151
|
Redina OE, Machanova NA, Efimov VM, Markel AL. Rats with inherited stress-induced arterial hypertension (ISIAH strain) display specific quantitative trait loci for blood pressure and for body and kidney weight on chromosome 1. Clin Exp Pharmacol Physiol 2007; 33:456-64. [PMID: 16700878 DOI: 10.1111/j.1440-1681.2006.04387.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of the present study was to scan chromosome 1 in the hypertensive 'inherited stress-induced arterial hypertension' (ISIAH) rat strain for the quantitative trait loci (QTL) that control basal and stress-induced arterial blood pressure (ABP) levels and weight traits. 2. Two F(2) populations of 3-4- and 6-month-old male rats derived from a cross between the normotensive Wistar albino Glaxo (WAG) and hypertensive ISIAH rats were used in the search for the QTL. To identify the QTL for blood pressure (basal and under stress) and weight traits (bodyweight, as well as the weight of the adrenals, kidney and heart), 12 polymorphic markers covering a span of 234.6 Mb on chromosome 1 were analysed. 3. In 3-4-month-old rats, QTL were found for bodyweight in the vicinity of the D1Rat76 marker (230.6 Mb; P = 0.0019; logarithm of odds (LOD) score 3.23) and for relative kidney weight in the vicinity of the D1Rat117 marker (219.3 Mb; P = 0.000992; LOD score 3.41). No QTL for blood pressure were detected on chromosome 1 in the 3-4-month-old population. 4. In 6-month-old rats, a QTL for basal ABP in the region spanning 168.0-250.4 Mb, with two peaks around the markers D1Rat168 (204.8 Mb; P = 0.00087; LOD score 3.42) and D1Rat76 (P = 0.0006; LOD score 3.34), was described. A novel QTL was found in the D1Rat54-D1Rat168 region for stress-induced blood pressure (P = 0.0014; LOD score 3.08). 5. The results provide support for the existence of age-dependent differences in the genetic control of ABP and weight traits. Chromosome 1 was characterized by four QTL: for bodyweight and relative kidney weight in 3-4-month-old F(2) (ISIAH yen WAG) rats and basal ABP and ABP under emotional (restraint) stress conditions in 6-month-old F(2) rats. The QTL for stress-induced ABP seems to be novel and specific to the ISIAH rat strain.
Collapse
Affiliation(s)
- O E Redina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
152
|
|
153
|
Abstract
Genetic studies of human and experimental hypertension provide a means to identify key pathways that predispose individuals to increased blood pressure and associated risk factors for cardiovascular and metabolic diseases. The pathways so identified can then serve as targets for therapeutic intervention. This article discusses genetic studies in animal models of hypertension in which specific genes have been identified that regulate blood pressure and biochemical features of the metabolic syndrome. Consistent with studies in humans with monogenic disorders of blood pressure regulation, studies in rat models have demonstrated that naturally occurring genetic variation in pathways regulating sodium chloride transport can contribute to inherited variation in blood pressure. Such studies have also indicated that naturally occurring variation in genes, such as Cd36, that regulate fatty acid metabolism and ectopic accumulation of fat and fat metabolites can influence both biochemical and hemodynamic features of the metabolic syndrome and mediate the antidiabetic effects of drugs that activate the peroxisome proliferator-activated receptor-gamma. Angiotensin II receptor blockers with the ability to selectively modulate activity of peroxisome proliferator-activated receptor-gamma and expression of genes in these fat metabolism pathways may represent useful prototypes for a new class of transcription modulating drugs aimed at treating patients with hypertension and the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology and Center for Applied Genomics, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
154
|
Clemitson JR, Dixon RJ, Haines S, Bingham AJ, Patel BR, Hall L, Lo M, Sassard J, Charchar FJ, Samani NJ. Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. Circ Res 2007; 100:992-9. [PMID: 17332427 PMCID: PMC3533402 DOI: 10.1161/01.res.0000261961.41889.9c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A region with a major effect on blood pressure (BP) is located on rat chromosome 1. We have previously isolated this region in reciprocal congenic strains (WKY.SHR-Sa and SHR.WKY-Sa) derived from a cross of the spontaneously hypertensive rat (SHR) with the Wistar-Kyoto rat (WKY) and shown that there are 2 distinct BP quantitative trait loci, BP1 and BP2, in this region. Sisa1, a congenic substrain from the SHR.WKY-Sa animals carrying an introgressed segment of 4.3Mb, contains BP1. Here, we report further dissection of BP1 by the creation of 2 new mutually exclusive congenic substrains (Sisa1a and Sisa1b) and interrogation of candidate genes by expression profiling and targeted transcript sequencing. Only 1 of the substrains (Sisa1a) continued to demonstrate a BP difference but with a reduced introgressed segment of 3Mb. Exonic sequencing of the 20 genes located in the Sisa1a region did not identify any major differences between SHR and WKY. However, microarray expression profiling of whole kidney samples and subsequent quantitative RT-PCR identified a single gene, Spon1 that exhibited significant differential expression between the WKY and SHR genotypes at both 6 and 24 weeks of age. Western blot analysis confirmed an increased level of the Spon1 gene product in SHR kidneys. Spon1 belongs to a family of genes with antiangiogenic properties. These findings justify further investigation of this novel positional candidate gene in BP control in hypertensive rat models and humans.
Collapse
Affiliation(s)
- Jenny-Rebecca Clemitson
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Richard J. Dixon
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Steve Haines
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Andrew J. Bingham
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Bhakti R. Patel
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Laurence Hall
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Ming Lo
- Departement de Physiologie et Pharmacologie Clinique, Faculte de Pharmacie, 69373 Lyon cedex 08, France
| | - Jean Sassard
- Departement de Physiologie et Pharmacologie Clinique, Faculte de Pharmacie, 69373 Lyon cedex 08, France
| | - Fadi J. Charchar
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, United Kingdom
| |
Collapse
|
155
|
Silva GJJ, Pereira AC, Krieger EM, Krieger JE. Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC MEDICAL GENETICS 2007; 8:17. [PMID: 17419875 PMCID: PMC1865373 DOI: 10.1186/1471-2350-8-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/09/2007] [Indexed: 01/19/2023]
Abstract
Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.
Collapse
Affiliation(s)
- Gustavo JJ Silva
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Eduardo M Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - José E Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo, Brazil, Av. Dr. Enéas de Carvalho Aguiar, 44 São Paulo, Brazil
| |
Collapse
|
156
|
Wendt N, Schulz A, Siegel AK, Weiss J, Wehland M, Sietmann A, Kossmehl P, Grimm D, Stoll M, Kreutz R. Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats. J Hypertens 2007; 25:95-102. [PMID: 17143179 DOI: 10.1097/hjh.0b013e328010688f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Unlike Dahl salt-sensitive (SS) rats, some strains of spontaneously hypertensive (SHR) rats develop only minor organ damage even when exposed to high-salt diet. In previous linkage studies, we identified quantitative trait loci on rat chromosome 19 (RNO19) linked to the SHR allele suggesting a protective effect against salt-induced hypertensive organ damage in SS. METHODS To test the relevance of this finding, we generated and characterized a consomic strain SS-19SHR in which RNO19 from SHR was introgressed into the susceptible background of SS. We compared the effects of low-salt (0.2% NaCl) and high-salt (4% NaCl) diet exposure for 8 weeks on the development of hypertension and target organ damage in male consomic and SS animals (n=14-20, each). RESULTS Systolic blood pressure, relative left ventricular weight and urinary protein excretion were significantly lower in SS-19SHR compared to SS under both low-salt and high-salt diet (P < 0.05, respectively). Left ventricular atrial natriuretic peptide mRNA expression showed a more pronounced 4.5-fold increase in SS compared to SS-19 (two-fold) after high-salt (P < 0.05). In comparison to low diet, high-salt exposure induced a significant increase in vascular aortic hypertrophy index, left ventricular interstitial fibrosis (+210%) and perivascular fibrosis (+195%) in SS but not in consomic SS-19SHR (P < 0.05, respectively). CONCLUSIONS These results demonstrate a strong protective effect of RNO19 from SHR on the development of hypertension, salt-sensitivity, cardiovascular and renal organ damage in SS. In particular, we demonstrate a genetic effect protecting against the development of cardiac fibrosis in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Norbert Wendt
- Institut für Klinische Pharmakologie und Toxikologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Ely D, Milsted A, Bertram J, Ciotti M, Dunphy G, Turner ME. Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats. BMC Cardiovasc Disord 2007; 7:6. [PMID: 17324261 PMCID: PMC1810322 DOI: 10.1186/1471-2261-7-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/26/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats that had the SHR Y chromosome locus crossed into their genome (SHR/y rat). A potential candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor that is responsible for testes development and the Sry protein may affect other target genes. METHODS The following study examined if exogenous Sry would elevate adrenal Th, adrenal catecholamines, plasma catecholamines and blood pressure. We delivered 10 mug of either the expression construct, Sry1/pcDNA 3.1, or control vector into the adrenal medulla of WKY rats by electroporation. Blood pressure was measured by the tail cuff technique and Th and catecholamines by HPLC with electrochemical detection. RESULTS In the animals receiving Sry there were significant increases after 3 weeks in resting plasma NE (57%) and adrenal Th content (49%) compared to vector controls. BP was 30 mmHg higher in Sry injected animals (160 mmHg, p < .05) compared to vector controls (130 mmHg) after 2-3 weeks. Histological analysis showed that the electroporation procedure did not produce morphological damage. CONCLUSION These results provide continued support that Sry is a candidate gene for hypertension. Also, these results are consistent with a role for Sry in increasing BP by directly or indirectly activating sympathetic nervous system activity.
Collapse
Affiliation(s)
- Daniel Ely
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Amy Milsted
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Jason Bertram
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Mat Ciotti
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Gail Dunphy
- Department of Biology, University of Akron, Akron, OH 44325 USA
| | - Monte E Turner
- Department of Biology, University of Akron, Akron, OH 44325 USA
| |
Collapse
|
158
|
Deng AY. Positional cloning of quantitative trait Loci for blood pressure: how close are we?: a critical perspective. Hypertension 2007; 49:740-7. [PMID: 17296871 DOI: 10.1161/01.hyp.0000259105.09235.56] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alan Y Deng
- Research Centre, Centre Hospitalier de l'Université de Montréal, l'Université de Montréal Montréal, Québec, Canada.
| |
Collapse
|
159
|
Lee SJ, Liu J, Westcott AM, Vieth JA, DeRaedt SJ, Yang S, Joe B, Cicila GT. Substitution mapping in dahl rats identifies two distinct blood pressure quantitative trait loci within 1.12- and 1.25-mb intervals on chromosome 3. Genetics 2006; 174:2203-13. [PMID: 17028336 PMCID: PMC1698641 DOI: 10.1534/genetics.106.061747] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/27/2006] [Indexed: 02/08/2023] Open
Abstract
Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTL) within the congenic region of S.R-Edn3 rats located at the q terminus of rat chromosome 3 (RNO3). An F2(SxS.R-Edn3) population (n=173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat-derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3x5) substrain and the BP lowering effect retained by the S.R(ET3x2) substrain together define the RNO3 BP QTL-containing region as approximately 4.64 Mb. Two nonoverlapping substrains, S.R(ET3x1) and S.R(ET3x6), had significantly lower BP compared to the S strain, indicating the presence of two distinct BP QTL in the RNO3 q terminus. The RNO3 q terminus was fine mapped with newly developed polymorphic markers to characterize the extent of the congenic regions. The two RNO3 BP QTL regions were thus defined as within intervals of 0.05-1.12 and 0.72-1.25 Mb, respectively. Also important was our difficulty in fine mapping and marker placement in this portion of the rat genome (and thus candidate gene identification) using the available genomic data, including the rat genome sequence.
Collapse
Affiliation(s)
- Soon Jin Lee
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Gu JW, Tian N, Shparago M, Tan W, Bailey AP, Manning RD. Renal NF-κB activation and TNF-α upregulation correlate with salt-sensitive hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1817-24. [PMID: 16840655 DOI: 10.1152/ajpregu.00153.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-κB and upregulation of TNF-α related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 ± 3.7 vs. 109.4 ± 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 ± 2.6 vs. 6.1 ± 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-κB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group ( P = 0.007). ELISA indicated that renal protein levels of TNF-α, but not IL-6, interferon-γ, and CCL28, were significantly higher in the HS than the LS group (2.3 ± 0.8 vs. 0.7 ± 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-α were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-κB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-κB and upregulation of TNF-α are the important renal mechanisms linking proinflammatory response to SS hypertension.
Collapse
Affiliation(s)
- Jian-Wei Gu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Duong C, Charron S, Xiao C, Hamet P, Ménard A, Roy J, Deng AY. Distinct quantitative trait loci for kidney, cardiac, and aortic mass dissociated from and associated with blood pressure in Dahl congenic rats. Mamm Genome 2006; 17:1147-61. [PMID: 17143582 DOI: 10.1007/s00335-006-0086-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/30/2006] [Indexed: 01/19/2023]
Abstract
Blood pressure (BP) is largely determined by quantitative trait loci (QTLs) in Dahl salt-sensitive (DSS) rats. Little is known about QTLs controlling kidney (K), cardiac (C), and aortic (A) mass (i.e. Km, Cm, and Am, respectively) of DSS rats independent of BP. Their identification can facilitate our understanding of end organ damage. In this work, 36 congenic strains were employed to define QTLs for Km, Cm, and Am either independent of or associated with BP. Five new QTLs, i.e., KmQTLs, that influence Km independent of Cm, Am, and BP were defined. Four new CakmQTLs were defined for Cm, Am, and Km independent of BP. Among them, the CakmC10QTL1 interval contained 13 genes and undefined loci, and none was known to influence the phenotypes in question, paving the way for a novel gene discovery. Among 17 individual QTLs for BP, 14 also affected Cm, Km, and Am, i.e., they are BpcakmQTLs. In contrast, one BpQTL had no effect on Cm, Am, and Kam. Therefore, BP and Cm, Am, and Km have distinct and shared genetic determinants. The discovery of individual Km and Cakm QTLs will likely facilitate the identification of mechanisms underlying renal, cardiac, and/or aortic hypertrophy independent of hypertension.
Collapse
Affiliation(s)
- Chenda Duong
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
162
|
Duong C, Charron S, Deng Y, Xiao C, Ménard A, Roy J, Deng AY. Individual QTLs controlling quantitative variation in blood pressure inherited in a Mendelian mode. Heredity (Edinb) 2006; 98:165-71. [PMID: 17119551 DOI: 10.1038/sj.hdy.6800920] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied three possible genotypes at 10 well-defined blood pressure (BP) QTLs using congenic rat lines. The central question was whether the hypertensive or normotensive allele is dominant, or whether there is partial dominance. The congenic strains were employed to investigate the BP effects of alleles originating from normotensive rats in the background of hypertensive Dahl salt-sensitive (DSS) rats. The normotensive alleles at eight QTLs were fully dominant over DSS alleles, which we tentatively interpreted as indicating that DSS rats incurred a loss of function at these loci and that the QTLs produced BP-reducing agents. In contrast, the normotensive allele of only one QTL was recessive over its DSS counterpart, implying a gain of function at this QTL or a null allele involved in generating a BP-elevating agent. Only one locus, C17QTL, had alleles exhibiting partial dominance. These estimates of dominance differ considerably from those obtained by QTL analysis in a F2 cross. This disagreement demonstrates the importance of establishing a cause-effect relationship between a QTL and its phenotypic effect via congenic strains. The dominance relationships suggest pertinent strategies for gene identification and pharmaceutical intervention.
Collapse
Affiliation(s)
- C Duong
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Technopôle Angus, 2901 Rachel Street East, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
163
|
Hao YH, Yong HY, Murphy CN, Wax D, Samuel M, Rieke A, Lai L, Liu Z, Durtschi DC, Welbern VR, Price EM, McAllister RM, Turk JR, Laughlin MH, Prather RS, Rucker EB. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 2006; 15:739-50. [PMID: 17080303 DOI: 10.1007/s11248-006-9020-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Vascular function, vascular structure, and homeostasis are thought to be regulated in part by nitric oxide (NO) released by endothelial cell nitric oxide synthase (eNOS), and NO released by eNOS plays an important role in modulating metabolism of skeletal and cardiac muscle in health and disease. The pig is an optimal model for human diseases because of the large number of important similarities between the genomic, metabolic and cardiovascular systems of pigs and humans. To gain a better understanding of cardiovascular regulation by eNOS we produced pigs carrying an endogenous eNOS gene driven by a Tie-2 promoter and tagged with a V5 His tag. Nuclear transfer was conducted to create these animals and the effects of two different oocyte activation treatments and two different culture systems were examined. Donor cells were electrically fused to the recipient oocytes. Electrical fusion/activation (1 mM calcium in mannitol: Treatment 1) and electrical fusion (0.1 mM calcium in mannitol)/chemical activation (200 microM Thimerosal for 10 min followed by 8 mM DTT for 30 min: Treatment 2) were used. Embryos were surgically transferred to the oviducts of gilts that exhibited estrus on the day of fusion or the day of transfer. Two cloned transgenic piglets were born from Treatment 1 and low oxygen, and another two from Treatment 2 and normal oxygen. PCR, RT-PCR, Western blotting and immunohistochemistry confirmed that the pigs were transgenic, made message, made the fusion protein and that the fusion protein localized to the endothelial cells of placental vasculature from the conceptuses as did the endogenous eNOS. Thus both activation conditions and culture systems are compatible with development to term. These pigs will serve as the founders for a colony of miniature pigs that will help to elucidate the function of eNOS in regulating muscle metabolism and the cardiorespiratory system.
Collapse
Affiliation(s)
- Y H Hao
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Kunes J, Zicha J. Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist's view. Clin Sci (Lond) 2006; 111:295-305. [PMID: 17034366 DOI: 10.1042/cs20050271] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic studies in humans and rodent models should help to identify altered genes important in the development of cardiovascular diseases, such as hypertension. Despite the considerable research effort, it is still difficult to identify all of the genes involved in altered blood pressure regulation thereby leading to essential hypertension. We should keep in mind that genetic hypertension and other cardiovascular diseases might develop as a consequence of early errors in well-co-ordinated systems regulating cardiovascular homoeostasis. If these early abnormalities in the ontogenetic cascade of expression of genetic information occur in critical periods of development (developmental windows), they can adversely modify subsequent development of the cardiovascular system. The consideration that hypertension and/or other cardiovascular diseases are late consequences of abnormal ontogeny of the cardiovascular system could explain why so many complex interactions among genes and environmental factors play such a significant role in the pathogenesis of these diseases. The detailed description and precise time resolution of major developmental events occurring during particular stages of ontogeny in healthy individuals (including advanced knowledge of gene expression) could facilitate the detection of abnormalities crucial for the development of cardiovascular alterations characteristic of the respective diseases. Transient gene switch-on or switch-off in specific developmental windows might be a useful approach for in vivo modelling of pathological processes. This should help to elucidate the mechanisms underlying cardiovascular diseases (including hypertension) and to develop strategies to prevent the development of such diseases.
Collapse
Affiliation(s)
- Jaroslav Kunes
- Cardiovascular Research Centre and Institute of Physiology, AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
165
|
Abstract
Blood pressure, the product of cardiac output and peripheral vascular resistance, follows a circadian rhythm and is altered by a host of circulating and local substances and by many physiologic events. The number of genes, signaling pathways, and systems involved in blood pressure regulation is enormous, and dissecting those factors that are most important in hypertension has proven challenging. This article discusses molecular mechanisms of hypertension in several conditions in which mutations in a single gene give rise to hypertension and then considers the contribution of these and other genes to essential hypertension.
Collapse
Affiliation(s)
- Julie R Ingelfinger
- Pediatric Nephrology, Yawkey 6C, MassGeneral Hospital for Children at Massachusetts General Hospital, and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
166
|
|
167
|
Herrera VLM, Tsikoudakis A, Ponce LRB, Matsubara Y, Ruiz-Opazo N. Sex-specific QTLs and interacting loci underlie salt-sensitive hypertension and target organ complications in Dahl S/jrHS hypertensive rats. Physiol Genomics 2006; 26:172-9. [PMID: 16720678 DOI: 10.1152/physiolgenomics.00285.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sex-specific differences in polygenic (essential) hypertension are commonly attributed to the role of sex steroid hormone-receptor systems attenuating sex-common disease mechanisms in premenopausal women. However, emerging observations indicate sex-specific genetic susceptibility in various traits, thus requiring systematic study. Here we report a comparative analysis of independent total genome scans for salt-sensitive hypertension susceptibility quantitative trait loci (QTLs) in male and female F2 [Dahl R/jrHS x S/jrHS] intercross rats exposed to high-salt (8% NaCl) rat diets. Hypertension was phenotyped with three quantitative traits: blood pressure (BP) elevation associated with increased hypertensive renal disease [glomerular injury score (GIS)] and increased cardiac mass [relative heart weight (RHW)] obtained 8-12 wk after high-salt challenge; 24-h nonstress, telemetric BP measurements were used. Although sex-common QTLs were detected for BP [chromosome (chr) 1-144.3 Mbp; chr 1-208.8 Mbp], GIS (chr 1-208.8 Mbp), and cardiac mass (chr 5-150.3 Mbp), most QTLs across the three phenotypes studied are gender specific as follows: female QTLs for BP (chr 2-106.7 Mbp, chr 2-181.7 Mbp, chr 5-113.9 Mbp, chr 5-146.7 Mbp, chr 12-12.8 Mbp), GIS (chr 15-59.6 Mbp), and RHW (chr 2-31.5 Mbp, chr 5-154.7 Mbp, chr 5-110.9 Mbp); male QTLs for BP (chr 2-196.7 Mbp, chr 11-48.0 Mbp, chr 20-35.7 Mbp), GIS (chr 6-3.3 Mbp, chr 20-40.7 Mbp), and RHW (chr 6-3.3 Mbp, chr 20-40.7 Mbp). Furthermore, interacting loci with significant linkage were detected only in female F2 intercross rats for BP and hypertensive renal disease. Comparative analyses revealed concordance of BP QTL peaks with previously reported rat model and human hypertension susceptibility genes and with BP QTLs in previous Dahl S-derived F2 intercross studies and also suggest strain-specific genetic modifiers of sex-specific determinants. Altogether, the data provide key experimental bases for sex-specific investigation of mechanisms and intervention and prevention strategies for polygenic hypertension in humans.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
168
|
Baum AE, Solberg LC, Churchill GA, Ahmadiyeh N, Takahashi JS, Redei EE. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav Brain Res 2006; 169:220-30. [PMID: 16490266 PMCID: PMC3762875 DOI: 10.1016/j.bbr.2006.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 01/04/2006] [Accepted: 01/12/2006] [Indexed: 11/13/2022]
Abstract
Inbred Wistar-Kyoto rats consistently display hypoactivity in tests of emotional behavior. We used them to test the hypothesis that the genetic factors underlying the behavioral decision-making process will vary in different environmental contexts. The contexts used were the open-field test (OFT), a novel environment with no explicit threats present, and the defensive-burying test (DB), a habituated environment into which a threat has been introduced. Rearing, a voluntary behavior was measured in both tests, and our study was the first to look for genetic loci affecting grooming, a relatively automatic, stress-responsive stereotyped behavior. Quantitative trait locus analysis was performed on a population of 486 F2 animals bred from reciprocal inter-crosses. The genetic architectures of DB and OFT rearing, and of DB and OFT grooming, were compared. There were no common loci affecting grooming behavior in both tests. These different contexts produced the stereotyped behavior via different pathways, and genetic factors seem to influence the decision-making pathways and not the expression of the behavior. Three loci were found that affected rearing behavior in both tests. However, in both contexts, other loci had greater effects on the behavior. Our results imply that environmental context's effects on decision-making vary depending on the category of behavior.
Collapse
Affiliation(s)
- Amber E. Baum
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Leah C. Solberg
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nasim Ahmadiyeh
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
- Howard Hughe Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Joseph S. Takahashi
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
- Howard Hughe Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
169
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
170
|
Nestor AL, Cicila GT, Karol SE, Langenderfer KM, Hollopeter SL, Allison DC. Linkage analysis of neointimal hyperplasia and vascular wall transformation after balloon angioplasty. Physiol Genomics 2006; 25:286-93. [PMID: 16434542 DOI: 10.1152/physiolgenomics.00135.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neointimal hyperplasia (NIH), a result of vascular injury, is due to the migration and proliferation of smooth muscle cells through the media and internal elastic lamina leading to vascular occlusion. We used a rat model to find the genetic regions controlling NIH after endothelial denudation in two divergent inbred strains of rats. The Brown Norway (BN) and spontaneously hypertensive rat (SHR) strains have a 2.5-fold difference in injury-induced NIH. A population of 301 F2(SHR × BN) rats underwent a standard vascular injury followed by phenotyping 8 wk after injury to identify quantitative trait loci (QTL) responsible for this strain difference. Interval mapping identified two %NIH QTL on rat chromosomes 3 and 6 [logarithm of odds (LOD) scores 2.5, 2.2] and QTL for other injured vascular wall changes on rat chromosomes 3, 4, and 15 (LOD scores 2.0–4.6). Also, QTL for control vessel media width (MW) and media area (MA) were found on chromosome 6 with LOD scores of 2.3 and 2.5, suggesting that linkage exists between these control vessel parameters and NIH production. These results represent the first genetic analysis for the identification of NIH QTL and QTL associated with the vascular injury response.
Collapse
Affiliation(s)
- Andrea L Nestor
- Department of Surgery, Medical University of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Quan X, Laes JF, Stieber D, Rivière M, Russo J, Wedekind D, Coppieters W, Farnir F, Georges M, Szpirer J, Szpirer C. Genetic identification of distinct loci controlling mammary tumor multiplicity, latency, and aggressiveness in the rat. Mamm Genome 2006; 17:310-21. [PMID: 16596452 DOI: 10.1007/s00335-005-0125-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 01/09/2006] [Indexed: 12/22/2022]
Abstract
The rat is considered an excellent model for studying human breast cancer. Therefore, understanding the genetic basis of susceptibility to mammary cancer in this species is of great interest. Previous studies based on crosses involving the susceptible strain WF (crossed with the resistant strains COP or WKY) and focusing on tumor multiplicity as the susceptibility phenotype led to the identification of several loci that control chemically induced mammary cancer. The present study was aimed to determine whether other loci can be identified by analyzing crosses derived from another susceptible strain on the one hand, and by including phenotypes other than tumor multiplicity on the other hand. A backcross was generated between the susceptible SPRD-Cu3 strain and the resistant WKY strain. Female progeny were genotyped with microsatellite markers covering all rat autosomes, treated with a single dose of DMBA, and phenotyped with respect to tumor latency, tumor multiplicity, and tumor aggressiveness. Seven loci controlling mammary tumor development were detected. Different loci control tumor multiplicity, latency, and aggressiveness. While some of these loci colocalize with loci identified in crosses involving the susceptible strain WF, new loci have been uncovered, indicating that the use of distinct susceptible and resistant strain pairs will help in establishing a comprehensive inventory of mammary cancer susceptibility loci.
Collapse
Affiliation(s)
- Xiaojiang Quan
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12, Gosselies, B-6041, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Strahorn P, Graham D, Charchar FJ, Sattar N, McBride MW, Dominiczak AF. Genetic determinants of metabolic syndrome components in the stroke-prone spontaneously hypertensive rat. J Hypertens 2006; 23:2179-86. [PMID: 16269959 DOI: 10.1097/01.hjh.0000191904.26853.b8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The metabolic syndrome is a complex multifactorial disease, which results from interactions between genes on multiple chromosomes and environmental factors. Animal models may facilitate genetic analysis of complex phenotypes by allowing complete control of environmental conditions and the ability to produce designer strains. METHODS Stroke-prone spontaneously hypertensive (SHRSP) and Wistar-Kyoto (WKY) rat strains were used to construct congenic (SP.WKYGla2a), consomic (SP.WKYGlaYw, WKY.SPGlaYs) and double-introgressed (SP.WKYGla2aYw) strains, which were characterized for metabolic syndrome phenotypes (systolic blood pressure, glucose tolerance and lipid profile) after feeding a 60% fructose diet for 14 days. RESULTS The Y consomic strain (SP.WKYGlaYw) demonstrated that the WKY Y chromosome significantly lowered triglyceride levels (3.77 +/- 0.60 versus 9.09 +/- 1.47 mmol/l; P < 0.001) and improved glucose tolerance [area under the curve (AUC): 26.93 +/- 0.81 versus 31.47 +/- 0.89; P < 0.05] compared with SHRSP. The chromosome 2 congenic strain (SP.WKYGla2a) exhibited significantly improved glucose tolerance (AUC: 28.19 +/- 1.17 versus 31.47 +/- 0.89; P < 0.05) and lower systolic blood pressure (161.2 +/- 6.2 versus 179.7 +/- 3.9 mmHg; P < 0.05) compared with SHRSP. 2 x 2 factorial ANOVA identified a significant interaction for glucose metabolism (P = 0.004) in the double-introgressed strain (SP.WKYGla2aYw) between chromosome 2 and Y. CONCLUSIONS These results identify novel interacting regions on chromosome 2 and the Y chromosome influencing a cluster of metabolic and cardiovascular phenotypes. Translation to clinical studies will facilitate genetic dissection of human metabolic syndrome.
Collapse
Affiliation(s)
- Pamela Strahorn
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
PURPOSE OF REVIEW Essential hypertension is a complex polygenetic disease with a major impact on health worldwide. Despite earlier detection of promising candidate genes, only recent advances in genotyping technology and new approaches to examining gene and protein function have provided the tools to unravel the genetic basis of hypertension. RECENT FINDINGS In humans, genome-wide scans resulted in the identification of several chromosomal loci that are linked to hypertension. These regions still contain a large number of potential candidate genes, but high-throughput genotyping methods will facilitate the detection and analysis of single-nucleotide polymorphisms within these genes. The focus will be on animal models of hypertension, specifically rats. Congenic strains facilitate the identification of genetic determinants of hypertension, and new technologies such as RNA interference (which silences the expression of target genes) and transgenic rescue models will help us to analyse the relationship between genes and function. Analysis of conserved synteny (preserved order of genes) between species allows translation of findings from rodent models to essential hypertension in humans. Recent discoveries and approaches beyond genomics will also be discussed, including the regulatory role of microRNA and the concept of proteomics. SUMMARY The genetic basis of hypertension is complex, and the examination of the functional consequences of genetic variants in particular is still challenging. A number of tools are now available with which to examine gene-function relationships, and these will provide an improved understanding of cardiovascular genomics. This will eventually lead to targeted prevention and treatment strategies in patients with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Martin W McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
174
|
Gauguier D. Diabetes quantitative trait locus research: from physiology to genetics and back. Diabetologia 2006; 49:431-3. [PMID: 16447055 DOI: 10.1007/s00125-005-0131-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Affiliation(s)
- D Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
175
|
Malek RL, Wang HY, Kwitek AE, Greene AS, Bhagabati N, Borchardt G, Cahill L, Currier T, Frank B, Fu X, Hasinoff M, Howe E, Letwin N, Luu TV, Saeed A, Sajadi H, Salzberg SL, Sultana R, Thiagarajan M, Tsai J, Veratti K, White J, Quackenbush J, Jacob HJ, Lee NH. Physiogenomic resources for rat models of heart, lung and blood disorders. Nat Genet 2006; 38:234-9. [PMID: 16415889 DOI: 10.1038/ng1693] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/22/2005] [Indexed: 01/10/2023]
Abstract
Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.
Collapse
Affiliation(s)
- Renae L Malek
- TREX, The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Wang T, Kobayashi Y, Nabika T, Takabatake T. Enhanced sympathetic control of renal function in rats congenic for the hypertension‐related region on chromosome 1. Clin Exp Pharmacol Physiol 2006; 32:1055-60. [PMID: 16445571 DOI: 10.1111/j.1440-1681.2005.04304.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that a quantitative trait locus (QTL) for blood pressure (BP) on rat chromosome 1 is associated with exaggerated sympathetic nervous activity. The aim of the present study was to examine whether this QTL can affect BP by altering sympathetic control of renal function. Male stroke-prone spontaneously hypertensive rats of Izumo origin (SHRSP/Izm), Wistar-Kyoto rats (WKY/Izm) and rats from a WKY/Izm congenic strain that contains an SHRSP/Izm chromosomal segment between D1Wox29 and D1Arb21 (WKYpch1.0) were used. Clearance and micropuncture experiments were performed in anaesthetized rats after acute unilateral renal denervation (DN). Mean BP in sham-operated WKYpch1.0 was significantly higher than that in WKY/Izm. The DN procedure elicited a greater reduction in renal noradrenaline levels in SHRSP/Izm and WKYpch1.0 than in WKY/Izm. In both SHRSP/Izm and WKYpch1.0, DN decreased renal vascular resistance and filtration fraction, whereas it increased renal blood flow and urinary and fractional excretion of sodium. Unilateral renal denervation did not affect these parameters in WKY/Izm. Unilateral renal denervation decreased the tubuloglomerular feedback (TGF) responsiveness only in SHRSP/Izm, whereas it increased the non-perfused early proximal flow rate in SHRSP/Izm and WKYpch1.0. The results of the present study indicate that the renal sympathetic nervous system exerts enhanced tonic control of the renal vasculature and tubular function in SHRSP/Izm and WKYpch1.0, but not in WKY/Izm. Neural impact on the TGF response in WKYpch1.0 is indiscernible. Thus, a gene or genes in the QTL may influence BP, at least in part, through renal vasoconstriction and sodium retention mediated by the enhanced activity of the renal sympathetic nerves.
Collapse
Affiliation(s)
- Tao Wang
- The Fourth Department of Internal Medicine, Shimane University School of Medicine, Izumo, Japan.
| | | | | | | |
Collapse
|
177
|
Kreutz R, Zuurman M, Kain S, Bolbrinker J, de Jong PE, Navis G. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005; 15:831-7. [PMID: 16272955 DOI: 10.1097/01213011-200512000-00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 3A (CYP3A) enzymes are important for drug metabolism in gut and liver. The CYP3A5 isoenzyme is also expressed in the kidney and has been implicated in renal sodium reabsorption and blood pressure regulation. Its expression and activity is strongly linked to a polymorphism (i.e. 6986G > A). Thus, appreciable expression is found in carriers of the CYP3A5*1 (6986A) but not in homozygous carriers of the CYP3A5*3 (6986G) allele. We tested whether the presence of CYP3A5*1 affects blood pressure in Caucasian individuals who were enrolled in the Prevention of REnal and Vascular ENd stage Disease (PREVEND) study. In addition, we evaluated whether the genetic effect of CYP3A5*1 on blood pressure is modulated by sodium intake. CYP3A5*1 was found in 13.3% (901 individuals) of the cohort (6777 individuals). Diastolic blood pressure was not affected by CYP3A5*1. Overall, systolic and pulse pressure were significantly lower in carriers of CYP3A5*1, both after univariate analysis adjusted for age (P = 0.012 and P = 0.008) and in logistic regression analysis (P = 0.015 and P = 0.012). The effect on systolic blood pressure was significantly modulated by sodium intake (P = 0.038). In separate analysis according to gender, CYP3A5*1 accounted for a significant age adjusted decrease in systolic blood pressure (-1.6 mmHg, P = 0.04) and pulse pressure (-1.2 mmHg, P = 0.04) in females but not in men. The present study demonstrates that the CYP3A5*1 allele affects systolic blood pressure and pulse pressure in the general population. Its role in hypertensive disease and potential gender differences should be investigated in further studies.
Collapse
Affiliation(s)
- Reinhold Kreutz
- Department of Clinical Pharmacology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
The need to translate genes to function has positioned the rat as an invaluable animal model for genomic research. The significant increase in genomic resources in recent years has had an immediate functional application in the rat. Many of the resources for translational research are already in place and are ready to be combined with the years of physiological knowledge accumulated in numerous rat models, which is the subject of this perspective. Based on the successes to date and the research projects under way to further enhance the infrastructure of the rat, we also project where research in the rat will be in the near future. The impact of the rat genome project has just started, but it is an exciting time with tremendous progress.
Collapse
Affiliation(s)
- Jozef Lazar
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
179
|
Charron S, Duong C, Ménard A, Roy J, Eliopoulos V, Lambert R, Deng AY. Epistasis, Not Numbers, Regulates Functions of Clustered Dahl Rat Quantitative Trait Loci Applicable to Human Hypertension. Hypertension 2005; 46:1300-8. [PMID: 16286573 DOI: 10.1161/01.hyp.0000192024.72367.c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.
Collapse
Affiliation(s)
- Sophie Charron
- Research Centre-Centre Hospitalier, Université de Montréal, Hôtel Dieu, 3840 rue St. Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
180
|
Smits BMG, Guryev V, Zeegers D, Wedekind D, Hedrich HJ, Cuppen E. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics 2005; 6:170. [PMID: 16316463 PMCID: PMC1318490 DOI: 10.1186/1471-2164-6-170] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 11/29/2005] [Indexed: 11/13/2022] Open
Abstract
Background The laboratory rat (Rattus norvegicus) is an important model for studying many aspects of human health and disease. Detailed knowledge on genetic variation between strains is important from a biomedical, particularly pharmacogenetic point of view and useful for marker selection for genetic cloning and association studies. Results We show that Single Nucleotide Polymorphisms (SNPs) in commonly used rat strains are surprisingly well represented in wild rat isolates. Shotgun sequencing of 814 Kbp in one wild rat resulted in the identification of 485 SNPs as compared with the Brown Norway genome sequence. Genotyping 36 commonly used inbred rat strains showed that 84% of these alleles are also polymorphic in a representative set of laboratory rat strains. Conclusion We postulate that shotgun sequencing in a wild rat sample and subsequent genotyping in multiple laboratory or domesticated strains rather than direct shotgun sequencing of multiple strains, could be the most efficient SNP discovery approach. For the rat, laboratory strains still harbor a large portion of the haplotypes present in wild isolates, suggesting a relatively recent common origin and supporting the idea that rat inbred strains, in contrast to mouse inbred strains, originate from a single species, R. norvegicus.
Collapse
Affiliation(s)
- Bart MG Smits
- Hubrecht Laboratory, Functional Genomics Group, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Victor Guryev
- Hubrecht Laboratory, Functional Genomics Group, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Dimphy Zeegers
- Hubrecht Laboratory, Functional Genomics Group, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Hans J Hedrich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Edwin Cuppen
- Hubrecht Laboratory, Functional Genomics Group, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
181
|
Geerling JC, Sequeira SM, Loewy AD. Increased number of aldosterone-sensitive NTS neurons in Dahl salt-sensitive rats. Brain Res 2005; 1065:142-6. [PMID: 16316636 DOI: 10.1016/j.brainres.2005.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 10/15/2005] [Indexed: 10/25/2022]
Abstract
Dahl salt-sensitive rats develop severe hypertension during a high-sodium diet, but the basis of their salt-sensitive phenotype is not completely understood. A subset of neurons in the nucleus tractus solitarius (NTS) are uniquely sensitive to the adrenal steroid hormone aldosterone, which is critically involved in sodium homeostasis, due to their expression of the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). The number of HSD2 neurons in the NTS was counted in prehypertensive 7-week-old Dahl salt-sensitive rats and compared with two control strains: Dahl salt-resistant and Sprague-Dawley rats. Dahl salt-sensitive rats had more HSD2 neurons than age-matched Dahl salt-resistant and Sprague-Dawley rats (24% and 21%, respectively). Cell counts were also made in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats; the number of HSD2 neurons in both of these strains was similar to the values obtained for Sprague-Dawley rats. The increased number of HSD2-immunoreactive neurons counted in Dahl salt-sensitive rats suggests that they may have a greater number of aldosterone-sensitive NTS neurons. Alternatively, an increase in HSD2 expression in Dahl salt-sensitive rats could increase the overall immunoreactivity, permitting detection of more of these neurons. In either case, the roughly 20% increase in HSD2 neurons in the NTS of prehypertensive Dahl salt-sensitive rats is a novel factor associated with their salt-sensitive phenotype. These neurons may play a role in regulating sodium appetite, which is abnormally suppressed in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
182
|
Joe B, Letwin NE, Garrett MR, Dhindaw S, Frank B, Sultana R, Verratti K, Rapp JP, Lee NH. Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Physiol Genomics 2005; 23:318-26. [PMID: 16204469 DOI: 10.1152/physiolgenomics.00164.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the evidence for a genetic predisposition to human essential hypertension is compelling, the genetic control of blood pressure (BP) is poorly understood. The Dahl salt-sensitive (S) rat is a model for studying the genetic component of BP. Using this model, we previously reported the identification of 16 different genomic regions that contain one or more BP quantitative trait loci (QTLs). The proximal region of rat chromosome 1 contains multiple BP QTLs. Of these, we have localized the BP QTL1b region to a 13.5-cM (20.92 Mb) region. Interestingly, five additional independent studies in rats and four independent studies in humans have reported genetic linkage for BP control by regions homologous to QTL1b. To view the overall renal transcriptional topography of the positional candidate genes for this QTL, we sought a comparative gene expression profiling between a congenic strain containing QTL1b and control S rats by employing 1) a saturated QTL1b interval-specific oligonucleotide array and 2) a whole genome cDNA microarray representing 20,465 unique genes that are positioned outside the QTL. Results indicated that 17 of the 231 positional candidate genes for this QTL are differentially expressed between the two strains tested. Surprisingly, >1,500 genes outside of QTL1b were differentially expressed between the two rat strains. Integrating the results from the two approaches revealed at least one complex network of transcriptional control initiated by the positional candidate Nr2f2. This network appears to account for the majority of gene expression differences occurring outside of the QTL interval. Further substitution mapping is currently underway to test the validity of each of these differentially expressed positional candidate genes. These results demonstrate the importance of using a saturated oligonucleotide array for identifying and prioritizing differentially expressed positional candidate genes of a BP QTL.
Collapse
Affiliation(s)
- Bina Joe
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Charron S, Lambert R, Eliopoulos V, Duong C, Ménard A, Roy J, Deng AY. A loss of genome buffering capacity of Dahl salt-sensitive model to modulate blood pressure as a cause of hypertension. Hum Mol Genet 2005; 14:3877-84. [PMID: 16278234 DOI: 10.1093/hmg/ddi412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Essential hypertension is a complex trait influenced by multiple genes known as quantitative trait loci (QTLs) for blood pressure (BP). It is not clear, however, what roles these QTLs play in maintaining normotension. Insights gained toward the maintenance of normotension will shed light on how hypertension can result from a deficiency or malfunctioning of this maintenance. Currently, congenic strains were systematically constructed using Dahl salt-sensitive (DSS) and Lewis (LEW) rats not only to define QTLs (i.e. in DSS background), but also to ascertain effects of the same QTLs in preserving normotension (i.e. in LEW background), a first such study. Results showed that although LEW alleles for two QTLs on Chromosome (Chr) 18 lowered BP on the DSS background, their BP-increasing DSS alleles failed to influence BP in the LEW background. To further prove that the LEW background is resistant and the DSS background is susceptible to the effects of QTLs, BP-increasing alleles of a QTL on Chr 2 were introgressed into the DSS background, and its BP-decreasing alleles into the LEW background. Indeed, there was no BP-decreasing effect on the LEW background while demonstrating a BP-increasing effect on the DSS background. Thus, a genetic regulation of BP QTLs in the LEW genome inhibits BP changes by nullifying the effects of BP-altering QTLs. In comparison, the DSS genome must have lost the buffering capacity for stabilizing BP. The current work presents good evidence that a lack of regulation for functions of BP QTLs is a potential underlying cause of hypertension.
Collapse
|
184
|
Yamazato M, Ohya Y, Nakamoto M, Sakima A, Tagawa T, Harada Y, Nabika T, Takishita S. Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am J Physiol Regul Integr Comp Physiol 2005; 290:R709-14. [PMID: 16239369 DOI: 10.1152/ajpregu.00610.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.
Collapse
Affiliation(s)
- Masanobu Yamazato
- Department of Cardiovascular Medicine, Nephrology and Neurology, University of the Ryukyus, School of Medicine, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Inomata H, Watanabe T, Iizuka Y, Liang YQ, Mashimo T, Nabika T, Ikeda K, Yanai K, Gotoda T, Yamori Y, Isobe M, Kato N. Identification of quantitative trait loci for cardiac hypertrophy in two different strains of the spontaneously hypertensive rat. Hypertens Res 2005; 28:273-81. [PMID: 16097372 DOI: 10.1291/hypres.28.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac hypertrophy and left ventricular hypertrophy are known to be substantially controlled by genetic factors. As an experimental model, we undertook genome-wide screens for cardiac mass in F2 populations bred from the stroke-prone spontaneously hypertensive rats (SHRSP) and normal spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) of a Japanese colony. Two F2 cohorts were independently produced: F2(SHRSP x WKY) (110 male and 110 female rats) and F2(SHR x WKY) (151 male rats). The ratio of heart weight to body weight (Hw/Bw) was evaluated at 12 months of age in F2(SHRSP x WKY) after salt-loading for 7 months, and at around 15 weeks of age in F2(SHR x WKY) who had been fed a normal rat chow diet. Subsequent to an initial screen with 251 markers in F2(SHRSP x WKY) male progeny, 170 and 161 markers were selected and characterized in F2(SHRSP x WKY) female progeny and F2(SHR x WKY) male progeny, respectively. Markers from four chromosomal regions showed suggestive or significant linkage to Hw/Bw. The strongest and the most consistent linkage was found in the vicinity of D3Mgh16 on rat chromosome (RNO) 3 (a maximal log of the odds score reached 4.0 to 6.6 across the F2 populations studied). In the other three regions on RNO6, RNO10 and RNO13, the degree of linkage was more prominent in either males or females. These data provide solid evidence for a "principal" RNO3 quantitative trait loci regulating Hw/Bw in SHRSP and SHR, and also suggest the possible presence of sexual dimorphism in regard to genetic susceptibility for cardiac hypertrophy.
Collapse
Affiliation(s)
- Hyoe Inomata
- Department of Gene Diagnostics and Therapeutics, Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Seubert JM, Xu F, Graves JP, Collins JB, Sieber SO, Paules RS, Kroetz DL, Zeldin DC. Differential renal gene expression in prehypertensive and hypertensive spontaneously hypertensive rats. Am J Physiol Renal Physiol 2005; 289:F552-61. [PMID: 15798089 DOI: 10.1152/ajprenal.00354.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of hypertension stems from both environmental and genetic factors wherein the kidney plays a central role. Spontaneously hypertensive rats (SHR) and the nonhypertensive Wistar-Kyoto (WKY) controls are widely used as a model for studying hypertension. The present study examined the renal gene expression profiles between SHR and WKY at a prehypertensive stage (3 wk of age) and hypertensive stage (9 wk of age). Additionally, age-related changes in gene expression patterns were examined from 3 to 9 wk in both WKY and SHR. Five to six individual kidney samples of the same experimental group were pooled together, and quadruplicate hybridizations were performed using the National Institute of Environmental Health Sciences Rat version 2.0 Chip, which contains ∼6,700 genes. Twenty two genes were found to be differentially expressed between SHR and WKY at 3 wk of age, and 104 genes were differentially expressed at 9 wk of age. Soluble epoxide hydrolase ( Ephx2) was found to be significantly upregulated in SHR at both time points and was the predominant outlier. Conversely, elastase 1 ( Ela1) was found to be the predominant gene downregulated in SHR at both time points. Analysis of profiles at 3 vs. 9 wk of age identified 508 differentially expressed genes in WKY rats. In contrast, only 211 genes were found to be differentially expressed during this time period in SHR. The altered gene expression patterns observed in the age-related analysis suggested significant differences in the vascular extracellular matrix system between SHR and WKY kidney. Together, our data highlight the complexity of hypertension and the numerous genes involved in and affected by this condition.
Collapse
Affiliation(s)
- J M Seubert
- Division of Intramural Research, National Center for Toxicogenomics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Xie HH, Shen FM, Miao CY, Su DF. Blood pressure, baroreflex sensitivity, and end organ damage in hybrid offspring of spontaneously hypertensive rats and Sprague-Dawley rats. Acta Pharmacol Sin 2005; 26:1049-56. [PMID: 16115370 DOI: 10.1111/j.1745-7254.2005.00162.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the blood pressure (BP), baroreflex sensitivity (BRS), and organ damage in hybrids of spontaneously hypertensive rats and Sprague-Dawley rats. METHODS Spontaneously hypertensive rats and Sprague-Dawley rats were crossbred, and the F1 hybrids were inbred randomly to produce an F2 generation. At the age of 52 weeks, the F1 and F2 hybrids were tested to determine BP and BRS in a conscious state. Histopathological examinations were carried out after BP recording and BRS studies. RESULTS BP and BRS were not different in F1 and F2 hybrids. BRS was inversely related to systolic BP (SBP) in male, female, or whole populations of hybrids. Quantitatively, BRS values were one-third determined by SBP level (the determinant coefficient was 0.326). The indexes for left ventricular hypertrophy, aortic hypertrophy, and renal damage were all positively related to BP, and negatively related to BRS. In multiple-regression analysis, left ventricular and aortic hypertrophy and glomerulosclerosis score were all most significantly associated with lower BRS and higher systolic BP. The contribution of BRS to left ventricular and aortic hypertrophy and glomerulosclerosis was greater than that of SBP. CONCLUSION The present work with hybrid rats demonstrated quantitatively that the BRS value was one-third determined by SBP level. Both BP level and BRS value contributed greatly to the hypertensive organ damage. However, the contribution of BRS to the hypertensive organ damage was greater than that of BP level in these rats.
Collapse
Affiliation(s)
- He-hui Xie
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
188
|
Twigger SN, Pasko D, Nie J, Shimoyama M, Bromberg S, Campbell D, Chen J, dela Cruz N, Fan C, Foote C, Harris G, Hickmann B, Ji Y, Jin W, Li D, Mathis J, Nenasheva N, Nigam R, Petri V, Reilly D, Ruotti V, Schauberger E, Seiler K, Slyper R, Smith J, Wang W, Wu W, Zhao L, Zuniga-Meyer A, Tonellato PJ, Kwitek AE, Jacob HJ. Tools and strategies for physiological genomics: the Rat Genome Database. Physiol Genomics 2005; 23:246-56. [PMID: 16106031 PMCID: PMC4505745 DOI: 10.1152/physiolgenomics.00040.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The broad goal of physiological genomics research is to link genes to their functions using appropriate experimental and computational techniques. Modern genomics experiments enable the generation of vast quantities of data, and interpretation of this data requires the integration of information derived from many diverse sources. Computational biology and bioinformatics offer the ability to manage and channel this information torrent. The Rat Genome Database (RGD; http://rgd.mcw.edu) has developed computational tools and strategies specifically supporting the goal of linking genes to their functional roles in rat and, using comparative genomics, to human and mouse. We present an overview of the database with a focus on these unique computational tools and describe strategies for the use of these resources in the area of physiological genomics.
Collapse
Affiliation(s)
- Simon N Twigger
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Kim EH, Lee CH, Hyun BH, Suh JG, Oh YS, Namikawa T, Ishikawa A. Quantitative trait loci for proteinuria in the focal glomerulosclerosis mouse model. Mamm Genome 2005; 16:242-50. [PMID: 15965785 DOI: 10.1007/s00335-004-3023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
The FGS/Kist strain of mice, a new animal model for focal glomerulosclerosis (FGS) in humans, was previously established by recurrent selection for high proteinuria, which is a principal marker of FGS, from descendants of CBA/Nga and RFM/Nga strains. We performed a genome-wide scan for quantitative trait loci (QTLs) affecting proteinuria in a population of 356 backcross progeny derived from a cross between FGS/Kist and the standard normal strain, C57BL/6J. Five proteinuria QTLs (Ptnu1-5) were detected at the genome-wide 5% or less level. Ptnu1 and Ptnu2, located on Chromosomes (Chrs) 8 and 17, respectively, had main effects on proteinuria and also interacted epistatically with each other. However, Ptnu3 on Chr 9 and Ptnu4 and Ptnu5 both on Chr 15 had epistatic interaction effects only. Except for the epistatic interaction effect of Ptnu4 and Ptnu5, all alleles derived from FGS/Kist were responsible for the high proteinuria. These results indicated that the genetic control of proteinuria is complex and the identified QTLs may provide new insights into the pathogenesis of FGS in mice as well as in humans.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
190
|
Zhan LS, Guan YF, Su DF, Miao CY. Blood pressure variability and baroreflex sensitivity are not different in spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats. Acta Pharmacol Sin 2005; 26:959-62. [PMID: 16038628 DOI: 10.1111/j.1745-7254.2005.00144.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To demonstrate and compare hemodynamic phenotypes of blood pressure (BP), blood pressure variability (BPV) and baroreflex sensitivity (BRS) in genetic hypertensive rats. METHODS BP was recorded continuously in conscious, freely moving rats using a computerized technique. BPV was expressed as the standard deviation of beat-to-beat BP values during a 1-h period. BRS was determined by measuring the heart period prolongation in response to the elevation in BP produced by an intravenous injection of phenylephrine. RESULTS Body weight and heart period were not different between spontaneously hypertensive rats (SHR) and stroke-prone spontaneously hypertensive rats (SHR-SP) at the age of 15 weeks. The BP level was markedly higher in SHR-SP than SHR, whereas there were no significant differences in BPV and BRS. Quantitatively, systolic, diastolic and mean BP were significantly elevated by 36.9%, 42.9% and 39.5%, respectively, in SHR-SP compared with SHR (P < 0.01). However, their variabilities were elevated only by 14.0%, 0.4% and 10.1%, respectively, without statistical significance (P > 0.05). CONCLUSION BPV and BRS were not changed in parallel with the BP alterations in SHR and SHR-SP.
Collapse
Affiliation(s)
- Lin-shu Zhan
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
191
|
Lang F, Capasso G, Schwab M, Waldegger S. Renal tubular transport and the genetic basis of hypertensive disease. Clin Exp Nephrol 2005; 9:91-9. [PMID: 15980941 DOI: 10.1007/s10157-005-0355-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Several monogenic hypertensive disorders are caused by genetic mutations leading to the deranged function and/or regulation of renal tubular NaCl transport, such as mutations of the renal epithelial Na+ channel (ENaC) in Liddle syndrome, of the kinase WNK1 (with no K) in Gordon syndrome, and of the mineralocorticoid receptor, or of 11beta-hydroxysteroid dehydrogenase. Moreover, excessive formation of aldosterone in glucocorticoid-remediable hypertension leads to severe hypertension. Conversely, impaired function of the Na+,K+,2Cl- cotransporter (NKCC2), the renal outer medullary K+ channel (ROMK1), and the renal epithelial Cl- channel ClCKb/Barttin causes Bartter syndrome and defective Na+,Cl+ cotransporter (NCCT) Gitelman syndrome, salt-wasting disorders with hypotension. These monogenic disorders are rare, but illustrate the significance of renal tubular transport in blood pressure regulation. There is little doubt, however, that deranged renal salt reabsorption significantly contributes to essential hypertension polymorphisms of several genes participating in the regulation of renal Na+ transport have been shown to be associated with blood pressure and prevalence of hypertension. Two common genes will be discussed in more detail. The first encodes the renal Cl- channel ClCKb. A gain-of-function mutation of ClCKb, increasing channel activity by 7- to 20-fold is found in approximately 20% of unselected Caucasians and 40% of an unselected African population. The second common gene variant (prevalence, 3%-5% in unselected Caucasians), to be discussed in more detail, affects the serum and glucocorticoid inducible kinase SGK1, a kinase upregulated by mineralocorticoids and enhancing the activity of ENaC, ROMK, and Na+/K+ATPase. Both gene variants are associated with slightly increased blood pressure. SGK1 further stimulates the glucose transporter SGLT1, and the SGK1 gene variant correlates, in addition, with increased body mass index.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
192
|
Smits BMG, Peters TA, Mul JD, Croes HJ, Fransen JAM, Beynon AJ, Guryev V, Plasterk RHA, Cuppen E. Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics. Genetics 2005; 170:1887-96. [PMID: 15965244 PMCID: PMC1449770 DOI: 10.1534/genetics.105.044222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rat is the most extensively studied model organism and is broadly used in biomedical research. Current rat disease models are selected from existing strains and their number is thereby limited by the degree of naturally occurring variation or spontaneous mutations. We have used ENU mutagenesis to increase genetic variation in laboratory rats and identified a recessive mutant, named tornado, showing aberrant circling behavior, hyperactivity, and stereotypic head shaking. More detailed analysis revealed profound deafness due to disorganization and degeneration of the organ of Corti that already manifests at the onset of hearing. We set up a single nucleotide polymorphism (SNP)-based mapping strategy to identify the affected gene, revealing strong linkage to the central region of chromosome 1. Candidate gene resequencing identified a point mutation that introduces a premature stopcodon in Myo7a. Mutations in human MYO7A result in Usher syndrome type 1B, a severe autosomal inherited recessive disease that involves deafness and vestibular dysfunction. Here, we present the first characterized rat model for this disease. In addition, we demonstrate proof of principle for the generation and cloning of human disease models in rat using ENU mutagenesis, providing good perspectives for systematic phenotypic screens in the rat.
Collapse
Affiliation(s)
- Bart M G Smits
- Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
Dietary salt is the major cause of the rise in the blood pressure with age and the development of high blood pressure in populations. However, the mechanisms whereby salt intake raises the blood pressure are not clear. Existing concepts focus on the tendency for an increase in extracellular fluid volume (ECV), but an increased salt intake also induces a small rise in plasma sodium, which increases a transfer of fluid from the intracellular to the extracellular space, and stimulates the thirst center. Accordingly, the rise in plasma sodium is responsible for the tendency for an increase in ECV. Although the change in ECV may have a pressor effect, the associated rise in plasma sodium itself may also cause the blood pressure to rise. There is some evidence in patients with essential hypertension and the spontaneously hypertensive rat (SHR) that plasma sodium may be raised by 1 to 3 mmol/L. An experimental rise in sodium concentration greater than 5 mmol/L induces pressor effects on the brain and on the renin-angiotensin system. Such a rise can also induce changes in cultured vascular tissue similar to those that occur in the vessels of humans and animals on a high sodium diet, independent of the blood pressure. We suggest that a small increase in plasma sodium may be part of the mechanisms whereby dietary salt increases the blood pressure.
Collapse
Affiliation(s)
- Hugh E de Wardener
- Department of Clinical Chemistry, Imperial College, Charing Cross Hospital Campus, London, United Kingdom
| | | | | |
Collapse
|
194
|
Abstract
PURPOSE OF REVIEW Limited to 2003-2004 publications, this review focuses on 'big picture' concepts learned from rat genetic studies of cardiovascular disease. RECENT DEVELOPMENTS Analysis reveals insights into pathogenic paradigms, as well as experimental perspectives into rat-based systems of analyses of complex cardiovascular disease. Key concepts are forwarded. Multiple susceptibility genes underlie several quantitative trait loci for blood pressure suggesting a 'quantitative trait loci cluster' concept; hypertension end-organ disease quantitative trait loci are distinct from blood pressure quantitative trait loci indicating differential susceptibility paradigms for hypertension and each complication (stroke, renal disease, cardiac hypertrophy); distinct blood pressure quantitative trait loci are found in males and females indicating gender-specific susceptibility; and genetic subtypes comprise polygenic hypertension in rat models suggesting a genetic basis for clinical heterogeneity of human essential hypertension. Gender specific genetic susceptibility plays a key role in coronary artery disease susceptibility; multiple distinct quantitative trait loci underlie hyperlipidemia and type-2 diabetes, indicating multiple susceptibilities in risk factors for cardiovascular disease. Studies in transgenic inbred rat-strain models demonstrate value for serial, complex, cardiovascular pathophysiological analyses within a genetic context. SUMMARY Cognizant of the limitations of animal model studies, observations from rat genetic studies provide insight into respective modeled human cardiovascular diseases and risk factor susceptibility, as well as systematically dissect the multifaceted complexities apparent in human complex cardiovascular disease. Given the recapitulation of many features of human cardiovascular disease, the value of rat model-based genetic studies for complex cardiovascular disease is unequivocal, thus mandating the expansion of resources for maximization of rat-based genetic studies.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
195
|
McBride MW, Brosnan MJ, Mathers J, McLellan LI, Miller WH, Graham D, Hanlon N, Hamilton CA, Polke JM, Lee WK, Dominiczak AF. Reduction of
Gstm1
Expression in the Stroke-Prone Spontaneously Hypertension Rat Contributes to Increased Oxidative Stress. Hypertension 2005; 45:786-92. [PMID: 15699453 DOI: 10.1161/01.hyp.0000154879.49245.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human essential hypertension is a classic example of a complex, multifactorial, polygenic disease with a substantial genetic influence in which the underlying genetic components remain unknown. The stroke-prone spontaneously hypertension rat (SHRSP) is a well-characterized experimental model for essential hypertension and endothelial dysfunction. Previous work, identified glutathione
S
-transferase μ type 1, a protein involved in detoxification of reactive oxygen species, as a positional and functional candidate gene. Quantitative real-time polymerase chain reaction showed a highly significant, 4-fold reduction of glutathione
S
-transferase μ type 1 mRNA expression in 5- and 16-week-old SHRSP compared with the congenic and normotensive Wistar Kyoto rats. This suggests that differential expression is not attributable to long-term changes in blood pressure. DNA sequencing identified one coding single nucleotide polymorphism (R202H) and multiple single nucleotide polymorphisms in the promoter region. mRNA expression changes were reflected at the protein level, with significant reductions in the SHRSP glutathione
S
-transferase μ type 1. Protein was colocalized with aquaporin 2 to the principle cells of the renal collecting ducts. Coupled to significant increases in nitrotyrosine levels in the kidney, this suggests a pathophysiological role of this protein in hypertension and oxidative stress. Similar processes may underlie oxidative stress in the vasculature.
Collapse
Affiliation(s)
- Martin W McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dominiczak AF, Graham D, McBride MW, Brain NJR, Lee WK, Charchar FJ, Tomaszewski M, Delles C, Hamilton CA. Cardiovascular Genomics and Oxidative Stress. Hypertension 2005; 45:636-42. [PMID: 15699472 DOI: 10.1161/01.hyp.0000154253.53134.09] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of modifiable cardiovascular risk factors are complex, polygenic, or at least oligogenic traits, with genetic and environmental determinants playing important roles in disease risk and its phenotypic expression. The Human Genome Project and subsequent mouse and rat genome data have provided powerful tools to commence the dissection of genetic determinants of hypertension and other cardiovascular risk factors. Despite several new methodologies such as genome-wide scans, genome-wide gene expression profiling, and proteomic screens, it is fair to say that the progress of genetic studies designed as nonhypothesis driven has been relatively slow. On the other hand, several interesting candidate pathways have been identified, where investigators allowed for hypothesis-driven functional studies. One example of such pathway is vascular oxidative stress with its extensive network of genes and proteins, many with proven contributions to cardiovascular disease. Therefore, in parallel to genome-wide or proteome-wide studies, it will be constructive to pursue “pathwayomics” defined here as functional studies of a candidate pathway for disease pathogenesis.
Collapse
Affiliation(s)
- Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, Western Infirmary, University of Glasgow, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Tsukahara C, Sugiyama F, Paigen B, Kunita S, Yagami KI. Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ x C3H/HeJ intercross. Mamm Genome 2005; 15:943-50. [PMID: 15599552 DOI: 10.1007/s00335-004-2411-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/22/2004] [Indexed: 10/24/2022]
Abstract
We characterized the systolic and diastolic blood pressures of 10-week-old males from 15 inbred mouse strains and found that blood pressures among strains were continuously distributed and that strain C3H/HeJ had the lowest mean systolic and diastolic pressure (100.5 +/- 3.2 and 66.8 +/- 3.5 mmHg), and a strain with obesity and diabetes, NZO/HILtJ, had the highest (132.4 +/- 3.1 and 86.6 +/- 6.9 mmHg). To understand the relationship of blood pressure with insulin resistance and obesity, we produced F1 and F2 progeny from reciprocal crosses of NZO, the strain with obesity, diabetes, and high blood pressure, and the strain with the lowest blood pressures, C3H/HeJ. Mean systolic pressures of 10-week-old (NZO x C3H)F1 and (C3H x NZO)F1 males were similar to each other (114.9 +/- 3.8 and 117.2 +/- 5.0 mmHg) and were intermediate to those of the parental strains. Systolic pressure of F2 males (n = 223) was distributed normally about the mean, suggesting that blood pressure is a polygenic trait. The body mass index (BMI) and plasma insulin levels of F2 progeny correlated significantly and positively with plasma leptin levels, suggesting that obesity is associated with insulin resistance. In contrast, systolic pressure did not correlate with BMI, plasma leptin levels, and plasma insulin levels, suggesting that genes underlying the development of hypertension in this intercross are not associated with the development of obesity and insulin resistance. Our results demonstrate that the progeny of NZO and C3H intercrosses are a practical and powerful tool for identifying blood pressure genes and for understanding human polygenic hypertension.
Collapse
Affiliation(s)
- Chieko Tsukahara
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | | | | | | | | |
Collapse
|
198
|
Komajda M, Charron P. A new approach for the identification of modifier genes in heart failure. THE PHARMACOGENOMICS JOURNAL 2005; 4:221-3. [PMID: 15159767 DOI: 10.1038/sj.tpj.6500257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
199
|
Garrett MR, Meng H, Rapp JP, Joe B. Locating a Blood Pressure Quantitative Trait Locus Within 117 kb on the Rat Genome. Hypertension 2005; 45:451-9. [PMID: 15655120 DOI: 10.1161/01.hyp.0000154678.64340.7f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously, a blood pressure (BP) quantitative trait locus (QTL) on rat chromosome 9 (RNO9) was localized to a <2.4 cM interval using congenic strains generated by introgressing segments of RNO9 from the Dahl salt-resistant (R) rat into the background of the Dahl salt-sensitive (S) rat. Renal gene expression using Affymetrix gene chips was profiled on S and a congenic strain spanning the 2.4-cM BP QTL interval. This analysis identified 20 differentially expressed genes/expressed sequence tags. Of these, the locus with the greatest differential expression (30- to 35-fold) was regulated endocrine-specific protein 18 (
Resp18
), which also mapped in the 2.4-cM BP QTL interval. Additional substitution mapping located the QTL to <0.4 cM or ≈493 kb. This newly defined QTL region still included
Resp18
. Nucleotide variants were identified between S and R genomic DNA of
Resp18
in the coding, 5′ regulatory and 3′ untranslated regions. The coding sequence variation (T/C) occurs in exon 2 and predicts an amino acid change (Ile/Val) in the protein product.
Resp18
was considered a differentially expressed positional candidate for the QTL. To fine-map the BP QTL, we constructed a congenic strain with a smaller introgressed region. Compared with the S rat, this strain (1) had significantly lower BP, (2) did not contain the R form of
Resp18
, and (3) did not retain the rather spectacular differential expression of
Resp18.
Together, these results demonstrate that a BP QTL independent of
Resp18
exists within the newly defined 117-kb QTL region on RNO9.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Physiology and Cardiovascular Genomics, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | | | |
Collapse
|
200
|
Gauguier D, Behmoaras J, Argoud K, Wilder SP, Pradines C, Bihoreau MT, Osborne-Pellegrin M, Jacob MP. Chromosomal Mapping of Quantitative Trait Loci Controlling Elastin Content in Rat Aorta. Hypertension 2005; 45:460-6. [PMID: 15668357 DOI: 10.1161/01.hyp.0000155213.83719.7c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.
Collapse
Affiliation(s)
- Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|