151
|
Ioannou P, Katsoulieris E, Afratis NA. Matrix Dynamics and Microbiome Crosstalk: Matrix Metalloproteinases as Key Players in Disease and Therapy. Int J Mol Sci 2025; 26:3621. [PMID: 40332093 PMCID: PMC12027064 DOI: 10.3390/ijms26083621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix (ECM) remodeling, regulating a wide range of cellular and immune processes in both homeostatic and pathological conditions. Host-microbiota interactions play a critical role in maintaining ECM balance; however, during dysbiosis, this regulation is disrupted, leading to compromised barrier integrity, pathogen translocation into circulation, and the development of systemic diseases and cancer. This review highlights the bidirectional relationship between MMP expression/activity and microbiota dysbiosis, emphasizing tissue-specific alterations in MMP activity that contribute to disease progression. In addition, it integrates interdisciplinary evidence to illustrate the MMP-dependent mechanisms underlying various pathologies associated with oral and gut microbiome dysbiosis, including long-range effects through the gut-skin and gut-brain axes. Thus, this review introduces the emerging field of MatrixBiome, which explores the complex interactions between the ECM, microbiota, and host tissues. Finally, it also outlines therapeutic strategies to modulate MMP levels, either indirectly through microbiome-targeted approaches (e.g., prebiotics, probiotics, and postbiotics) or directly using MMP inhibitors, offering promising avenues for future clinical interventions.
Collapse
Affiliation(s)
- Paraskevi Ioannou
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Elias Katsoulieris
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Nikolaos A. Afratis
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
152
|
Komemi O, Orbuch E, Jarchowsky-Dolberg O, Brin YS, Tartakover-Matalon S, Pasmanik-Chor M, Lishner M, Drucker L. Myeloma mesenchymal stem cells' bioenergetics afford a novel selective therapeutic target. Oncogenesis 2025; 14:9. [PMID: 40216736 PMCID: PMC11992228 DOI: 10.1038/s41389-025-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Bone-marrow mesenchymal stem cells (BM-MSCs) rely on glycolysis, yet their trafficked mitochondria benefit recipient cells' bioenergetics in regenerative and cancerous settings, most relevant to BM-resident multiple myeloma (MM) cells. Fission/fusion dynamics regulate mitochondria function. Proteomics demonstrates excessive mitochondrial processes in BM-MSCs from MM patients compared to normal donors (ND). Thus, we aimed to characterize BM-MSCs (ND, MM) mitochondrial fitness, bioenergetics and dynamics with a focus on therapeutics. MM-MSCs displayed compromised mitochondria evidenced by decreased mitochondrial membrane potential (ΔΨm) and elevated proton leak. This was accompanied by stimulation of stress-coping mechanisms: spare respiratory capacity (SRC), mitochondrial fusion and UPRmt. Interfering with BM-MSCs mitochondrial dynamics equilibrium demonstrated their significance to bioenergetics and fitness according to the source. While ND-MSCs depended on fission, reducing MM-MSCs fusion attenuated glycolysis, OXPHOS and mtROS. Interestingly, optimization of mtROS levels is central to ΔΨm preservation in MM-MSCs only. MM-MSCs also demonstrated STAT3 activation, which regulates their OXPHOS and SRC. Targeting MM-MSC' SRC with Venetoclax diminished their pro-MM support and sensitized co-cultured MM cells to Bortezomib. Overall, MM-MSCs distinct mitochondrial bioenergetics are integral to their robustness. Repurposing Venetoclax as anti-SRC treatment in combination with conventional anti-MM drugs presents a potential selective way to target MM-MSCs conferred drug resistance.
Collapse
Affiliation(s)
- Oded Komemi
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elina Orbuch
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Jarchowsky-Dolberg
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | | | - Shelly Tartakover-Matalon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Autoimmunity Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W., Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
153
|
Diop K, Mbaye B, Nili S, Filin A, Benlaifaoui M, Malo J, Renaud AS, Belkaid W, Hunter S, Messaoudene M, Lee KA, Elkrief A, Routy B. Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors. Gut Pathog 2025; 17:21. [PMID: 40217292 PMCID: PMC11992761 DOI: 10.1186/s13099-025-00694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The gut microbiome represents a novel biomarker for melanoma and non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Gut microbiome metagenomics profiling studies of patients treated with immunotherapy identified bacteria associated with ICI efficacy, while others have been linked to resistance. However, limitations of metagenomics sequencing, such as complex bioinformatic processing requirements, necessity of a threshold for positive detection, and the inability to detect live organisms, have hindered our ability to fully characterize the gut microbiome. Therefore, combining metagenomics with high-throughput culture-based techniques (culturomics) represents an ideal strategy to fully characterize microbiome composition to more robustly position the microbiome as a biomarker of response to ICI. METHODS We performed culturomics using fecal samples from 22 patients from two academic centres in Canada and the United Kingdom with NSCLC and cutaneous melanoma treated with ICI (cancer group), comparing their microbiome composition to that of 7 healthy volunteers (HV), along with matching shotgun metagenomics sequencing. RESULTS For culturomics results, 221 distinct species were isolated. Among these 221 distinct species, 182 were identified in the cancer group and 110 in the HV group. In the HV group, the mean species richness was higher compared to the cancer group (34 vs. 18, respectively, p = 0.002). Beta diversity revealed separate clusters between groups (p = 0.004). Bifidobacterium spp. and Bacteroides spp. were enriched in HV, while cancer patients showed an overrepresentation of Enterocloster species, as well as Veillonella parvula. Next, comparing cancer patients' clinical outcomes to ICI, we observed that among the 20 most abundant bacteria present in non-responder patients, 2 belonged to the genus Enterocloster, along with an enrichment of Hungatella hathewayi and Cutibacterium acnes. In contrast, responders to ICI exhibited a predominance of Bacteroides spp. In NSCLC patients, metagenomics analysis revealed that of the 154 bacteria species isolated through culturomics, 61/154 (39%) were also identified by metagenomics sequencing. Importantly, 94 individual species were uniquely detected by culturomics. CONCLUSION These findings highlight that culturomics and metagenomics can serve as complementary tools to characterize the microbiome in patients with cancer. This integrated approach uncovers specific microbiome signatures that differentiate HV from cancer patients, and identifies specific species associated with therapy response and resistance.
Collapse
Affiliation(s)
| | | | | | - Alysé Filin
- Centre de Recherche du CHUM, Montreal, Canada
| | | | - Julie Malo
- Centre de Recherche du CHUM, Montreal, Canada
| | | | | | | | | | - Karla A Lee
- Departement of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Arielle Elkrief
- Centre de Recherche du CHUM, Montreal, Canada.
- Departement of Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| | - Bertrand Routy
- Centre de Recherche du CHUM, Montreal, Canada.
- Departement of Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| |
Collapse
|
154
|
Pereira-Vieira J, Granja S, Celeiro SP, Barbosa-Matos C, Preto A, Queirós O, Ko YH, Casal M, Baltazar F. 3-Bromopyruvate boosts the effect of chemotherapy in acute myeloid leukemia by a pro-oxidant mechanism. Free Radic Biol Med 2025; 234:192-202. [PMID: 40222425 DOI: 10.1016/j.freeradbiomed.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Acute myeloid leukemia (AML) comprises a diverse group of blood cancers with varying genetic, phenotypic, and clinical traits, making development of targeted therapy challenging. Metabolic reprogramming in AML has been described as relevant for chemotherapy effectiveness. 3-Bromopyruvate (3-BP) is an anticancer agent that undermines energy metabolism of cancer cells. However, the effect of 3-BP in hematologic malignancies, such as AML, needs further investigation. Thus, we aimed to explore 3-BP as a chemo-sensitizing agent in AML. Different approaches of combining 3-BP with classical chemotherapy (daunorubicin and cytarabin) were tested in diverse AML cell lines. Cell sensitivity to the different drug combinations was analyzed by Trypan blue staining. The effect of pre-treatment with a non-toxic concentration of 3-BP was assessed on the AML cell metabolic profile (Western blot and immunofluorescence), mitochondrial activity (cytometry flow), and antioxidant capacity (colorimetric detection kit). KG-1 and MOLM13 cells showed increased sensitivity to chemotherapy (decreased EC50 values) after exposure to a non-toxic concentration (5 μM) of 3-BP. In both cell lines, 5 μM 3-BP decreased glucose consumption without changing extracellular lactate levels. 5 μM 3-BP treatment increased reactive oxygen species levels and decreased cell antioxidant capacity by depleting reduced glutathione levels in both KG-1 and MOLM13 cells. Our results demonstrate that non-toxic concentrations of 3-BP enhance the effect of classical chemotherapy in AML cells through a pro-oxidant mechanism. These data unveiled a new approach for AML treatment, using 3-BP or other pro-oxidant agents as co-adjuvants of chemotherapy, subsiding chemotherapy-induced side effects.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072, Porto, Portugal.
| | - Sónia Pires Celeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ana Preto
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal.
| | - Odília Queirós
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal.
| | - Young Hee Ko
- KoDiscovery, LLC, Institute of Marine and Environmental Technology (IMET) Center, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| | - Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
155
|
Gao X, Liu F, Zhang B, Ren T, Zheng Y, Niu Z, Ren H, Liu C, Jiang C, Wang C, Huang H, Ma L, Sun Q. CDC25A inhibition sensitizes melanoma cells to doxorubicin and NK cell therapy. Cell Death Dis 2025; 16:276. [PMID: 40216745 PMCID: PMC11992059 DOI: 10.1038/s41419-025-07598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Cell division cycle 25 (CDC25) phosphatases serve as crucial regulators of cell cycle phase transitions and essential components of the checkpoint machinery involved in DNA damage response. Emerging evidence indicates the oncogenic potential of CDC25 family members across various cancers. However, comprehensive insights into the expression pattern and function of the CDC25 family in diverse cancers remain unexplored. In our study, we investigated CDC25 family using multiple databases, including gene expression levels, molecular signatures, diagnosis value, and prognostic value in pan-cancer. Furthermore, we focused on melanoma and systematically explored CDC25A expression and its clinical correlations. As a result, the expression of CDC25 family members is significantly abnormal in most cancers, correlating with poorer prognosis. CDC25 family members are differently regulated by DNA methylation and genetic alterations across various cancers. In addition, CDC25 family plays a critical role in the malignant progression of melanoma. Functional investigation reveals that CDC25A inhibition suppresses the proliferation of melanoma cells and sensitizes melanoma cells to chemotherapy and NK cell therapy. In conclusion, our study suggests that CDC25 family may serve as a significant biomarker for diagnosis and prognosis across multiple cancers, with CDC25A as a promising therapeutic target for melanoma.
Collapse
Affiliation(s)
- Xinyue Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Feichang Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tianyi Ren
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - You Zheng
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Zubiao Niu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - He Ren
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chenyu Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chengzuo Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
- Department of Biology, Hainan Medical University, Haikou, China
| | - Chenxi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China.
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Qiang Sun
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China.
| |
Collapse
|
156
|
Erreni M, Fumagalli MR, Marozzi M, Leone R, Parente R, D’Anna R, Doni A. From surfing to diving into the tumor microenvironment through multiparametric imaging mass cytometry. Front Immunol 2025; 16:1544844. [PMID: 40292277 PMCID: PMC12021836 DOI: 10.3389/fimmu.2025.1544844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem where malignant and non-malignant cells cooperate and interact determining cancer progression. Cell abundance, phenotype and localization within the TME vary over tumor development and in response to therapeutic interventions. Therefore, increasing our knowledge of the spatiotemporal changes in the tumor ecosystem architecture is of importance to better understand the etiologic development of the neoplastic diseases. Imaging Mass Cytometry (IMC) represents the elective multiplexed imaging technology enabling the in-situ analysis of up to 43 different protein markers for in-depth phenotypic and spatial investigation of cells in their preserved microenvironment. IMC is currently applied in cancer research to define the composition of the cellular landscape and to identify biomarkers of predictive and prognostic significance with relevance in mechanisms of drug resistance. Herein, we describe the general principles and experimental workflow of IMC raising the informative potential in preclinical and clinical cancer research.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matteo Marozzi
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Roberto Leone
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
157
|
Lima I, Borges F, Pombinho A, Chavarria D. The spindle assembly checkpoint: Molecular mechanisms and kinase-targeted drug discovery. Drug Discov Today 2025; 30:104355. [PMID: 40216293 DOI: 10.1016/j.drudis.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism required for the fidelity of chromosome segregation, ensuring that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. In cancer cells, SAC inactivation leads to aneuploidy beyond the cell's adaptation, culminating in cell death. This review provides a concise overview of the SAC signaling process and properties. Recent drug discovery strategies to selectively target kinases, particularly Aurora B and monopolar spindle kinase (MPS1), aimed at developing innovative anticancer agents able to override SAC are also presented.
Collapse
Affiliation(s)
- Inês Lima
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António Pombinho
- i3S, Institute for Research and Innovation in Health, University of Porto 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, University of Porto 4200-135 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
158
|
Sufiyan S, Salam H, Ilyas S, Amin W, Arshad F, Fatima K, Naeem S, Laghari AA, Enam SA, Mughal N. Prognostic implications of DNA methylation machinery (DNMTs and TETs) expression in gliomas: correlations with tumor grading and patient survival. J Neurooncol 2025:10.1007/s11060-025-05032-x. [PMID: 40208514 DOI: 10.1007/s11060-025-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE DNA methylation is a crucial epigenetic modification that regulates gene expression and chromatin structure. Its dysregulation is linked to glioma progression and prognosis, particularly through alterations in methylation machinery. DNMTs and TETs play key roles in these processes, but their involvement in gliomagenesis remains complex, especially in the context of IDH mutations. This study examines the expression patterns of DNMT and TET family genes in gliomas to assess their prognostic significance and therapeutic potential. MATERIALS AND METHODS mRNA expression levels of DNMT1, DNMT3A, DNMT3B, DNMT3L, TET1, TET2, TET3, and TDG were analyzed in 75 glioma samples and 10 normal controls using real-time quantitative PCR (qPCR). Statistical analyses and graphical representation were performed using R (v3.3.2) and RStudio (v1.4.1717), with p-values < 0.05 considered significant. Findings were validated using publicly available databases, TCGA and CGGA. RESULTS Compared to normal controls, DNMTs and TETs were significantly downregulated in gliomas, with expression levels inversely correlated with histological grade. Survival analysis using the log-rank test demonstrated a significant association between lower TETs and DNMTs expression and an increased risk of mortality. However, multivariate Cox regression analysis indicated that DNMTs and TETs expression were not independent prognostic markers for patient survival, suggesting their impact may be influenced by other clinical and molecular factors. Validation through online databases (TCGA and CGGA) showed that TET family expression across histological grades was consistent with our samples, whereas TDG and DNMT family expression differed. CONCLUSION Our findings suggest that DNMTs and TETs may serve as therapeutic targets in glioma due to their downregulation and association with survival, with TET family members (TET1, TET2, and TET3) validated through online databases. However, their prognostic value is limited, as other clinical and molecular factors influence patient outcomes. The downregulation of DNMTs in our samples compared to online databases can be attributed to distinct epigenetic mechanisms: in IDH-mutant gliomas, DNMT suppression results from global hypermethylation (G-CIMP) due to 2-HG accumulation, which inhibits TET enzymes and disrupts DNA methylation homeostasis. In contrast, IDH-wildtype high-grade gliomas exhibit global hypomethylation, genomic instability, oncogenic signaling, and dedifferentiation, reducing the demand for active DNA methylation maintenance. These findings underscore the complex regulation of DNMTs and TETs in gliomas and their potential therapeutic implications.
Collapse
Affiliation(s)
- Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 75300, Pakistan
| | | | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Nouman Mughal
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
159
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
160
|
Ni C, Hua R, Yang Y, Liang J, Liu W, Wang L, Yao X, Li A, Yu L, Feng R, Lv D, Qin Z, Zhai W. Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate stratification of patients with extrahepatic cholangiocarcinoma. BMC Gastroenterol 2025; 25:235. [PMID: 40205358 PMCID: PMC11983802 DOI: 10.1186/s12876-025-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma (eCCA) is a rare but refractory cancer with dense desmoplasia. Prognosis-associated stromal cells in eCCA remain poorly characterized. Here, we profiled the tumor cellular composition and identified prognosis-related stromal signatures by single-cell RNA sequencing (scRNA-seq) in eCCA. ECCA patients were further stratified into different categories based on identified stromal signatures. METHODS Using scRNA-seq, we profiled the transcriptomes of 37,498 individual cells from eight eCCA biopsies, including five tumor tissues and three paired adjacent normal tissues. Bulk RNA sequencing (bRNA-seq) was also performed on 43 eCCA tumor tissues. Stromal cell composition and heterogeneity were examined through differential gene expression and gene set enrichment analyses. By assessing the expression levels of marker genes in bRNA-seq data, the correlation of stromal cell clusters with survival was explored. The GSVA scores of the cell-specific signature genes of the prognosis-related stromal cell subtypes were calculated and used to stratify eCCA patients. RESULTS The results revealed that tumor stroma in eCCA were composed of hematopoietic progenitor-like cells (HPLCs), fibroblasts (Fb), Schwann cells (Sch), endothelial cells and immune cells. Prognosis-associated stromal cell subpopulations included MKI67 + HPLC, TMEM158 + C3-Fb, FOXP3 + regulatory T cells (Treg), SLIT2 + Sch, TPSD1 + C2-mast cells (MC) and CTSG + C3-MC. Based on these stromal signatures, the eCCA tumors were categorized into three classes: proliferative Group 1 with enrichment of MKI67 + HPLC, inflammatory and fibrotic Group 2 with enrichment of TPSD1 + C2- MC, FOXP3 + Treg and TMEM158 + C3-Fb, and neuronal Group 3 with enrichment of SLIT2 + Sch and CTSG + C3-MC. ECCA patients in Group 3 had a better prognosis when compared to Group 1 and 2, reflecting different impact of stromal subtypes on tumor progression. CONCLUSION Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate the stratification of eCCA into proliferative, inflammatory and fibrotic, and neuronal phenotypes, which has important implications on molecular classification and exploring therapeutic targets in eCCA.
Collapse
Affiliation(s)
- Chen Ni
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Rulin Hua
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuanyuan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Linlin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaohan Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Zhihai Qin
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
161
|
Omezzolli G, Iannello A, Vallone FE, Brandimarte L, Micillo M, Bertola N, Lavarello C, Grinovero N, Ferrero G, Mellert K, Möller P, Bruno S, Furman RR, Allan JN, Petretto A, Deaglio S, Ravera S, Vaisitti T. Complementary approaches define the metabolic features that accompany Richter syndrome transformation. Cell Mol Life Sci 2025; 82:152. [PMID: 40204982 PMCID: PMC11982009 DOI: 10.1007/s00018-025-05670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade lymphoma with previously unknown metabolic features. Transcriptomic data from primary CLL and RS samples, as well as RS-patient-derived xenografts, highlighted cellular metabolism as one of the most significant differentially expressed processes. Activity assays of key enzymes confirmed the intense metabolic rewiring of RS cells, which is characterized by an elevated rate of Krebs cycle, oxidative phosphorylation, and glutamine metabolism. These pathways were sustained by increased uptake of glucose and glutamine, two critical substrates for these cells. Moreover, RS cells showed activation of anabolic processes that resulted in the synthesis of nucleotides and lipids necessary to support their high proliferation. Exposure to drugs targeting PI3K and NF-kB, two master regulators of cellular metabolism, resulted in the shutdown of ATP production and glycolysis. Overall, these data suggest that metabolic rewiring characterizes the transformation of CLL into RS, presenting new translational opportunities.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/genetics
- Glycolysis
- Citric Acid Cycle
- Mice
- Oxidative Phosphorylation
- Glucose/metabolism
- Glutamine/metabolism
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Phosphatidylinositol 3-Kinases/metabolism
Collapse
Affiliation(s)
- Giulia Omezzolli
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Andrea Iannello
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Francesco E Vallone
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Lorenzo Brandimarte
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Matilde Micillo
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Nadia Bertola
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Nicole Grinovero
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Richard R Furman
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - John N Allan
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
162
|
Ghorbani Ranjbary A, Mehrzad J, Dehghani H, Hosseinkhani S. Impact of IL-17a on Apoptosis and Mucinosis-Related Molecules in the Microenvironment of Colorectal Cancer. Arch Med Res 2025; 56:103220. [PMID: 40209321 DOI: 10.1016/j.arcmed.2025.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND/AIMS IL17-producing Th17 represent a distinct subset of T-cells. The link between IL-17a and the colorectal cancer (CRC) microenvironment has been widely accepted. However, the role of IL-17a in epithelial cell apoptosis, autophagy, mucinosis, ultrastructural changes, and their potential correlations with CRC remains unclear. MATERIALS AND METHODS Out of 2890 patients with CRC, 200 were divided into four groups (stage I-IV) and 50 into non-CRC/healthy/control. We investigated the relationship between IL-17a, apoptosis, autophagy, and mucinosis in patients with stage I-IV CRC (in vitro/vivo). In addition to many (para)clinical assessments, IL-17a load in blood and the tumor microenvironment (TME) in patients with CRC were assessed. To examine these associations, the effect of IL-17a on CRC cells was evaluated using qPCR, Western blotting, ELISA, bioluminescence, flow cytometry, and immunohistochemistry (IHC), and ultrastructural changes in the colonic epithelia were assessed by scanning and transmission electron microscopy. RESULTS IL-17a is overexpressed in stage I-IV in the TME and in stage III-IV in the blood of patients with CRC. IL-17a upregulated apoptosis (caspases, cytochrome c (CYC), higher Bax:Bcl2 ratio), autophagy (SIRT1 and LC3), and the cell cycle (TP53, APC-1) and downregulated B3GALNT2 and mucins and led to morphological and nuclear changes in CRC epithelia. CONCLUSIONS IL-17a is abundantly expressed in the CRC microenvironment, and IL-17a-IL-17aR interactions play a critical role in the control of apoptosis and mucinosis. The observed remarkable association of IL-17a and apoptosis in adenocarcinoma provides valuable insight into the clinical implications of Th17/IL-17 in CRC.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Immunology Section, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Immunology Section, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hesam Dehghani
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
163
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. Cell Death Differ 2025:10.1038/s41418-025-01502-x. [PMID: 40204953 DOI: 10.1038/s41418-025-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The stress-associated chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing oncoproteins. Most inhibitors target the key component, heat-shock protein 90 (HSP90). Although HSP90 inhibitors are highly tumor-selective, they fail in clinical trials. These failures are partly due to interference with a negative regulatory feedback loop in the heat-shock response (HSR): in response to HSP90 inhibition, there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock-factor 1 (HSF1). We recently identified that wild-type p53 reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here, we test whether in HSP90-based therapies, simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. We found that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids, and patient-derived organoids (PDOs). Mechanistically, upon combination therapy, CRC cells upregulate p53-associated pathways, apoptosis, and inflammatory pathways. Likewise, in a CRC mouse model, dual HSF1-HSP90 inhibition represses tumor growth and remodels immune cell composition. Importantly, inhibition of the cyclin-dependent kinases 4/6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Moreover, in p53-deficient CRC cells, HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR and reduces cancer growth. Likewise, p53-mutated PDOs respond to dual HSF1-HSP90 inhibition, providing a strategy to target CRC independent of the p53 status. In sum, we provide new options to improve HSP90-based therapies to enhance CRC therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
164
|
Seraji N, Berger I. FGFR as a Predictive Marker for Targeted Therapy in Gastrointestinal Malignancies: A Systematic Review. J Gastrointest Cancer 2025; 56:96. [PMID: 40205008 PMCID: PMC11982104 DOI: 10.1007/s12029-025-01214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Gastrointestinal (GI) cancers constitute approximately 25% of cancers worldwide. The fibroblast growth factor receptor (FGFR) family is a promising target for immunotherapy aiming to enhance survival rates. FGFR alterations are associated with GI carcinomas. Their predictive value in different malignancies remains a focus area. While FGFR inhibitors have been approved for cholangiocarcinoma (CC) therapy, uncertainties remain regarding other GI cancers. METHODS A systematic review was conducted using the following databases: CINAHL, Embase, Medline, Cochrane Library, PubMed, and Web of Science. The search terms included "FGFR" and each of the GI malignancies. A total of 18 studies were included in this review. RESULTS The efficacy of FGFR-targeted therapy is evident. Strong evidence supports the use of FGFR inhibitors in CC, gastro-oesophageal cancer (GC/OC), and hepatocellular cancer, while there is limited evidence for pancreatic cancer (PC) and colorectal cancer (CRC). Alteration forms like FGFR2 fusion or rearrangement are associated with CC, while FGFR2 amplification and FGFR2b overexpression are associated with GC/OC. The administration of multi-kinase inhibitors without prior genomic testing, makes distinct study outcomes not solely attributable to the FGFR blockade. CONCLUSION FGFRs have a predictive value for GI cancers. Certain FGFR alterations are predictable for specific GI cancers. The most established FGFR-targeted therapy is for CC. It is essential to expand the FGFR research field for PC and CRC. Consistent molecular diagnostics in clinical trials are vital to comprehend the patient population with the highest efficacy.
Collapse
Affiliation(s)
- Nika Seraji
- Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Irina Berger
- Department of Pathology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
165
|
Vidak E, Vizovišek M, Kavčič N, Biasizzo M, Fonović M, Turk B. Apoptotic Caspases-3 and -7 Cleave Extracellular Domains of Membrane-Bound Proteins from MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2025; 26:3466. [PMID: 40331965 PMCID: PMC12026882 DOI: 10.3390/ijms26083466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Apoptotic executioner caspases-3 and -7 are the main proteases responsible for the execution of apoptosis. Apoptosis is the main form of programmed cell death involved in organism development and maintenance of homeostasis and is commonly impaired in various pathologies. Predominately an immunologically silent form of cell death, it can become immunogenic upon loss of membrane integrity during progression to secondary necrosis, which mostly occurs when apoptotic bodies are not efficiently cleared by efferocytosis. In cancer, the efferocytic capacity can be overwhelmed following chemotherapeutic treatment, thereby providing an opportunity for the potential extracellular functions of executioner apoptotic caspases in the tumor microenvironment. By triggering apoptosis in Jurkat E6.1 acute T cell leukemia cells, we demonstrated that during progression to secondary necrosis, executioner caspases-3 and -7 can be found in the extracellular space. Furthermore, we showed that extracellularly active caspases-3 and -7 can cleave extracellular domains of membrane-bound proteins from MDA-MB-231 breast cancer cells, a function generally executed in the tumor microenvironment by several extracellular proteases from metalloprotease and cathepsin families. As such, this study provides the evidence for the potential involvement of apoptotic caspases-3 and -7 in extracellular proteolytic networks. Presented mass spectrometry data are available via ProteomeXchange with identifier PXD061399.
Collapse
Affiliation(s)
- Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
| | - Nežka Kavčič
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
| | - Monika Biasizzo
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (E.V.); (M.V.); (N.K.); (M.F.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
166
|
Monteiro L, Rocha E, Ferreira S, Salazar F, Pacheco JJ, Warnakulasuriya S. Tissue Biomarkers for Predicting the Risk of Oral Cancer in Patients Diagnosed With Oral Leukoplakia: A Systematic Review of the Past 4 Years. J Oral Pathol Med 2025. [PMID: 40200649 DOI: 10.1111/jop.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Oral potentially malignant disorders may precede the development of oral cancer, and biomarkers are being investigated for their risk assessment. We aim to provide updated information on tissue biomarkers related to the risk of malignant transformation (MT) in patients with oral leukoplakia (OL) published during the last four years. METHODS A search strategy was developed using the electronic databases PubMed, EBSCO, and Cochrane Library to search for articles related to this topic (published from 2020 to 2024) (CRD42024527395). RESULTS Of the 1385 articles identified, 14 were included, with a combined sample of 1479 patients of whom 216 suffered MT. There were 30 different biomarkers evaluated of which Bmi-1, CD3/CD8, Ki-67, p16, and DNA ploidy were evaluated in more than one study. Of the 9 studies with multivariate analysis, Bmi-1, Tipe-2, copy number alteration, DcR2, and Ki-67, PTHrP, podoplanin (PDPN), and BubR1/Mad2 biomarkers presented independent significant value on MT. In one study, adding DNA ploidy status to the grade of dysplasia increased the model's predictive power. CONCLUSION Although heterogeneity continues to exist, this systematic review reconfirms the role of biomarkers previously described such as PDPN and DNA ploidy and some new additional biomarkers.
Collapse
Affiliation(s)
- Luís Monteiro
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Elia Rocha
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Sara Ferreira
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Filomena Salazar
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - José Júlio Pacheco
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- Medicine and Oral Surgery Department, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Saman Warnakulasuriya
- UNIPRO, Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, the WHO Collaborating Centre for Oral Cancer, London, UK
| |
Collapse
|
167
|
Dubuisson A, Mangelinck A, Knockaert S, Zichi A, Becht E, Philippon W, Dromaint-Catesson S, Fasquel M, Melchiore F, Provost N, Walas D, Darville H, Galizzi JP, Lefebvre C, Blanc V, Lombardi V. Glucose deprivation and identification of TXNIP as an immunometabolic modulator of T cell activation in cancer. Front Immunol 2025; 16:1548509. [PMID: 40260243 PMCID: PMC12010123 DOI: 10.3389/fimmu.2025.1548509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Background The ability of immune cells to rapidly respond to pathogens or malignant cells is tightly linked to metabolic pathways. In cancer, the tumor microenvironment (TME) represents a complex system with a strong metabolism stress, in part due to glucose shortage, which limits proper T cell activation, differentiation and functions preventing anti-tumor immunity. Methods In this study, we evaluated T cell immune reactivity in glucose-restricted mixed lymphocyte reaction (MLR), using a comprehensive profiling of soluble factors, multiparametric flow cytometry and single cell RNA sequencing (scRNA-seq). Results We determined that glucose restriction potentiates anti-PD-1 immune responses and identified thioredoxin-interacting protein (TXNIP), a negative regulator of glucose uptake, as a potential immunometabolic modulator of T cell activation. We confirmed TXNIP downregulation in tumor infiltrating T cells in cancer patients. We next investigated the implication of TXNIP in modulating immune effector functions in primary human T cells and showed that TXNIP depletion increased IFN-γ secretion and tumor cell killing. Conclusions TXNIP is at the interface between immunometabolism and T cell activation and could represent a potential target for immuno-oncology treatments.
Collapse
Affiliation(s)
| | | | | | - Adrien Zichi
- Servier, Research and Development, Gif-sur-Yvette, France
| | - Etienne Becht
- Servier, Research and Development, Gif-sur-Yvette, France
| | | | | | - Manon Fasquel
- Servier, Research and Development, Gif-sur-Yvette, France
| | | | | | - Dawid Walas
- Servier, Research and Development, Gif-sur-Yvette, France
- Faculty of Medicine, University of Opole, Opole, Poland
| | | | | | | | | | | |
Collapse
|
168
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
169
|
Lee SY, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Velasco-Beltrán P, Bosch A, Jimenez-Lasheras B, de Blas A, Etxaniz-Diaz de Durana J, Valdaliso-Díez E, Bozal-Basterra L, Ercilla A, Martin JE, Carracedo A, Gros A, Aransay AM, Palazón A, Pérez-Gutiérrez L. Syndecan-3 positively regulates the pro-inflammatory function of macrophages. Cell Mol Life Sci 2025; 82:145. [PMID: 40192763 PMCID: PMC11977058 DOI: 10.1007/s00018-025-05649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025]
Abstract
The tumour microenvironment (TME) is a highly structured ecosystem that surrounds a tumour and plays a crucial role in tumorigenesis. As one of the most abundant cell types in the TME, tumour-associated-macrophages (TAMs) can promote disease progression and resistance to therapy. Syndecan-3 (SDC3) is a cell-surface heparan sulphate proteoglycan expressed by TAMs, although its functional relevance in these cells remains unknown. Here, we demonstrated that pro-inflammatory cytokines drive the expression of SDC3 on the cell surface of macrophages. Genetic ablation of SDC3 in macrophages led to aberrant proliferation, adhesion and expression of CD40 and CD86 surface markers. Moreover, SDC3 defective macrophages exhibited distinctive gene expression patterns, leading to impaired tumour cell phagocytosis and increased tumour cell proliferation. Mechanistically, a decrease in the secretion of pro-inflammatory cytokines was observed in SDC3 KO macrophages, concomitant with impaired T cell effector functions. Additionally, a higher angiogenic capacity was observed in endothelial cells when co-cultured with macrophages deficient for SDC3, possibly mediated through an increased release of VEGFA, PECAM-1 and IL-8 by SDC3 KO cells. Collectively, we have identified SDC3 as a modulator of macrophage functions aiming at supporting a pro-inflammatory and anti-tumour phenotype in these cells.
Collapse
Affiliation(s)
- So Young Lee
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Endika Prieto-Fernández
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Leire Egia-Mendikute
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Asier Antoñana-Vildosola
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Paloma Velasco-Beltrán
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Alexandre Bosch
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Borja Jimenez-Lasheras
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Ander de Blas
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Jone Etxaniz-Diaz de Durana
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Eunate Valdaliso-Díez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Laura Bozal-Basterra
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Amaia Ercilla
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - José Ezequiel Martin
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Arkaitz Carracedo
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana M Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asís Palazón
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Lorena Pérez-Gutiérrez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
| |
Collapse
|
170
|
Zhang C, Wang H, Li X, Jiang Y, Sun G, Yu H. Enhancing antitumor immunity: the role of immune checkpoint inhibitors, anti-angiogenic therapy, and macrophage reprogramming. Front Oncol 2025; 15:1526407. [PMID: 40260303 PMCID: PMC12009726 DOI: 10.3389/fonc.2025.1526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer treatment has long been hindered by the complexity of the tumor microenvironment (TME) and the mechanisms that tumors employ to evade immune detection. Recently, the combination of immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies has emerged as a promising approach to improve cancer treatment outcomes. This review delves into the role of immunostimulatory molecules and ICIs in enhancing anti-tumor immunity, while also discussing the therapeutic potential of anti-angiogenic strategies in cancer. In particular, we highlight the critical role of endoplasmic reticulum (ER) stress in angiogenesis. Moreover, we explore the potential of macrophage reprogramming to bolster anti-tumor immunity, with a focus on restoring macrophage phagocytic function, modulating hypoxic tumor environments, and targeting cytokines and chemokines that shape immune responses. By examining the underlying mechanisms of combining ICIs with anti-angiogenic therapies, we also review recent clinical trials and discuss the potential of biomarkers to guide and predict treatment efficacy.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Jiang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
171
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
172
|
Qiu Q, Deng H, Song P, Liu Y, Zhang M. Lactylation in Glioblastoma: A Novel Epigenetic Modifier Bridging Epigenetic Plasticity and Metabolic Reprogramming. Int J Mol Sci 2025; 26:3368. [PMID: 40244246 PMCID: PMC11989911 DOI: 10.3390/ijms26073368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary malignant brain tumor, is characterized by a high rate of recurrence, disability, and lethality. Therefore, there is a pressing need to develop more effective prognostic biomarkers and treatment approaches for glioblastoma. Lactylation, an emerging form of protein post-translational modification, has been closely associated with lactate, a metabolite of glycolysis. Since the initial identification of lactylation sites in core histones in 2019, accumulating evidence has shown the critical role that lactylation plays in glioblastoma development, assessment of poor clinical prognosis, and immunosuppression, which provides a fresh angle for investigating the connection between metabolic reprogramming and epigenetic plasticity in glioblastoma cells. The objective of this paper is to present an overview of the metabolic and epigenetic roles of lactylation in the expanding field of glioblastoma research and explore the practical value of developing novel treatment plans combining targeted therapy and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.Q.); (H.D.); (P.S.); (Y.L.)
| |
Collapse
|
173
|
Godina C, Rosendahl AH, Gonçalves de Oliveira K, Khazaei S, Björner S, Jirström K, Isaksson K, Pollak MN, Jernström H. Genetic determinants and clinical significance of circulating and tumor-specific levels of insulin-like growth factor binding protein 7 (IGFBP7) in a Swedish breast cancer cohort. Carcinogenesis 2025; 46:bgaf020. [PMID: 40230015 DOI: 10.1093/carcin/bgaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025] Open
Abstract
Previous research indicates that insulin-like growth factor binding protein 7 (IGFBP7) protein levels in breast cancer tissue and blood are prognostic. However, genetic determinants of IGFBP7 in breast cancer remain largely unexplored. We examined IGFBP7 in a cohort of 1701 patients with first breast cancer from Sweden, enrolled prior to surgery 2002-16 and followed for up to 15 years. Genotyping was performed on blood samples using OncoArray. Tumor-specific protein levels of IGFBP7, insulin receptor (InsR), and IGF-I receptor (IGFIR) were assessed on tumor tissue microarrays in 964 patients. Furthermore, 275 patients had plasma IGFBP7 levels measured. A genetic proxy marker for circulating IGFBP7 levels was constructed from five candidate single-nucleotide polymorphisms (SNPs) (rs6852762, rs1714014, rs9992658, rs10004910, and rs4865180) based on number of recessive genotypes. Age-adjusted linear regression was used to evaluate SNPs and tumor-specific IGFBP7 levels in relation to circulating IGFBP7 levels. Cox regression adjusted for age, tumor characteristics, and adjuvant treatments was used to assess associations with clinical outcomes. Circulating and tumor-specific IGFBP7 levels were significantly positively correlated. High circulating and genetically predicted IGFBP7 levels were associated with increased risk for distant metastasis and all-cause mortality. A significant interaction between high tumor-specific IGFBP7 levels and membrane-bound InsR resulted in a four-fold increased risk of breast cancer events and distant metastases. Both measured and genetically predicted IGFBP7 levels were independent prognostic biomarkers in breast cancer.
Collapse
Affiliation(s)
- Christopher Godina
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| | - Kelin Gonçalves de Oliveira
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| | - Somayeh Khazaei
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| | - Sofie Björner
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University Cancer Center/Kamprad, Lund University, Barngatan 4, SE 221 85 Lund, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Surgery, Lund University Cancer Center, Lund University and Kristianstad Hospital, JA Hedlundsväg 5, SE 291 33 Kristianstad, Sweden
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Oncology, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Quebec, Canada
| | - Helena Jernström
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan4, SE 221 85 Lund, Sweden
| |
Collapse
|
174
|
Zhao S, Song Y, Nakashima Y, Zou X, Koga T, Ishida T, Li R, Hirota Y, Tanaka Y, Ishii Y. Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism. Int J Mol Sci 2025; 26:3363. [PMID: 40244197 PMCID: PMC11989624 DOI: 10.3390/ijms26073363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium-binding protein 1 (SeBP1) is an anticancer factor that affects lipid metabolism in mouse kidneys via the peroxisome proliferator-activated receptor-alpha (PPARA) pathway. However, its physiological role in the liver is difficult to explain because of the presence of the highly homologous selenium-binding protein 2 (SeBP2). To investigate the role of these proteins in the liver, we generated SeBP1 and SeBP2 double-knockout mice (SeBP1/2-DK). SeBP1/2 deletion did not significantly alter the mice phenotypic compared to that of the wild-type strain. Then, we identified the genes involved in hepatic lipid metabolism. The double knockout did not affect fatty acid and cholesterol synthesis, but inhibited fatty acid oxidation and cholesterol efflux. Furthermore, transfection of HepG2 cells with human selenium-binding protein 1 (hSeBP1) positively regulated PPARA and the genes controlled by it. Overexpression of hSeBP1 reduced the levels of non-esterified fatty acids in the culture medium. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides were significantly different among the three groups. In summary, we elucidated the potential signaling pathways of SeBP1 and SeBP2 in fatty acid oxidation and hepatic cholesterol efflux. Our findings provide insights relevant for developing new strategies to prevent and treat lipid metabolism disorders.
Collapse
Grants
- Scientific Research (A) JSPS KAKENHI JP17H00788, Recipient YI Japan Society for the Promotion of Science
- Scientific Research (A) JSPS KAKENHI JP21H04928, Recipient YI Japan Society for the Promotion of Science
- JSPS Fellows JSPS KAKENHI 24KJ1773, Recipient SZ Japan Society for the Promotion of Science
- Research on Food Safety (H30-Designated Research-005, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- the Ministry of Health, Labor and Welfare, Japan [Research on Food Safety (R3-Designated Research JP21KA2003, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- Research on Food Safety ( R6-Designated Research JP24KA2001, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Shuangli Zhao
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yingxia Song
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuko Nakashima
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Xing Zou
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa 831-8501, Japan;
| | - Renshi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| |
Collapse
|
175
|
Hao S, Liu Z, Lenz HJ, Yu J, Zhang L. Werner helicase as a therapeutic target in mismatch repair deficient colorectal cancer. DNA Repair (Amst) 2025; 149:103831. [PMID: 40203476 DOI: 10.1016/j.dnarep.2025.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the United States. A key driver of CRC development is microsatellite instability (MSI), which is caused by DNA mismatch repair deficiency and characterized by hypermutability of short-tandem repeat sequences. A significant portion of MSI CRCs do not respond to checkpoint immunotherapy treatments, highlighting an unmet need for improved therapies. Recent studies have revealed that MSI cancer cells require Werner (WRN), a RecQ family DNA helicase, for survival. Inhibiting WRN has emerged as a promising approach for targeting MSI CRCs that are insensitive to standard therapies. Several highly potent small-molecule WRN inhibitors have been developed and exhibited striking in vitro and in vivo activities against MSI cancers. Two of these WRN inhibitors, HRO761 and VVD-133214, have recently entered clinical trials. In this review, we summarize recent studies on WRN as a synthetic lethal target in MSI CRC and the development of WRN inhibitors as a new class of anticancer agents.
Collapse
Affiliation(s)
- Suisui Hao
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
176
|
Liao X, Si H, Lai Y, Zhang X, Feng Y, Zhou T, Feng Y, Yu L. Porphyromonas gingivalis-OMVs promote the epithelial-mesenchymal transition of oral squamous cell carcinoma by inhibiting ferroptosis through the NF-κB pathway. J Oral Microbiol 2025; 17:2482924. [PMID: 40206095 PMCID: PMC11980236 DOI: 10.1080/20002297.2025.2482924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Background Recent studies reported the role of Porphyromonas gingivalis (P. g) in promoting oral squamous cell carcinoma (OSCC) progression. However, the molecular mechanism remains unclear. Materials and methods P. g-OMVs were isolated using ultracentrifugation method and characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). CCK-8, migration, invasion, Quantitative real-time Polymerase Chain Reaction (qRT-PCR) and immunocytochemistry assays were performed to evaluate the effect of P. g-OMVs on tumor cells' proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and ferroptosis in vitro. Western blot was performed to study the phosphorylation of transcription factor nuclear factor kappa B (NF-κB). In vivo, the effect of P. g-OMVs on the growth of OSCC was evaluated using a xenograft tumor model, followed by hematoxylin and eosin and immunohistochemistry staining. Results TEM and NTA demonstrated that P. g-OMVs have a vesicular structure with a particle size of around 118 nm. Compared to the control group, P. g-OMVs significantly enhance the proliferation, migration, and invasion of tumor cells. In addition, P. g-OMVs promote the EMT of OSCC cells, which can be attenuated by ferroptosis activator erastin. Moreover, P. g-OMVs inhibit feroptosis of OSCC by activating NF-κB signaling. In vivo, P. g-OMVs significantly enhance tumor growth of OSCC. Inhibition of NF-κB could significnatly reduce the growth of OSCC, which can be further rescued using ferroptosis inhibitor Ferrostain-1. Conclusions P. g-OMVs promote OSCC progression by modulating the ferroptosis-related EMT through NF-κB signaling.
Collapse
Affiliation(s)
- Xinyue Liao
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hang Si
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yongxian Lai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Department of Preventive Health Care, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyan Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Yun Feng
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Feng
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Yu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
177
|
Papadimitriou N, Kazmi N, Tsilidis KK, Richmond RC, Lynch BM, Bendinelli B, Ricceri F, Sánchez MJ, Trobajo-Sanmartín C, Jakszyn P, Simeon V, Severi G, Perduca V, Truong T, Ferrari P, Keski-Rahkonen P, Weiderpass E, Eichelmann F, Schulze MB, Katzke V, Fortner RT, Heath AK, Aune D, Harewood R, Dahm CC, Llorente A, Gunter MJ, Murphy N, Lewis SJ. Identifying Metabolomic Mediators of the Physical Activity and Colorectal Cancer Relationship. Cancer Epidemiol Biomarkers Prev 2025; 34:578-587. [PMID: 39883068 PMCID: PMC11966109 DOI: 10.1158/1055-9965.epi-24-1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Current evidence suggests higher physical activity (PA) levels are associated with a reduced risk of colorectal cancer. However, the mediating role of the circulating metabolome in this relationship remains unclear. METHODS Targeted metabolomics data from 6,055 participants in the European Prospective Investigation into Cancer and Nutrition cohort were used to identify metabolites associated with PA and derive a metabolomic signature of PA levels. PA levels were estimated using the validated Cambridge PA index based on baseline questionnaires. Mediation analyses were conducted in a nested case-control study (1,585 cases, 1,585 controls) to examine whether individual metabolites and the metabolomic signature mediated the PA-colorectal cancer association. RESULTS PA was inversely associated with colorectal cancer risk (OR per category change: 0.90, 95% confidence interval, 0.83-0.97; P value = 0.009). PA levels were associated with 24 circulating metabolites after FDR correction, with the strongest associations observed for phosphatidylcholine acyl-alkyl (PC ae) C34:3 (FDR-adjusted P value = 1.18 × 10-10) and lysophosphatidylcholine acyl C18:2 (FDR-adjusted P value = 1.35 × 10-6). PC ae C34:3 partially mediated the PA-colorectal cancer association (natural indirect effect: 0.991, 95% confidence interval, 0.982-0.999; P value = 0.04), explaining 7.4% of the association. No mediation effects were observed for the remaining metabolites or the overall PA metabolite signature. CONCLUSIONS PC ae C34:3 mediates part of the PA-colorectal cancer inverse association, but further studies with improved PA measures and extended metabolomic panels are needed. IMPACT These findings provide insights into PA-related biological mechanisms influencing colorectal cancer risk and suggest potential targets for cancer prevention interventions.
Collapse
Affiliation(s)
- Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, The Medical School, University of Bristol, Bristol, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rebecca C. Richmond
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, The Medical School, University of Bristol, Bristol, United Kingdom
| | - Brigid M. Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Benedetta Bendinelli
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Cinical Network (ISPRO), Florence, Italy
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), University of Turin, Turin, Italy
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Camino Trobajo-Sanmartín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
- Navarre Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Vittorio Simeon
- Unit of Medical Statistics, Department of Mental and Physical Health and Preventive Medicine, University of Campania, Naples, Italy
| | - Gianluca Severi
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Florence, Italy
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Vittorio Perduca
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
- Université Paris Cité, CNRS, MAP5, Paris, France
| | - Therese Truong
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Pietro Ferrari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Alicia K. Heath
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Nutrition, Oslo New University College, Oslo, Norway
| | - Rhea Harewood
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Christina C. Dahm
- Department of Public Health, Aarhus University, Aarhus Centrum, Denmark
| | - Adrian Llorente
- Subdirection of Public Health of Guipuzcoa, San Sebastián, Spain
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Cancer Epidemiology and Prevention Research Unit, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Sarah J. Lewis
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, The Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
178
|
Xiong J. Editorial: Crosstalk between metabolism and immunity. Front Mol Biosci 2025; 12:1599219. [PMID: 40248437 PMCID: PMC12003140 DOI: 10.3389/fmolb.2025.1599219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025] Open
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
179
|
Lyu J, Liu Y, Liu N, Vu HS, Cai F, Cao H, Kaphle P, Wu Z, Botten GA, Zhang Y, Wang J, Achyutuni S, Gao X, Iacobucci I, Mullighan CG, Chung SS, Ni M, DeBerardinis RJ, Xu J. CD44-mediated metabolic rewiring is a targetable dependency of IDH-mutant leukemia. Blood 2025; 145:1553-1567. [PMID: 39841003 PMCID: PMC12002223 DOI: 10.1182/blood.2024027207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Recurrent isocitrate dehydrogenase (IDH) mutations catalyze nicotinamide adenine dinucleotide phosphate (NADPH)-dependent production of oncometabolite (R)-2-hydroxyglutarate (R-2HG) for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients. CD44 is indispensable for IDH-mutant leukemia cells through activating pentose phosphate pathway and inhibiting glycolysis by phosphorylating glucose-6-phosphate dehydrogenase and pyruvate kinase muscle isozyme M2, respectively. This metabolic rewiring ensures efficient NADPH generation for mutant IDH-catalyzed R-2HG production. Combining IDH inhibition with CD44 blockade enhances the elimination of IDH-mutant leukemia cells. Hence, we describe an oncogenic feedforward pathway involving CD44-mediated metabolic rewiring for oncometabolite production, representing a potentially targetable dependency of IDH-mutant malignancies.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yuxuan Liu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ningning Liu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hieu S. Vu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Feng Cai
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hui Cao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pranita Kaphle
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zheng Wu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuannyu Zhang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jin Wang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarada Achyutuni
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiaofei Gao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Charles G. Mullighan
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stephen S. Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
180
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
181
|
Herzog CMS, Redl E, Barrett J, Aminzadeh-Gohari S, Weber DD, Tevini J, Lang R, Kofler B, Widschwendter M. Functionally enriched epigenetic clocks reveal tissue-specific discordant aging patterns in individuals with cancer. COMMUNICATIONS MEDICINE 2025; 5:98. [PMID: 40175686 PMCID: PMC11965555 DOI: 10.1038/s43856-025-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/08/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Aging is a key risk factor for many diseases, including cancer, and a better understanding of its underlying molecular mechanisms may help to prevent, delay, or treat age-related pathologies. Epigenetic alterations such as DNA methylation (DNAme) changes are a hallmark of aging and form the basis of so-called epigenetic clocks, yet their functional relevance and directionality in different organs during disease development is often unclear. METHODS Here, we link cell-specific age-related DNAme changes with three key hallmarks of aging and cancer (senescence, promoter methylation in genes associated with stem cell fate, and dysregulated proliferation) to comprehensively dissect their association with current and future cancer development, carcinogen exposure or preventive measures, and mortality using data in different organs from over 12,510 human and 105 mouse samples, benchmarking against existing epigenetic clocks. RESULTS Our findings offer insights into the association of functionally enriched groups of age-related DNAme changes with cancer, identify sites perturbed earliest during carcinogenesis, as well as those distinct between cancer and reprogramming that could inform strategies to prevent teratoma formation upon in vivo reprogramming. Surprisingly, both mouse and human data reveal accelerated aging in breast cancer tissue but decelerated epigenetic aging in some non-cancer surrogate samples from breast cancer patients, in particular cervical samples. CONCLUSIONS This work provides evidence for discordant systemic tissue aging in breast cancer.
Collapse
Affiliation(s)
- Chiara M S Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Elisa Redl
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - James Barrett
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Sepideh Aminzadeh-Gohari
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria.
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK.
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
182
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
183
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
184
|
Zhang H, Chen H, Guo G, Lin J, Chen X, Huang P, Lin C, Lin H, Lu Y, Lin J, Li X, Zhang W. Nanotechnology in prostate cancer: a bibliometric analysis from 2004 to 2023. Discov Oncol 2025; 16:451. [PMID: 40175778 PMCID: PMC11965044 DOI: 10.1007/s12672-025-02265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Prostate cancer (PC) contributes to male mortality worldwide. The objective of this study is to comprehensively depict the scientific accomplishments and research trends in nanotechnology for PC applications. METHODS Utilizing the Web of Science Core Collection database, publications were gathered on the basis of inclusion and selection criteria. The publications were analyzed and visualized using VOSviewer, R-studio and CiteSpace software tools. RESULTS A total of 1949 studies were incorporated. Farokhzad was the most productive author. The United States and China released 58.13% of the total publications. The Chinese Academy of Sciences was the most influential institution, and the International Journal of Nanomedicine stood out as a prominent journal in this field. The most frequently referenced publication and research subject category were identified. The most extensively investigated area was nanoparticle-based drug delivery, while recent research has focused on anticancer with novel nanocarriers. CONCLUSION A bibliometric analysis in the PC and nanotechnology was conducted between 2004 and 2023. The overview and characteristics of the publications were identified. We discussed the application and restrictions faced by nanotechnology in PC management. The study of nanotechnology in PC treatment needs to be further studied.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Hongpeng Chen
- Department of Oncology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Gaowei Guo
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jinming Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Peidong Huang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Chuqi Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Huirong Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Yong Lu
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jieming Lin
- Department of Operating Room, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xinji Li
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| | - Wei Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| |
Collapse
|
185
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
186
|
Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G, Ke X. Effects of circulating RNAs on tumor metabolism in lung cancer (Review). Oncol Lett 2025; 29:204. [PMID: 40070786 PMCID: PMC11894507 DOI: 10.3892/ol.2025.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
187
|
Panda PK, Paschoalini Mafra AC, Bastos AC, Cao L, Serra Bonet M, Brashears CB, Chen EY, Benedict-Hamilton HM, Ehrhardt W, Bomalaski J, Dehner C, Rogers LC, Oyama T, Van Tine BA. BCL-XL Protects ASS1-Deficient Cancers from Arginine Starvation-Induced Apoptosis. Clin Cancer Res 2025; 31:1333-1345. [PMID: 39898973 PMCID: PMC11964295 DOI: 10.1158/1078-0432.ccr-24-2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE Argininosuccinate synthetase 1 (ASS1) silencing in carcinomas and sarcomas leads to a dependence on extracellular arginine for survival. Arginine deprivation therapies, such as PEGylated arginine deiminase (ADI-PEG20), have shown limited effectiveness, which may be due to underlying mechanisms that inhibit apoptosis. EXPERIMENTAL DESIGN The effects of ADI-PEG20 on cell-cycle regulation, apoptosis, and BCL-XL-mediated survival pathways in ASS1-deficient cancer cells were determined. The mechanism of cell death protection was determined by assessing caspase and PARP cleavage, CDK2 activity, MCL1 expression, and the interactions among BCL-XL, BAX, and BAK. In vitro synergy was determined, and in vivo efficacy was modeled. RESULTS Treatment with ADI-PEG20 led to reduced CDK2 activity and inhibited cell-cycle progression but did not induce significant cell death. BCL-XL was found to bind to BAX and BAK, preventing the initiation of apoptosis despite arginine starvation. Inhibition of BCL-XL allowed proapoptotic BAX and BAK to initiate the intrinsic apoptosis pathway, leading to increased cell death. This was found to be synergistic in vitro and efficacious in combination in vivo. CONCLUSIONS The study identifies BCL-XL as a key factor limiting the efficacy of arginine starvation therapies. Combining BCL-XL inhibitors with arginine deprivation strategies may overcome this resistance and enhance therapeutic outcomes. These findings provide a strong preclinical rationale for testing this combination approach in phase 1 clinical trials for ASS1-deficient cancers.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ana Carolina Paschoalini Mafra
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alliny C.S. Bastos
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Li Cao
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Maria Serra Bonet
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlyn B. Brashears
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ethan Yang Chen
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Heather M. Benedict-Hamilton
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - William Ehrhardt
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - Carina Dehner
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leonard C. Rogers
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Toshinao Oyama
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Brian A. Van Tine
- Division of Medical Oncology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
- Department of Pediatric Hematology/Oncology, St. Louis Children’s Hospital, St. Louis, Missouri
| |
Collapse
|
188
|
Greene G, Zonfa I, Ravasz Regan E. A Boolean network model of hypoxia, mechanosensing and TGF-β signaling captures the role of phenotypic plasticity and mutations in tumor metastasis. PLoS Comput Biol 2025; 21:e1012735. [PMID: 40238833 PMCID: PMC12061430 DOI: 10.1371/journal.pcbi.1012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/08/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The tumor microenvironment aids cancer progression by promoting several cancer hallmarks, independent of cancer-related mutations. Biophysical properties of this environment, such as the stiffness of the matrix cells adhere to and local cell density, impact proliferation, apoptosis, and the epithelial to mesenchymal transition (EMT). The latter is a rate-limiting step for invasion and metastasis, enhanced in hypoxic tumor environments but hindered by soft matrices and/or high cell densities. As these influences are often studied in isolation, the crosstalk between hypoxia, biomechanical signals, and the classic EMT driver TGF-β is not well mapped, limiting our ability to predict and anticipate cancer cell behaviors in changing tumor environments. To address this, we built a Boolean regulatory network model that integrates hypoxic signaling with a mechanosensitive model of EMT, which includes the EMT-promoting crosstalk of mitogens and biomechanical signals, cell cycle control, and apoptosis. Our model reproduces the requirement of Hif-1α for proliferation, the anti-proliferative effects of strong Hif-1α stabilization during hypoxia, hypoxic protection from anoikis, and hypoxia-driven mechanosensitive EMT. We offer experimentally testable predictions about the effect of VHL loss on cancer hallmarks, with or without secondary oncogene activation. Taken together, our model serves as a predictive framework to synthesize the signaling responses associated with tumor progression and metastasis in healthy vs. mutant cells. Our single-cell model is a key step towards more extensive regulatory network models that cover damage-response and senescence, integrating most cell-autonomous cancer hallmarks into a single model that can, in turn, control the behavior of in silico cells within a tissue model of epithelial homeostasis and carcinoma.
Collapse
Affiliation(s)
- Grant Greene
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Ian Zonfa
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
189
|
Wang P, Xu J, You W, Li J, Yu J, Jiang F, Zhang Z, Hu W, Li B. CYP24A1 Binding to FUS Maintains Tumor Properties by Regulating the miR-200c/ZEB1/EMT Axis. Cancer Sci 2025; 116:910-922. [PMID: 39777777 PMCID: PMC11967274 DOI: 10.1111/cas.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The active vitamin D-degrading enzyme (CYP24A1) is commonly overexpressed in various types of cancer, which is associated with poor prognosis in cancer patients. Recent studies highlight the antagonism of CYP24A1 toward the anticancer role of active vitamin D. However, the impact of CYP24A1 on tumorigenesis and its underlying mechanisms largely remains unexplored. This study also found that high CYP24A1 mRNA expressions were associated with poor prognosis in ovarian cancer and lung adenocarcinoma (LUAD) patients. Moreover, we demonstrated that the overexpression of CYP24A1 accelerated the proliferation, migration, and invasion of ovarian cancer and LUAD cancer cells in vitro. Furthermore, knockdown of CYP24A1 displayed an anticancer effector both in vitro and in vivo. Mechanically, 87-297 amino acid motif of CYP24A1 bound specifically to FUS protein, consequentially reducing FUS affinity for miR-200c. Considering FUS promotes gene silencing by binding to microRNA targets, a decrease in miR-200c levels led to a notable activation of its target ZEB1, resulting in the promotion of the epithelial-mesenchymal transition (EMT) process. In conclusion, FUS binding specifically by CYP24A1 impaired miR-200c-mediated ZEB1 silencing, thereby augmenting EMT progression and tumorigenesis. These findings elucidate a fundamental mechanism by which CYP24A1 operates as an oncogene, offering potential targets for therapeutic interventions in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jiming Xu
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Infectious Disease Surveillance and Early WarningQingdao Municipal Health CommissionQingdaoChina
| | - Weijing You
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Yantai Hi‐Tech Industrial Development Zone Center for Disease Control and PreventionYantaiChina
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jing Yu
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Clinical Laboratory CenterThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
190
|
Pandey DP, Somyajit K. Oncohistone-sculpted epigenetic mechanisms in pediatric brain cancer. Curr Opin Pharmacol 2025; 81:102505. [PMID: 39874681 DOI: 10.1016/j.coph.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP. Notably, H3K27M and EZHIP-driven cancers exhibit low mutation burdens, highlighting the enigmatic role of non-mutational epigenetic reprogramming in oncogenesis beyond traditional paradigms of oncogene activation and tumor suppressor loss. Here, we review the impact of H3K27M and EZHIP-driven cancer mechanisms on chromatin and transcriptional dysregulation leading to aberrant cell fate determination, and their potential influence beyond gene activity, affecting broader cellular pathways. Illuminating these mechanisms is crucial for advancing treatment options for pediatric brain cancers, where therapeutic regimens are poorly defined.
Collapse
Affiliation(s)
- Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Kumar Somyajit
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
191
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
192
|
Li T, Wu X, Li X, Chen M. Cancer-associated fungi: An emerging powerful player in cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189287. [PMID: 39971202 DOI: 10.1016/j.bbcan.2025.189287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The role of the human microbiome in cancer has been extensively studied, focusing mainly on bacteria-host interactions and their impact on tumor development and treatment response. However, fungi, an immune-active component of the human microbiome, have received less attention regarding their roles in cancer. Recent studies have identified the widespread and specific colonization and distribution of fungi in multiple sites in patients across various cancer types. Importantly, host-fungal immune interactions significantly influence immune regulation within the tumor microenvironment. The rapid advancement of immune-checkpoint blockade (ICB)-based cancer immunotherapy creates an urgent need for effective biomarkers and synergistic therapeutic targets. Cancer-associated fungi and their associated antifungal immunity demonstrate significant potential and efficacy in enhancing cancer immunotherapy. This review summarizes and discusses the growing evidence of the functions and mechanisms of commensal and pathogenic cancer-associated fungi in cancer immunotherapy. Additionally, we emphasize the potential of fungi as predictive biomarkers and therapeutic targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyang Li
- Department of Gastrointestinal Tumor Surgery, Nanjing Tianyinshan Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
193
|
Platt JR, Pennycook S, Muthoo CE, Westwood AC, Frood R, Beggs AD, Scarsbrook A, Seligmann JF, Tolan DJM. Colon cancer biology and treatment in the era of precision oncology: A primer for Radiologists. Eur J Radiol 2025; 185:112000. [PMID: 39978239 DOI: 10.1016/j.ejrad.2025.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
In the era of precision oncology, systemic therapies for colon cancer are becoming increasingly biomarker-led, with implications for patients in the neoadjuvant, adjuvant and metastatic settings. As the landscape for colon cancer treatment evolves and becomes more complex, it is important that all members of the multidisciplinary team keep abreast of developments to ensure the most effective care is delivered to patients. As core members of the colorectal multidisciplinary team, Radiologists play a central role throughout the patient journey. This review serves as an educational summary of current and emerging treatment pathways in colon cancer, standards for biomarker testing, mechanisms of action for key drugs, important treatment-related complications, relevant tumour biology that underpins patterns of disease and treatment response, and the specific implications systemic therapies have for cancer imaging and Radiologists. We also highlight the increasing role for radiology in patient stratification and the importance of imaging biomarkers. It is crucial that Radiologists understand the current landscape of colon cancer treatment and emerging strategies on the horizon in clinical trials. Only through engagement across the wider multidisciplinary team will we deliver true personalised medicine for patients with colon cancer.
Collapse
Affiliation(s)
- James R Platt
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Stephanie Pennycook
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Chand E Muthoo
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Alice C Westwood
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Russell Frood
- Leeds Institute of Clinical Trials Research, School of Medicine, University of Leeds, Leeds, UK.
| | - Andrew D Beggs
- Department of Cancer and Genomics, University of Birmingham, Birmingham, UK.
| | - Andrew Scarsbrook
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Damian J M Tolan
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
194
|
Carra D, Maas SCE, Seoane JA, Alonso-Curbelo D. Exposomal determinants of non-genetic plasticity in tumor initiation. Trends Cancer 2025; 11:295-308. [PMID: 40023688 DOI: 10.1016/j.trecan.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
The classical view of cancer as a genetically driven disease has been challenged by recent findings of oncogenic mutations in phenotypically healthy tissues, refocusing attention on non-genetic mechanisms of tumor initiation. In this context, gene-environment interactions take the stage, with recent studies showing how they unleash and redirect cellular and tissue plasticity towards protumorigenic states in response to the exposome, the ensemble of environmental factors impinging on tissue homeostasis. We conceptualize tumor-initiating plasticity as a phenotype-transforming force acting at three levels: cell-intrinsic, focusing on mutant epithelial cells' responses to environmental variation; reprogramming of non-neoplastic cells of the host, leading to protumor micro- and macroenvironments; and microbiome ecosystem dynamics. This perspective highlights cell, tissue, and organismal plasticity mechanisms underlying tumor initiation that are shaped by the exposome, and how their functional investigation may provide new opportunities to prevent, detect, and intercept cancer-promoting plasticity.
Collapse
Affiliation(s)
- Davide Carra
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Silvana C E Maas
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Direna Alonso-Curbelo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
195
|
Gomatou G, Charpidou A, Li P, Syrigos N, Gkiozos I. Mechanisms of primary resistance to immune checkpoint inhibitors in NSCLC. Clin Transl Oncol 2025; 27:1426-1437. [PMID: 39307892 DOI: 10.1007/s12094-024-03731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 04/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) redefined the therapeutics of non-small cell lung cancer (NSCLC), leading to significant survival benefits and unprecedented durable responses. However, the majority of the patients develop resistance to ICIs, either primary or acquired. Establishing a definition of primary resistance to ICIs in different clinical scenarios is challenging and remains a work in progress due to the changing landscape of ICI-based regimens, mainly in the setting of early-stage NSCLC. The mechanisms of primary resistance to ICIs in patients with NSCLC include a plethora of pathways involving a cross-talk of the tumor cells, the tumor microenvironment and the host, leading to the development of an immunosuppressive phenotype. The optimal management of patients with NSCLC following primary resistance to ICIs represents a significant challenge in current thoracic oncology. Research in this field includes exploring other immunotherapeutic approaches, such as cancer vaccines, and investigating novel antibody-drug conjugates in patients with NSCLC.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andriani Charpidou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gkiozos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
196
|
Schwab A, Siddiqui MA, Ramesh V, Gollavilli PN, Turtos AM, Møller SS, Pinna L, Havelund JF, Rømer AMA, Ersan PG, Parma B, Marschall S, Dettmer K, Alhusayan M, Bertoglio P, Querzoli G, Mielenz D, Sahin O, Færgeman NJ, Asangani IA, Ceppi P. Polyol pathway-generated fructose is indispensable for growth and survival of non-small cell lung cancer. Cell Death Differ 2025; 32:587-597. [PMID: 39567724 PMCID: PMC11982217 DOI: 10.1038/s41418-024-01415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Despite recent treatment advances, non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide, and therefore it necessitates the exploration of new therapy options. One commonly shared feature of malignant cells is their ability to hijack metabolic pathways to confer survival or proliferation. In this study, we highlight the importance of the polyol pathway (PP) in NSCLC metabolism. This pathway is solely responsible for metabolizing glucose to fructose based on the enzymatic activity of aldose reductase (AKR1B1) and sorbitol dehydrogenase (SORD). Via genetic and pharmacological manipulations, we reveal that PP activity is indispensable for NSCLC growth and survival in vitro and in murine xenograft models. Mechanistically, PP deficiency provokes multifactorial deficits, ranging from energetic breakdown and DNA damage, that ultimately trigger the induction of apoptosis. At the molecular level, this process is driven by pro-apoptotic JNK signaling and concomitant upregulation of the transcription factors c-Jun and ATF3. Moreover, we show that fructose, the PP end-product, as well as other non-glycolytic hexoses confer survival to cancer cells and resistance against chemotherapy via sustained NF-κB activity as well as an oxidative switch in metabolism. Given the detrimental consequence of PP gene targeting on growth and survival, we propose PP pathway interference as a viable therapeutic approach against NSCLC.
Collapse
Affiliation(s)
- Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Experimental Medicine 1, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mohammad Aarif Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Adriana Martinez Turtos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sarah Søgaard Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luisa Pinna
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anne Mette A Rømer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pelin Gülizar Ersan
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Immunobiology, Université Libre de Bruxelles- Faculty of Science, Brussels, Belgium
| | - Sabine Marschall
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Mohammed Alhusayan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman, Kuwait
| | - Pietro Bertoglio
- Division of Thoracic Surgery, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Giulia Querzoli
- Pathology Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Ospedale Sacro Cuore Don Calabria, Verona, Italy
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Erlangen, Germany
| | - Ozgur Sahin
- Department of Biochemistry & Molecular Biology - College of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
197
|
Malon D, Molto C, Prasla S, Cuthbert D, Pathak N, Berner-Wygoda Y, Di Lorio M, Li M, Savill J, Mittal A, Amir E, Jhaveri K, Nadler MB. Steatotic liver disease in metastatic breast cancer treated with endocrine therapy and CDK4/6 inhibitor. Breast Cancer Res Treat 2025; 210:405-416. [PMID: 39720971 DOI: 10.1007/s10549-024-07578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
PURPOSE In early-stage breast cancer, steatotic liver disease (SLD) is associated with increased recurrence, cardiovascular events, and non-cancer death. Endocrine therapy (ET) increases the risk of SLD. The impact of cyclin-dependent kinases 4/6 inhibitors (CDK4/6i) on SLD and prognostic association in metastatic breast cancer is unknown. We characterized the presence of SLD, risk factors, and treatment outcomes of SLD in metastatic HR+/HER2- breast cancer receiving CDK4/6i. METHODS This single institution, retrospective, cohort study included patients with metastatic HR+/HER2- breast cancer receiving first-line ET and CDK4/6i from January 2018 to June 2022. SLD was defined as a Liver Attenuation Index (LAI) > 25 HU on contrast-enhanced CT scans and/or > 10 HU on plain CT scans. Univariable binary-logistic regression was used to assess associations with SLD. Time to treatment failure (TTF) and overall survival (OS) were analyzed using Cox proportional hazards modeling. RESULTS Among 87 patients with a median age of 58 years and 65.5% postmenopausal, 50 (57.5%) had SLD at anytime (24 at baseline, 26 acquired). SLD at baseline was statistically associated with post-menopausal status. It was quantitatively but not statistically associated with age > 65, diabetes, smoking, and HER2-low. SLD at anytime was statistically significantly associated with longer TTF (median 470 vs 830.5 days, HR = 0.38, p < 0.001). No significant differences in OS or grade 3/4 adverse events were observed between groups. CONCLUSION This study demonstrated a high prevalence of SLD in this population, with SLD presence correlated with longer TTF. SLD may be an indicator of better outcomes in metastatic HR+/HER2- breast cancer patients treated with CDK4/6i.
Collapse
Affiliation(s)
- Diego Malon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada.
- University of Toronto, Toronto, ON, Canada.
| | - Consolacion Molto
- Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Kingston, ON, Canada
- R.S. McLaughlin Durham Regional Cancer Centre, Oshawa, ON, Canada
| | - Shopnil Prasla
- Joint Department of Medical Imaging (JDMI), University Health Network, Toronto, ON, Canada
| | - Danielle Cuthbert
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Neha Pathak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Yael Berner-Wygoda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Massimo Di Lorio
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Meredith Li
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Jacqueline Savill
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Abhenil Mittal
- Department of Oncology, Health Sciences North, Sudbury, ON, Canada
- Division of Clinical Sciences, The Northern Ontario School of Medicine (NOSMU), Sudbury, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Kartik Jhaveri
- Joint Department of Medical Imaging (JDMI), University Health Network, Toronto, ON, Canada
| | - Michelle B Nadler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
198
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
199
|
Beypınar İ, Urvay S, Ürün M, Erçek B, Demir H, Yıldız C, Araz M, Oruç A, Özilice U, Balçık OY. Prognostic value of IMDC score in non-small cell lung cancer receiving immunotherapy: old dog, new tricks? : IMDC in lung cancer immunotherapy. Eur J Clin Pharmacol 2025; 81:561-570. [PMID: 39971806 DOI: 10.1007/s00228-025-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Although there are multiple treatment options, oncologists lack appropriate biomarkers for determining the efficacy and toxicity of immunotherapy. In this study, we aimed to use a combination of the clinical parameters of IMDC risk groups at the time of diagnosis to predict the effectiveness of immunotherapy. METHODS This multicenter cross-sectional study retrospectively analyzed non-small cell lung cancer (NSCLC) patients receiving nivolumab for the prognostic effects of clinical factors, including the IMDC score. RESULTS Two hundred and five patients were enrolled in this study. There was no favorable group because the TTI was less than 1 year in the entire study group in the IMDC. The IMDC score and IMDC groups showed significant differences in PFS (p < 0.001; p < 0.001, respectively). Intermediate and poor-risk groups had PFS of 8 and 3 months PFS, respectively. The IMDC group showed a significant effect on OS (p = 0.002). The intermediate- and poor-risk groups had 12- and 4-month OS, respectively. The TTI risk factor excluded patient numbers in the favorable, intermediate, and poor risk groups were 47, 129, and 29, respectively, in the revised IMDC group (rIMDC). The prognostic effect of the rIMDC score and groups remained significant (p < 0.001 and p < 0.001, respectively). The classical IMDC had a significant effect on PFS in the multivariate analysis (p = 0.016). Also, rIMDC score in multivariate analysis resulted with significant effect on OS (p = 0.035). CONCLUSION To date, this is the first study to prove that the IMDC may be a valuable option for predicting both prognosis and treatment efficacy in NSCLC patients receiving especially second or further lines nivolumab treatment.
Collapse
Affiliation(s)
- İsmail Beypınar
- Department of Oncology, Alanya Alaaddin Keykubat University, Kestel, Merines Cd., Alanya, 07450, Antalya, Turkey.
| | - Semiha Urvay
- Department of Medical Oncology, Kayseri Acıbadem Hospital, Kayseri, Turkey
| | - Müslih Ürün
- Department of Medical Oncology, Van Yüzüncü Yıl University, Van, Turkey
| | - Berrak Erçek
- Department of Medical Oncology, Van Yüzüncü Yıl University, Van, Turkey
| | - Hacer Demir
- Department of Medical Oncology, Afyonkarahisar Health Sciences University, Afyon, Turkey
| | - Canan Yıldız
- Department of Medical Oncology, Afyonkarahisar Health Sciences University, Afyon, Turkey
| | - Murat Araz
- Department of Medical Oncology, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Oruç
- Department of Medical Oncology, Necmettin Erbakan University, Konya, Turkey
| | - Utku Özilice
- Department of Internal Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Onur Yazdan Balçık
- Department of Oncology, Alanya Alaaddin Keykubat University, Kestel, Merines Cd., Alanya, 07450, Antalya, Turkey
| |
Collapse
|
200
|
León-Flores DB, Siañez-Estada LI, Iglesias-Figueroa BF, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Varela-Ramírez A, Aguilera RJ, Rascón-Cruz Q. Anticancer potential of lactoferrin: effects, drug synergy and molecular interactions. Biometals 2025; 38:465-484. [PMID: 40117096 DOI: 10.1007/s10534-025-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Cancer treatment is among today's most active and challenging research fields. In recent years, significant progress has been made in developing new cancer therapies, including nutraceuticals and natural compounds with anticancer properties. Lactoferrin, a glycoprotein present in mammals, is of significant interest due to its pleiotropic behavior, demonstrating a broad spectrum of biological activities such as antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. In this review, we examine the current knowledge of Lf's role in cancer. In addition, it exhibits a synergistic effect along with conventional drugs, potentially enhancing their efficacy and, at the same time, reducing the side effects associated with most traditional therapies. However, it is essential to consider the precise molecular mechanism by which Lf exerts its antitumor activity. Searching interactions with several molecules can provide insight into this mechanism. Additionally, finding lactoferrin receptors can improve the strategies for the specific release of the conjugates. For all these reasons, Lactoferrin becomes a potential therapeutic agent that should be examined in depth.
Collapse
Affiliation(s)
- D B León-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - L I Siañez-Estada
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - B F Iglesias-Figueroa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - T S Siqueiros-Cendón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - E A Espinoza-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - A Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - R J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Q Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México.
| |
Collapse
|