151
|
Abstract
The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
152
|
Abstract
We review evidence that sterols can form stoichiometric complexes with certain bilayer phospholipids, and sphingomyelin in particular. These complexes appear to be the basis for the formation of condensed and ordered liquid phases, (micro)domains and/or rafts in both artificial and biological membranes. The sterol content of a membrane can exceed the complexing capacity of its phospholipids. The excess, uncomplexed membrane sterol molecules have a relatively high escape tendency, also referred to as fugacity or chemical activity (and, here, simply activity). Cholesterol is also activated when certain membrane intercalating amphipaths displace it from the phospholipid complexes. Active cholesterol projects from the bilayer and is therefore highly susceptible to attack by cholesterol oxidase. Similarly, active cholesterol rapidly exits the plasma membrane to extracellular acceptors such as cyclodextrin and high-density lipoproteins. For the same reason, the pool of cholesterol in the ER (endoplasmic reticulum) increases sharply when cell surface cholesterol is incremented above the physiological set-point; i.e., equivalence with the complexing phospholipids. As a result, the escape tendency of the excess cholesterol not only returns the plasma membrane bilayer to its set-point but also serves as a feedback signal to intracellular homeostatic elements to down-regulate cholesterol accretion.
Collapse
|
153
|
Abstract
Cholesterol is an essential structural component in the cell membranes of most vertebrates. The biophysical properties of cholesterol and the enzymology of cholesterol metabolism provide the basis for how cells handle cholesterol and exchange it with one another. A tightly controlled--but only partially characterized--network of cellular signalling and lipid transfer systems orchestrates the functional compartmentalization of this lipid within and between organellar membranes. This largely dictates the exchange of cholesterol between tissues at the whole body level. Increased understanding of these processes and their integration at the organ systems level provides fundamental insights into the physiology of cholesterol trafficking.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Haartmaninkatu 8, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
154
|
Fernández A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC. Cholesterol and sphingolipids in alcohol-induced liver injury. J Gastroenterol Hepatol 2008; 23 Suppl 1:S9-15. [PMID: 18336673 DOI: 10.1111/j.1440-1746.2007.05280.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of alcohol-induced liver disease (ALD) is still poorly understood. One of the clues to its progression relates to the alcohol-mediated susceptibility of hepatocytes to cell death by reactive oxygen species (ROS) and inflammatory cytokines. Tumor necrosis factor alpha (TNF) has been considered a key ALD mediator with acidic sphingomyelinase (ASMase)-mediated ceramide generation playing a critical role. TNF receptor 1 and 2 knock-out mice or ASMase(-/-) mice exhibit resistance to alcohol-mediated fatty liver and cell death. Furthermore, alcohol feeding has been shown to sensitize hepatocytes to TNF due to the limitation of mitochondrial glutathione (mGSH) through impaired import of GSH from the cytosol due to altered membrane order parameter caused by mitochondrial cholesterol increase. Selective pharmacological depletion of mGSH sensitizes hepatocytes to TNF-mediated cell death, which reproduces the observations found with alcohol feeding. TNF signaling analyses in hepatocytes with or without mGSH depletion indicate that mGSH prevents cardiolipin peroxidation (CLOOH) formation by TNF-induced ROS via ASMase and that CLOOH cooperates with oligomerized Bax to cause mitochondrial outer membrane permeabilization through destabilization of the lipid bilayer via increased bilayer-to-inverted hexagonal phase transitions. Thus, activation of ASMase and cholesterol-mediated mGSH depletion both collaborate to promote alcohol-induced TNF-mediated hepatocellular damage, suggesting novel therapeutic opportunities in ALD.
Collapse
Affiliation(s)
- Anna Fernández
- Center for Biomedical Research Esther Koplowitz, IMDiM, Hospital Clinic and CIBEREHD, Institute of Biomedical Research August Pi i Sunyer, Department of Cell Death and Proliferation, Institute of Biomedical Research, Barcelona, Spain
| | | | | | | |
Collapse
|
155
|
Carrasco MP, Jiménez-López JM, Segovia JL, Marco C. Hexadecylphosphocholine interferes with the intracellular transport of cholesterol in HepG2 cells. FEBS J 2008; 275:1675-86. [DOI: 10.1111/j.1742-4658.2008.06322.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
156
|
Gévry N, Schoonjans K, Guay F, Murphy BD. Cholesterol supply and SREBPs modulate transcription of the Niemann-Pick C-1 gene in steroidogenic tissues. J Lipid Res 2008; 49:1024-33. [PMID: 18272928 DOI: 10.1194/jlr.m700554-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested whether sterol-regulatory element binding proteins (SREBPs) mediate sterol-regulated transactivation of the Niemann-Pick C-1 (NPC-1) gene. Loading granulosa cells with 22- or 25-hydroxycholesterol decreased NPC-1 mRNA, whereas culturing in cholesterol-depleted medium or inhibition of cholesterol biosynthesis increased NPC-1 promoter activity and NPC-1 mRNA abundance. Cotransfection of SREBP1a, SREBP1c, and SREBP2 and the NPC-1 promoter-luciferase reporter into granulosa cell lines increased the transcriptional activity of porcine, human, and mouse NPC-1 promoters. Deletion analysis of the 5' flanking region of the pig NPC-1 gene demonstrated significant promoter activity between fragments -934 and -636 bp upstream from the transcription initiation site. Sequence analysis revealed three sterol-regulatory elements (SREs) clustered between -558 and -650 bp. Each site, along with E-box sequences, bound recombinant SREBP in electromobility shift assays. Mutation of all three sites attenuated the SREBP induction of promoter activity. Chromatin immunoprecipitation (ChIP) assays revealed that cholesterol depletion enriched the association of both SREBP and acetylated histone H3 with the NPC-1 promoter fragment containing the three SREs. ChIP analysis confirmed that SREBP's association with SRE and the E-box was enriched in cells cultured in cholesterol-depleted medium. We conclude that NPC-1 is sterol-regulated, achieved by SREBP acting via SRE and the E-box sequences.
Collapse
Affiliation(s)
- Nicolas Gévry
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada J2S 7C6
| | | | | | | |
Collapse
|
157
|
Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT. Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:401-14. [PMID: 18156287 PMCID: PMC2238164 DOI: 10.1128/ec.00386-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/14/2007] [Indexed: 12/15/2022]
Abstract
The pandemic of lipid-related disease necessitates a determination of how cholesterol and other lipids are transported and stored within cells. The first step in this determination is the identification of the genes involved in these transport and storage processes. Using genome-wide screens, we identified 56 yeast (Saccharomyces cerevisiae) genes involved in sterol-lipid biosynthesis, intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological examination of mutant cells revealed an unanticipated link between secretory protein glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of lipids. Together with the analysis of other deletion mutants, these results suggested at least two distinct events for the biogenesis of lipid storage particles: a step affecting neutral-lipid synthesis, generating the lipid core of storage particles, and another step for particle assembly. In addition to the lipid storage mutants, we identified mutations that affect the localization of unesterified sterols, which are normally concentrated in the plasma membrane. These findings implicated phospholipase C and the protein phosphatase Ptc1p in the regulation of sterol distribution within cells. This study identified novel sterol-related genes that define several distinct processes maintaining sterol homeostasis.
Collapse
Affiliation(s)
- Weihua Fei
- Department of Biochemistry, National University of Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
158
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
159
|
Yan D, Olkkonen VM. Characteristics of oxysterol binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:253-85. [PMID: 18275891 DOI: 10.1016/s0074-7696(07)65007-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein families characterized by a ligand binding domain related to that of oxysterol binding protein (OSBP) have been identified in eukaryotic species from yeast to humans. These proteins, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, have been implicated in various cellular functions. However, the detailed mechanisms of their action have remained elusive. Data from our and other laboratories suggest that binding of sterol ligands may be a unifying theme. Work with Saccharomyces cerevisiae ORPs suggests a function of these proteins in the nonvesicular intracellular transport of sterols, in secretory vesicle transport from the Golgi complex, and in the establishment of cell polarity. Mammals have more ORP genes, and differential splicing substantially increases the complexity of the encoded protein family. Functional studies on mammalian ORPs point in different directions: integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, control of the microtubule-dependent motility of endosomes/lysosomes, and regulation of signaling cascades. We envision that during evolution, the functions of ORPs have diverged from an ancestral one in sterol transport, to meet the increasing demand of the regulatory potential in multicellular organisms. Our working hypothesis is that mammalian ORPs mainly act as sterol sensors that relay information to a spectrum of different cellular processes.
Collapse
Affiliation(s)
- Daoguang Yan
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, FI-00290 Helsinki, Finland
| | | |
Collapse
|
160
|
Contribution of Cdc42 to Cholesterol Efflux in Fibroblasts from Tangier Disease and Werner Syndrome. Methods Enzymol 2008; 439:159-69. [DOI: 10.1016/s0076-6879(07)00412-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
161
|
Locke JA, Wasan KM, Nelson CC, Guns ES, Leon CG. Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT). Prostate 2008; 68:20-33. [PMID: 18000807 DOI: 10.1002/pros.20674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The objective of this work was to determine the effect of an androgen agonist, R1881, on intracellular cholesterol synthesis and esterification in androgen-sensitive (AS) prostate cancer (LNCaP) cells. METHODS We investigated the activity and expression of cholesterol metabolism enzymes, HMG-CoA-reductase and ACAT in the LNCaP and PC-3 (androgen-independent control) models. RESULTS Microsomal PC-3 HMG-CoA-reductase activity was increased with R1881 despite having similar cholesterol levels while increased cholesterol levels in microsomes from LNCaPs treated with R1881 (L+) were associated with increased HMG-CoA reductase activity. Increased intracellular cholesteryl esters (CE) found in (L+) were not associated with an increased ACAT1 activity. There was no effect from androgen treatment on ACAT1 protein expression in theses cells; however, ACAT2 expression was induced upon R1881 treatment. In contrast, we found an increase in the in vitro ACAT1 activity in PC-3 cells treated with androgen (P+). Only ACAT1 expression was induced in P+. We further assessed the expression of STAT1 alpha, a transcriptional activator that modulates ACAT1 expression. STAT1 alpha expression and phosphorylation were induced in P+. To determine the role of the AR on ACAT1 expression and esterification, we treated PC-3 cells overexpressing the androgen receptor with R1881 (PAR+). AR expression was decreased in PAR+ cells; ACAT1 protein expression and cholesterol ester levels were also decreased, however, ACAT2 remained unchanged. STAT1 alpha expression was decreased in PAR+. CONCLUSIONS Overall, these findings support the importance of cholesterol metabolism regulation within prostate cancer cells and unravel a novel role for STAT1 alpha in prostate cancer metabolism.
Collapse
Affiliation(s)
- Jennifer A Locke
- Department of Urologic Sciences, University of British Columbia, The Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
162
|
Wilcox CB, Feddes GO, Willett-Brozick JE, Hsu LC, DeLoia JA, Baysal BE. Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer 2007; 7:223. [PMID: 18070364 PMCID: PMC2241839 DOI: 10.1186/1471-2407-7-223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 12/11/2007] [Indexed: 12/04/2022] Open
Abstract
Background Ovarian cancer (OvCa) most often derives from ovarian surface epithelial (OSE) cells. Several lines of evidence strongly suggest that increased exposure to progesterone (P4) protects women against developing OvCa. However, the underlying mechanisms of this protection are incompletely understood. Methods To determine downstream gene targets of P4, we established short term in vitro cultures of non-neoplastic OSE cells from six subjects, exposed the cells to P4 (10-6 M) for five days and performed transcriptional profiling with oligonucleotide microarrays containing over 22,000 transcripts. Results We identified concordant but modest gene expression changes in cholesterol/lipid homeostasis genes in three of six samples (responders), whereas the other three samples (non-responders) showed no expressional response to P4. The most up-regulated gene was TMEM97 which encodes a transmembrane protein of unknown function (MAC30). Analyses of outlier transcripts, whose expression levels changed most significantly upon P4 exposure, uncovered coordinate up-regulation of 14 cholesterol biosynthesis enzymes, insulin-induced gene 1, low density lipoprotein receptor, ABCG1, endothelial lipase, stearoyl- CoA and fatty acid desaturases, long-chain fatty-acyl elongase, and down-regulation of steroidogenic acute regulatory protein and ABCC6. Highly correlated tissue-specific expression patterns of TMEM97 and the cholesterol biosynthesis genes were confirmed by analysis of the GNF Atlas 2 universal gene expression database. Real-time quantitative RT-PCR analyses revealed 2.4-fold suppression of the TMEM97 gene expression in short-term cultures of OvCa relative to the normal OSE cells. Conclusion These findings suggest that a co-regulated transcript network of cholesterol/lipid homeostasis genes and TMEM97 are downstream targets of P4 in normal OSE cells and that TMEM97 plays a role in cholesterol and lipid metabolism. The P4-induced alterations in cholesterol and lipid metabolism in OSE cells might play a role in conferring protection against OvCa.
Collapse
Affiliation(s)
- Cathy B Wilcox
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Lange Y, Ory DS, Ye J, Lanier MH, Hsu FF, Steck TL. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 2007; 283:1445-1455. [PMID: 18024962 DOI: 10.1074/jbc.m706967200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612.
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jin Ye
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612
| | - Michael H Lanier
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Fong-Fu Hsu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
164
|
Abstract
Sterols such as cholesterol are important components of cellular membranes. They are not uniformly distributed among organelles and maintaining the proper distribution of sterols is critical for many cellular functions. Both vesicular and non-vesicular pathways move sterols between membranes and into and out of cells. There is growing evidence that a number of non-vesicular transport pathways operate in cells and, in the past few years, a number of proteins have been proposed to facilitate this transfer. Some are soluble sterol transfer proteins that may move sterol between membranes. Others are integral membranes proteins that mediate sterol efflux, uptake from cells, and perhaps intracellular sterol transfer as well. In most cases, the mechanisms and regulation of these proteins remains poorly understood. This review summarizes our current knowledge of these proteins and how they could contribute to intracellular sterol trafficking and distribution.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
165
|
Babalola JO, Wendeler M, Breiden B, Arenz C, Schwarzmann G, Locatelli-Hoops S, Sandhoff K. Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein. Biol Chem 2007; 388:617-26. [PMID: 17552909 DOI: 10.1515/bc.2007.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Niemann-Pick type C disease is an inherited fatal disorder characterized by the accumulation of unesterified cholesterol and other lipids in the endosomal/lysosomal compartment. Two independent genes responsible for this neurodegenerative disorder have been identified, but the precise functions of the encoded Niemann-Pick C1 (NPC1) and C2 (NPC2) proteins are not yet known. We developed a cell-free assay for measuring intermembrane lipid transport and examined the ability of bovine NPC2 (bNPC2) for intermembrane cholesterol transfer. NPC2 specifically extracts cholesterol from phospholipid bilayers and catalyzes intermembrane transfer to acceptor vesicles in a dose- and time-dependent manner. This transfer activity is dependent on temperature, pH, ionic strength, lipid composition of the model membranes, and the ratio of donor to acceptor vesicles. In model membranes, the presence of the lysosomal anionic phospholipids bis(monooleoylglycero)phosphate and phosphatidyl inositol significantly stimulated cholesterol transfer by NPC2, whereas bis(monomyristoylglycero)phosphate, phosphatidyl serine, and phosphatidic acid had no effect. Moreover, ceramide stimulated cholesterol transfer slightly, whereas sphingomyelin reduced cholesterol transfer rates. With our assay system we identified for the first time the ability of other lysosomal proteins, most notably the GM2-activator protein, to mediate intermembrane cholesterol transfer. This assay system promises to be a valuable tool for further quantitative and mechanistic studies of protein-mediated lipid transfer.
Collapse
Affiliation(s)
- Jonathan O Babalola
- LIMES Membrane Biology and Lipid Biochemistry Unit, University of Bonn, c/o Kekulé Institute, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
166
|
Hassan HH, Denis M, Krimbou L, Marcil M, Genest J. Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol 2007; 22 Suppl B:35B-40B. [PMID: 16498511 PMCID: PMC2780830 DOI: 10.1016/s0828-282x(06)70985-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis is a disease of blood vessel walls that is thought to be initiated as a reaction of insults to the endothelium. The complex sequence of cellular events that begins with focal inflammation leads to the accumulation of leukocytes in the subendothelial layer and unrestricted uptake of oxidized lipoproteins by macrophages and smooth muscle cells, leading to foam cell formation. Vascular endothelial cells do not undergo the foam cell transformation and do not accumulate cholesterol in atherosclerotic plaques to the same extent as macrophages or smooth muscle cells. However, vascular endothelial cells express receptors for oxidized lipoproteins, and have the biochemical pathways for sterol synthesis and receptor-mediated endocytosis of lipoproteins. Data from the authors' laboratory show that high density lipoproteins but not lipid-free apolipoprotein A-I promote cellular cholesterol efflux in human umbilical vascular endothelial cells and human aortic endothelial cells. Gene expression microarrays were used to examine the differential expression of genes after cholesterol loading. While sterol regulatory element-binding protein-sensitive genes were downregulated, the authors identified a novel transporter, the ATP-binding cassette G1 (ABCG1) to be highly expressed in response to both cellular cholesterol loading and stimulation with the liver X receptor agonist 22-hydroxycholesterol. The ABCA1 gene and protein, the major modulator of cellular cholesterol efflux in macrophages and in peripheral and hepatic tissues, are only weakly expressed in human umbilical vascular endothelial cells and human aortic endothelial cells. These data suggest that endothelial cells maintain cholesterol homeostasis by downregulating cholesterol synthesis and low density lipoprotein receptors and by a cellular cholesterol efflux mechanism onto low-affinity but high-capacity high density lipoproteins. The role of ABC-type transporters, including ABCG1, requires further examination.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Genest
- Correspondence: Dr Jacques Genest, Division of Cardiology Research, McGill University Health Centre-Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec H3A 1A1. Telephone 514-934-1934 ext 35030, fax 514-843-2843, e-mail
| |
Collapse
|
167
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
168
|
Falchi AM, Battetta B, Sanna F, Piludu M, Sogos V, Serra M, Melis M, Putzolu M, Diaz G. Intracellular cholesterol changes induced by translocator protein (18 kDa) TSPO/PBR ligands. Neuropharmacology 2007; 53:318-29. [PMID: 17631921 DOI: 10.1016/j.neuropharm.2007.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/04/2007] [Accepted: 05/20/2007] [Indexed: 11/19/2022]
Abstract
One of the main functions of the translocator protein (18 kDa) or TSPO, previously known as peripheral-type benzodiazepine receptor, is the regulation of cholesterol import into mitochondria for steroid biosynthesis. In this paper we show that TSPO ligands induce changes in the distribution of intracellular cholesterol in astrocytes and fibroblasts. NBD-cholesterol, a fluorescent analog of cholesterol, was rapidly removed from membranes and accumulated into lipid droplets. This change was followed by a block of cholesterol esterification, but not by modification of intracellular cholesterol synthesis. NBD-cholesterol droplets were in part released in the medium, and increased cholesterol efflux was observed in [(3)H]cholesterol-prelabeled cells. TSPO ligands also induced a prominent shrinkage and depolarization of mitochondria and depletion of acidic vesicles with cytoplasmic acidification. Consistent with NBD-cholesterol changes, MTT assay showed enhanced accumulation of formazan into lipid droplets and inhibition of formazan exocytosis after treatment with TSPO ligands. The effects of specific TSPO ligands PK 11195 and Ro5-4864 were reproduced by diazepam, which binds with high affinity both TSPO and central benzodiazepine receptors, but not by clonazepam, which binds exclusively to GABA receptor, and other amphiphilic substances such as DIDS and propranolol. All these effects and the parallel immunocytochemical detection of TSPO in potentially steroidogenic cells (astrocytes) and non-steroidogenic cells (fibroblasts) suggest that TSPO is involved in the regulation and trafficking of intracellular cholesterol by means of mechanisms not necessarily related to steroid biosynthesis.
Collapse
Affiliation(s)
- Angela Maria Falchi
- Department of Cytomorphology, Cittadella Universitaria, University of Cagliari, Monserrato, 09100 Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Miller WL. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:663-76. [PMID: 17433772 DOI: 10.1016/j.bbalip.2007.02.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Cholesterol is a vital component of cellular membranes, and is the substrate for biosynthesis of steroids, oxysterols and bile acids. The mechanisms directing the intracellular trafficking of this nearly insoluble molecule have received increased attention through the discovery of the steroidogenic acute regulatory protein (StAR) and similar proteins containing StAR-related lipid transfer (START) domains. StAR can transfer cholesterol between synthetic liposomes in vitro, an activity which appears to correspond to the trans-cytoplasmic transport of cholesterol to mitochondria. However, trans-cytoplasmic cholesterol transport in vivo appears to involve the recently-described protein StarD4, which is expressed in most cells. Steroidogenic cells must also move large amounts of cholesterol from the outer mitochondrial membrane to the first steroidogenic enzyme, which lies on the matrix side of the inner membrane; this action requires StAR. Congenital lipoid adrenal hyperplasia, a rare and severe disorder of human steroidogenesis, results from mutations in StAR, providing a StAR knockout of nature that has provided key insights into its activity. Cell biology experiments show that StAR moves large amounts of cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. Biophysical data show that only the carboxyl-terminal alpha-helix of StAR interacts with the outer membrane. Spectroscopic data and molecular dynamics simulations show that StAR's interactions with protonated phospholipid head groups on the outer mitochondrial membrane induce a conformational change (molten globule transition) needed for StAR's activity. StAR appears to act in concert with the peripheral benzodiazepine receptor, but the precise itinerary of a cholesterol molecule entering the mitochondrion remains unclear.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Box 0978, University of California, San Francisco, CA 94122-0978, USA.
| |
Collapse
|
170
|
Naslavsky N, Rahajeng J, Rapaport D, Horowitz M, Caplan S. EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem Biophys Res Commun 2007; 357:792-9. [PMID: 17451652 PMCID: PMC1978283 DOI: 10.1016/j.bbrc.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/16/2022]
Abstract
Endocytic transport is critical for the subcellular distribution of free cholesterol and the endocytic recycling compartment (ERC) is an important organelle that stores cholesterol and regulates its trafficking. The C-terminal EHD protein, EHD1, controls receptor recycling through the ERC and affects free cholesterol distribution in the cell. We utilized embryonic fibroblasts from EHD1 knockout mice (Ehd1(-/-)MEF) and SiRNA in normal MEF cells to assess the role of EHD1 in intracellular transport of cholesterol. Surprisingly, Ehd1(-/-)MEFs displayed reduced levels of esterified and free cholesterol, which returned to normal level upon re-introduction of wild-type, but not dysfunctional EHD1. Moreover, triglyceride and cholesterol storage organelles known as 'lipid droplets' were smaller in size in cells lacking EHD1, indicating that less esterified cholesterol and triglycerides were being stored. Decreased cellular cholesterol and reduced lipid droplet size in Ehd1(-/-)MEFs correlated with ineffectual cholesterol uptake via LDL receptor, suggesting involvement of EHD1 in LDL receptor internalization.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Juliati Rahajeng
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Debora Rapaport
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
- Address correspondence to: Steve Caplan, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, e-mail: , phone: 402-559-7556
| |
Collapse
|
171
|
Schulz TA, Prinz WA. Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:769-80. [PMID: 17434796 PMCID: PMC2034499 DOI: 10.1016/j.bbalip.2007.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 12/12/2022]
Abstract
Sterols such as cholesterol are a significant component of eukaryotic cellular membranes, and their unique physical properties influence a wide variety of membrane processes. It is known that the concentration of sterol within the membrane varies widely between organelles, and that the cell actively maintains this distribution through various transport processes. Vesicular pathways such as secretion or endocytosis may account for this traffic, but increasing evidence highlights the importance of nonvesicular routes as well. The structure of an oxysterol-binding protein homologue (OSH) in yeast (Osh4p/Kes1p) has recently been solved, identifying it as a sterol binding protein, and there is evidence consistent with the role of a cytoplasmic, nonvesicular sterol transporter. Yeast have seven such proteins, which appear to have distinct but overlapping functions with regard to maintaining intracellular sterol distribution and homeostasis. Control of sterol distribution can have far-reaching effects on membrane-related functions, and Osh proteins have been implicated in a variety of processes such as secretory vesicle budding from the Golgi and establishment of cell polarity. This review summarizes the current body of knowledge regarding this family and its potential functions, placing it in the context of known and hypothesized pathways of sterol transport in yeast.
Collapse
Affiliation(s)
- Timothy A Schulz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
172
|
Delton-Vandenbroucke I, Bouvier J, Makino A, Besson N, Pageaux JF, Lagarde M, Kobayashi T. Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages. J Lipid Res 2007; 48:543-52. [PMID: 17146116 DOI: 10.1194/jlr.m600266-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP), also called lysobisphosphatidic acid, is a phospholipid highly enriched in the internal membranes of multivesicular late endosomes, in which it forms specialized lipid domains. It has been suggested that BMP-rich membranes regulate cholesterol transport. Here, we examine the effects of an anti-BMP antibody on cholesterol metabolism and transport in two macrophage cell lines, RAW 264.7 and THP-1, during loading with acetylated low density lipoprotein (AcLDL). Anti-BMP antibody was internalized and accumulated in both macrophage cell types. Cholesterol staining with filipin and mass measurements indicate that AcLDL-stimulated accumulation of free cholesterol (FC) was enhanced in macrophages that had accumulated the antibody. Unlike the hydrophobic amine U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), esterification of AcLDL-derived cholesterol by ACAT was not modified after anti-BMP treatment. AcLDL loading led to an increase of FC in the plasma membrane. This increase was further enhanced in anti-BMP-treated macrophages. However, cholesterol efflux to HDL was reduced in antibody-treated cells. These results suggest that the accumulation of anti-BMP antibody alters cholesterol homeostasis in AcLDL-loaded macrophages.
Collapse
Affiliation(s)
- Isabelle Delton-Vandenbroucke
- Institut National de la Santé et de la Recherche Médicale U585, Institut National des Sciences Appliquees-Lyon, Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France.
| | | | | | | | | | | | | |
Collapse
|
173
|
Miller WL. StAR Search—What We Know about How the Steroidogenic Acute Regulatory Protein Mediates Mitochondrial Cholesterol Import. Mol Endocrinol 2007; 21:589-601. [PMID: 16973755 DOI: 10.1210/me.2006-0303] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol is the starting point for biosynthesis of steroids, oxysterols and bile acids, and is also an essential component of cellular membranes. The mechanisms directing the intracellular trafficking of this insoluble molecule have received attention through the discovery of the steroidogenic acute regulatory protein (StAR) and related proteins containing StAR-related lipid transfer domains. Much of our understanding of the physiology of StAR derives from studies of congenital lipoid adrenal hyperplasia, which is caused by StAR mutations. Multiple lines of evidence show that StAR moves cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. The precise mechanism by which StAR's action on the outer mitochondrial membrane stimulates the flow of cholesterol to the inner membrane remains unclear. When StAR interacts with protonated phospholipid head groups on the outer mitochondrial membrane, it undergoes a conformational change (molten globule transition) that opens and closes StAR's cholesterol-binding pocket; this conformational change is required for cholesterol binding, which is required for StAR activity. The action of StAR probably requires interaction with the peripheral benzodiazepine receptor.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Box 0978, University of California, San Francisco, San Francisco, California 94143-0978, USA.
| |
Collapse
|
174
|
Schneiter R. Intracellular sterol transport in eukaryotes, a connection to mitochondrial function? Biochimie 2007; 89:255-9. [PMID: 16945463 DOI: 10.1016/j.biochi.2006.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 07/26/2006] [Indexed: 01/05/2023]
Abstract
Eukaryotic cells synthesize sterols in the endoplasmatic reticulum (ER) from where it needs to be efficiently transported to the plasma membrane, which harbors approximately 90% of the free sterol pool of the cell. Sterols that are being taken up from the environment, on the other hand, are transported back from the plasma membrane to the ER, where the free sterols are esterified to steryl esters. The molecular mechanisms that govern this bidirectional movement of sterols between the ER and the plasma membrane of eukaryotic cells are only poorly understood. Proper control of this transport is important for normal cell function and development as indicated by fatal human pathologies such as Niemann Pick type C disease and atherosclerosis, which are characterized by an over-accumulation of free sterols within endosomal membranes and the ER, respectively. Recently, a number of complementary approaches using Saccharomyces cerevisiae as a model organism lead to a more precise characterization of the pathways that control the subcellular transport of sterols and led to the identification of components that directly or indirectly affect sterol uptake at the plasma membrane and its transport back to the ER. A genetic approach that is based on the fact that yeast is a facultative anaerobic organism, which becomes auxotrophic for sterols in the absence of oxygen, resulted in the identification of 17 genes that are required for efficient uptake and/or transport of sterols. Unexpectedly, many of these genes are required for mitochondrial functions. A possible connection between mitochondrial biogenesis and sterol biosynthesis and uptake will be discussed in light of the fact that cholesterol transport into the inner membranes of mitochondria is a well established sterol transport route in vertebrates, where it is required to convert cholesterol into pregnenolone, the precursor of steroids.
Collapse
Affiliation(s)
- Roger Schneiter
- Department of Medicine, Division of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
175
|
|
176
|
Mathur SN, Watt KR, Field FJ. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid. J Lipid Res 2007; 48:395-404. [PMID: 17114806 DOI: 10.1194/jlr.m600325-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the effect of the n-3 fatty acid, docosahexaenoic acid (22:6), on proteins that play a role in cholesterol absorption, CaCo-2 cells were incubated with taurocholate micelles alone or micelles containing 22:6 or oleic acid (18:1). Compared with controls or 18:1, 22:6 did not interfere with the cellular uptake of micellar cholesterol. Apical cholesterol efflux was enhanced in cells incubated with 22:6. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was decreased by 22:6. 22:6 decreased Niemann-Pick C1-Like 1 (NPC1L1) protein and mRNA levels without altering gene or protein expression of ACAT2, annexin-2, caveolin-1, or ABCG8. Peroxisome proliferator-activated receptor delta (PPARdelta) activation decreased NPC1L1 mRNA levels and cholesterol trafficking to the endoplasmic reticulum, suggesting that 22:6 may act through PPARdelta. Compared with hamsters fed a control diet or olive oil (enriched 18:1), NPC1L1 mRNA levels were decreased in duodenum and jejunum of hamsters ingesting fish oil (enriched 22:6). In an intestinal cell, independent of changes in ABCG8 expression, 22:6 increases the apical efflux of cholesterol. 22:6 interferes with cholesterol trafficking to the endoplasmic reticulum by the suppression of NPC1L1, perhaps through the activation of PPARdelta. Moreover, a diet enriched in n-3 fatty acids decreases the gene expression of NPC1L1 in duodenum and jejunum of hamster.
Collapse
Affiliation(s)
- Satya N Mathur
- Department of Veterans Affairs and Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
177
|
Hanada K, Kumagai K, Tomishige N, Kawano M. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:644-53. [PMID: 17314061 DOI: 10.1016/j.bbalip.2007.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/12/2007] [Accepted: 01/13/2007] [Indexed: 02/07/2023]
Abstract
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT has been identified as a key factor for the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains including (i) a START domain capable of catalyzing inter-membrane transfer of ceramide, (ii) a pleckstrin homology domain, which serves to target the Golgi apparatus by recognizing phosphatidylinositol 4-monophosphate, and (iii) a short peptide motif named FFAT motif which interacts with the ER-resident membrane protein VAP. CERT is preferentially distributed to the Golgi region in cells, and Golgi-targeted CERT appears to retain the activity to interact with VAP. On the basis of these results, it has been proposed that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that a particularly efficient cycle of CERT movement for trafficking of ceramide may proceed at membrane contact sites between the ER and the Golgi apparatus.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | | | |
Collapse
|
178
|
Peretti N, Delvin E, Sinnett D, Marcil V, Garofalo C, Levy E. Asymmetrical regulation of scavenger receptor class B type I by apical and basolateral stimuli using Caco-2 cells. J Cell Biochem 2007; 100:421-33. [PMID: 16927335 DOI: 10.1002/jcb.20882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholesterol uptake and the mechanisms that regulate cholesterol translocation from the intestinal lumen into enterocytes remain for the most part unclear. Since scavenger receptor class B type I (SR-BI) has been suggested to play a role in cholesterol absorption, we investigated cellular SR-BI modulation by various potential effectors administered in both apical and basolateral sides of Caco-2 cells. With differentiation, Caco-2 cells increased SR-BI protein expression. Western blot analysis showed the ability of cholesterol and oxysterols in both cell compartments to reduce SR-BI protein expression. Among the n-3, n-6, and n-9 fatty acid families, only eicosapentaenoic acid was able to lower SR-BI protein expression on both sides, whereas apical alpha-linolenic acid decreased SR-BI abundance and basolateral arachidonic acid (AA) raised it. Epidermal growth factor and growth hormone, either in the apical or basolateral medium, diminished SR-BI cellular content, while insulin displayed the same effect only on the basolateral side. In the presence of proinflammatory agents (LPS, TNF-alpha, IFN-gamma), Caco-2 cells exhibited differential behavior. SR-BI was downregulated by lipopolysaccharide on both sides. Finally, WY-14643 fibrate diminished SR-BI protein expression when it was added to the apical medium. Biotinylation studies in response to selected stimuli revealed that regulatory modifications in SR-BI protein expression occurred for the most part at the apical cell surface irrespective of the effector location. Our data indicate that various effectors supplied to the apical and basolateral compartments may impact on SR-BI at the apical membrane, thus suggesting potential regulation of intestinal cholesterol absorption and distribution in various intracellular pools.
Collapse
Affiliation(s)
- N Peretti
- Centre de Recherche, CHU-Sainte-Justine, Université de Montréal, Montréal (Québec), Canada, H3T 1C5
| | | | | | | | | | | |
Collapse
|
179
|
Hamelet J, Demuth K, Paul JL, Delabar JM, Janel N. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol 2007; 46:151-9. [PMID: 17030070 DOI: 10.1016/j.jhep.2006.07.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/17/2006] [Accepted: 07/05/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Cystathionine beta synthase (CBS) deficiency leads to severe hyperhomocysteinemia, which confers diverse clinical manifestations, notably fatty liver. Recently, abnormal lipid metabolism has been demonstrated in CBS-deficient mice, a murine model of severe hyperhomocysteinemia. To gain further insights into effects of CBS deficiency on hepatic cholesterol metabolism, the expression of hepatic genes involved in biosynthesis, uptake and efflux was determined in CBS-deficient mice. METHODS Gene expression analysis was performed on liver of CBS-deficient mice using quantitative real-time PCR. RESULTS We found that CBS-deficiency in liver mice significantly increases expression of genes induced by endoplasmic reticulum stress and genes that regulate the expression of enzymes required for cholesterol and fatty acid biosynthesis and uptake, notably the scavenger receptor class B type I (SR-BI), concomitant with overexpression of SR-BI at the protein level. Moreover, we also found increased mRNA levels of ABCG5, ABCG8, ABCG1 and ABCA1, which play important roles in reverse cholesterol transport, associated with an upregulation of liver X receptors and a downregulation of the peroxisome proliferators-activated receptor alpha. CONCLUSIONS We found that several ATP-binding cassette transporters and nuclear hormone receptors involved in liver lipid homeostasis are differentially expressed in liver of CBS-deficient mice.
Collapse
Affiliation(s)
- Julien Hamelet
- EA 3508, Université Paris 7 - Denis Diderot, Case 7104, 2 Place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
180
|
Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P. NPC2, the Protein Deficient in Niemann-Pick C2 Disease, Consists of Multiple Glycoforms That Bind a Variety of Sterols. J Biol Chem 2006; 281:36710-23. [PMID: 17018531 DOI: 10.1074/jbc.m608743200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick C disease is a fatal neurodegenerative disorder characterized by an endolysosomal accumulation of cholesterol and other lipids. One form of the disease is caused by a deficiency in NPC2, a soluble lysosomal glycoprotein that binds cholesterol. To better understand the biological function of NPC2 and how its deficiency results in disease, we have characterized the structural and functional properties of recombinant human protein. Highly purified NPC2 consists of a complex mixture of glycosylated isoforms, similar to that observed in human brain autopsy specimens. Mass spectrometric analysis revealed that of the three potential N-linked glycosylation sites present in the mature protein, Asn-19 is not utilized; Asn-39 is linked to an endoglycosidase H (Endo H)-sensitive oligosaccharide, and Asn-116 is variably utilized, either being unmodified or linked to Endo H-sensitive or Endo H-resistant oligosaccharides. All glycoforms are endocytosed and ameliorate the cholesterol storage phenotype of NPC2-deficient fibroblasts. In addition, the purified preparation contains a mixture of both free and lipid-bound protein. All glycoforms bind cholesterol, and sterol binding to NPC2 significantly alters its behavior upon cation-exchange chromatography. Based on this observation, we developed chromatography-based binding assays and determined that NPC2 forms an equimolar complex with the fluorescent cholesterol analog dehydroergosterol. In addition, we find that NPC2 binds a range of cholesterol-related molecules (cholesterol precursors, plant sterols, some oxysterols, cholesterol sulfate, cholesterol acetate, and 5-alpha-cholestan-3-one) and that 27-hydroxysterol accumulates in NPC2-deficient mouse liver. Binding was not detected for various glycolipids, phospholipids, or fatty acids. These biochemical properties support a direct and specialized function of NPC2 in lysosomal sterol transport.
Collapse
Affiliation(s)
- Heng-Ling Liou
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
181
|
Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res 2006; 47:2614-30. [PMID: 16990645 DOI: 10.1194/jlr.m600232-jlr200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.
Collapse
Affiliation(s)
- Marta Murcia
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
182
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
183
|
Li T, Chen W, Chiang JYL. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. J Lipid Res 2006; 48:373-84. [PMID: 17088262 DOI: 10.1194/jlr.m600282-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial sterol 27-hydroxylase (CYP27A1) catalyzes oxidative cleavage of the sterol side chain in the bile acid biosynthetic pathway in the liver and 27-hydroxylation of cholesterol in most tissues. Recent studies suggest that 27-hydroxycholesterol (27-HOC) activates liver orphan receptor alpha (LXRalpha) and induces the cholesterol efflux transporters ABCA1 and ABCG1 in macrophages. The steroid- and bile acid-activated pregnane X receptor (PXR) plays critical roles in the detoxification of bile acids, cholesterol metabolites, and xenobiotics. The role of CYP27A1 in the intestine is not known. This study investigated PXR and CYP27A1 regulation of cholesterol metabolism in the human intestinal cell lines Caco2 and Ls174T. A human PXR ligand, rifampicin, induced CYP27A1 mRNA expression in intestine cells but not in liver cells. Rifampicin induced CYP27A1 gene transcription, increased intracellular 27-HOC levels, and induced ABCA1 and ABCG1 mRNA expression only in intestine cells. A functional PXR binding site was identified in the human CYP27A1 gene. Chromatin immunoprecipitation assays revealed that rifampicin induced the PXR recruitment of steroid receptor coactivator 1 to CYP27A1 chromatin. Cholesterol loading markedly increased intracellular 27-HOC levels in intestine cells. Rifampicin, 27-HOC, and a potent LXRalpha agonist, T0901317, induced ABCA1 and ABCG1 protein expression and stimulated cholesterol efflux from intestine cells to apolipoprotein A-I and HDL. This study suggests an intestine-specific PXR/CYP27A1/LXRalpha pathway that regulates intestine cholesterol efflux and HDL assembly.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/genetics
- Base Sequence
- Cell Line
- Cholestanetriol 26-Monooxygenase/metabolism
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- Genes, Reporter
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Humans
- Hydrocarbons, Fluorinated
- Hydroxycholesterols/metabolism
- Hydroxycholesterols/pharmacology
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Intestines/drug effects
- Intestines/enzymology
- Lipid Metabolism
- Molecular Sequence Data
- Pregnane X Receptor
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Rifampin/pharmacology
- Sulfonamides/pharmacology
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Tiangang Li
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA
| | | | | |
Collapse
|
184
|
Hanada K. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem 2006; 286:23-31. [PMID: 16601923 DOI: 10.1007/s11010-005-9044-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synthesis and sorting of lipids are essential events for membrane biogenesis and its homeostasis. Ceramide is synthesised at the endoplasmic reticulum (ER), and translocated to the Golgi compartment for conversion to sphingomyelin (SM). We have recently identified a key factor (named CERT) for ceramide trafficking. In this short review, I summarise recent advances in molecular mechanisms of intracellular transport of ceramide, focusing on our genetic and biochemical approaches to this issue.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Tokyo 162-8640, Japan.
| |
Collapse
|
185
|
Abstract
Steatohepatitis represents an advanced stage of fatty liver disease that encompasses alcoholic (ASH) and non-alcoholic steatohepatitis (NASH). The progression from steatosis to steatohepatitis is poorly understood. One of the clues to this progression is the sensitization of hepatocytes to oxidative stress and cytokine-induced cell death. Mitochondrial glutathione (mGSH), which plays a central role in the control of mitochondrial reactive oxygen species (ROS) generation, modulates the sensitivity to cell death pathways. Mitochondrial GSH depletion due to alcohol-mediated alteration in mitochondrial membrane dynamics underlies the susceptibility of hepatocytes from alcohol-fed models to tumor necrosis factor (TNF), and in nutritional and genetic models of hepatic steatosis, mGSH depletion occurs due to the enrichment of mitochondria in free cholesterol, resulting in decreased mitochondrial membrane fluidity. The signaling of TNF through its membrane receptor TNFR1 from complex I to complex II is similar in hepatocytes depleted or not depleted in mGSH, yet hepatocellular susceptibility to TNF occurs if mGSH is depleted. Thus, mGSH is a critical factor in the development of steatohepatitis through sensitization of hepatocytes to inflammatory cytokines, and understanding the homeostasis of cholesterol and its trafficking to mitochondria may be of relevance in the pathophysiology of ASH and NASH.
Collapse
Affiliation(s)
- Carmen Garcia-Ruiz
- Liver Unit, Institute of Digestive Diseases, Hospital Clinic, Provincial, Barcelona, Spain
| | | |
Collapse
|
186
|
Marí M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006; 4:185-98. [PMID: 16950136 DOI: 10.1016/j.cmet.2006.07.006] [Citation(s) in RCA: 485] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/09/2006] [Accepted: 07/21/2006] [Indexed: 12/17/2022]
Abstract
The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.
Collapse
Affiliation(s)
- Montserrat Marí
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic i Provincial, Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Robinet P, Fradagrada A, Monier MN, Marchetti M, Cogny A, Moatti N, Paul JL, Vedie B, Lamaze C. Dynamin is involved in endolysosomal cholesterol delivery to the endoplasmic reticulum: role in cholesterol homeostasis. Traffic 2006; 7:811-23. [PMID: 16787396 DOI: 10.1111/j.1600-0854.2006.00435.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cholesterol is one of the most essential membrane components in mammalian cells and plays a critical role in several cellular functions. It is now established that intracellular cholesterol transport contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we examined the role of clathrin- and dynamin-dependent trafficking on the regulatory machinery involved in cholesterol homeostasis. Thus, expression levels of three major sterol-sensitive genes, that is sterol-regulatory element binding protein 2 (SREBP-2), hydroxymethylglutaryl-coenzyme A (HMGCoA) reductase and low-density lipoprotein (LDL) receptor, were monitored to study the cell response to the addition of LDL-derived cholesterol. We found that inhibition of clathrin-dependent endocytosis had no effect on the intracellular distribution of cholesterol and the regulation of sterol-sensitive genes. In contrast, inhibition of dynamin activity resulted in the lack of regulation of SREBP-2, HMGCoA reductase and LDL receptor genes. Immunolocalization studies along with the measure of free and esterified cholesterol indicated that dynamin inactivation led to the accumulation of free cholesterol (FC) within the late endosomal (LE)/lysosomal compartment resulting in insufficient delivery of regulatory cholesterol to the endoplasmic reticulum (ER) where the transcriptional control of sterol-sensitive genes occurs. Our data therefore indicate that dynamin plays a critical role in the delivery of cholesterol from the LE/lysosomal network to the ER and highlight the importance of LE trafficking in cholesterol homeostasis.
Collapse
Affiliation(s)
- Peggy Robinet
- Laboratoire de Biochimie Appliquée, UFR de Pharmacie, Châtenay-Malabry, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Alpy F, Tomasetto C. MLN64 and MENTHO, two mediators of endosomal cholesterol transport. Biochem Soc Trans 2006; 34:343-5. [PMID: 16709157 DOI: 10.1042/bst0340343] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MLN64 (metastatic lymph node 64) and MENTHO (MLN64 N-terminal homologue) are two late-endosomal proteins that share a conserved region of four transmembrane helices with three short intervening loops called the MENTAL domain (MLN64 N-terminal domain). This domain mediates MLN64 and MENTHO homo- and hetero-interactions, targets both proteins to late endosomes and binds cholesterol in vivo. In addition to the MENTAL domain, MLN64 contains a cholesterol-specific START domain [StAR (steroidogenic acute regulatory protein)-related lipid transfer domain]. The START domain is a protein module of approx. 210 residues that binds lipids, including sterols, and is present in 15 distinct proteins in mammals. Thus MLN64 and MENTHO define discrete cholesterol-containing subdomains within the membrane of late endosomes where they may function in cholesterol transport. The MENTAL domain might serve to maintain cholesterol at the membrane of late endosomes prior to its shuttle to cytoplasmic acceptor(s) through the START domain.
Collapse
Affiliation(s)
- F Alpy
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Pathologie Moléculaire, UMR7104-CNRS/U596-INSERM/Université Louis Pasteur, Illkirch, CU de Strasbourg, France
| | | |
Collapse
|
189
|
Raychaudhuri S, Prinz WA. Uptake and trafficking of exogenous sterols in Saccharomyces cerevisiae. Biochem Soc Trans 2006; 34:359-62. [PMID: 16709161 DOI: 10.1042/bst0340359] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proper distribution of sterols among organelles is critical for numerous cellular functions. How sterols are sorted and moved among membranes remains poorly understood, but they are transported not only in vesicles but also by non-vesicular pathways. One of these pathways moves exogenous sterols from the plasma membrane to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. We have found that two classes of proteins play critical roles in this transport, ABC transporters (ATP-binding-cassette transporters) and oxysterol-binding protein-related proteins. Transport is also regulated by phosphoinositides and the interactions of sterols with other lipids. Here, we summarize these findings and speculate on the role of non-vesicular sterol transfer in determining intracellular sterol distribution and membrane function.
Collapse
Affiliation(s)
- S Raychaudhuri
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
190
|
Baldán A, Tarr P, Vales CS, Frank J, Shimotake TK, Hawgood S, Edwards PA. Deletion of the transmembrane transporter ABCG1 results in progressive pulmonary lipidosis. J Biol Chem 2006; 281:29401-10. [PMID: 16887795 DOI: 10.1074/jbc.m606597200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We show that mice lacking the ATP-binding cassette transmembrane transporter ABCG1 show progressive and age-dependent severe pulmonary lipidosis that recapitulates the phenotypes of different respiratory syndromes in both humans and mice. The lungs of chow-fed Abcg1(-/-) mice, >6-months old, exhibit extensive subpleural cellular accumulation, macrophage, and pneumocyte type 2 hypertrophy, massive lipid deposition in both macrophages and pneumocytes and increased levels of surfactant. No such abnormalities are observed at 3 months of age. However, gene expression profiling reveals significant changes in the levels of mRNAs encoding key genes involved in lipid metabolism in both 3- and 8-month-old Abcg1(-/-) mice. These data suggest that the lungs of young Abcg1(-/-) mice maintain normal lipid levels by repressing lipid biosynthetic pathways and that such compensation is inadequate as the mice mature. Studies with A-549 cells, a model for pneumocytes type 2, demonstrate that overexpression of ABCG1 specifically stimulates the efflux of cellular cholesterol by a process that is dependent upon phospholipid secretion. In addition, we demonstrate that Abcg1(-/-), but not wild-type macrophages, accumulate cholesterol ester droplets when incubated with surfactant. Together, these data provide a mechanism to explain the lipid accumulation in the lungs of Abcg1(-/-)mice. In summary, our results demonstrate that ABCG1 plays essential roles in pulmonary lipid homeostasis.
Collapse
Affiliation(s)
- Angel Baldán
- Department of Biological Chemistry, University o California, Los Angeles 90095, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Batetta B, Sanna F. Cholesterol metabolism during cell growth: Which role for the plasma membrane? EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200600015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
192
|
Yang H. Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol 2006; 16:427-32. [PMID: 16876994 DOI: 10.1016/j.tcb.2006.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/30/2006] [Accepted: 07/17/2006] [Indexed: 11/23/2022]
Abstract
Sterols, essential components of eukaryotic membranes, are actively transported between cellular membranes. Although it is known that both vesicular and non-vesicular means are used to move sterols, the molecules and molecular mechanisms involved have yet to be identified. Recent studies point to a key role for oxysterol binding protein (OSBP) and its related proteins (ORPs) in nonvesicular sterol transport. Here, evidence that OSBP and ORPs are bona fide sterol carriers is discussed. In addition, I hypothesize that ATPases associated with various cellular activities regulate the recycling of soluble lipid carriers and that the Niemann Pick C1 protein facilitates the delivery of sterols from endosomal membranes to ORPs and/or the ensuing membrane dissociation of ORPs.
Collapse
Affiliation(s)
- Hongyuan Yang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore.
| |
Collapse
|
193
|
Abstract
PURPOSE OF REVIEW Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.
Collapse
Affiliation(s)
- John B Massey
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
194
|
Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 2006; 17:247-57. [PMID: 16680029 DOI: 10.1097/01.mol.0000226116.35555.eb] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis. RECENT FINDINGS ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor. SUMMARY The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.
Collapse
Affiliation(s)
- Wendy Jessup
- Centre for Vascular Research, at the School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
195
|
Abstract
The pathways involved in the intracellular transport and distribution of lipids in general, and sterols in particular, are poorly understood. Cholesterol plays a major role in modulating membrane bilayer structure and important cellular functions, including signal transduction and membrane trafficking. Both the overall cholesterol content of a cell, as well as its distribution in specific organellar membranes are stringently regulated. Several diseases, many of which are incurable at present, have been characterized as results of impaired cholesterol transport and/or storage in the cells. Despite their importance, many fundamental aspects of intracellular sterol transport and distribution are not well understood. For instance, the relative roles of vesicular and non-vesicular transport of cholesterol have not yet been fully determined, nor are the non-vesicular transport mechanisms well characterized. Similarly, whether cholesterol is asymmetrically distributed between the two leaflets of biological membranes, and if so, how this asymmetry is maintained, is poorly understood. In this review, we present a summary of the current understanding of these aspects of intracellular trafficking and distribution of lipids, and more specifically, of sterols.
Collapse
Affiliation(s)
- F R Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
196
|
Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. ACTA ACUST UNITED AC 2006; 173:107-19. [PMID: 16585271 PMCID: PMC2063795 DOI: 10.1083/jcb.200510084] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)–related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.
Collapse
Affiliation(s)
- Sumana Raychaudhuri
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
197
|
Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 2006; 45:279-94. [PMID: 16574236 DOI: 10.1016/j.plipres.2006.02.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/02/2006] [Accepted: 02/20/2006] [Indexed: 12/18/2022]
Abstract
Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in intracellular cholesterol transport. One of these proteins is StAR-D1, that also has a mitochondrial targeting sequence and plays an important role in delivering cholesterol to the mitochondria of steroidogenic cells.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, 1200 Main Street, Hamilton, Ont., Canada L8N 3Z5.
| |
Collapse
|
198
|
Howe D, Heinzen RA. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 2006; 8:496-507. [PMID: 16469060 DOI: 10.1111/j.1462-5822.2005.00641.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coxiella burnetii directs the synthesis of a large parasitophorous vacuole (PV) required for replication. While some lysosomal characteristics of the PV have been described, the origin and composition of the PV membrane is largely undefined. Cholesterol is an essential component of mammalian cell membranes where it plays important regulatory and structural roles. Here we investigated the role of host cholesterol in biogenesis and maintenance of the C. burnetii PV in Vero cells. The C. burnetii PV membrane stained with filipin and was positive for the lipid raft protein flotillin-1, suggesting PV membranes are enriched in cholesterol and contain lipid raft microdomains. C. burnetii infection increased host cell cholesterol content by 1.75-fold with a coincident upregulation of host genes involved in cholesterol metabolism. Treatment with U18666A, lovastatin, or 25-hydroxycholesterol, pharmacological agents that inhibit cholesterol uptake and/or biosynthesis, altered PV morphology and partially inhibited C. burnetii replication. Complete inhibition of C. burnetii PV development and replication was observed when infected cells were treated with imipramine or ketoconazole, inhibitors of cholesterol uptake and biosynthesis respectively. We conclude that C. burnetii infection perturbs host cell cholesterol metabolism and that free access to host cholesterol stores is required for optimal C. burnetii replication.
Collapse
Affiliation(s)
- Dale Howe
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | |
Collapse
|
199
|
Zhao H, Väänänen HK. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts. J Bone Miner Res 2006; 21:456-65. [PMID: 16491294 DOI: 10.1359/jbmr.051204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/28/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We showed that the ruffled border lacks a late endosomal lipid, LBPA, but is enriched incholesterol. A hydrophobic amine, U18666A, causes cholesterol accumulation in LBPA+ late endosomes in osteoclasts. Specific targeting of cathepsin K and the vacuolar H+-ATPase at the ruffled border is blocked by U18666A. A membrane trafficking pathway from baso-lateral membrane toward the resorptive organelle is also arrested by the inhibitor. These results indicate cholesterol homeostasis regulates late endosomal/lysosomal trafficking and polarized secretion in resorbing osteoclasts. INTRODUCTION Protons and acidic proteases are secreted into the resorption lacuna through the ruffled border to solubilize bone mineral and digest the organic bone matrix, respectively. Whereas evidence suggests this event occurs through a vesicular trafficking mechanism, this issue remains unresolved. MATERIALS AND METHODS The distribution of lysobisphosphatidic acid (LBPA) and cholesterol in resorbing osteoclasts was examined by laser scanning confocal microscopy. The effects of U18666A on ruffled border formation were observed by electron microscopy. RESULTS AND CONCLUSIONS The ruffled border does not contain LBPA but is enriched in cholesterol. We found a hydrophobic amine, U18666A, which blocks the efflux of cholesterol from late endosomes in other cells, causes cholesterol accumulation in LBPA-containing late endosomes in osteoclasts, leading to diminished cholesterol at the ruffled border. Reflecting the U18666A-mediated inhibition of late endosome/lysosome transport, the resorptive membrane is disrupted and contains a paucity of cathepsin K and the vacuolar H+-ATPase. These results indicate that the ruffled border is formed by the fusion of lysosomes with the plasma membrane in osteoclasts through a process that is cholesterol regulated.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.
| | | |
Collapse
|
200
|
Sehgal A, Bettiol S, Pypaert M, Wenk MR, Kaasch A, Blader IJ, Joiner KA, Coppens I. Peculiarities of host cholesterol transport to the unique intracellular vacuole containing Toxoplasma. Traffic 2006; 6:1125-41. [PMID: 16262724 DOI: 10.1111/j.1600-0854.2005.00348.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracellular protozoan Toxoplasma gondii is auxotrophic for low-density lipoprotein (LDL)-derived cholesterol (C). We previously showed that T. gondii scavenges this essential lipid from host endolysosomal compartments and that C delivery to the parasitophorous vacuole (PV) does not require transit through host Golgi or endoplasmic reticulum. In this study, we explore the itinerary of C from the host endolysosomes to the PV. Labeled C incorporated into LDL is rapidly detected in intravacuolar parasites and partially esterified by the parasites. In contrast to diverse mammalian organelles, the post-endolysosomal transfer of C to the PV does not involve the host plasma membrane as an intermediate. Nevertheless, the PV membrane is accessible to extracellular sterol acceptors, suggesting C trafficking from intracellular parasites to host plasma membrane. C movement to the PV requires temperatures permissive for vesicular transport, metabolic energy and functional microtubules. Host caveolae vesicles and the sterol carrier protein-2 do not participate in this process. Proteolytic treatment of purified PV or free parasites abolishes C acquisition by the parasites. Altogether, these results support a vesicular transport system from host endolysosomes to the PV, and a requirement for PV membrane and parasite plasma membrane proteins in C delivery to T. gondii.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|