151
|
Wu H, Chen H, Sun Y, Wan Y, Wang F, Jia B, Su X. Imaging integrin αvβ3 positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent (Endostar) on its tumor uptake. Cancer Lett 2013; 335:75-80. [DOI: 10.1016/j.canlet.2013.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/03/2023]
|
152
|
Min J, Jung H, Shin HH, Cho G, Cho H, Kang S. Implementation of P22 viral capsids as intravascular magnetic resonance T1 contrast conjugates via site-selective attachment of Gd(III)-chelating agents. Biomacromolecules 2013; 14:2332-9. [PMID: 23758486 DOI: 10.1021/bm400461j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
P22 viral capsids and ferritin protein cages are utilized as templating macromolecules to conjugate Gd(III)-chelating agent complexes, and we systematically investigates the effects of the macromolecules' size and the conjugation positions of Gd(III)-chelating agents on the magnetic resonance (MR) relaxivities and the resulting image contrasts. The relaxivity values of the Gd(III)-chelating agent-conjugated P22 viral capsids (outer diameter: 64 nm) are dramatically increased as compared to both free Gd(III)-chelating agents and Gd(III)-chelating agent-conjugated ferritins (outer diameter: 12 nm), suggesting that the large sized P22 viral capsids exhibit a much slower tumbling rate, which results in a faster T1 relaxation rate. Gd(III)-chelating agents are attached to either the interior or exterior surface of P22 viral capsids and the conjugation positions of Gd(III)-chelating agents, however, do not have a significant effect on the relaxivity values of the macromolecular conjugates. The contrast enhancement of Gd(III)-chelating agent-conjugated P22 viral capsids is confirmed by in vitro phantom imaging at a short repetition times (TR) and the potential usage of Gd(III)-chelating agent-conjugated P22 viral capsids for in vivo MR imaging is validated by visualizing a mouse's intravascular system, including the carotid, mammary arteries, the jugular vein, and the superficial vessels of the head at an isotropic resolution of 250 μm.
Collapse
Affiliation(s)
- Junseon Min
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | | | | | | | | | | |
Collapse
|
153
|
Schmieder AH, Winter PM, Williams TA, Allen JS, Hu G, Zhang H, Caruthers SD, Wickline SA, Lanza GM. Molecular MR imaging of neovascular progression in the Vx2 tumor with αvβ3-targeted paramagnetic nanoparticles. Radiology 2013; 268:470-80. [PMID: 23771914 DOI: 10.1148/radiol.13120789] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the dependence of neovascular molecular magnetic resonance (MR) imaging on relaxivity (r1) of αvβ3-targeted paramagnetic perfluorocarbon (PFC) nanoparticles and to delineate the temporal-spatial consistency of angiogenesis assessments for individual animals. MATERIALS AND METHODS Animal protocols were approved by the Washington University Animal Studies Committee. Proton longitudinal and transverse relaxation rates of αvβ3-targeted and nontargeted PFC nanoparticles incorporating gadolinium diethylenetrianime pentaacedic acid (Gd-DTPA) bisoleate (BOA) or gadolinium tetraazacyclododecane tetraacetic acid (Gd-DOTA) phosphatidylethanolamine (PE) into the surfactant were measured at 3.0 T. These paramagnetic nanoparticles were compared in 30 New Zealand White rabbits (four to six rabbits per group) 14 days after implantation of a Vx2 tumor. Subsequently, serial MR (3.0 T) neovascular maps were developed 8, 14, and 16 days after tumor implantation by using αvβ3-targeted Gd-DOTA-PE nanoparticles (n = 4) or nontargeted Gd-DOTA-PE nanoparticles (n = 4). Data were analyzed with analysis of variance and nonparametric statistics. RESULTS At 3.0 T, Gd-DTPA-BOA nanoparticles had an ionic r1 of 10.3 L · mmol(-1) · sec(-1) and a particulate r1 of 927000 L · mmol(-1) · sec(-1). Gd-DOTA-PE nanoparticles had an ionic r1 of 13.3 L · mmol(-1) · sec(-1) and a particulate r1 of 1 197000 L · mmol(-1) · sec(-1). Neovascular contrast enhancement in Vx2 tumors (at 14 days) was 5.4% ± 1.06 of the surface volume with αvβ3-targeted Gd-DOTA-PE nanoparticles and 3.0% ± 0.3 with αvβ3-targeted Gd-DTPA-BOA nanoparticles (P = .03). MR neovascular contrast maps of tumors 8, 14, and 16 days after implantation revealed temporally consistent and progressive surface enhancement (1.0% ± 0.3, 4.5% ± 0.9, and 9.3% ± 1.4, respectively; P = .0008), with similar time-dependent changes observed among individual animals. CONCLUSION Temporal-spatial patterns of angiogenesis for individual animals were followed to monitor longitudinal tumor progression. Neovasculature enhancement was dependent on the relaxivity of the targeted agent.
Collapse
Affiliation(s)
- Anne H Schmieder
- Department of Medicine, Washington University Medical School, 660 S. Euclid Ave, Campus Box 8215, St Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Fan Z, Chen D, Deng CX. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles. J Control Release 2013; 170:401-13. [PMID: 23770009 DOI: 10.1016/j.jconrel.2013.05.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/04/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection.
Collapse
Affiliation(s)
- Z Fan
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
155
|
Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T(1)-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 2013; 14:10591-607. [PMID: 23698781 PMCID: PMC3676856 DOI: 10.3390/ijms140510591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/29/2022] Open
Abstract
Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.
Collapse
Affiliation(s)
- Derong Zhu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Guangdong Medical College, Dongwan 523770, Guangdong, China; E-Mail:
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| |
Collapse
|
156
|
Tapping CR, Bratby MJ. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging. Cardiovasc Intervent Radiol 2013; 36:904-12. [PMID: 23636247 DOI: 10.1007/s00270-013-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/25/2013] [Indexed: 01/22/2023]
Abstract
Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.
Collapse
Affiliation(s)
- Charles R Tapping
- Department of Radiology, Oxford University Hospitals, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
157
|
|
158
|
Application of nanoparticles on diagnosis and therapy in gliomas. BIOMED RESEARCH INTERNATIONAL 2013; 2013:351031. [PMID: 23691498 PMCID: PMC3652126 DOI: 10.1155/2013/351031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/13/2013] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.
Collapse
|
159
|
den Adel B, Daemen MJ, Poelmann RE, van der Weerd L. Molecular Magnetic Resonance Imaging for the Detection of Vulnerable Plaques: Is It Possible?: Retracted. Arterioscler Thromb Vasc Biol 2013:ATVBAHA.112.300108. [PMID: 23413424 DOI: 10.1161/atvbaha.112.300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/13/2013] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression. In particular, we highlight the challenges and limitations of the different contrast agents and hurdles for clinical application. We describe the most promising existing compounds to detect atherosclerosis and plaque vulnerability. Of particular interest are the fibrin-targeted compounds that detect thrombi and, furthermore, the contrast agents targeted to integrins that allow to visualize plaque neovascularization. Moreover, vascular cell adhesion molecule 1-targeted iron oxides seem promising for early detection of atherosclerosis. These targeted MRI contrast agents, however promising and well characterized in (pre)clinical models, lack specificity for plaque vulnerability.
Collapse
Affiliation(s)
- Brigit den Adel
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (B.d.A., R.E.P., L.v.d.W.)
| | | | | | | |
Collapse
|
160
|
Lim EK, Kim B, Choi Y, Ro Y, Cho EJ, Lee JH, Ryu SH, Suh JS, Haam S, Huh YM. Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J Biomed Mater Res A 2013; 102:49-59. [PMID: 23568770 DOI: 10.1002/jbm.a.34678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/17/2022]
Abstract
An understanding of neovascularization and/or angiogenesis in cancer is acutely required for effective cancer therapy due to concerns about tumor growth and metastasis. In particular, integrin αvβ3 is closely associated with cell migration and invasion during angiogenesis. Hence, we developed aptamer(αvβ3)-conjugated magnetic nanoparticles (Apt(αvβ3)-MNPs) to enable precise detection of integrin-expressing cancer cells using magnetic resonance imaging. Apt(αvβ3)-MNPs exhibited not only cytocompatibility, but also an efficient targeting ability with high magnetic sensitivity through in vitro/in vivo studies. The results of this study demonstrate that Apt(αvβ3)-MNPs have the potential to be used for accurate tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Chen W, Cormode DP, Vengrenyuk Y, Herranz B, Feig JE, Klink A, Mulder WJM, Fisher EA, Fayad ZA. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging 2013; 6:373-84. [PMID: 23433925 PMCID: PMC3653172 DOI: 10.1016/j.jcmg.2012.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/14/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to develop magnetic resonance contrast agents based on high-density lipoprotein (HDL) nanoparticles to noninvasively visualize intraplaque macrophages and collagen content in mouse atherosclerotic plaques. BACKGROUND Macrophages and collagen are important intraplaque components that play central roles in plaque progression and/or regression. In a Reversa mouse model, plaque regression with compositional changes (from high macrophage, low collagen to low macrophage, high collagen) can be induced. METHODS This study labeled HDL nanoparticles with amphiphilic gadolinium chelates to enable target-specific imaging of intraplaque macrophages. To render HDL nanoparticles specific for the extracellular matrix, labeled HDL nanoparticles were functionalized with collagen-specific EP3533 peptides (EP3533-HDL) via poly(ethylene glycol) spacers embedded in the HDL lipid layers. The association of nanoparticles with collagen was examined in vitro by optical methods. The in vivo magnetic resonance efficacy of these nanoparticles was evaluated in a Reversa mouse model of atherosclerosis regression. Ex vivo confocal microscopy was applied to corroborate the in vivo findings and to evaluate the fate of the different HDL nanoparticles. RESULTS All nanoparticles had similar sizes (10 ± 2 nm) and longitudinal relaxivity r1 (9 ± 1 s(-1) mmol/l(-1)). EP3533-HDL showed strong association with collagen in vitro. After 28 days of plaque regression in Reversa mice, EP3533-HDL showed significantly increased (p < 0.05) in vivo magnetic resonance signal in aortic vessel walls (normalized enhancement ratio [NERw] = 85 ± 25%; change of contrast-to-noise ratio [ΔCNRw] = 17 ± 5) compared with HDL (NERw = -7 ± 23%; ΔCNRw = -2 ± 4) and nonspecific control EP3612-HDL (NERw = 4 ± 24%; ΔCNRw = 1 ± 6) at 24 h after injection. Ex vivo confocal images revealed the colocalization of EP3533-HDL with collagen. Immunohistostaining analysis confirmed the changes of collagen and macrophage contents in the aortic vessel walls after regression. CONCLUSIONS This study shows that the HDL nanoparticle platform can be modified to monitor in vivo plaque compositional changes in a regression environment, which will facilitate understanding plaque regression and the search for therapeutic interventions.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| | - David P. Cormode
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| | - Yuliya Vengrenyuk
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Beatriz Herranz
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Department of Epidemiology, Atherothrombosis and Imaging. Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jonathan E Feig
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Ahmed Klink
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Paris Cardiovascular Research Center, INSERM Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| |
Collapse
|
162
|
Capozzi ME, Gordon AY, Penn JS, Jayagopal A. Molecular imaging of retinal disease. J Ocul Pharmacol Ther 2013; 29:275-86. [PMID: 23421501 DOI: 10.1089/jop.2012.0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8808, USA
| | | | | | | |
Collapse
|
163
|
Molecular imaging to identify the vulnerable plaque--from basic research to clinical practice. Mol Imaging Biol 2013; 14:523-33. [PMID: 22983911 DOI: 10.1007/s11307-012-0586-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of death in the Western World. Adverse outcomes of CVD include stroke, myocardial infarction, and heart failure. Atherosclerosis is considered to be the major cause of CVD and is estimated to cause half of all deaths in developed countries. Atherosclerotic lesions of the vessel wall may obstruct blood flow mechanically through stenosis, but rupture of atherosclerotic plaques causing formation of occlusive thrombi is far more prevalent. Unfortunately, conventional diagnostic tools fail to assess whether a plaque is vulnerable to rupture. Research over the past decade identified the biological processes that are implicated in the course towards plaque rupture, like cell death and inflammation. Knowledge about plaque biology propelled the development of imaging techniques that target biologic processes in order to predict the vulnerable plaque. This paper discusses novel and existing molecular imaging targets and addresses advantages and disadvantages of these targets and respective imaging techniques in respect of clinical application and socio-economic impact.
Collapse
|
164
|
Rademakers T, Douma K, Hackeng TM, Post MJ, Sluimer JC, Daemen MJAP, Biessen EAL, Heeneman S, van Zandvoort MAMJ. Plaque-Associated Vasa Vasorum in Aged Apolipoprotein E–Deficient Mice Exhibit Proatherogenic Functional Features In Vivo. Arterioscler Thromb Vasc Biol 2013; 33:249-56. [DOI: 10.1161/atvbaha.112.300087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Neovascularization of human atherosclerotic plaques is implicated in plaque progression and destabilization, although its functional implications are yet unresolved. Here, we aimed to elucidate functional and morphological properties of plaque microvessels in mice in vivo.
Methods and Results—
Atherosclerotic carotid arteries from aged (>40 weeks) apolipoprotein E–deficient mice were imaged in vivo using multiphoton laser scanning microscopy. Two distinct groups of vasa vasorum microvessels were observed at sites of atherosclerosis development (median diameters of 18.5 and 5.9 μm, respectively), whereas microvessels within the plaque could only rarely be found. In vivo imaging showed ongoing angiogenic activity and injection of fluorescein isothiocyanate-dextran confirmed active perfusion. Plaque vasa vasorum showed increased microvascular leakage, combined with a loss of endothelial glycocalyx. Mean blood flow velocity in plaque-associated vasa vasorum was reduced by ±50% compared with diameter-matched control capillaries, whereas mean blood flow was reduced 8-fold. Leukocyte adhesion and extravasation were increased 6-fold in vasa vasorum versus control capillaries.
Conclusion—
Using a novel in vivo functional imaging strategy, we showed that plaque-associated vasa vasorum were angiogenically active and, albeit poorly, perfused. Moreover, plaque-associated vasa vasorum showed increased permeability, reduced blood flow, and increased leukocyte adhesion and extravasation (ie, characteristics that could contribute to plaque progression and destabilization).
Collapse
Affiliation(s)
- Timo Rademakers
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Kim Douma
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Tilman M. Hackeng
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mark J. Post
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Judith C. Sluimer
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Mat J. A. P. Daemen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Erik A. L. Biessen
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Sylvia Heeneman
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| | - Marc A. M. J. van Zandvoort
- From the Departments of Pathology (T.R., J.C.S, M.J.A.P.D., E.A.L.B., S.H.), Biomedical Engineering (K.D.), Radiology (K.D.), Biochemistry (T.M.H.), Physiology (M.J.P.), and Molecular Cell Biology (M.A.M.J.v.Z.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht; Department of Pathology (M.J.A.P.D.), Academic Medical Center, Amsterdam, The Netherlands; and Institute for Molecular Cardiovascular Research (M.A.M.J.v.Z.), RWTA Aachen University, Pauwelsstrasse, Aachen,
| |
Collapse
|
165
|
|
166
|
Xue S, Qiao J, Pu F, Cameron M, Yang JJ. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:163-79. [PMID: 23335551 DOI: 10.1002/wnan.1205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd(3+) with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd(3+) MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
167
|
Binsalamah ZM, Paul A, Prakash S, Shum-Tim D. Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther 2013; 10:805-15. [PMID: 22894635 DOI: 10.1586/erc.12.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiovascular disease (CVD) is comprised of a group of disorders affecting the heart and blood vessels of the human body and is one of the leading causes of death worldwide. Current therapy for CVD is limited to the treatment of already established disease, and it includes pharmacological and/or surgical procedures, such as percutaneous coronary intervention with stenting and coronary artery bypass grafting. However, lots of complications have been raised with these modalities of treatment, including systemic toxicity with medication, stent thrombosis with percutaneous coronary intervention and nonsurgical candidate patients for coronary artery bypass grafting. Nanomedicine has emerged as a potential strategy in dealing with these obstacles. Applications of nanotechnology in medicine are already underway and offer tremendous promise. This review explores the recent developments of nanotechnology in the field of CVD and gives an insight into its potential for diagnostics and therapeutics applications. The authors also explore the characteristics of the widely used biocompatible nanomaterials for this purpose and evaluate their opportunities and challenges for developing novel nanobiotechnological tools with high efficacy for biomedical applications, such as radiological imaging, vascular implants, gene therapy, myocardial infarction and targeted delivery systems.
Collapse
|
168
|
McAteer MA, Choudhury RP. Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano- and micro-sized agents. Vascul Pharmacol 2013; 58:31-8. [DOI: 10.1016/j.vph.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/15/2023]
|
169
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
170
|
Tomlinson RE, McKenzie JA, Schmieder AH, Wohl GR, Lanza GM, Silva MJ. Angiogenesis is required for stress fracture healing in rats. Bone 2013; 52:212-9. [PMID: 23044046 PMCID: PMC3513671 DOI: 10.1016/j.bone.2012.09.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022]
Abstract
Although angiogenesis and osteogenesis are critically linked, the importance of angiogenesis for stress fracture healing is unknown. In this study, mechanical loading was used to create a non-displaced stress fracture in the adult rat forelimb. Fumagillin, an anti-angiogenic agent, was used as the water soluble analogue TNP-470 (25mg/kg) as well as incorporated into lipid-encapsulated α(v)β(3) integrin targeted nanoparticles (0.25mg/kg). In the first experiment, TNP-470 was administered daily for 5 days following mechanical loading, and changes in gene expression, vascularity, and woven bone formation were quantified. Although no changes in vascularity were detected 3 days after loading, treatment-related downregulation of angiogenic (Pecam1) and osteogenic (Bsp, Osx) genes was observed at this early time point. On day 7, microCT imaging of loaded limbs revealed diminished woven bone formation in treated limbs compared to vehicle treated limbs. In the second experiment, α(v)β(3) integrin targeted fumagillin nanoparticles were administered as before, albeit with a 100-fold lower dose, and changes in vascularity and woven bone formation were determined. There were no treatment-related changes in vessel count or volume 3 days after loading, although fewer angiogenic (CD105 positive) blood vessels were present in treated limbs compared to vehicle treated limbs. This result manifested on day 7 as a reduction in total vascularity, as measured by histology (vessel count) and microCT (vessel volume). Similar to the first experiment, treated limbs had diminished woven bone formation on day 7 compared to vehicle treated limbs. These results indicate that angiogenesis is required for stress fracture healing, and may have implications for inducing rapid repair of stress fractures.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jennifer A. McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
| | - Anne H. Schmieder
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Gregory R. Wohl
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
| | - Gregory M. Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
171
|
Eniola-Adefeso O, Heslinga MJ, Porter TM. Design of nanovectors for therapy and imaging of cardiovascular diseases. Methodist Debakey Cardiovasc J 2012; 8:13-7. [PMID: 22891105 DOI: 10.14797/mdcj-8-1-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are widely prevalent in western societies, and their associated costs number in the billions of dollars and affect millions of patients each year. Nanovectors targeted to tissues involved in cardiovascular diseases offer great opportunities to improve cardiovascular treatment through their imaging and drug delivery capabilities. Vascular-targeted imaging particles may permit the early identification of atherosclerosis, discriminate between stable and vulnerable atherosclerotic plaques, or guide surgeons as they work on fragile vasculature. Tailored therapeutic nanoparticles may provide safer, more efficient and effective intervention through localization and release of encapsulated therapeutics. Nanovector design involves numerous considerations such as fabrication material, particle size, and surface-modification with ligands for targeting and increasing blood circulation times. Complex blood rheology may affect the efficiency with which dissimilarsized particles target ligand receptors associated with disease. Additionally, the intended use of a nanovector is a critical factor in its design as some materials with poor drug-loading qualities or release kinetics may be suitable for imaging purposes only. Overall, vectors targeted to the vasculature will need to be efficient in avoiding blood clearance, honing to the target location, and binding at the desired site.
Collapse
|
172
|
Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H, McConnell MV. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc 2012; 1:e002568. [PMID: 23316318 PMCID: PMC3540665 DOI: 10.1161/jaha.112.002568] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
Background Macrophages are critical contributors to atherosclerosis. Single-walled carbon nanotubes (SWNTs) show promising properties for cellular imaging and thermal therapy, which may have application to vascular macrophages. Methods and Results In vitro uptake and photothermal destruction of mouse macrophage cells (RAW264.7) were performed with SWNTs (14.7 nmol/L) exposed to an 808-nm light source. SWNTs were taken up by 94±6% of macrophages, and light exposure induced 93±3% cell death. In vivo vascular macrophage uptake and ablation were then investigated in carotid-ligated FVB mice (n=33) after induction of hyperlipidemia and diabetes. Two weeks postligation, near-infrared fluorescence (NIRF) carotid imaging (n=12) was performed with SWNT-Cy5.5 (8 nmol of Cy5.5) given via the tail vein. Photothermal heating and macrophage apoptosis were evaluated on freshly excised carotid arteries (n=21). NIRF of SWNTs showed higher signal intensity in ligated carotids compared with sham, confirmed by both in situ and ex vivo NIRF imaging (P<0.05, ligation versus sham). Immunofluorescence staining showed colocalization of SWNT-Cy5.5 and macrophages in atherosclerotic lesions. Light (808 nm) exposure of freshly excised carotids showed heating and induction of macrophage apoptosis in ligated left carotid arteries with SWNTs, but not in control groups without SWNTs or without light exposure. Conclusions Carbon nanotubes accumulate in atherosclerotic macrophages in vivo and provide a multifunctional platform for imaging and photothermal therapy of vascular inflammation.
Collapse
Affiliation(s)
- Hisanori Kosuge
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Zhao XQ, Kerwin WS. Utilizing imaging tools in lipidology: examining the potential of MRI for monitoring cholesterol therapy. ACTA ACUST UNITED AC 2012. [PMID: 23197995 DOI: 10.2217/clp.12.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid abnormalities play important roles in the development of atherosclerosis. Lipid therapies result in alterations in atherosclerotic plaques including halting of progression of the plaque, lipid transport out of the plaque and reducing inflammatory activity, which lead to plaque morphologies that are less prone to disruption, the main cause of clinical events. In order to investigate and monitor plaque morphological changes during lipid therapy in vivo we need an imaging method that can provide accurate assessment of plaque tissue components and activity. MRI of atherosclerosis has been validated as a reliable assessment of the size of the vessel lumen, but also the size of the plaque, its tissue composition and plaque activity, including inflammation. The purpose of this review is to summarize the state of evidence for the direct assessment of atherosclerotic plaque and its change by MRI, and to establish the proven role of MRI of atherosclerosis in pharmaceutical trials with lipid therapy.
Collapse
Affiliation(s)
- Xue-Qiao Zhao
- University of Washington School of Medicine, Seattle, WA 98105, USA
| | | |
Collapse
|
174
|
Kerwin WS. Carotid artery disease and stroke: assessing risk with vessel wall MRI. ISRN CARDIOLOGY 2012; 2012:180710. [PMID: 23209940 PMCID: PMC3504380 DOI: 10.5402/2012/180710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/03/2012] [Indexed: 11/23/2022]
Abstract
Although MRI is widely used to diagnose stenotic carotid arteries, it also detects characteristics of the atherosclerotic plaque itself, including its size, composition, and activity. These features are emerging as additional risk factors for stroke that can be feasibly acquired clinically. This paper summarizes the state of evidence for a clinical role for MRI of carotid atherosclerosis.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA ; VPDiagnostics Incorporation, Seattle, WA 98101, USA
| |
Collapse
|
175
|
Engineering imaging probes and molecular machines for nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2012; 55:843-61. [DOI: 10.1007/s11427-012-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
|
176
|
Kitagawa T, Kosuge H, Uchida M, Dua MM, Iida Y, Dalman RL, Douglas T, McConnell MV. RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol Imaging Biol 2012; 14:315-24. [PMID: 21638084 DOI: 10.1007/s11307-011-0495-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Inflammation and angiogenesis are important contributors to vascular disease. We evaluated imaging both of these biological processes, using Arg-Gly-Asp (RGD)-conjugated human ferritin nanoparticles (HFn), in experimental carotid and abdominal aortic aneurysm (AAA) disease. PROCEDURES Macrophage-rich carotid lesions were induced by ligation in hyperlipidemic and diabetic FVB mice (n = 16). AAAs were induced by angiotensin II infusion in apoE(-/-) mice (n=10). HFn, with or without RGD peptide, was labeled with Cy5.5 and injected intravenously for near-infrared fluorescence imaging. RESULTS RGD-HFn showed significantly higher signal than HFn in diseased carotids and AAAs relative to non-diseased regions, both in situ (carotid: 1.88 ± 0.30 vs. 1.17 ± 0.10, p = 0.04; AAA: 2.59 ± 0.24 vs. 1.82 ± 0.16, p = 0.03) and ex vivo. Histology showed RGD-HFn colocalized with macrophages in carotids and both macrophages and neoangiogenesis in AAA lesions. CONCLUSIONS RGD-HFn enhances vascular molecular imaging by targeting both vascular inflammation and angiogenesis, and allows more comprehensive detection of high-risk atherosclerotic and aneurysmal vascular diseases.
Collapse
Affiliation(s)
- Toshiro Kitagawa
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5233, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 2012; 264:349-68. [PMID: 22821695 DOI: 10.1148/radiol.12111703] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular imaging is expected to have a major impact on the early diagnosis of diseases and disease monitoring in the next decade. Traditionally, nuclear imaging techniques have been the mainstay of molecular imaging in the clinical arena. However, with continued development of molecularly targeted contrast agents for nonnuclear imaging techniques such as magnetic resonance (MR), computed tomography (CT), and ultrasonography (US), the spectrum of clinical molecular imaging applications is expanding. In the second part of this review series, an overview of applications of molecular MR imaging-, CT-, and US-based imaging strategies that show promise for clinical translation is presented, and key challenges that need to be addressed to successfully translate these promising techniques in the future are discussed. © RSNA, 2012.
Collapse
Affiliation(s)
- Moritz F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
178
|
Quantitative Longitudinal Imaging of Vascular Inflammation and Treatment by Ezetimibe in apoE Mice by FMT Using New Optical Imaging Biomarkers of Cathepsin Activity and α(v)β(3) Integrin. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2012; 2012:189254. [PMID: 23119157 PMCID: PMC3483711 DOI: 10.1155/2012/189254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/06/2012] [Indexed: 12/02/2022]
Abstract
Inflammation as a core pathological event of atherosclerotic lesions is associated with the secretion of cathepsin proteases and the expression of αvβ3 integrin. We employed fluorescence molecular tomographic (FMT) noninvasive imaging of these molecular activities using cathepsin sensing (ProSense, CatB FAST) and αvβ3 integrin (IntegriSense) near-infrared fluorescence (NIRF) agents. A statistically significant increase in the ProSense and IntegriSense signal was observed within the chest region of apoE−/− mice (P < 0.05) versus C57BL/6 mice starting 25 and 22 weeks on high cholesterol diet, respectively. In a treatment study using ezetimibe (7 mg/kg), there was a statistically significant reduction in the ProSense and CatB FAST chest signal of treated (P < 0.05) versus untreated apoE−/− mice at 31 and 21 weeks on high cholesterol diet, respectively. The signal of ProSense and CatB FAST correlated with macrophage counts and was found associated with inflammatory cells by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report demonstrates that cathepsin and αvβ3 integrin NIRF agents can be used as molecular imaging biomarkers for longitudinal detection of atherosclerosis, and cathepsin agents can monitor anti-inflammatory effects of ezetimibe with applications in preclinical testing of therapeutics and potentially for early diagnosis of atherosclerosis in patients.
Collapse
|
179
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
180
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
181
|
19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles. Angiogenesis 2012; 16:171-9. [PMID: 23053783 DOI: 10.1007/s10456-012-9310-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/26/2012] [Indexed: 12/20/2022]
Abstract
Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of (19)F MRI was investigated to detect angiogenesis with α(ν)β(3)-targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and (19)F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α(ν)β(3) integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of (19)F MRI to detect α(ν)β(3)-integrin endothelial expression in brain tumors in vivo.
Collapse
|
182
|
Fuster V, Sanz J. Vascular inflammation. ACTA ACUST UNITED AC 2012; 1:68-81. [PMID: 20409834 DOI: 10.1016/j.jash.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
Inflammation of the vessel wall is involved in all stages of the course of atherothrombotic disease, from the development of early lesions to the occurrence of clinical events. Significant advances in recent years have largely improved our understanding of this phenomenon and of its influence not only on atherogenesis, but also on other intimately related disorders such as arterial hypertension or the metabolic syndrome. Emerging imaging technologies as well as measurement of serum concentrations of specific biomarkers offer the possibility to detect and, to some extent, quantify the degree of chronic vascular inflammation in vivo. In addition, many standard and novel antiatherosclerotic therapies may exert beneficial effects through anti-inflammatory actions. As a result, detection and treatment of vascular inflammation are certain to become increasingly important in the management with patients of cardiovascular disease.
Collapse
Affiliation(s)
- Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
183
|
Grieve SM, Lønborg J, Mazhar J, Tan TC, Ho E, Liu CC, Lay W, Gill AJ, Kuchel P, Bhindi R, Figtree GA. Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia-reperfusion injury. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:61-70. [PMID: 23052973 DOI: 10.1007/s00249-012-0857-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/26/2012] [Accepted: 09/03/2012] [Indexed: 12/23/2022]
Abstract
Inflammatory response plays an important role in myocardial ischaemia-reperfusion (IR) injury. Up-regulation of vascular cell adhesion molecule-1 (VCAM) contributes to this. We examined the feasibility of using intravenously administered VCAM-MPIO (microparticle iron oxide) to characterize VCAM expression patterns in myocardial IR injury. Myocardial ischemia was simulated by 30 min of transient ligation of the left coronary vessel in rats. Purified, monoclonal, rat-specific, mouse VCAM antibody coupled to MPIO was administered through the tail vein at 3 h post reperfusion and the rats were sacrificed 1 h later. High resolution 3D ex vivo MRI images were acquired at 9.4 Tesla. Extensive foci of signal voids were observed on T2*-weighted gradient-echo sequences, which corresponded to focal deposits of MPIOs observed in histological sections. The spatial density of the signal voids (expressed as a percentage of pixels below a threshold value) was increased in the peri-infarct zone compared with non-infarct zone (32.5 ± 4% vs. 13.9 ± 5%; n = 6; p < 0.05) and was substantially greater than the signal loss due to non-specific binding seen in rats administered IgG control MPIO (2.0 ± 1%; n = 6; p < 0.05). The VCAM-specific MPIO signal was also seen in myocardium and pericardium in segments remote from the IR injury, but not in rats undergoing a sham operation. In conclusion, molecular imaging in a model of myocardial IR injury is possible using high field MRI and VCAM-MPIOs and may provide novel insights beyond those achieved by standard histological and molecular analysis.
Collapse
Affiliation(s)
- Stuart M Grieve
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Sztriha LK, O'Gorman RL, Modo M, Barker GJ, Williams SCR, Kalra L. Monitoring brain repair in stroke using advanced magnetic resonance imaging. Stroke 2012; 43:3124-31. [PMID: 23010674 DOI: 10.1161/strokeaha.111.649244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laszlo K Sztriha
- Department of clinical Neuroscience, Institute of Psychiatry, King's College London, Denmark Hill, SE5 8AF, London, UK.
| | | | | | | | | | | |
Collapse
|
185
|
Abstract
Despite recent progress, cardiovascular and allied metabolic disorders remain a worldwide health challenge. We must identify new targets for therapy, develop new agents for clinical use, and deploy them in a clinically effective and cost-effective manner. Molecular imaging of atherosclerotic lesions has become a major experimental tool in the last decade, notably by providing a direct gateway to the processes involved in atherogenesis and its complications. This review summarizes the current status of molecular imaging approaches that target the key processes implicated in plaque formation, development, and disruption and highlights how the refinement and application of such tools might aid the development and evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Thibaut Quillard
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
186
|
Zhou HF, Yan H, Senpan A, Wickline SA, Pan D, Lanza GM, Pham CTN. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles. Biomaterials 2012; 33:8632-40. [PMID: 22922023 DOI: 10.1016/j.biomaterials.2012.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/01/2012] [Indexed: 12/22/2022]
Abstract
Nanoparticle-based therapeutics are emerging technologies that have the potential to greatly impact the treatment of many human diseases. However, drug instability and premature release from the nanoparticles during circulation currently preclude clinical translation. Herein, we use a lipase-labile (Sn 2) fumagillin prodrug platform coupled with a unique lipid surface-to-surface targeted delivery mechanism, termed contact-facilitated drug delivery, to counter the premature drug release and overcome the inherent photo-instability of fumagillin, an established anti-angiogenic agent. We show that α(v)β(3)-integrin targeted fumagillin prodrug nanoparticles, administered at 0.3 mg of fumagillin prodrug/kg of body weight suppress the clinical disease indices of KRN serum-mediated arthritis in a dose-dependent manner when compared to treatment with the control nanoparticles with no drug. This study demonstrates the effectiveness of this lipase-labile prodrug nanocarrier in a relevant preclinical model that approximates human rheumatoid arthritis. The lipase-labile prodrug paradigm offers a translatable approach that is broadly applicable to many targeted nanosystems and increases the translational potential of this platform for many diseases.
Collapse
Affiliation(s)
- Hui-Fang Zhou
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8045, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. Mol Imaging Biol 2012; 14:17-24. [PMID: 21298354 DOI: 10.1007/s11307-011-0473-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications. PROCEDURES A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to α(v)β₃ integrin receptors that are over-expressed in tumors and atherosclerotic lesions. RESULTS These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres. CONCLUSIONS Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.
Collapse
|
188
|
Phinikaridou A, Andia ME, Protti A, Indermuehle A, Shah A, Smith A, Warley A, Botnar RM. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation 2012; 126:707-19. [PMID: 22753191 DOI: 10.1161/circulationaha.112.092098] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Endothelial dysfunction promotes atherosclerosis and precedes acute cardiovascular events. We investigated whether in vivo magnetic resonance imaging with the use of an albumin-binding contrast agent, gadofosveset, could detect endothelial damage associated with atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. Furthermore, we tested whether magnetic resonance imaging could noninvasively assess endothelial function by measuring the endothelial-dependent vasodilation in response to acetylcholine. METHODS AND RESULTS ApoE(-/-) mice were imaged at 4, 8, and 12 weeks after commencement of a high-fat diet. Statin-treated ApoE(-/-) mice were scanned after 12 weeks of a high-fat diet. Wild-type mice were imaged before and 48 hours after injection of Russell's viper venom, an endothelial toxin. Delayed enhancement magnetic resonance imaging and T1 mapping of the brachiocephalic artery, 30 minutes after injection of gadofosveset, showed increased vessel wall enhancement and relaxation rate (R(1)) with progression of atherosclerosis in ApoE(-/-)(R(1) [s(-1)]: R(4 weeks) 2.42±0.35, R(8 weeks) 3.45±0.54, R(12 weeks) 3.83±0.52) and Russell's viper venom-injected wild-type mice (R(1)=4.57±0.86). Conversely, wild-type (R(1)=2.15±0.34) and statin-treated ApoE(-/-) (R(1)=3.0±0.65) mice showed less enhancement. Uptake of gadofosveset correlated with Evans blue staining, morphological changes of endothelial cells, and widening of the cell-cell junctions, suggesting that uptake occurs in regions of increased vascular permeability. Endothelial-dependent vasomotor responses showed vasoconstriction of the arteries of the ApoE(-/-) (-22.22±7.95%) and Russell's viper venom-injected (-10.37±17.60%) mice compared with wild-type mice (32.45±12.35%). Statin treatment improved endothelium morphology and function (-8.12±8.22%). CONCLUSIONS We demonstrate the noninvasive assessment of endothelial permeability and function with the use of an albumin-binding magnetic resonance contrast agent. Blood albumin leakage could be a surrogate marker for the in vivo evaluation of interventions that aim to restore the endothelium.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Saraste A, Laitinen I, Weidl E, Wildgruber M, Weber AW, Nekolla SG, Hölzlwimmer G, Esposito I, Walch A, Leppänen P, Lisinen I, Luppa PB, Ylä-Herttuala S, Wester HJ, Knuuti J, Schwaiger M. Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol 2012; 19:775-84. [PMID: 22527796 DOI: 10.1007/s12350-012-9554-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 03/26/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Expression of α(v)β(3) integrin has been proposed as a marker for atherosclerotic lesion inflammation. We studied whether diet intervention reduces uptake of α(v)β(3) integrin-targeted positron emission tomography tracer (18)F-galacto-RGD in mouse atherosclerotic plaques. METHODS AND RESULTS Hypercholesterolemic LDLR(-/-) ApoB(100/100) mice on high-fat diet for 4 months were randomized to further 3 months on high-fat diet (high-fat group, n = 8) or regular mouse chow (intervention group, n = 7). Intima-media ratio describing plaque burden was comparable between intervention and high-fat groups (2.0 ± 0.5 vs 2.3 ± 0.8, P = .5). Uptake of (18)F-galacto-RGD in the aorta was lower in the intervention than high-fat group (%ID/g 0.16 vs 0.23, P < .01). Autoradiography showed 35% lower uptake of (18)F-galacto-RGD in the atherosclerotic plaques in the intervention than high-fat group (P = .007). Uptake of (18)F-galacto-RGD in plaques correlated with uptake of (3)H-deoxyglucose and nuclear density, which was lower in the intervention than high-fat group (P = .01). Flow cytometry demonstrated macrophages expressing α(v) and β(3) integrins in the aorta. CONCLUSIONS Uptake of (18)F-galacto-RGD in mouse atherosclerotic lesions was reduced by lipid-lowering diet intervention. Expression of α(v)β(3) integrin is a potential target for evaluation of therapy response in atherosclerosis.
Collapse
Affiliation(s)
- Antti Saraste
- Nuklearmedizinische Klinik und Poliklinik, Nuklearmedizinische Klinik der TU München, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Korystova AF, Emel’yanov MO, Kublik LN, Levitman MK, Shaposhnikova VV, Kim YA, Korystov YN. Distribution of the activity of the angiotensin-converting enzyme in the rat aorta and changes in the activity with aging and by the action of L-NAME. AGE (DORDRECHT, NETHERLANDS) 2012; 34:821-830. [PMID: 21720771 PMCID: PMC3682055 DOI: 10.1007/s11357-011-9282-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 06/14/2011] [Indexed: 05/27/2023]
Abstract
The activity of the angiotensin-converting enzyme (ACE) of the inner surface (the endothelium surface) of rat aorta sections has been studied depending on their distance from the aortic arch, age of rats, and the duration of treatment of rats with the NO synthase inhibitor, N (ω)-nitro-L-arginine (L-NAME). The activity of ACE of aorta sections was determined by measuring the hydrolysis of hippuryl-L-histidyl-L-leucine and was expressed as picomoles of Hip-His-Leu hydrolyzed per minute per square millimeter of the endothelium surface. It was found that the ACE activity considerably varies along the aorta of young rats. This variability decreases with increasing age of rats and by the action of L-NAME. The average ACE activity in the aorta increases with the age of rats and with increasing time of L-NAME treatment. Enalapril normalizes the distribution of the ACE activity along the aorta and decreases the average ACE activity. The changes in the distribution of the ACE activity along the aorta and in the average ACE activity in the aorta with increasing age of the rat and by the action of L-NAME may play a role in the development of atherosclerosis of vessels on aging and the inhibition of formation of nitric oxide.
Collapse
Affiliation(s)
- Antonina F. Korystova
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Maksim O. Emel’yanov
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Ludmila N. Kublik
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Maria Kh. Levitman
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Vera V. Shaposhnikova
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Yuri A. Kim
- />Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Yuri N. Korystov
- />Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| |
Collapse
|
191
|
Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine (Lond) 2012; 7:899-916. [DOI: 10.2217/nnm.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion.
Collapse
Affiliation(s)
- Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Rajneesh Chaudhary
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Takuya Tsuzuki
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
192
|
Bailey MM, Kline SR, Anderson MD, Staymates JL, Berkland C. Chemically modifiable fluorinated copolymer nanoparticles for 19F-MRI contrast enhancement. J Appl Polym Sci 2012. [DOI: 10.1002/app.36889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
193
|
Camici PG, Rimoldi OE, Gaemperli O, Libby P. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J 2012; 33:1309-17. [PMID: 22507974 DOI: 10.1093/eurheartj/ehs067] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last several decades, basic cardiovascular research has significantly enhanced our understanding of pathobiological processes leading to formation, progression, and complications of atherosclerotic plaques. By harnessing these advances in cardiovascular biology, imaging has advanced beyond its traditional anatomical domains to a tool that permits probing of particular molecular structures to image cellular behaviour and metabolic pathways involved in atherosclerosis. From the nascent atherosclerotic plaque to the death of inflammatory cells, several potential molecular and micro-anatomical targets for imaging with particular selective imaging probes and with a variety of imaging modalities have emerged from preclinical and animal investigations. Yet, substantive barriers stand between experimental use and wide clinical application of these novel imaging strategies. Each of the imaging modalities described herein faces hurdles-for example, sensitivity, resolution, radiation exposure, reproducibility, availability, standardization, or costs. This review summarizes the published literature reporting on functional imaging of vascular inflammation in atherosclerotic plaques emphasizing those techniques that have the greatest and/or most immediate potential for broad application in clinical practice. The prospective evaluation of these techniques and standardization of protocols by multinational networks could serve to determine their added value in clinical practice and guide their development and deployment.
Collapse
Affiliation(s)
- Paolo G Camici
- Vita-Salute University and Scientific Institute San Raffaele, Via Olgettina 60, Milan, Italy.
| | | | | | | |
Collapse
|
194
|
Caravan P, Zhang Z. Structure - relaxivity relationships among targeted MR contrast agents. Eur J Inorg Chem 2012; 2012:1916-1923. [PMID: 22745568 PMCID: PMC3381435 DOI: 10.1002/ejic.201101364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 01/22/2025]
Abstract
Paramagnetic gadolinium(III) complexes are widely used to increase contrast in magnetic resonance (MR) images. Contrast enhancement depends on the concentration of the gadolinium complex and on its relaxivity, an inherent property of the complex. Increased relaxivity results in greater image contrast or the ability to detect the contrast agent at a lower concentration. Increasing relaxivity enables imaging of abundant molecular targets.Relaxivity depends on the structure of the complex, kinetics of inner-sphere and second sphere water exchange, and on the rotational dynamics of the molecule. The latter, and in some cases the former, properties of the complex change when it is bound to its target. All of these properties can be rationally tuned to enhance relaxivitry. In this Microreview we summarize our efforts in understanding and optimizing the relaxivity of contrast agents targeted to serum albumin and to fibrin.
Collapse
Affiliation(s)
- Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St, Suite 2301, Charlestown, MA 02129, USA
| | - Zhaoda Zhang
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth St, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
195
|
Winter PM. Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:389-98. [PMID: 22422650 DOI: 10.1002/wnan.1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) agents and paramagnetic CEST (PARACEST) agents display bound water signals that exchange protons with the bulk water. CEST magnetic resonance imaging (MRI) relies on exchangeable protons that resonate at a chemical shift that is distinguishable from the bulk water signal. In some cases, paramagnetic chelates are utilized to shift the bound water frequency further away from the bulk water. Radiofrequency prepulses applied at the appropriate frequency can saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization. Therefore, CEST and PARACEST agents allow the image contrast to be switched 'on' and 'off' by simply changing the pulse sequence parameters. One of the main limitations with this approach is the inherent insensitivity of MRI to CEST and PARACEST agents. Nanoscale carriers have been developed to improve the limit of detection for these agents, demonstrating the feasibility of in vivo molecular or cellular MRI based on CEST or PARACEST contrast. These carriers have been based on a number of different nanoparticle constructs, such as liposomes, dendrimers, polymers, adenovirus particles, and perfluorocarbon nanoparticles. The unique MRI properties of CEST and PARACEST nanoparticle systems have spawned research into an array of potential medical applications.
Collapse
Affiliation(s)
- Patrick M Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
196
|
Plummer EM, Thomas D, Destito G, Shriver LP, Manchester M. Interaction of cowpea mosaic virus nanoparticles with surface vimentin and inflammatory cells in atherosclerotic lesions. Nanomedicine (Lond) 2012; 7:877-88. [PMID: 22394183 DOI: 10.2217/nnm.11.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Detection of atherosclerosis has generally been limited to the late stages of development, after cardiovascular symptoms present or a clinical event occurs. One possibility for early detection is the use of functionalized nanoparticles. The aim of this study was the early imaging of atherosclerosis using nanoparticles with a natural affinity for inflammatory cells in the lesion. MATERIALS & METHODS We investigated uptake of cowpea mosaic virus by macrophages and foam cells in vitro and correlated this with vimentin expression. We also examined the ability of cowpea mosaic virus to interact with atherosclerotic lesions in a murine model of atherosclerosis. RESULTS & CONCLUSION We found that uptake of cowpea mosaic virus is increased in areas of atherosclerotic lesion. This correlated with increased surface vimentin in the lesion compared with nonlesion vasculature. In conclusion, cowpea mosaic virus and its vimentin-binding region holds potential for use as a targeting ligand for early atherosclerotic lesions, and as a probe for detecting upregulation of surface vimentin during inflammation.
Collapse
Affiliation(s)
- Emily M Plummer
- University of California, San Diego, Skaggs School of Pharmacy, La Jolla, CA 92093-0749, USA
| | | | | | | | | |
Collapse
|
197
|
Wen 文颂 S, Liu 柳东芳 DF, Liu 刘振 Z, Harris S, Yao 姚玉宇 YY, Ding 丁琪 Q, Nie 聂芳 F, Lu 卢瞳 T, Chen 陈华俊 HJ, An 安艳丽 YL, Zang 臧凤超 FC, Teng 滕皋军 GJ. OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice. J Lipid Res 2012; 53:829-838. [PMID: 22393161 PMCID: PMC3329382 DOI: 10.1194/jlr.m018895] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atherosclerotic disease is a leading cause of morbidity and mortality in developed countries, and oxidized LDL (OxLDL) plays a key role in the formation, rupture, and subsequent thrombus formation in atherosclerotic plaques. In the current study, anti-mouse OxLDL polyclonal antibody and nonspecific IgG antibody were conjugated to polyethylene glycol-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, and a carotid perivascular collar model in apolipoprotein E-deficient mice was imaged at 7.0 Tesla MRI before contrast administration and at 8 h and 24 h after injection of 30 mg Fe/kg. The results showed MRI signal loss in the carotid atherosclerotic lesions after administration of targeted anti-OxLDL-USPIO at 8 h and 24 h, which is consistent with the presence of the nanoparticles in the lesions. Immunohistochemistry confirmed the colocalization of the OxLDL/macrophages and iron oxide nanoparticles. The nonspecific IgG-USPIO, unconjugated USPIO nanoparticles, and competitive inhibition groups had limited signal changes (p < 0.05). This report shows that anti-OxLDL-USPIO nanoparticles can be used to directly detect OxLDL and image atherosclerotic lesions within 24 h of nanoparticle administration and suggests a strategy for the therapeutic evaluation of atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Song Wen 文颂
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Dong-Fang Liu 柳东芳
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhen Liu 刘振
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China
| | - Steven Harris
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA
| | - Yu-Yu Yao 姚玉宇
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qi Ding 丁琪
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fang Nie 聂芳
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Tong Lu 卢瞳
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hua-Jun Chen 陈华俊
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yan-Li An 安艳丽
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Feng-Chao Zang 臧凤超
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng 滕皋军
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
198
|
Yao Y, Jiang Y, Sheng Z, Zhang Y, An Y, Yan F, Ma G, Liu N, Teng G, Cheng Z. Analysis of in situ and ex vivo αVβ3 integrin expression during experimental carotid atherogenesis. Int J Nanomedicine 2012; 7:641-9. [PMID: 22334786 PMCID: PMC3278228 DOI: 10.2147/ijn.s28065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Mural inflammation has been shown to contribute to the development of plaque, with the α(V)β(3) integrin highly expressed in atherosclerotic plaques. We herein examined α(V)β(3) integrin expression as a function of carotid atherosclerosis formation in the apolipoprotein E-deficient (apoE(-/-)) mouse. METHODS AND RESULTS Constrictive collars were placed around the left common carotid arteries of apo E(-/-) mice maintained on a high-fat diet (n = 14). Before and 21 days following collar placement, in vivo serial magnetic resonance imaging (MRI) measurements of the carotid aortic diameter were performed using a 7T magnetic resonance (MR) scanner. Near- infrared fluorescence (NIRF) imaging was performed (n = 6) using an in vivo imaging system 0-24 hours following administration of 1.0 nmol c(RGDyK)-Cy5.5 via the tail vein. A competition experiment was performed by the co-injection of a saturating dose of bicyclic RGD peptide H-Glu[cyclo(Arg-Gly-Asp-D-Tyr-Lys)]2 (n = 3). Following image acquisition and sacrifice at 24 hours after injection, carotid arteries were harvested for histological analyses. Neointima formation and arterial remodeling in the carotid arteries of apoE(-/-) mice were induced by the placement of a constrictive collar. Significantly greater fluorescent signals were obtained from constrictive collar left common carotid arteries as compared to uninvolved aortic segments in constrictive collar mice. Binding to stenotic lesions was efficiently blocked in competition experiments. Immunostaining confirmed the presence of mural α(V)β(3) integrin expression in macrophages in the neointima. Signal intensity increased in a macrophage density-dependent fashion in the stenotic segments. CONCLUSION Mural α(V)β(3) integrin expression, as determined using RGD-Cy5.5 near-infrared optical imaging, was increased in carotid arteries with constrictive collars in experimental mice. This expression can estimate the macrophage-bound inflammatory activity of atherosclerotic lesions.
Collapse
Affiliation(s)
- Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Winter PM, Taylor MD. Magnetic Resonance Molecular Imaging of Plaque Angiogenesis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-011-9121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
200
|
Palivan CG, Fischer-Onaca O, Delcea M, Itel F, Meier W. Protein–polymer nanoreactors for medical applications. Chem Soc Rev 2012; 41:2800-23. [DOI: 10.1039/c1cs15240h] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|