular basis of transducers for noxious stimuli has increased greatly. In contrast, understanding of the intracellular signaling mechanisms regulating nociceptor sensitization downstream of ligand binding to the receptors is still at a relatively nascent stage. After outlining the initiated signaling cascades, we discuss the emerging plasticity within these cascades and the importance of subcellular compartmentalization. In addition, the recently realized importance of functional interactions with the extracellular matrix, cytoskeleton, intracellular organelles such as mitochondria, and sex hormones will be introduced. This burgeoning literature establishes new cellular features crucial for the function of nociceptive neurons and argues that additional focus should be placed on understanding the complex integration of cellular events that make up the "cell biology of pain."
Collapse
Affiliation(s)
- Tim Hucho
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | | |
Collapse
|
154
|
Napimoga MH, Cavada BS, Alencar NMN, Mota ML, Bittencourt FS, Alves-Filho JC, Grespan R, Gonçalves RB, Clemente-Napimoga JT, de Freitas A, Parada CA, Ferreira SH, Cunha FQ. Lonchocarpus sericeus lectin decreases leukocyte migration and mechanical hypernociception by inhibiting cytokine and chemokines production. Int Immunopharmacol 2007; 7:824-35. [PMID: 17466916 DOI: 10.1016/j.intimp.2007.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/28/2007] [Accepted: 02/08/2007] [Indexed: 12/21/2022]
Abstract
In this study, we tested the potential use of a lectin from Lonchocarpus sericeus seeds (LSL), to control neutrophil migration and inflammatory hypernociception (decrease of nociceptive threshold). Pretreatment of the animals intravenously (15 min before) with LSL inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. We also tested the ability of the pretreatment with LSL to inhibit neutrophil migration on immunised mice, and it was observed that a strong inhibition of neutrophil migration induced by ovoalbumin in immunized mice. Another set of experiments showed that pretreatment of the animals with LSL, inhibited the mechanical hypernociception in mice induced by the i.pl. injection of OVA in immunized mice and of carrageenan in naïve mice, but not that induced by prostaglandin E(2) (PGE(2)) or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. In addition, we measured cytokines (TNF-alpha and IL-1beta) and chemokines (MIP-1alpha [CCL3] and KC [CXCL1]) from the peritoneal exudates and i.pl. tissue. Animals treated with LSL showed inhibition of cytokines and chemokines release in a dose-dependent manner. In conclusion, we demonstrated that the inhibitory effects of LSL on neutrophil migration and mechanical inflammatory hypernocicepetion are associated with the inhibition of the production of cytokines and chemokines.
Collapse
|
155
|
Meisner JG, Waldron JB, Sawynok J. Alpha1-adrenergic receptors augment P2X3 receptor-mediated nociceptive responses in the uninjured state. THE JOURNAL OF PAIN 2007; 8:556-62. [PMID: 17512257 DOI: 10.1016/j.jpain.2007.02.434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/19/2007] [Accepted: 02/25/2007] [Indexed: 12/18/2022]
Abstract
UNLABELLED In the present study, the adrenergic receptor (AR) subtype mediating adrenergic augmentation of P2X(3) receptor-mediated nociceptive responses on sensory nerve endings was examined by using selective AR receptor agonists and antagonists in Sprague Dawley rats in the uninjured state. Local administration of alphabeta-methyleneATP (ligand for P2X3/P2X2/3 receptors) into the plantar hind paw produced few pain behaviors when given alone in this strain of rats; combination with adrenaline (alpha1- and alpha2-AR agonist) and phenylephrine (alpha1-AR agonist) but not clonidine or UK 14,304 (alpha2-AR agonists) increased flinching behaviors. Flinching produced by noradrenaline (NA)/alphabeta-methyleneATP was suppressed by low doses of prazosin (alpha1-AR antagonist), and this reduction was selective compared with yohimbine (alpha2-AR antagonist). Prazosin also reduced flinching produced by phenylephrine/alphabeta-methyleneATP. Using thermal threshold determinations, adrenaline and phenylephrine but not clonidine or UK 14,304, mimicked the action of NA in augmenting reductions in thermal thresholds produced by alphabeta-methyleneATP. Terazosin (another alpha1-AR antagonist) inhibited hyperalgesia produced by NA/alphabeta-methyleneATP. These results provide evidence for alpha1-AR involvement in adrenergic augmentation of P2X3/P2X2/3 receptor-mediated responses on sensory nerve endings in the uninjured state in Sprague Dawley rats. PERSPECTIVE This study indicates the alpha1-adrenergic receptor subtype mediates adrenergic augmentation of the activation of sensory nerves by purinergic P2X3 receptors (respond to ATP) in the periphery. Observations are potentially relevant to chronic pain conditions in which sympathetic nerves influence sensory nerves.
Collapse
Affiliation(s)
- Jason G Meisner
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
156
|
Liang DY, Shi X, Li X, Li J, Clark JD. The beta2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav Brain Res 2007; 181:118-26. [PMID: 17498818 PMCID: PMC1989675 DOI: 10.1016/j.bbr.2007.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/15/2006] [Accepted: 03/30/2007] [Indexed: 12/29/2022]
Abstract
Adaptations to the chronic administration of opioids reduce the utility of these drugs in treating pain and support addiction. Recent genetics-based approaches have implicated the beta2 adrenergic receptor (beta2-AR) in controlling some of these responses. We do not know, however, whether this receptor can modulate tolerance, dependence or changes in gene expression caused by chronic opioid administration. For our studies we used C57BL/6 mice and beta2-AR knockout mice in the FVB background. Morphine dose-response relationships were established both prior to and after chronic morphine treatment. In some cases, the selective beta2-AR antagonist butoxamine was administered along with or after morphine. Physical dependence was assessed using naloxone-precipitated withdrawal. The expression of calcitonin gene related peptide (CGRP) and substance P (SP) were measured in spinal cord and dorsal root ganglion (DRG) tissues using both real-time PCR and enzyme-linked immunoassay (ELISA). Both the co-administration of butoxamine with morphine and the administration of butoxamine after chronic morphine reversed morphine tolerance. Morphine failed to cause tolerance in beta2-AR knockout mice. Physical dependence was reduced under the same circumstances. The chronic administration of butoxamine with morphine reduced or eliminated the normally observed up-regulation of CGRP and SP in spinal cord and DRG tissues. Our results suggest that the beta2-AR modulates both opioid tolerance and physical dependence. Activation of beta2-ARs appears to be required for some of the key neurochemical changes which characterize chronic opioid administration. Therefore, beta2-AR antagonists show some promise as agents to enhance chronic opioid analgesic therapy.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Analgesics, Opioid/administration & dosage
- Animals
- Behavior, Animal
- Butoxamine/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Drug Tolerance/physiology
- Enzyme-Linked Immunosorbent Assay/methods
- Ganglia, Spinal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Morphine Dependence/metabolism
- Morphine Dependence/pathology
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- De-Yong Liang
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Xiaoyou Shi
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Xiangqi Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - Jun Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
| | - J. David Clark
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Ave., Palo Alto, CA 94304, USA
- Corresponding author and author to whom reprint requests should be addressed, VAPAHCS, Anesthesiology, 112A, 3801 Miranda Ave., Palo Alto, CA 94304, Phone: 650-493-5000, x6-7184, Fax: 650-852-3423,
| |
Collapse
|
157
|
Dina OA, Gear RW, Messing RO, Levine JD. Severity of alcohol-induced painful peripheral neuropathy in female rats: role of estrogen and protein kinase (A and Cepsilon). Neuroscience 2007; 145:350-6. [PMID: 17204374 PMCID: PMC1817724 DOI: 10.1016/j.neuroscience.2006.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/14/2006] [Accepted: 11/28/2006] [Indexed: 01/26/2023]
Abstract
Small-fiber painful peripheral neuropathy, a complication of chronic ethanol ingestion, is more severe in women. In the present study, we have replicated this clinical finding in the rat and evaluated for a role of estrogen and second messenger signaling pathways. The alcohol diet (6.5% ethanol volume:volume in Lieber-DeCarli formula) induced hyperalgesia with more rapid onset and severity in females. Following ovariectomy, alcohol failed to induce hyperalgesia in female rats, well past its time to onset in gonad intact males and females. Estrogen replacement reinstated alcohol neuropathy in the female rat. The protein kinase A (PKA) inhibitor (Walsh inhibitor peptide, WIPTIDE) only attenuated alcohol-induced hyperalgesia in female rats. Inhibitors of protein kinase Cepsilon (PKCepsilon-I) and extracellular-signal related kinase (ERK) 1/2 (2'-amino-3'-methoxyflavone (PD98059) and 1,4-diamino-2, 3-dicyano-1, 4-bis (2-aminophenylthio) butadiene (U0126)) attenuated hyperalgesia in males and females, however the degree of attenuation produced by PKCepsilon-I was much greater in females. In conclusion, estrogen plays an important role in the expression of pain associated with alcohol neuropathy in the female rat. In contrast to inflammatory hyperalgesia, in which only the contribution of PKCepsilon signaling is sexually dimorphic, in alcohol neuropathy PKA as well as PKCepsilon signaling is highly sexually dimorphic.
Collapse
Affiliation(s)
- Olayinka A. Dina
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143
- Program in Neuroscience, University of California at San Francisco, San Francisco, CA 94143
| | - Robert W. Gear
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143
- Program in Neuroscience, University of California at San Francisco, San Francisco, CA 94143
| | - Robert O. Messing
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94143
- Ernest Gallo Clinic and Research Center, Emeryville, CA
| | - Jon D. Levine
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94143
- Program in Neuroscience, University of California at San Francisco, San Francisco, CA 94143
| |
Collapse
|
158
|
Oliveira MCG, Pelegrini-da-Silva A, Parada CA, Tambeli CH. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue. Neuroscience 2007; 145:708-14. [PMID: 17257768 DOI: 10.1016/j.neuroscience.2006.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
We have recently demonstrated that s.c.-injected 5-hydroxytryptamine (5-HT) induces nociception by an indirect action on the primary afferent nociceptor in addition to its previously described direct action. Although the mechanisms mediating hyperalgesia can be quite separate and distinct from those mediating nociception, the aim of this study was to test the hypothesis that 5-HT induces mechanical hyperalgesia by mechanisms similar to those mediating nociception. s.c. injection of 5-HT induced a dose-dependent mechanical hyperalgesia measured by the mechanical paw withdrawal nociceptive threshold test in the rat. 5-HT-induced hyperalgesia was significantly reduced by local blockade of the 5-HT(3) receptor by tropisetron, by the nonspecific selectin inhibitor fucoidan, by the cyclooxygenase inhibitor indomethacin, by guanethidine depletion of norepinephrine in the sympathetic terminals, and by local blockade of the beta(1)- or beta(2)-adrenergic receptor by atenolol or ICI 118,551, respectively. Taken together, these findings indicate that like nociception, hyperalgesia induced by the injection of 5-HT in the s.c. tissue is also mediated by an indirect action of 5-HT on the primary afferent nociceptor. This indirect hyperalgesic action of 5-HT is mediated by a combination of mechanisms involved in inflammation such as neutrophil migration and the local release of prostaglandin and norepinephrine. However, in contrast to nociception, hyperalgesia induced by 5-HT in the s.c. tissue is mediated by a norepinephrine-dependent mechanism that involves the activation of peripheral beta(2) adrenoceptors.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-2 Receptor Antagonists
- Adrenergic beta-Antagonists/pharmacology
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Afferent Pathways/physiopathology
- Animals
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Cyclooxygenase Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Male
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/physiopathology
- Norepinephrine/metabolism
- Pain Measurement/drug effects
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Prostaglandins/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Serotonin, 5-HT3/metabolism
- Selectins/drug effects
- Selectins/metabolism
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/physiopathology
- Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin 5-HT3 Receptor Antagonists
- Serotonin Antagonists/pharmacology
- Skin/innervation
- Skin/physiopathology
- Sympathetic Fibers, Postganglionic/drug effects
- Sympathetic Fibers, Postganglionic/metabolism
Collapse
Affiliation(s)
- M C G Oliveira
- Department of Physiology, Laboratory of Orofacial Pain, Faculty of Dentistry of Piracicaba, University of Campinas, UNICAMP, Av. Limeira, 901, Zip Code 13414-900, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|
159
|
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) has emerged as a versatile regulator of TRP ion channels. In many cases, the regulation involves interactions of channel proteins with the lipid itself independent of its hydrolysis products. The functions of the regulation mediated by such interactions are diverse. Some TRP channels absolutely require PIP2 for functioning, while others are inhibited. A change of gating is common to all, endowing the lipid a role for modulation of the sensitivity of the channels to their physiological stimuli. The activation of TRP channels may also influence cellular PIP2 levels via the influx of Ca2+ through these channels. Depletion of PIP2 in the plasma membrane occurs upon activation of TRPV1, TRPM8, and possibly TRPM4/5 in heterologous expression systems, whereas resynthesis of PIP2 requires Ca2+ entry through the TRP/TRPL channels in Drosophila photoreceptors. These developments concerning PIP2 regulation of TRP channels reinforce the significance of the PLC signaling cascade in TRP channel function, and provide further perspectives for understanding the physiological roles of these ubiquitous and often enigmatic channels.
Collapse
Affiliation(s)
- F Qin
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
160
|
Affiliation(s)
- Wenrui Xie
- University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
161
|
Gu Q, Lin YS, Lee LY. Epinephrine enhances the sensitivity of rat vagal chemosensitive neurons: role of beta3-adrenoceptor. J Appl Physiol (1985) 2006; 102:1545-55. [PMID: 17170206 PMCID: PMC1850626 DOI: 10.1152/japplphysiol.01010.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was carried out to determine whether epinephrine alters the sensitivity of rat vagal sensory neurons. In anesthetized rats, inhalation of epinephrine aerosol (1 and 5 mg/ml, 3 min) induced an elevated baseline activity of pulmonary C fibers and enhanced their responses to lung inflation (20 cm H(2)O, 10 s) and right atrial injection of capsaicin (0.5 microg/kg). In isolated rat nodose and jugular ganglion neurons, perfusion of epinephrine (3 microM, 5 min) alone did not produce any detectable change of the intracellular Ca(2+) concentration. However, immediately after the pretreatment with epinephrine, the Ca(2+) transients evoked by chemical stimulants (capsaicin, KCl, and ATP) were markedly potentiated; for example, capsaicin (50 nM, 15 s)-evoked Ca(2+) transient was increased by 106% after epinephrine (P < 0.05; n = 11). The effect of epinephrine was mimicked by either BRL 37344 (5 microM, 5 min) or ICI 215,001 (5 microM, 5 min), two selective beta(3)-adrenoceptor agonists, and blocked by SR 59230A (5 microM, 10 min), a selective beta(3)-adrenoceptor antagonist, whereas pretreatment with phenylephrine (alpha(1)-adenoceptor agonist), guanabenz (alpha(2)-adrenoceptor agonist), dobutamine (beta(1)-adrenoceptor agonist), or salbutamol (beta(2)-adrenoceptor agonist) had no significant effect on capsaicin-evoked Ca(2+) transient. Furthermore, pretreatment with SQ 22536 (100-300 microM, 15 min), an adenylate cyclase inhibitor, and H89 (3 microM, 15 min), a PKA inhibitor, completely abolished the potentiating effect of epinephrine. Our results suggest that epinephrine enhances the excitability of rat vagal chemosensitive neurons. This sensitizing effect of epinephrine is likely mediated through the activation of beta(3)-adrenoceptor and intracellular cAMP-PKA signaling cascade.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
162
|
Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both beta2- and beta3-adrenergic receptors. Pain 2006; 128:199-208. [PMID: 17084978 PMCID: PMC1905861 DOI: 10.1016/j.pain.2006.09.022] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/19/2022]
Abstract
Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Our group demonstrated that human genetic variants of COMT are predictive for the development of Temporomandibular Joint Disorder (TMJD) and are associated with heightened experimental pain sensitivity [Diatchenko, L, Slade, GD, Nackley, AG, Bhalang, K, Sigurdsson, A, Belfer, I, et al., Genetic basis for individual variations in pain perception and the development of a chronic pain condition, Hum Mol Genet 2005;14:135-43.]. Variants associated with heightened pain sensitivity produce lower COMT activity. Here we report the mechanisms underlying COMT-dependent pain sensitivity. To characterize the means whereby elevated catecholamine levels, resulting from reduced COMT activity, modulate heightened pain sensitivity, we administered a COMT inhibitor to rats and measured behavioral responsiveness to mechanical and thermal stimuli. We show that depressed COMT activity results in enhanced mechanical and thermal pain sensitivity. This phenomenon is completely blocked by the nonselective beta-adrenergic antagonist propranolol or by the combined administration of selective beta(2)- and beta(3)-adrenergic antagonists, while administration of beta(1)-adrenergic, alpha-adrenergic, or dopaminergic receptor antagonists fail to alter COMT-dependent pain sensitivity. These data provide the first direct evidence that low COMT activity leads to increased pain sensitivity via a beta(2/3)-adrenergic mechanism. These findings are of considerable clinical importance, suggesting that pain conditions resulting from low COMT activity and/or elevated catecholamine levels can be treated with pharmacological agents that block both beta(2)- and beta(3)-adrenergic receptors.
Collapse
Affiliation(s)
- Andrea Gail Nackley
- Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA Comprehensive Center for Inflammatory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA Division of Pain Medicine, Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7010, USA
| | | | | | | | | | | |
Collapse
|
163
|
Santodomingo-Garzón T, Cunha TM, Verri WA, Valério DAR, Parada CA, Poole S, Ferreira SH, Cunha FQ. Atorvastatin inhibits inflammatory hypernociception. Br J Pharmacol 2006; 149:14-22. [PMID: 16865092 PMCID: PMC1629407 DOI: 10.1038/sj.bjp.0706836] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Atorvastatin is an inhibitor of the enzyme 3-hydroxyl-3-methylglutaryl coenzyme A reductase used to prevent coronary heart disease. We have studied the analgesic effect of atorvastatin in inflammatory models in which a sequential release of mediators (bradykinin, (BK), tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and the chemokine, KC/CXCL) links the stimulus with release of directly acting hypernociceptive mediators such as prostaglandin E(2) (PGE(2)). EXPERIMENTAL APPROACH The effects of orally administered atorvastatin on inflammatory mechanical hypernociception in mouse paws were evaluated with an electronic pressure-meter. Cytokines and PGE(2) were measured by ELISA and RIA. KEY RESULTS Treatment with atorvastatin for 3 days dose-dependently reduced hypernociception induced by lipopolysaccharide (LPS) or that following antigen challenge in sensitized animals. Atorvastatin pre-treatment reduced hypernociception induced by bradykinin and cytokines (TNF-alpha, IL-1beta and KC), and the release of IL-1beta and PGE(2) in paw skin, induced by lipopolysaccharide. The antinociceptive effect of atorvastatin on LPS-induced hypernociception was prevented by mevalonate co-treatment without affecting serum cholesterol levels. Hypernociception induced by PGE(2) was inhibited by atorvastatin, suggesting intracellular antinociceptive mechanisms for atorvastatin. The antinociceptive effect of atorvastatin upon LPS- or PGE(2)-induced hypernociception was prevented by non-selective inhibitors of nitric oxide synthase (NOS) but not by selective inhibition of inducible NOS or in mice lacking this enzyme. CONCLUSIONS AND IMPLICATIONS Antinociceptive effects of atorvastatin depend on inhibition of cytokines and prostanoid production and on stimulation of NO production by constitutive NOS. Our study suggests that statins may constitute a novel class of analgesic drugs.
Collapse
Affiliation(s)
- T Santodomingo-Garzón
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - T M Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - W A Verri
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - D A R Valério
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - C A Parada
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - S Poole
- Division of Immunology and Endocrinology, National Institute for Biological Standards and Control, Herts, UK
| | - S H Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F Q Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Author for correspondence:
| |
Collapse
|
164
|
Hucho TB, Dina OA, Kuhn J, Levine JD. Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci 2006; 24:527-34. [PMID: 16836642 DOI: 10.1111/j.1460-9568.2006.04913.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C epsilon (PKCepsilon) is an important intracellular signaling molecule in primary afferent nociceptors, implicated in acute and chronic inflammatory as well as neuropathic pain. In behavioral experiments inflammatory mediators produce PKCepsilon-dependent hyperalgesia only in male rats. The mechanism underlying this sexual dimorphism is unknown. We show that the hormone environment of female rats changes the nociceptive signaling in the peripheral sensory neuron. This change is maintained in culture also in the absence of a gender-simulating environment. Stimulation of beta(2)-adrenergic receptors (beta(2)-AR) leads to PKCepsilon activation in cultured dorsal root ganglia (DRG) neurons derived from male but not from female rats. Addition of estrogen to male DRG neurons produces a switch to the female phenotype, namely abrogation of beta(2)-AR-initiated activation of PKCepsilon. Estrogen interferes downstream of the beta(2)-AR with the signaling pathway leading from exchange protein activated by cAMP (Epac) to PKCepsilon. The interfering action is fast indicating a transcriptional-independent mechanism. Estrogen has a dual effect on PKCepsilon. If applied before beta(2)-AR or Epac stimulation, estrogen abrogates the activation of PKCepsilon. In contrast, estrogen applied alone leads to a brief translocation of PKCepsilon. Also in vivo the activity of estrogen depends on the stimulation context. In male rats, intradermal injection of an Epac activator or estrogen alone induces mechanical hyperalgesia through a PKCepsilon-dependent mechanism. In contrast, injection of estrogen preceding the activation of Epac completely abrogates the Epac-induced mechanical hyperalgesia. Our results suggest that gender differences in nociception do not reflect the use of generally different mechanisms. Instead, a common set of signaling pathways can be modulated by hormones.
Collapse
Affiliation(s)
- Tim B Hucho
- NIH Pain Center, UCSF, University of California, San Francisco, 521 Parnassus Avenue, PO-Box 0440, 94143, USA.
| | | | | | | |
Collapse
|
165
|
Diatchenko L, Nackley AG, Slade GD, Bhalang K, Belfer I, Max MB, Goldman D, Maixner W. Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 2006; 125:216-224. [PMID: 16837133 DOI: 10.1016/j.pain.2006.05.024] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 04/12/2006] [Accepted: 05/08/2006] [Indexed: 11/15/2022]
Abstract
Variations in the gene encoding catechol-O-methyltransferase (COMT) are linked to individual differences in pain sensitivity. A single nucleotide polymorphism (SNP) in codon 158 (val(158)met), which affects COMT protein stability, has been associated with the human experience of pain. We recently demonstrated that three common COMT haplotypes, which affect the efficiency of COMT translation, are strongly associated with a global measure of pain sensitivity derived from individuals' responses to noxious thermal, ischemic, and pressure stimuli. Specific haplotypes were associated with low (LPS), average (APS), or high (HPS) pain sensitivity. Although these haplotypes included the val(158)met SNP, a significant association with val(158)met variants was not observed. In the present study, we examined the association between COMT genotype and specific pain-evoking stimuli. Threshold and tolerance to thermal, ischemic, and mechanical stimuli, as well as temporal summation to heat pain, were determined. LPS/LPS homozygotes had the least, APS/APS homozygotes had average, and APS/HPS heterozygotes had the greatest pain responsiveness. Associations were strongest for measures of thermal pain. However, the rate of temporal summation of heat pain did not differ between haplotype combinations. In contrast, the val(158)met genotype was associated with the rate of temporal summation of heat pain, but not with the other pain measures. This suggests that the val(158)met SNP plays a primary role in variation in temporal summation of pain, but that other SNPs of the COMT haplotype exert a greater influence on resting nociceptive sensitivity. Here, we propose a mechanism whereby these two genetic polymorphisms differentially affect pain perception.
Collapse
Affiliation(s)
- Luda Diatchenko
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, NC, USA Australian Researcher Center for Population Oral Health, Dental School, University of Adelaide, Australia Department of Oral Medicine, Chulalongkorn University, Bangkok, Thailand NIDCR, NIH, DHHS, Bethesda, MD, USA NIAAA, NIH, DHHS, Rockville, MD, USA Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Verri WA, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 2006; 112:116-38. [PMID: 16730375 DOI: 10.1016/j.pharmthera.2006.04.001] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 01/06/2023]
Abstract
Pain is one of the classical signs of the inflammatory process in which sensitization of the nociceptors is the common denominator. This sensitization causes hyperalgesia or allodynia in humans, phenomena that involve pain perception (emotional component+nociceptive sensation). As this review focuses mainly on animal models, which don't allow discrimination of the emotional component, the terms nociception and hypernociception are used to describe overt behavior induced by mechanical stimulation and increase of nociceptor sensitivity, respectively. Pro- and anti-inflammatory cytokines and chemokines are endogenous small protein mediators released by local or migrating cells whose balance modulates the intensity of inflammatory response. The inflammatory stimuli or tissue injuries stimulate the release of characteristic cytokine cascades, which ultimately trigger the release of final mediators responsible for inflammatory pain. These final mediators, such as prostanoids or sympathetic amines, act directly on the nociceptors to cause hypernociception, which results from the lowering of threshold due to modulation of specific voltage-dependent sodium channels. Furthermore, a direct effect of cytokines on nociceptors is also described. On the other hand, there are also anti-inflammatory cytokines, such as interleukin (IL)-10, IL-4 and IL-13, and IL-1 receptor antagonists (IL-1ra), which inhibit the production of hypernociceptive cytokines and/or the final hypernociceptive mediators, preventing the installation of or the increase in the hypernociception. This review highlights the importance of the direct and indirect actions of cytokines and chemokines in inflammatory and neuropathic hypernociception, emphasizing the evidence suggesting these molecules are potential targets to develop novel drugs and therapies for the treatment of pain.
Collapse
Affiliation(s)
- Waldiceu A Verri
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
167
|
Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR. The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. THE JOURNAL OF PAIN 2006; 7:S1-29. [PMID: 16632328 DOI: 10.1016/j.jpain.2006.01.444] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED Clinical and experimental data indicate that changes in the expression of voltage-gated sodium channels play a key role in the pathogenesis of neuropathic pain and that drugs that block these channels are potentially therapeutic. Clinical and experimental data also suggest that changes in voltage-gated sodium channels may play a role in inflammatory pain, and here too sodium-channel blockers may have therapeutic potential. The sodium-channel blockers of interest include local anesthetics, used at doses far below those that block nerve impulse propagation, and tricyclic antidepressants, whose analgesic effects may at least partly be due to blockade of sodium channels. Recent data show that local anesthetics may have pain-relieving actions via targets other than sodium channels, including neuronal G protein-coupled receptors and binding sites on immune cells. Some of these actions occur with nanomolar drug concentrations, and some are detected only with relatively long-term drug exposure. There are 9 isoforms of the voltage-gated sodium channel alpha-subunit, and several of the isoforms that are implicated in neuropathic and inflammatory pain states are expressed by somatosensory primary afferent neurons but not by skeletal or cardiovascular muscle. This restricted expression raises the possibility that isoform-specific drugs might be analgesic and lacking the cardiotoxicity and neurotoxicity that limit the use of current sodium-channel blockers. PERSPECTIVE Changes in the expression of neuronal voltage-gated sodium channels may play a key role in the pathogenesis of both chronic neuropathic and chronic inflammatory pain conditions. Drugs that block these channels may have therapeutic efficacy with doses that are far below those that impair nerve impulse propagation or cardiovascular function.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Joseph EK, Levine JD. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain 2006; 121:105-14. [PMID: 16472913 DOI: 10.1016/j.pain.2005.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/29/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Although peripheral nerve function is strongly dependent on energy stores, the role of the mitochondrial electron transport chain, which drives ATP synthesis, in peripheral pain mechanisms, has not been examined. In models of HIV/AIDS therapy (dideoxycytidine), cancer chemotherapy (vincristine), and diabetes (streptozotocin)-induced neuropathy, inhibitors of mitochondrial electron transport chain complexes I, II, III, IV, and V significantly attenuated neuropathic pain-related behavior in rats. While inhibitors of all five complexes also attenuated tumor necrosis factor alpha-induced hyperalgesia, they had no effect on hyperalgesia induced by prostaglandin E2 and epinephrine. Two competitive inhibitors of ATP-dependent mechanisms, adenosine 5'-(beta,gamma-imido) triphosphate and P1,P4-di(adenosine-5') tetraphosphate, attenuated dideoxycytidine, vincristine, and streptozotocin-induced hyperalgesia. Neither of these inhibitors, however, affected tumor necrosis factor alpha, prostaglandin E2 or epinephrine hyperalgesia. These experiments demonstrate a role of the mitochondrial electron transport chain in neuropathic and some forms of inflammatory pain. The contribution of the mitochondrial electron transport chain in neuropathic pain is ATP dependent.
Collapse
Affiliation(s)
- Elizabeth K Joseph
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, University of California at San Francisco, 521 Parnassus Ave, Box # 0440/C522, San Francisco, CA 94143-0440, USA
| | | |
Collapse
|
169
|
Canning BJ, Farmer DG, Mori N. Mechanistic studies of acid-evoked coughing in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2006; 291:R454-63. [PMID: 16914432 DOI: 10.1152/ajpregu.00862.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments carried out in conscious guinea pigs suggest that citric acid-evoked coughing is partly mediated by transient receptor potential vanilloid type 1 (TRPV1) receptor-dependent activation of tachykinin-containing, capsaicin-sensitive C fibers. In vitro electrophysiological analyses indicate, however, that acid also activates capsaicin-sensitive and -insensitive vagal afferent nerves by a TRPV1-independent mechanism, and studies in anesthetized guinea pigs show that coughing evoked by acid is mediated by activation of capsaicin-insensitive vagal afferent nerves. In the present study, we have characterized the mechanisms of citric acid-evoked coughing in anesthetized guinea pigs. Drugs were administered directly to the Krebs buffer perfusing the extrathoracic trachea. Citric acid was applied topically to the tracheal mucosa, directly into the tracheal perfusate in increasing concentrations and at 1-min intervals. Citric acid dose dependently evoked coughing in anesthetized guinea pigs. This was mimicked by hydrochloric acid but not by sodium citrate. The coughing evoked by acid was nearly or completely abolished by TTX or by cutting the recurrent laryngeal nerves. Perfusing the trachea with a low Cl- buffer potentiated the acid-induced cough reflex. In contrast, prior capsaicin desensitization, 10 microM capsazepine, Ca2+-free perfusate, 0.1 microM iberiotoxin, 1 microM atropine, 10 microM isoproterenol, 10 microM albuterol, 3 microM indomethacin, 0.1 microM HOE-140, a combination of neurokinin1 (NK1; CP-99994), NK2 (SR-48968), and NK3 (SB-223412) receptor antagonists (0.1 microM each), a combination of histamine H1 (3 microM pyrilamine) and cysLT1 (1 microM ICI-198615) receptor antagonists, superior laryngeal nerve transection, or epithelium removal did not inhibit citric acid-evoked coughing. These and other data indicate that citric acid-evoked coughing in anesthetized guinea pigs is mediated by direct activation of capsaicin-insensitive vagal afferent nerves, perhaps through sequential activation of acid-sensing ion channels and chloride channels.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
170
|
Hucho TB, Dina OA, Levine JD. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 2006; 25:6119-26. [PMID: 15987941 PMCID: PMC6725047 DOI: 10.1523/jneurosci.0285-05.2005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epsilon isoform of protein kinase C (PKCepsilon) has emerged as a critical second messenger in sensitization toward mechanical stimulation in models of neuropathic (diabetes, alcoholism, and cancer therapy) as well as acute and chronic inflammatory pain. Signaling pathways leading to activation of PKCepsilon remain unknown. Recent results indicate signaling from cAMP to PKC. A mechanism connecting cAMP and PKC, two ubiquitous, commonly considered separate pathways, remains elusive. We found that, in cultured DRG neurons, signaling from cAMP to PKCepsilon is not mediated by PKA but by the recently identified cAMP-activated guanine exchange factor Epac. Epac, in turn, was upstream of phospholipase C (PLC) and PLD, both of which were necessary for translocation and activation of PKCepsilon. This signaling pathway was specific to isolectin B4-positive [IB4(+)] nociceptors. Also, in a behavioral model, cAMP produced mechanical hyperalgesia (tenderness) through Epac, PLC/PLD, and PKCepsilon. By delineating this signaling pathway, we provide a mechanism for cAMP-to-PKC signaling, give proof of principle that the mitogen-activated protein kinase pathway-activating protein Epac also stimulates PKC, describe the first physiological function unique for the IB4(+) subpopulation of sensory neurons, and find proof of principle that G-protein-coupled receptors can activate PKC not only through the G-proteins alpha(q) and betagamma but also through alpha(s).
Collapse
Affiliation(s)
- Tim B Hucho
- National Institutes of Health Pain Center, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
171
|
Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CAL, Calixto JB, Santos ARS. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 2006; 316:789-96. [PMID: 16260583 DOI: 10.1124/jpet.105.092825] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the antinociceptive effects of the flavonoid myricitrin in chemical behavioral models of pain in mice and rats. Myricitrin given by i.p. or p.o. routes produced dose-related antinociception when assessed on acetic acid-induced visceral pain in mice. In addition, the i.p. administration of myricitrin exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin. Like-wise, myricitrin given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). Western blot analysis revealed that myricitrin treatment fully prevented the protein kinase C (PKC) alpha and PKCepsilon activation by PMA in mice hind paws. Myricitrin given i.p. also inhibited the mechanical hyperalgesia induced by bradykinin, without affecting similar responses caused by epinephrine and prostaglandin E(2). The antinociception caused by myricitrin in the acetic acid test was significantly attenuated by i.p. treatment of mice with the nitric oxide precursor, L-arginine. In contrast, myricitrin antinociception was not affected by naloxone (opioid receptor antagonist) or neonatal pretreatment of mice with capsaicin and myricitrin antinociceptive effects is not related to muscle relaxant or sedative action. Together, these results indicate that myricitrin produces pronounced antinociception against chemical and mechanical models of pain in rodents. The mechanisms involved in their actions are not completely understood but seem to involve an interaction with nitric oxide-L-arginine and protein kinase C pathways.
Collapse
|
172
|
Coutaux A, Adam F, Willer JC, Le Bars D. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 2006; 72:359-71. [PMID: 16214069 DOI: 10.1016/j.jbspin.2004.01.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 01/08/2004] [Indexed: 01/04/2023]
Abstract
Nociceptive signals are generated by peripheral sensory organs called nociceptors, which are endings of small-diameter nerve fibers responsive to the tissue environment. The myriad chemical mediators capable of activating, sensitizing, or arousing nociceptors include kinins, proinflammatory and anti-inflammatory cytokines, prostanoids, lipooxygenases, the "central immune response mediator" NF-kappaB, neurotrophins and other growth factors, neuropeptides, nitric oxide, histamine, serotonin, proteases, excitatory amino acids, adrenergic amines, and opioids. These mediators may act in combination or at a given time in the inflammatory process, producing subtle changes that result in hyperalgesia or allodynia. We will review the most extensively studied molecular and cellular mechanisms underlying these two clinical abnormalities. The role of the peripheral nervous system in progression of inflammatory joint disease to chronicity is discussed.
Collapse
Affiliation(s)
- Anne Coutaux
- Rheumatology Department, Pitié-Salpêtrière Teaching Hospital, 91, Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | |
Collapse
|
173
|
Gold MS, Flake NM. Inflammation-mediated hyperexcitability of sensory neurons. Neurosignals 2006; 14:147-57. [PMID: 16215297 DOI: 10.1159/000087653] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Indexed: 11/19/2022] Open
Abstract
One of the most prominent signs of tissue injury and inflammation is pain and pain continues to be the primary reason people seek medical attention. Inflammatory pain reflects, at least in part, an increase in the excitability, or sensitization, of subpopulations of primary afferent neurons. While the sensitization of high threshold afferents was observed almost 40 years ago, the basis for this phenomenon continues to be an active and fertile area of research today. This review will summarize recent advances in our mechanistic understanding of sensitization, focusing on four general areas where re search has been most active or productive. These include: (1) the characterization of second messenger pathways underlying inflammation-induced changes in afferent excitability; (2) the impact of previous injury on the afferent response to subsequent inflammation; (3) the impact of target of innervation on the specific afferent response to inflammation, and (4) the impact of sex hormones on the sensitization of high threshold afferents. Work in these areas highlights how much has been learned about this process as well as how much there is yet to learn.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
174
|
Ferreira J, Trichês KM, Medeiros R, Calixto JB. Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice. Pain 2006; 117:171-81. [PMID: 16099101 DOI: 10.1016/j.pain.2005.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/21/2005] [Accepted: 06/06/2005] [Indexed: 01/06/2023]
Abstract
Protein kinase C (PKC) is able to phosphorylate several cellular components that serve as key regulatory components in signal transduction pathways of nociceptor excitation and sensitisation. Therefore, the present study attempted to assess some of the mechanisms involved in the overt nociception elicited by peripheral administration of the PKC activator, phorbol 12-myristate 13-acetate (PMA), in mice. The intraplantar (i.pl.) injection of PMA (16-1600 pmol/paw), but not its inactive analogue alpha-PMA, produced a long-lasting overt nociception (up to 45 min), as well as the activation of PKCalpha and PKCepsilon isoforms in treated paws. Indeed, the local administration of the PKC inhibitor GF109203X completely blocked PMA-induced nociception. The blockade of NK1, CGRP, NMDA, beta1-adrenergic, B2 or TRPV1 receptors with selective antagonists partially decreased PMA-induced nociception. Similarly, COX-1, COX-2, MEK or p38 MAP kinase inhibitors reduced the nociceptive effect produced by PMA. Notably, the nociceptive effect promoted by PMA was diminished in animals treated with an antagonist of IL-1beta receptor or with antibodies against TNFalpha, NGF or BDNF, but not against GDNF. Finally, mast cells as well as capsaicin-sensitive and sympathetic fibres, but not neutrophil influx, mediated the nociceptive effect produced by PMA. Collectively, the results of the present study have shown that PMA injection into the mouse paw results in PKC activation as well as a relatively delayed, but long-lasting, overt nociceptive behaviour in mice. Moreover, these results demonstrate that PKC activation exerts a critical role in modulating the excitability of sensory neurons.
Collapse
Affiliation(s)
- Juliano Ferreira
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
175
|
Willis WD. Chapter 3 The Nociceptive Membrane: Historical Overview. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
176
|
Chapter 2 History of Ion Channels in the Pain Sensory System. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
177
|
Yamamoto H, Kawamata T, Ninomiya T, Omote K, Namiki A. Endothelin-1 enhances capsaicin-evoked intracellular Ca2+ response via activation of endothelin a receptor in a protein kinase Cε-dependent manner in dorsal root ganglion neurons. Neuroscience 2006; 137:949-60. [PMID: 16298080 DOI: 10.1016/j.neuroscience.2005.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/30/2005] [Accepted: 09/24/2005] [Indexed: 11/21/2022]
Abstract
Increasing evidence indicates that endothelin-1 has a role for peripheral nociceptive signaling in animals and humans. However, the mechanisms of the nociceptive effects of endothelin-1 have not been fully understood. The current study investigated the effects of endothelin-1 on the capsaicin-evoked intracellular Ca2+ response of cultured adult mice dorsal root ganglion neurons. Dorsal root ganglia were harvested from adult male C57B6N mice and were cultured. With a digital image analysis system, we detected the [Ca2+]i image of cultured dorsal root ganglion cells after loading with Fura-2 acetoxymethyl. In addition, co-localization of protein kinase Cepsilon with transient receptor potential V1 and the translocation of protein kinase Cepsilon were investigated using immunohistochemical methods. Endothelin-1 (10 nM) enhanced an increase in [Ca2+]i by capsaicin (10 nM) from 87.6+/-11.6 nM to 414.8+/-62.3 nM (71 of 156 neurons). The inhibition of endothelin A receptor (BQ-123) significantly suppressed the enhancing effect of endothelin-1. In addition, a nonselective protein kinase C inhibitor (bisindolylmaleimide I) significantly suppressed the enhancing effect of endothelin-1. A myristoyl-tagged membrane-permeant-protein kinase Cepsilon V1-2 inhibitory peptide also significantly suppressed the enhancing effect of endothelin-1. In the immunocytochemical study, protein kinase Cepsilon immunoreactivity was found in most of transient receptor potential V1-positive neurons. After endothelin-1 application, protein kinase Cepsilon immunoreactivity was observed to be translocated from the cytosol to the cell membrane in transient receptor potential V1-positive neurons. Our results indicate that endothelin-1 enhances the response of dorsal root ganglion neurons to capsaicin in a protein kinase Cepsilon-dependent manner. Our findings may lead to a new strategy to treat pain associated with endothelin-1.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | | | | | | | | |
Collapse
|
178
|
Malik-Hall M, Dina OA, Levine JD. Primary afferent nociceptor mechanisms mediating NGF-induced mechanical hyperalgesia. Eur J Neurosci 2005; 21:3387-94. [PMID: 16026476 DOI: 10.1111/j.1460-9568.2005.04173.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The underlying mechanism for nerve growth factor (NGF) evoked pain and long-lasting mechanical hyperalgesia remains poorly understood. Using intrathecal antisense against the NGF receptor, receptor tyrosine kinase (TrkA), we found NGF to act at the primary afferent nociceptor directly in the Sprague-Dawley rat. Inhibitors of the three major pathways for TrkA receptor signalling, extracellular signal-related kinase (ERK)/mitogen-activated protein kinase kinase (MEK) (ERK/MEK), phosphatidylinositol 3-kinase (PI3K), and phospholipase Cgamma (PLCgamma) all attenuate NGF-induced hyperalgesia. Although inhibitors of kinases downstream of PI3K and PLCgamma[glycogen synthetase kinase 3 (GSK3), calmodulin-dependent protein kinase II (CAMII-K) or protein kinase C (PKC)] do not reduce mechanical hyperalgesia, hyperalgesia induced by activation of PI3K was blocked by ERK/MEK inhibitors, suggesting cross-talk from the PI3K to the ERK/MEK signalling pathway. As integrins have been shown to modulate epinephrine and prostaglandin E(2)-induced hyperalgesia, we also evaluated a role for integrins in NGF-induced mechanical hyperalgesia using beta(1)-integrin-specific antisense or antibodies.
Collapse
Affiliation(s)
- Misbah Malik-Hall
- NIH Pain Center (UCSF), Division of Neuroscience and Biomedical Sciences Program, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
179
|
Khasar SG, Dina OA, Green PG, Levine JD. Estrogen regulates adrenal medullary function producing sexual dimorphism in nociceptive threshold and beta-adrenergic receptor-mediated hyperalgesia in the rat. Eur J Neurosci 2005; 21:3379-86. [PMID: 16026475 DOI: 10.1111/j.1460-9568.2005.04158.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epinephrine produces sexually dimorphic beta(2)-adrenergic receptor-mediated mechanical hyperalgesia, with male rats exhibiting greater hyperalgesia. Because female rats have higher plasma epinephrine levels, and beta-adrenergic receptor sensitivity is affected by chronic exposure to agonists, we tested the hypothesis that this sexual dimorphism is due to epinephrine-induced desensitization of beta(2)-adrenergic receptors. Following gonadectomy, epinephrine hyperalgesia, as measured by the Randall-Selitto paw-withdrawal test, was unchanged in male rats while in females it was increased. Prepubertal male and female rats do not demonstrate sexual dimorphism in either plasma epinephrine level or epinephrine-induced hyperalgesia. Adrenal medullectomy and adrenal denervation both significantly enhanced epinephrine hyperalgesia, but only in females. In contrast, the sexually dimorphic hyperalgesia induced by prostaglandin E(2), another agent that acts directly to sensitize primary afferent nociceptors, was not enhanced by adrenal medullectomy or denervation. Chronic administration of epinephrine in male rats, to produce plasma levels similar to those of gonad-intact females, significantly attenuated epinephrine-induced hyperalgesia, making it similar to that in females. These results strongly support the suggestion that estrogen regulates plasma epinephrine in female rats and differential sensitivity to beta(2)-adrenergic agonists accounts for the sexual dimorphism in epinephrine-induced hyperalgesia. Unexpectedly, regulation of adrenal medullary function by estrogen was also found to modulate baseline nociceptive threshold such that females had a lower nociceptive threshold.
Collapse
Affiliation(s)
- Sachia G Khasar
- Department of Medicine, University of California at San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
180
|
Baker MD. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones. J Physiol 2005; 567:851-67. [PMID: 16002450 PMCID: PMC1474230 DOI: 10.1113/jphysiol.2005.089771] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. In conventional whole-cell recordings intracellular GTP-gamma-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19-36. The current amplitude was also up-regulated by 25 microM intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE(2) did not acutely up-regulate the current. Conversely, both PGE(2) and PKA activation up-regulated the major TTX-r Na(+) current, Na(V)1.8. Extracellular ATP up-regulated the persistent current with an average apparent K(d) near 13 microM, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na(+) current.
Collapse
Affiliation(s)
- Mark D Baker
- Molecular Nociception Group, Department of Biology, Medawar Building, University College London, UK.
| |
Collapse
|
181
|
Khasar SG, Green PG, Levine JD. Repeated sound stress enhances inflammatory pain in the rat. Pain 2005; 116:79-86. [PMID: 15936144 DOI: 10.1016/j.pain.2005.03.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/14/2005] [Accepted: 03/29/2005] [Indexed: 11/25/2022]
Abstract
While it is well established that acute stress can produce antinociception, a phenomenon referred to as stress-induced analgesia, repeated exposure to stress can have the opposite effect. Since, chronic pain syndromes, such as fibromyalgia and rheumatoid arthritis, may be triggered and/or exacerbated by chronic stress, we have evaluated the effect of repeated stress on mechanical nociceptive threshold and inflammatory hyperalgesia. Using the Randall-Selitto paw pressure test to quantify nociceptive threshold in the rat, we found that repeated non-habituating sound stress enhanced the mechanical hyperalgesia induced by the potent inflammatory mediator, bradykinin, which, in normal rats, produces hyperalgesia indirectly by stimulating the release of prostaglandin E2 from sympathetic nerve terminals. Hyperalgesia induced by the direct-acting inflammatory mediator, prostaglandin E2 as well as the baseline nociceptive threshold, were not affected. Adrenal medullectomy or denervation, reversed the effect of sound stress. In sound stressed animals, bradykinin-hyperalgesia had a more rapid latency to onset and was no longer inhibited by sympathectomy, compatible with a direct effect of bradykinin on primary afferent nociceptors. In addition, implants of epinephrine restored bradykinin-hyperalgesia in sympathectomized non-stressed rats, lending further support to the suggestion that increased plasma levels of epinephrine can sensitize primary afferents to bradykinin. These results suggest that stress-induced enhancement of inflammatory hyperalgesia is associated with a change in mechanism by which bradykinin induces hyperalgesia, from being sympathetically mediated to being sympathetically independent. This sympathetic-independent enhancement of mechanical hyperalgesia is mediated by the stress-induced release of epinephrine from the adrenal medulla.
Collapse
Affiliation(s)
- Sachia G Khasar
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|
182
|
|
183
|
Dina OA, Hucho T, Yeh J, Malik-Hall M, Reichling DB, Levine JD. Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain 2005; 115:191-203. [PMID: 15836982 DOI: 10.1016/j.pain.2005.02.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/11/2005] [Accepted: 02/22/2005] [Indexed: 01/19/2023]
Abstract
We recently reported that hyperalgesia induced by the inflammatory mediator prostaglandin E(2) (PGE(2)) requires intact alpha1, alpha3 and beta1 integrin subunit function, whereas epinephrine-induced hyperalgesia depends on alpha5 and beta1. PGE(2)-induced hyperalgesia is mediated by protein kinase A (PKA), while epinephrine-induced hyperalgesia is mediated by a combination of PKA, protein kinase Cepsilon (PKCepsilon) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We hypothesized that inflammatory mediator-induced hyperalgesia involves specific interactions between different subsets of integrin subunits and particular second messenger species. In the present study, function-blocking anti-integrin antibodies and antisense oligodeoxynucleotides were used to elucidate these interactions in rat. Hyperalgesia produced by an activator of adenylate cyclase (forskolin) depended on alpha1, alpha3 and beta1 integrins. However, hyperalgesia induced by activation of the cascade at a point farther downstream (by cAMP analog or PKA catalytic subunit) was independent of any integrins tested. In contrast, hyperalgesia induced by a specific PKCepsilon agonist depended only on alpha5 and beta1 integrins. Hyperalgesia induced by agonism of MAPK/ERK depended on all four integrin subunits tested (alpha1, alpha3, alpha5 and beta1). Finally, disruption of lipid rafts antagonized hyperalgesia induced by PGE(2) and by forskolin, but not that induced by epinephrine. Furthermore, alpha1 integrin, but not alpha5, was present in detergent-resistant membrane fractions (which retain lipid raft components). These observations suggest that integrins play a critical role in inflammatory pain by interacting with components of second messenger cascades that mediate inflammatory hyperalgesia, and that such interaction with the PGE(2)-activated pathway may be organized by lipid rafts.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center (UCSF), University of California at San Francisco, Campus Box 0440, Room C-555 521, San Francisco, CA 94143-0440, USA
| | | | | | | | | | | |
Collapse
|
184
|
Oliveira MCG, Parada CA, Veiga MCFA, Rodrigues LR, Barros SP, Tambeli CH. Evidence for the involvement of endogenous ATP and P2X receptors in TMJ pain. Eur J Pain 2005; 9:87-93. [PMID: 15629879 DOI: 10.1016/j.ejpain.2004.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 04/27/2004] [Indexed: 11/24/2022]
Abstract
Evidence is accumulating which supports a role for ATP in the initiation of pain by acting on P2X receptors expressed on nociceptive afferent nerve terminals. To investigate whether these receptors play a role in temporomandibular (TMJ) pain, we studied the presence of functional P2X receptors in rat TMJ by examining the nociceptive behavioral response to the application of the selective P2X receptor agonist alpha,beta-methylene ATP (alpha,beta-meATP) into the TMJ region of rat. The involvement of endogenous ATP in the development of TMJ inflammatory hyperalgesia was also determined by evaluating the effect of the general P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on carrageenan-induced TMJ inflammatory hyperalgesia. Application of alpha,beta-meATP into the TMJ region of rats produced significant nociceptive responses that were significantly reduced by the co-application of lidocaine N-ethyl bromide quaternary salt, QX-314, (2%) or of the P2 receptor antagonist PPADS. Co-application of PPADS with carrageenan into the TMJ significantly reduced inflammatory hyperalgesia. The results indicate that functional P2X receptors are present in the TMJ and suggest that endogenous ATP may play a role in TMJ inflammatory pain mechanisms possibly by acting primarily in these receptors.
Collapse
Affiliation(s)
- Maria Cláudia G Oliveira
- Laboratory of Orofacial Pain, Department of Physiology, Faculty of Dentistry of Piracicaba, University of Campinas - UNICAMP, Limeira Av, 901 Zip Code, 13414-900, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
185
|
da Cunha JM, Rae GA, Ferreira SH, Cunha FDQ. Endothelins induce ETB receptor-mediated mechanical hypernociception in rat hindpaw: roles of cAMP and protein kinase C. Eur J Pharmacol 2005; 501:87-94. [PMID: 15464066 DOI: 10.1016/j.ejphar.2004.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 07/28/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
The present study assesses the capacity of endothelins to induce mechanical hypernociception, and characterises the receptors involved and the contribution of cAMP and protein kinases A (PKA) and C (PKC) to this effect. Intraplantar administration of endothelin-1, endothelin-2 or endothelin-3 (3-30 pmol) induced dose- and time-dependent mechanical hypernociception, which was inhibited by BQ-788 (N-cys-2,6-dimethylpiperidinocarbonyl-l-gamma-methylleucyl-d-1-methoxycarboyl-d-norleucine; endothelin ET(B) receptor antagonist), but not BQ-123 (cyclo[d-Trp-d-Asp-Pro-d-Val-Leu]; endothelin ET(A) receptor antagonist; each at 30 pmol). The selective endothelin ET(B) receptor agonist BQ-3020 (N-Ac-Ala(11,15)-endothelin-1 (6-21)) fully mimicked the hypernociceptive effects of the natural endothelins. Treatments with indomethacin, atenolol or dexamethasone did not inhibit endothelin-1-evoked mechanical hypernociception. However, endothelin-1-induced mechanical hypernociception was potentiated by the cAMP phosphodiesterase inhibitor rolipram (4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone) and inhibited by the PKC inhibitors staurosporine and calphostin C, but was unaffected by the PKA inhibitor H89 (N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide). Thus, endothelins, acting through endothelin ET(B) receptors, induce mechanical hypernociception in the rat hindpaw via cAMP formation and activation of the PKC-dependent phosphorylation cascade.
Collapse
Affiliation(s)
- Joice M da Cunha
- Department of Pharmacology, Faculty of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
186
|
Cunha TM, Verri WA, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A 2005; 102:1755-60. [PMID: 15665080 PMCID: PMC547882 DOI: 10.1073/pnas.0409225102] [Citation(s) in RCA: 461] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hypernociceptive effects of cytokines [TNF-alpha, keratinocyte-derived chemokine (KC), and IL-1beta] and their participation in carrageenan (Cg)-induced inflammatory hypernociception in mice were investigated. Nociceptor sensitization (hypernociception) was quantified with an electronic version of the von Frey filament test in WT and TNF receptor type 1 knockout mice (TNF-R1-/-). TNF-alpha-induced hypernociception was abolished in TNF-R1-/- mice, partially inhibited by pretreatment with IL-1 receptor antagonist (IL-1ra) or indomethacin and unaffected by Ab against KC (AbKC) or guanethidine. IL-1ra and indomethacin pretreatment strongly inhibited the hypernociception induced by IL-1beta, which was not altered by AbKC or guanethidine or by knocking out TNF-R1. KC-induced hypernociception was abolished by AbKC, inhibited by pretreatment with indomethacin plus guanethidine, and partially inhibited by IL-1ra, indomethacin, or guanethidine. In contrast, KC-induced hypernociception was not altered by knocking out TNF-R1. Cg-induced hypernociception was abolished by administration of indomethacin plus guanethidine, diminished in TNF-R1-/- mice, and partially inhibited in WT mice pretreated with AbKC, IL-1ra, indomethacin, or guanethidine. TNF-alpha, KC, and IL-1beta concentrations were elevated in the skin of Cg-injected paws. The TNF-alpha and KC concentrations rose concomitantly and peaked before that of IL-1beta. In mice, the cytokine cascade begins with the release of TNF-alpha (acting on TNF-R1 receptor) and KC, which stimulate the release of IL-1beta. As in rats, the final mediators of this cascade were prostaglandins released by IL-1beta and sympathetic amines released by KC. These results extend to mice the concept that the release of primary mediators responsible for hypernociception is preceded by a cascade of cytokines.
Collapse
Affiliation(s)
- T M Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
187
|
Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 2005; 92:2859-66. [PMID: 15486424 DOI: 10.1152/jn.00339.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), acting through CGRP receptors, produces behavioral signs of mechanical hyperalgesia in rats and sensitization of wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Although involvement of CGRP receptors in central sensitization has been confirmed, the second-messenger systems activated by CGRP receptor stimulation and involved in pain transmission are not clear. This study tested whether the hyperalgesia and sensitizing effects of CGRP receptor activation on WDR neurons are mediated by protein kinase A or C (PKA or PKC) signaling. Intrathecal injection of CGRP in rats produced mechanical hyperalgesia, as shown by paw withdrawal threshold tests. CGRP-induced hyperalgesia was attenuated significantly by the CGRP1 receptor antagonist, CGRP8-37. The effect was also attenuated significantly by a PKA inhibitor (H89) or a PKC inhibitor (chelerythrine chloride). Electrophysiological experiments demonstrated that superfusion of the spinal cord with CGRP-induced sensitization of spinal dorsal horn neurons. The CGRP effect could be blocked by CGRP8-37. Either a PKA or PKC inhibitor (H89 or chelerythrine) also attenuated this effect of CGRP. These results are consistent with the hypothesis that CGRP produces hyperalgesia by a direct action on CGRP1 receptors in the spinal cord dorsal horn and suggest that the effects of CGRP are mediated by both PKA and PKC second-messenger pathways.
Collapse
Affiliation(s)
- Rui-Qing Sun
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
The sensation of pain can be dramatically altered in response to injury or disease. This sensitization can occur at the level of the primary sensory neuron, and can be mediated by multiple biochemical mechanisms, including, but not limited to, changes in gene transcription, changes in translation, stability, or subcellular localization of translated proteins, and posttranslational modifications. This review focuses on posttranslational modifications to ion channels expressed in primary sensory neurons that form the machinery driving peripheral sensitization and pain hypersensitivity. Studies published to date show strong evidence for modulation of ion channels involved in transduction and transmission of nociceptive inputs coincident with biophysical and behavioral sensitization. The roles of phosphorylation and oxidation/reduction reactions of voltage-dependent sodium, potassium, and calcium channels are discussed, as well as phosphorylation-mediated modulation of sensory transduction channels.
Collapse
Affiliation(s)
- Gautam Bhave
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
189
|
Abstract
Whereas small-fibre sensory neuropathies might ultimately lead to cell death and loss of sensation, they first progress through a phase, which might last for years, characterized by the presence of analgesia-resistant neuropathic dysesthesias and pain. Much previous research has addressed these two phases as separate phenomena mediated by presumably discrete biochemical mechanisms. We hypothesized that activity in signalling pathways that ultimately lead to apoptosis plays a critical role in the generation of neuropathic pain, before death of sensory neurons becomes apparent. We have tested the hypothesis that activator and effector caspases, defining components of programmed cell death (apoptosis) signalling pathways, also contribute to pain-related behaviour in animals with small-fibre peripheral neuropathies and that the death receptor ligand, tumour necrosis factor-alpha, and its downstream second messenger, ceramide, also produce pain-related behaviour via this mechanism. In two models of painful peripheral neuropathy, HIV/AIDS therapy (induced by the nucleoside reverse transcriptase inhibitor, dideoxycytidine), and cancer chemotherapy (induced by vincristine) peripheral neuropathy, and for pain-related behaviour induced by tumour necrosis factor-alpha and its second messenger, ceramide, inhibition of both activator (1, 2, 8 and 9) and effector (3) caspases attenuates neuropathic pain-related behaviour, although has no effect in streptozotocin-diabetic neuropathy and control rats. We conclude that during a latent phase, before apoptotic cell death is manifest, the caspase signalling pathway can contribute to pain in small-fibre peripheral neuropathies, and that inflammatory/immune mediators also activate these pathways. This suggests that these pathways are potential targets for novel pharmacological agents for the treatment of inflammatory as well as neuropathic pain.
Collapse
Affiliation(s)
- Elizabeth K Joseph
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Programme, NIH Pain Centre, Box # 0440/C522, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
190
|
Abstract
Physiological and pharmacological evidence both have demonstrated a critical role for voltage-gated sodium channels (VGSCs) in many types of chronic pain syndromes because these channels play a fundamental role in the excitability of neurons in the central and peripheral nervous systems. Alterations in function of these channels appear to be intimately linked to hyperexcitability of neurons. Many types of pain appear to reflect neuronal hyperexcitability, and importantly, use-dependent sodium channel blockers are effective in the treatment of many types of chronic pain. This review focuses on the role of VGSCs in the hyperexcitability of sensory primary afferent neurons and their contribution to the inflammatory or neuropathic pain states. The discrete localization of the tetrodotoxin (TTX)-resistant channels, in particular NaV1.8, in the peripheral nerves may provide a novel opportunity for the development of a drug targeted at these channels to achieve efficacious pain relief with an acceptable safety profile.
Collapse
Affiliation(s)
- Josephine Lai
- Departments of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
191
|
Schwetz I, Bradesi S, McRoberts JA, Sablad M, Miller JC, Zhou H, Ohning G, Mayer EA. Delayed stress-induced colonic hypersensitivity in male Wistar rats: role of neurokinin-1 and corticotropin-releasing factor-1 receptors. Am J Physiol Gastrointest Liver Physiol 2004; 286:G683-91. [PMID: 14615283 DOI: 10.1152/ajpgi.00358.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism(s) underlying stress-induced colonic hypersensitivity (SICH) are incompletely understood. Our aims were to assess the acute and delayed (24 h) effect of water avoidance (WA) stress on visceral nociception in awake male Wistar rats and to evaluate the role of two stress-related modulation systems: the substance P/neurokinin-1 receptor (SP/NK(1)R) and the corticotropin-releasing factor (CRF)/CRF(1) receptor (CRF/CRF(1)R) systems, as well as the possible involvement of the sympathetic nervous system. Visceral pain responses were measured as the visceromotor response to colorectal distension (CRD) at baseline, immediately after WA and again 24 h later. The NK(1)R antagonists RP-67580 and SR-140333 and the CRF(1)R antagonist CP-154526 were injected 15 min before WA or 1 h before the CRD on day 2. Chemical sympathectomy was performed by repeated injection of 6-hydroxydopamine. WA stress resulted in a significant increase in the visceromotor response on day 2, but no change immediately after WA. Injection of CP-154526 abolished delayed SICH when applied either before WA stress or before the CRD on day 2. Both NK(1)R antagonists only decreased SICH when injected before the CRD on day 2. Chemical sympathectomy did not affect delayed SICH. Our results indicate that in male Wistar rats, both NK(1)R and CRF(1)R activation, but not sympathetic nervous system activation, play a role in the development of SICH.
Collapse
Affiliation(s)
- Ines Schwetz
- Center for Neurovisceral Sciences and Women's Health, Department of Medicine, David Gaffen School of Medicine ar University of California, Los Angeles 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Dina OA, Parada CA, Yeh J, Chen X, McCarter GC, Levine JD. Integrin signaling in inflammatory and neuropathic pain in the rat. Eur J Neurosci 2004; 19:634-42. [PMID: 14984413 DOI: 10.1111/j.1460-9568.2004.03169.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many painful conditions are associated with alterations in the extracellular matrix (ECM) of affected tissues. While several integrins, the receptors for ECM proteins, are present on sensory neurons that mediate pain, the possible role of these cell adhesion molecules in inflammatory or neuropathic pain has not been explored. We found that the intradermal injection of peptide fragments of domains of laminin and fibronectin important for adhesive signaling selectively inhibited the hyperalgesia caused by prostaglandin E2 (PGE2) and epinephrine (EPI), respectively. The block of EPI hyperalgesia was mimicked by other peptides containing the RGD integrin-binding sequence. Monoclonal antibodies (mAbs) against the alpha1 or alpha3 integrin subunits, which participate in laminin binding, selectively blocked PGE2 hyperalgesia, while a mAb against the alpha5 subunit, which participates in fibronectin binding, blocked only EPI-induced hyperalgesia. A mAb against the beta1 integrin subunit, common to receptors for both laminin and fibronectin, inhibited hyperalgesia caused by both agents, as did the knockdown of beta1 integrin expression by intrathecal injection of antisense oligodeoxynucleotides. The laminin peptide, but not the fibronectin peptides, also reversibly abolished the longer lasting inflammatory hyperalgesia induced by carrageenan. Finally, the neuropathic hyperalgesia caused by systemic administration of the cancer chemotherapy agent taxol was reversibly inhibited by antisense knockdown of beta1 integrin. These results strongly implicate specific integrins in the maintenance of inflammatory and neuropathic hyperalgesia.
Collapse
Affiliation(s)
- Olayinka A Dina
- Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center (UCSF), CA 94143-0440, USA
| | | | | | | | | | | |
Collapse
|
193
|
Deval E, Salinas M, Baron A, Lingueglia E, Lazdunski M. ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons via the partner protein PICK-1. J Biol Chem 2004; 279:19531-9. [PMID: 14976185 DOI: 10.1074/jbc.m313078200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ASIC3, an acid-sensing ion channel subunit expressed essentially in sensory neurons, has been proposed to be involved in pain. We show here for the first time that native ASIC3-like currents were increased in cultured dorsal root ganglion (DRG) neurons following protein kinase C (PKC) stimulation. This increase was induced by the phorbol ester PDBu and by pain mediators, such as serotonin, which are known to activate the PKC pathway through their binding to G protein-coupled receptors. We demonstrate that this regulation involves the silent ASIC2b subunit, an ASIC subunit also expressed in sensory neurons. Indeed, heteromultimeric ASIC3/ASIC2b channels, but not homomeric ASIC3 channels, are positively regulated by PKC. The increase of ASIC3/ASIC2b current is accompanied by a shift in its pH dependence toward more physiological pH values and may lead to an increase of sensory neuron excitability. This regulation by PKC requires PICK-1 (protein interacting with C kinase), a PDZ domain-containing protein, which interacts with the ASIC2b C terminus.
Collapse
Affiliation(s)
- Emmanuel Deval
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UNSA UMR 6097, Institut Paul Hamel, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | |
Collapse
|
194
|
Abstract
The first purpose of this article is to examine general signaling transduction processes that become deranged in diabetes and the means by which they damage cells. However, among the cells that can be damaged by diabetes, the primary sensory neurons, also known as dorsal root ganglion (DRG) neurons, are uniquely sensitive. Damage to these cells results in diabetic peripheral neuropathy (DPN), one of the costliest and most common diabetic complications. Therefore, the second purpose of this article is to focus attention on factors that make these cells particularly vulnerable to hyperglycemic damage. Some clinical inferences are drawn from these considerations. Finally, limitations in our knowledge about the effects of diabetes on signaling in DRG neurons are illustrated in an overview of the basic research literature.
Collapse
Affiliation(s)
- Jeannette M McHugh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | |
Collapse
|
195
|
Parada CA, Yeh JJ, Reichling DB, Levine JD. Transient attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in the rat. Neuroscience 2003; 120:219-26. [PMID: 12849754 DOI: 10.1016/s0306-4522(03)00267-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently we demonstrated that a single 3-day episode of carrageenan-induced acute cutaneous inflammation can create a chronic state of increased susceptibility to inflammatory hyperalgesia. In this latent "primed" state, although there is no ongoing hyperalgesia, the hyperalgesic response to subsequent challenges with inflammatory agent (prostaglandin E2; PGE2) is greatly enhanced. Furthermore, the PGE2-induced hyperalgesia in primed skin was found to require activity of the epsilon isozyme of protein kinase C (PKCepsilon), a second messenger that is not required for PGE2-induced hyperalgesia in control animals. In the present study we tested the hypothesis that activity of PKCepsilon not only plays a critical role in the expression of primed PGE2-induced hyperalgesia, but also in the development and maintenance of the primed state itself. Antisense oligodeoxynucleotide was employed to produce a decrease in PKCepsilon in the nerve, verified by Western blot analysis. PKCepsilon was found to be essential both for the development of carrageenan-induced hyperalgesic priming, as well as for the maintenance of the primed state. Furthermore, hyperalgesic priming could be induced by an agonist of PKCepsilon (pseudo-receptor octapeptide for activated PKCepsilon) at a dose that itself causes no hyperalgesia. The finding that transient inhibition of PKCepsilon can not only prevent the development of priming, but can also terminate a fully developed state of priming suggests the possibility that selective targeting PKCepsilon might be an effective new strategy in the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- C A Parada
- Department of Oral and Maxillofacial Surgery, 521 Parnassus Avenue, Room C-555, Campus Box 0440, NIH Pain Center, University of California, San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
196
|
Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A 2003; 100:12480-5. [PMID: 14523239 PMCID: PMC218783 DOI: 10.1073/pnas.2032100100] [Citation(s) in RCA: 341] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein kinase C (PKC) modulates the function of the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). This modulation manifests as increased current when the channel is activated by capsaicin. In addition, studies have suggested that phosphorylation by PKC might directly gate the channel, because PKC-activating phorbol esters induce TRPV1 currents in the absence of applied ligands. To test whether PKC both modulates and gates the TRPV1 function by direct phosphorylation, we used direct sequencing to determine the major sites of PKC phosphorylation on TRPV1 intracellular domains. We then tested the ability of the PKC-activating phorbol 12-myristate 13-acetate (PMA) to potentiate capsaicin-induced currents and to directly gate TRPV1. We found that mutation of S800 to alanine significantly reduced the PMA-induced enhancement of capsaicin-evoked currents and the direct activation of TRPV1 by PMA. Mutation of S502 to alanine reduced PMA enhancement of capsaicin-evoked currents, but had no effect on direct activation of TRPV1 by PMA. Conversely, mutation of T704 to alanine had no effect on PMA enhancement of capsaicin-evoked currents but dramatically reduced direct activation of TRPV1 by PMA. These results, combined with pharmacological studies showing that inactive phorbol esters also weakly activate TRPV1, suggest that PKC-mediated phosphorylation modulates TRPV1 but does not directly gate the channel. Rather, currents induced by phorbol esters result from the combination of a weak direct ligand-like activation of TRPV1 and the phosphorylation-induced enhancement of the TRPV1 function. Furthermore, modulation of the TRPV1 function by PKC appears to involve distinct phosphorylation sites depending on the mechanism of channel activation.
Collapse
Affiliation(s)
- Gautam Bhave
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Dina OA, McCarter GC, de Coupade C, Levine JD. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 2003; 39:613-24. [PMID: 12925276 DOI: 10.1016/s0896-6273(03)00473-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) and epinephrine act directly on nociceptors to produce mechanical hyperalgesia through protein kinase A (PKA) alone or through a combination of PKA, protein kinase C epsilon (PKCepsilon), and extracellular signal-regulated kinase (ERK), respectively. Disruptors of the cytoskeleton (microfilaments, microtubules, and intermediate filaments) markedly attenuated the hyperalgesia in rat paws caused by injection of epinephrine or its downstream mediators. In contrast, the hyperalgesia induced by PGE(2) or its mediators was not affected by any of the cytoskeletal disruptors. These effects were mimicked in vitro, as measured by enhancement of the tetrodotoxin-resistant sodium current. When PGE(2) hyperalgesia was shifted to dependence on PKCepsilon and ERK as well as PKA, as when the tissue is "primed" by prior treatment with carrageenan, it too became dependent on an intact cytoskeleton. Thus, inflammatory mediator-induced mechanical hyperalgesia was differentially dependent on the cytoskeleton such that cytoskeletal dependence correlated with mediation by PKCepsilon and ERK.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
198
|
Abstract
In humans, kappa agonist-antagonist opioids such as nalbuphine have been proposed to produce both analgesia and anti-analgesia by acting at distinct receptors. The anti-analgesia appears to be greater in men, which may contribute to the greater nalbuphine analgesia observed in women. Kappa agonist-antagonists are also known to produce sexually dimorphic antinociception in nonhuman species but are generally more potent in males; anti-analgesia has not been reported in animals. The aim of the present study was to determine if nalbuphine anti-analgesia can be detected in the rat. Since nalbuphine anti-analgesia is more sensitive to naloxone antagonism than its analgesic effect, low doses of naloxone were combined with nalbuphine. Using the Randall-Selitto paw-withdrawal test, nalbuphine (0.5-10 mg/kg) induced dose-dependent antinociception in the rat. The antinociceptive effect of nalbuphine (0.5 or 1 mg/kg) was not enhanced by lower doses of naloxone but was antagonized by higher doses. These data do not support the hypothesis that the naloxone-sensitive anti-analgesic effect of nalbuphine observed in humans is present in the rat and could explain, at least in part, the opposite direction of the sex differences for kappa agonist-antagonist opioid analgesia observed in these two species.
Collapse
Affiliation(s)
- Sachia G Khasar
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
199
|
Abstract
Alpha adrenergic agonists (e.g. vasoconstrictors) represent one of the most commonly used drug classes in dentistry. Although adrenergic agonists have potent vascular effects, recent studies suggest that capsaicin-sensitive nociceptors may express adrenoceptors, suggesting that these drugs may directly modulate the function of an important class of pain-signaling neurons in peripheral tissues. In this study, we tested the hypothesis that adrenergic agonists inhibit activation of peripheral terminals of capsaicin-sensitive fibers innervating dental pulp. Pretreatment with epinephrine or clonidine significantly inhibited capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from superfused bovine dental pulp. These studies suggest that adrenergic agonists may reduce postoperative pain in part via a direct inhibition of capsaicin-sensitive nociceptors. This finding may lead to the development of selective, peripherally acting, adrenergic analgesics. Moreover, because neuropeptide release alters blood flow, it is possible that the vascular effects of these drugs are caused by both vasoconstriction and inhibition of peripheral neuropeptide release.
Collapse
Affiliation(s)
- Kenneth M Hargreaves
- Department of Endodontics, UTHSCSA School of Dentistry, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
200
|
Zhou Y, Li GD, Zhao ZQ. State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. J Neurochem 2003; 85:571-80. [PMID: 12694383 DOI: 10.1046/j.1471-4159.2003.01675.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epsilon-isozyme of protein kinase C (PKCepsilon) and the vanilloid receptor 1 (VR1) are both expressed in dorsal root ganglion (DRG) neurons and are reported to be predominantly and specifically involved in nociceptive function. Using phosphospecific antibody against the C-terminal hydrophobic site Ser729 of PKCepsilon as a marker of enzyme activation, the state-dependent activation of PKCepsilon, as well as the expression of VR1 in rat DRG neurons, was evaluated in different experimental pain models in vivo. Quantitative analysis showed that phosphorylation of PKCepsilon in DRG neurons was significantly up-regulated after carrageen- and Complete Freund's Adjuvant-induced inflammation, while it was markedly down-regulated after chronic constriction injury. A double-labeling study showed that phosphorylation of PKCepsilon was expressed predominantly in VR1 immunoreactivity positive small diameter DRG neurons mediating the nociceptive information from peripheral tissue to spinal cord. The VR1 protein expression showed no significant changes after either inflammation or chronic constriction injury. These data indicate that functional activation of PKCepsilon has a close relationship with the production of inflammatory hyperalgesia and the sensitization of the nociceptors. Inflammatory mediator-induced activation of PKCepsilon and subsequent sensitization of VR1 to noxious stimuli by PKCepsilon may be involved in nociceptor sensitization.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Neurobiology, Fu-Dan University, Shanghai, China
| | | | | |
Collapse
|