151
|
Peng X, Hou P, Chen Y, Dai Y, Ji Y, Shen Y, Su Y, Liu B, Wang Y, Sun D, Jiang Y, Zha C, Xie Z, Ding J, Geng M, Ai J. Preclinical evaluation of 3D185, a novel potent inhibitor of FGFR1/2/3 and CSF-1R, in FGFR-dependent and macrophage-dominant cancer models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:372. [PMID: 31438996 PMCID: PMC6704710 DOI: 10.1186/s13046-019-1357-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
Abstract
Background The interaction between tumor cells and their immunosuppressive microenvironment promotes tumor progression and drug resistance. Thus, simultaneously targeting tumor cells and stromal cells is expected to have synergistic antitumor effects. Herein, we present for the first time a preclinical antitumor investigation of 3D185, a novel dual inhibitor targeting FGFRs, which are oncogenic drivers, and CSF-1R, which is the major survival factor for protumor macrophages. Methods The antitumor characteristics of 3D185 were assessed by a range of assays, including kinase profiling, cell viability, cell migration, immunoblotting, CD8+ T cell suppression, and in vivo antitumor efficacy, followed by flow cytometric and immunohistochemical analyses of tumor-infiltrating immune cells and endothelial cells in nude mice and immune-competent mice. Results 3D185 significantly inhibited the kinase activity of FGFR1/2/3 and CSF-1R, with equal potency and high selectivity over other kinases. 3D185 suppressed FGFR signaling and tumor cell growth in FGFR-driven models both in vitro and in vivo. In addition, 3D185 could inhibit the survival and M2-like polarization of macrophages, reversing the immunosuppressive effect of macrophages on CD8+ T cells as well as CSF1-differentiated macrophage induced-FGFR3-aberrant cancer cell migration. Furthermore, 3D185 inhibited tumor growth via remodeling the tumor microenvironment in TAM-dominated tumor models. Conclusions 3D185 is a promising antitumor candidate drug that simultaneously targets tumor cells and their immunosuppressive microenvironment and has therapeutic potential due to synergistic effects. Our study provides a solid foundation for the investigation of 3D185 in cancer patients, particularly in patients with aberrant FGFR and abundant macrophages, who respond poorly to classic pan-FGFRi treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1357-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Peng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Pengcong Hou
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yang Dai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yinchun Ji
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yanyan Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yi Su
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Bo Liu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yueliang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Deqiao Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yuchen Jiang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Chuantao Zha
- Shanghai HaiHe Pharmaceutical Co., Ltd, No. 421 Newton Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Zuoquan Xie
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| | - Jing Ai
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, No. 555 Zuchongzhi Road, Pudong New District, Shanghai, 201203, People's Republic of China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| |
Collapse
|
152
|
Hao W, Li M, Zhang Y, Zhang C, Wang P. Severity of chronic obstructive pulmonary disease with 'exacerbator with emphysema phenotype' is associated with potential biomarkers. Postgrad Med J 2019; 96:28-32. [PMID: 31375557 DOI: 10.1136/postgradmedj-2019-136599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The present study was designed to investigate the biomarkers levels of fractalkine (FKN), neutrophil elastase (NE) and matrix metalloproteinase-12 (MMP-12) in chronic obstructive pulmonary disease (COPD) with 'exacerbator with emphysema phenotype' and to evaluate the associations between the biomarkers levels and the severity of disease by spirometric measurements. METHODS A total of 84 COPD patients and 49 healthy controls were enrolled in our study. ELISA were utilised to detect the FKN, MMP-12 and NE in serum from all subjects. RESULTS FKN (p<0.001), NE (p=0.039) and MMP-12 (p<0.001) in serum of COPD patients showed higher levels than that of healthy control subjects. Serum FKN (p<0.001), MMP-12 (p<0.001) and NE (p=0.043) levels were significantly higher in severe and very severe COPD patients than that in mild and moderate COPD patients. Circulating FKN, MMP-12 and NE expression levels were significantly elevated (p<0.001) in COPD smokers compared with COPD non-smokers. The smoke pack years were negatively correlated with FEV1%pred (r=-0.5036), FEV1/FVC ratio (r=-0.2847) (FEV, forced expiratory volume; FVC, forced vital capacity). Similarly, we observed a strong positive correlation between the smoke pack years and serum levels of FKN (r=0.4971), MMP-12 (r=0.4315) and NE (r=0.2754). FEV1%pred was strongly negatively correlated with cytokine levels of FKN (r=-0.4367), MMP-12 (r=-0.3295) and NE (r=-0.2684). Likewise, FEV1/FVC ratio was negatively correlated with mediators of inflammation levels of FKN (r=-0.3867), MMP-12 (r=-0.2941) and NE (r=-0.2153). CONCLUSION Serum FKN, MMP-12 and NE concentrations in COPD patients are directly associated with the severity of COPD with 'exacerbator with emphysema phenotype'. This finding suggests that FKN, MMP-12 and NE might play an important role in the pathophysiology of COPD.
Collapse
Affiliation(s)
- Wendong Hao
- Department of Respiratory and Critical Care Medicine, Yan'an University Affiliated Hospital, Yan'an, China .,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunqing Zhang
- Department of Respiratory and Critical Care Medicine, Yan'an University Affiliated Hospital, Yan'an, China
| | - Cailian Zhang
- Department of Respiratory and Critical Care Medicine, Yan'an University Affiliated Hospital, Yan'an, China
| | - Ping Wang
- Department of Respiratory and Critical Care Medicine, Yan'an University Affiliated Hospital, Yan'an, China
| |
Collapse
|
153
|
Li LY, Yin KM, Bai YH, Zhang ZG, Di W, Zhang S. CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway. Clin Exp Metastasis 2019; 36:351-363. [PMID: 31119444 DOI: 10.1007/s10585-019-09971-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
The infiltration of tumor-associated macrophages (TAMs) is associated with tumor progression and poor prognosis in endometrial cancer (EC). Collagen triple helix repeat containing 1 (CTHRC1), a secreted ECM protein, has been reported to have important roles in promoting cancer invasion and metastasis, but the functional role of CTHRC1 and its association with TAMs in EC remain unclear. Here we report that, in EC patients, CTHRC1 expression was up-regulated in endometrial cancer tissues compared with normal endometrium (P < 0.0001), and is positively correlated with tumor grade and depth of myometrial invasion (P = 0.024 and P = 0.0002, respectively). Meanwhile, CTHRC1 expression was positively correlated with an increased number of infiltrating TAMs, especially M2-like TAMs (P = 0.003, P = 0.001). In the tumor microenvironment of EC, CTHRC1 not only promoted myometrial invasion by interacting with Integrin β3-Akt signaling pathway, but also promoted infiltration of M2-like TAMs by upregulating Fractalkine chemokine receptor (CX3CR1) expression in macrophages. Changing levels of recombinant CTHRC1 protein (rCTHRC1) promoted tumor migration and invasion via enhancing macrophage recruitment in vitro. In summary, our findings eventually provided a novel role for CTHRC1 in remodeling the tumor immune microenvironment to promote tumor metastasis in EC patients.
Collapse
Affiliation(s)
- Lu-Ying Li
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Ke-Min Yin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Yi-Han Bai
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wen Di
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
| | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
154
|
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106:309-322. [PMID: 30776148 PMCID: PMC6658332 DOI: 10.1002/jlb.4ri0818-311r] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Monocytes are innate immune cells of the mononuclear phagocyte system that have emerged as important regulators of cancer development and progression. Our understanding of monocytes has advanced from viewing these cells as a homogenous population to a heterogeneous system of cells that display diverse responses to different stimuli. During cancer, different monocyte subsets perform functions that contribute to both pro- and antitumoral immunity, including phagocytosis, secretion of tumoricidal mediators, promotion of angiogenesis, remodeling of the extracellular matrix, recruitment of lymphocytes, and differentiation into tumor-associated macrophages and dendritic cells. The ability of cancer to evade immune recognition and clearance requires protumoral signals to outweigh ongoing attempts by the host immune system to prevent tumor growth. This review discusses current understanding of monocyte heterogeneity during homeostasis, highlights monocyte functions in cancer progression, and describes monocyte-targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Claire E. Olingy
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | | |
Collapse
|
155
|
Jahchan NS, Mujal AM, Pollack JL, Binnewies M, Sriram V, Reyno L, Krummel MF. Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Front Immunol 2019; 10:1611. [PMID: 31402908 PMCID: PMC6673698 DOI: 10.3389/fimmu.2019.01611] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) of diverse cancer types is often characterized by high levels of infiltrating myeloid cells including monocytes, macrophages, dendritic cells, and granulocytes. These cells perform a variety of functions in the TME, varying from immune suppressive to immune stimulatory roles. In this review, we summarize the different myeloid cell populations in the TME and the intratumoral myeloid targeting approaches that are being clinically investigated, and discuss strategies that identify new myeloid subpopulations within the TME. The TME therapies include agents that modulate the functional activities of myeloid populations, that impact recruitment and survival of myeloid subpopulations, and that functionally reprogram or activate myeloid populations. We discuss the benefits, limitations and potential side effects of these therapeutic approaches.
Collapse
Affiliation(s)
| | - Adriana M. Mujal
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | | | | | | | - Leonard Reyno
- Pionyr Immunotherapeutics, South San Francisco, CA, United States
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
156
|
Abid S, Marcos E, Parpaleix A, Amsellem V, Breau M, Houssaini A, Vienney N, Lefevre M, Derumeaux G, Evans S, Hubeau C, Delcroix M, Quarck R, Adnot S, Lipskaia L. CCR2/CCR5-mediated macrophage–smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J 2019; 54:13993003.02308-2018. [DOI: 10.1183/13993003.02308-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/27/2019] [Indexed: 11/05/2022]
Abstract
Macrophages are major players in the pathogenesis of pulmonary arterial hypertension (PAH).To investigate whether lung macrophages and pulmonary-artery smooth muscle cells (PASMCs) collaborate to stimulate PASMC growth and whether the CCL2-CCR2 and CCL5-CCR5 pathways inhibited macrophage–PASMC interactions and PAH development, we used human CCR5-knock-in mice and PASMCs from patients with PAH and controls.Conditioned media from murine M1 or M2 macrophages stimulated PASMC growth. This effect was markedly amplified with conditioned media from M2 macrophage/PASMC co-cultures. CCR2, CCR5, CCL2 and CCL5 were upregulated in macrophage/PASMC co-cultures. Compared to inhibiting either receptor, dual CCR2 and CCR5 inhibition more strongly attenuated the growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures. Deleting either CCR2 or CCR5 in macrophages or PASMCs attenuated the growth response. In mice with hypoxia- or SUGEN/hypoxia-induced PH, targeting both CCR2 and CCR5 prevented or reversed PH more efficiently than targeting either receptor alone. Patients with PAH exhibited CCR2 and CCR5 upregulation in PASMCs and perivascular macrophages compared to controls. The PASMC growth-promoting effect of conditioned media from M2-macrophage/PASMC co-cultures was greater when PASMCs from PAH patients were used in the co-cultures or as the target cells and was dependent on CCR2 and CCR5. PASMC migration toward M2-macrophages was greater with PASMCs from PAH patients and was attenuated by blocking CCR2 and CCR5.CCR2 and CCR5 are required for collaboration between macrophages and PASMCs to initiate and amplify PASMC migration and proliferation during PAH development. Dual targeting of CCR2 and CCR5 may hold promise for treating human PAH.
Collapse
|
157
|
Opperman KS, Vandyke K, Clark KC, Coulter EA, Hewett DR, Mrozik KM, Schwarz N, Evdokiou A, Croucher PI, Psaltis PJ, Noll JE, Zannettino AC. Clodronate-Liposome Mediated Macrophage Depletion Abrogates Multiple Myeloma Tumor Establishment In Vivo. Neoplasia 2019; 21:777-787. [PMID: 31247457 PMCID: PMC6593350 DOI: 10.1016/j.neo.2019.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma is a fatal plasma cell malignancy that is reliant on the bone marrow microenvironment. The bone marrow is comprised of numerous cells of mesenchymal and hemopoietic origin. Of these, macrophages have been implicated to play a role in myeloma disease progression, angiogenesis, and drug resistance; however, the role of macrophages in myeloma disease establishment remains unknown. In this study, the antimyeloma efficacy of clodronate-liposome treatment, which globally and transiently depletes macrophages, was evaluated in the well-established C57BL/KaLwRijHsd murine model of myeloma. Our studies show, for the first time, that clodronate-liposome pretreatment abrogates myeloma tumor development in vivo. Clodronate-liposome administration resulted in depletion of CD169+ bone marrow-resident macrophages. Flow cytometric analysis revealed that clodronate-liposome pretreatment impaired myeloma plasma cell homing and retention within the bone marrow 24 hours postmyeloma plasma cell inoculation. This was attributed in part to decreased levels of macrophage-derived insulin-like growth factor 1. Moreover, a single dose of clodronate-liposome led to a significant reduction in myeloma tumor burden in KaLwRij mice with established disease. Collectively, these findings support a role for CD169-expressing bone marrow-resident macrophages in myeloma disease establishment and progression and demonstrate the potential of targeting macrophages as a therapy for myeloma patients.
Collapse
Affiliation(s)
- Khatora S Opperman
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Kimberley C Clark
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Elizabeth A Coulter
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Duncan R Hewett
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Nisha Schwarz
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Andreas Evdokiou
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Basil Hetzel Institute, 37 Woodville Road, Woodville, 5011
| | - Peter I Croucher
- Bone Biology Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010
| | - Peter J Psaltis
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, 5005; Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, 5001; Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 2471, Adelaide, 5001.
| |
Collapse
|
158
|
Yang Z, Li H, Wang W, Zhang J, Jia S, Wang J, Wei J, Lei D, Hu K, Yang X. CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Front Oncol 2019; 9:231. [PMID: 31024838 PMCID: PMC6465613 DOI: 10.3389/fonc.2019.00231] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: The present study investigated the roles and underlying mechanism of CCL2/CCR2 axis in the interactions between tumor cells and tumor-associated macrophages (TAMs) during the progression of salivary adenoid cystic carcinoma (SACC). Methods: Immunohistochemical staining and survival analysis were performed to study the correlation and clinical value of CD68, CD163, CCL2, and CCR2 expression in SACC cases. CCL2 silencing by RNA interference and CCR2 blocking by CCR2 specific antagonist (RS504393) were performed. ELISA, qRT-PCR, western blot, immunofluorescence, flow cytometry, CCK8, scratch wound healing, and transwell assays were used to explore the functional roles and possible mechanism of CCL2/CCR2 axis in the interactions between SACC cells and TAMs. The effects of targeting TAMs by blocking the CCL2/CCR2 axis were investigated in a xenograft mice model with SACC cells. Results: The high infiltration of TAMs marked by CD68 and high infiltration of M2 TAMs marked by CD163 were significantly correlated with the expression of CCL2 and CCR2 in SACC tissues. Notably, the high infiltration of TAMs and the overexpression of CCL2 were obviously associated with the clinical progression and poor prognosis of SACC. SACC cells derived CCL2 could activate its receptor CCR2 expression in TAMs in vitro. The in vitro results further indicated that the SACC cells derived CCL2 was involved in the recruitment, M2 polarization, and GDNF expression of TAMs through the CCL2/CCR2 axis. Meanwhile, TAMs derived GDNF promoted the proliferation, migration, and invasion of SACC cells through the GDNF/p-RET pathway. Treating immunodeficient mice with the CCR2 antagonist (RS504393) greatly inhibited the infiltration of TAMs and the tumorigenicity of SACC cells. Conclusion: These new findings indicated that the CCL2/CCR2 axis promoted the progression of SACC cells via recruiting and reprogramming TAMs. Targeting TAMs by blocking the CCL2/CCR2 axis might be a prospective strategy for SACC therapy.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Huan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Weiqi Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Sen Jia
- Department of Oral and Maxillofacial Surgery, Xi'an Medical University, Xi'an, China
| | - Jun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Delin Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
159
|
Vuong L, Kouverianou E, Rooney CM, McHugh BJ, Howie SEM, Gregory CD, Forbes SJ, Henderson NC, Zetterberg FR, Nilsson UJ, Leffler H, Ford P, Pedersen A, Gravelle L, Tantawi S, Schambye H, Sethi T, MacKinnon AC. An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Res 2019; 79:1480-1492. [PMID: 30674531 DOI: 10.1158/0008-5472.can-18-2244] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/16/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022]
Abstract
A combination therapy approach is required to improve tumor immune infiltration and patient response to immune checkpoint inhibitors that target negative regulatory receptors. Galectin-3 is a β-galactoside-binding lectin that is highly expressed within the tumor microenvironment of aggressive cancers and whose expression correlates with poor survival particularly in patients with non-small cell lung cancer (NSCLC). To examine the role of galectin-3 inhibition in NSCLC, we tested the effects of galectin-3 depletion using genetic and pharmacologic approaches on syngeneic mouse lung adenocarcinoma and human lung adenocarcinoma xenografts. Galectin-3-/- mice developed significantly smaller and fewer tumors and metastases than syngeneic C57/Bl6 wild-type mice. Macrophage ablation retarded tumor growth, whereas reconstitution with galectin-3-positive bone marrow restored tumor growth in galectin-3-/- mice, indicating that macrophages were a major driver of the antitumor response. Oral administration of a novel small molecule galectin-3 inhibitor GB1107 reduced human and mouse lung adenocarcinoma growth and blocked metastasis in the syngeneic model. Treatment with GB1107 increased tumor M1 macrophage polarization and CD8+ T-cell infiltration. Moreover, GB1107 potentiated the effects of a PD-L1 immune checkpoint inhibitor to increase expression of cytotoxic (IFNγ, granzyme B, perforin-1, Fas ligand) and apoptotic (cleaved caspase-3) effector molecules. In summary, galectin-3 is an important regulator of lung adenocarcinoma progression. The novel galectin-3 inhibitor presented could provide an effective, nontoxic monotherapy or be used in combination with immune checkpoint inhibitors to boost immune infiltration and responses in lung adenocarcinoma and potentially other aggressive cancers. SIGNIFICANCE: A novel and orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and metastasis and augments response to PD-L1 blockade.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1480/F1.large.jpg.
Collapse
Affiliation(s)
- Lynda Vuong
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London, United Kingdom
| | - Eleni Kouverianou
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Claire M Rooney
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London, United Kingdom
| | - Brian J McHugh
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Sarah E M Howie
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Christopher D Gregory
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | | | - Ulf J Nilsson
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, Lund, Sweden
| | - Paul Ford
- Galecto Biotech, Copenhagen, Denmark
| | | | | | | | | | - Tariq Sethi
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London, United Kingdom
| | - Alison C MacKinnon
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom.
| |
Collapse
|
160
|
Wang X, Li T, Cheng Y, Wang P, Yuan W, Liu Q, Yang F, Liu Q, Ma D, Ding S, Wang J, Han W. CYTL1 inhibits tumor metastasis with decreasing STAT3 phosphorylation. Oncoimmunology 2019; 8:e1577126. [PMID: 31069137 DOI: 10.1080/2162402x.2019.1577126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
CYTL1 is a novel cytokine that was first identified in CD34+ hematopoietic cells. We previously prepared recombinant CYTL1 and verified that it chemoattracted human monocytes via the CCR2/ERK pathway. It has been reported that CYTL1 plays contradictory roles in neuroblastoma and lung cancer. We found that the expression level of CYTL1 was notably decreased and it was hypermethylated in various tumors, including breast and lung cancer, by bioinformatics analyses. After validating the expression of CYTL1 in lung cancer, we identified that CYTL1 exerted no obvious effect on tumor cell proliferation but inhibited their migration and invasion, and these effects were accompanied by decreasing STAT3 phosphorylation, using recombinant CYTL1 and CYTL1-overexpressing tumor cell lines. Furthermore, we constructed experimental and spontaneous metastasis models of breast cancer in BALB/c mice and found that CYTL1 significantly inhibited tumor metastasis in vivo. In summary, CYTL1 is a cytokine with tumor-suppressing characteristics that inhibits tumor metastasis and STAT3 phosphorylation in multiple types of tumors.
Collapse
Affiliation(s)
- Xiaolin Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ting Li
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingying Cheng
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingzhang Wang
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanqiong Yuan
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyao Liu
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qiang Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Dalong Ma
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenling Han
- Peking University Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
161
|
Argyle D, Kitamura T. Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front Immunol 2018; 9:2629. [PMID: 30483271 PMCID: PMC6243037 DOI: 10.3389/fimmu.2018.02629] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Solid tumors are initiated by genetic mutations in non-hematopoietic cells and progress into invasive malignant tumors. This tumor progression often culminates in metastatic disease that is largely refractory to current therapeutic modalities and thus dramatically reduces survival of tumor patients. As solid tumors account for more than 80% of cancer-related deaths, it is necessary to develop novel therapeutic strategies to treat the diseases. An attractive strategy is to target macrophages in both primary tumors [known as tumor-associated macrophages (TAMs)] and metastatic tumors [called metastasis-associated macrophages (MAMs)]. TAMs and MAMs are abundant in most solid tumors and can promote tumor metastasis. Several studies in various models of solid tumors suggest that the accumulation of TAMs, MAMs, and their progenitor cells is regulated by chemokine ligands released by tumor and stromal cells. Consequently, these macrophage-recruiting chemokines could be potential therapeutic targets to prevent malignant tumor development through disruption of the accumulation of pro-metastatic macrophages. This review will discuss the role of chemokine ligands and their receptors in TAM and MAM accumulation in primary and secondary tumor sites, and finally discuss the therapeutic potential of inhibitors against these macrophage-recruiting chemokines.
Collapse
Affiliation(s)
- David Argyle
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Takanori Kitamura
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
162
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
163
|
Alonso-Nocelo M, Raimondo TM, Vining KH, López-López R, de la Fuente M, Mooney DJ. Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication 2018; 10:035004. [PMID: 29595143 DOI: 10.1088/1758-5090/aaafbc] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tumor microenvironment (TME) is gaining increasing attention in oncology, as it is recognized to be functionally important during tumor development and progression. Tumors are heterogeneous tissues that, in addition to tumor cells, contain tumor-associated cell types such as immune cells, fibroblasts, and endothelial cells. These other cells, together with the specific extracellular matrix (ECM), create a permissive environment for tumor growth. While the influence of tumor-infiltrating cells and mechanical properties of the ECM in tumor invasion and progression have been studied separately, their interaction within the complex TME and the epithelial -to-mesenchymal transition (EMT) is still unclear. In this work, we develop a 3D co-culture model of lung adenocarcinoma cells and macrophages in an interpenetrating network hydrogel, to investigate the influence of the macrophage phenotype and ECM stiffness in the induction of EMT. Rising ECM stiffness increases both tumor cell proliferation and invasiveness. The presence of tumor-associated macrophages and the ECM stiffness jointly contribute to an invasive phenotype, and modulate the expression of key EMT-related markers. Overall, these findings support the utility of in vitro 3D cancer models that allow one to study interactions among key components of the TME.
Collapse
Affiliation(s)
- Marta Alonso-Nocelo
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, CIBERONC, E-15706, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Tippimanchai DD, Nolan K, Poczobutt J, Verzosa G, Li H, Scarborough H, Huang J, Young C, DeGregori J, Nemenoff RA, Malkoski SP. Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 2018; 7:e1438105. [PMID: 29872579 PMCID: PMC5980415 DOI: 10.1080/2162402x.2018.1438105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/09/2022] Open
Abstract
Adenoviral vectors expressing Cre recombinase are commonly used to initiate tumor formation in murine lung cancer models. While these vectors are designed to target genetic recombination to lung epithelial cells, adenoviruses can infect additional cell types that potentially influence tumor development. Our goal was to explore the consequences of adenoviral-mediated alveolar macrophage (AM) transduction in a Kras-initiated lung tumor model. As expected, treatment of animals harboring the KrasLSL-G12D allele and an inducible green fluorescence protein (GFP) tracking allele with an adenoviral vector expressing Cre recombinase under the control of the cytomegalovirus (CMV) promoter (Ad5-CMV-Cre), caused GFP-positive lung adenocarcinomas. Surprisingly, however, up to 70% of the total GFP+ cells were AM, and GFP+ AM could be detected 6 months after tumor initiation, and transduced AM demonstrated Kras activation and increased proliferation. In contrast, recombination was not detected in other immune cell populations and AM recombination could be eliminated by tumor initiation with an adenovirus expressing Cre recombinase under the control of the surfactant protein C (SPC) promoter. In addition, AM isolated from KrasLSL-G12D animals and transduced by Ad5-CMV-Cre ex vivo displayed prolonged survival in vitro and increased the growth of murine lung adenocarcinoma CMT/167 cells when co-injected in an orthotopic flank model. Given the importance of the immune system in tumor development and progression, inadvertent AM transduction by Ad5-CMV-Cre merits careful consideration during lung cancer model selection particularly if studies evaluating the tumor-immune interactions are planned.
Collapse
Affiliation(s)
- Darinee D Tippimanchai
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kyle Nolan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Joanna Poczobutt
- Division of Renal Disease and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Gregory Verzosa
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Howard Li
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Jing Huang
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Christian Young
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Raphael A Nemenoff
- Division of Renal Disease and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
165
|
Li R, Zhang H, Liu H, Lin C, Cao Y, Zhang W, Shen Z, Xu J. High expression of C-C chemokine receptor 2 associates with poor overall survival in gastric cancer patients after surgical resection. Oncotarget 2018; 7:23909-18. [PMID: 26992207 PMCID: PMC5029673 DOI: 10.18632/oncotarget.8069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/28/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Being a critical chemokine receptor in chemoattracting myeloid cells into tumor tissues, C-C chemokine receptor 2 (CCR2) has been detected in many malignant tumors. This study aims to evaluate the prognostic value of CCR2 expression in patients with gastric cancer after surgery. RESULTS CCR2 expression was detected in the accessory cells around gastric cancer cells in a diffused manner. CCR2 high expression was correlated with tumor invasion depth (P=0.006 and P=0.004, respectively), lymph node metastasis (P=0.038 and P=0.011, respectively) and TNM stage (P=0.003 and P=0.001, respectively) in the two independent sets. Multivariate Cox regression analysis identifies CCR2 high expression was an independent poor prognostic factor for OS of patients with gastric cancer in the two sets (P=0.013 and P=0.006, respectively). Integration of CCR2 expression and TNM stage could provide additional prognostic value for OS than TNM stage alone in the two sets (P=0.038 and P=0.002, respectively). METHODS Two independent sets comprising a total of 474 patients who received standard gastrectomy were enrolled in the study. The expression level of CCR2 was detected by immunohistochemistry. The correlations between CCR2 expression and clinicopathological factors were explored, and the prognostic significance for overall survival (OS) was determined by Kaplan-Meier analysis. CONCLUSIONS CCR2 high expression in the tumor microenvironment is a novel independent unfavorable prognostic factor for patients with gastric cancer. Combination of CCR2 expression and TNM stage could provide a better prognostic model for OS of gastric cancer patients.
Collapse
Affiliation(s)
- Ruochen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
166
|
Connolly KA, Belt BA, Figueroa NM, Murthy A, Patel A, Kim M, Lord EM, Linehan DC, Gerber SA. Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget 2018; 7:86522-86535. [PMID: 27852031 PMCID: PMC5349932 DOI: 10.18632/oncotarget.13287] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/29/2016] [Indexed: 02/04/2023] Open
Abstract
Although radiotherapy (RT) is widely used to control tumor growth across many cancer types, there is a relatively high incidence of RT failure exhibited by tumor recurrence, therefore a clear need exists to achieve improved effectiveness of RT. The RT-elicited immune response largely impacts the efficacy of RT and includes immune cells that kill tumor cells, but also immunosuppressive cells, which dampen anti-tumor immunity. Using murine models in which syngeneic tumor cell lines (Colon38, Glioma261, Line1) are grown intramuscularly and treated with 15 Gy local RT, we assessed the effects of RT on both the systemic and intratumoral immune response. Here we demonstrate that RT stimulates increased production of two chemokines, CCL2 and CCL5, at the tumor site. Further, that this leads to increased CCR2+ CCR5+ monocytes in circulation and subsequently alters the intratumoral immune infiltrate favoring the largely immunosuppressive CCR2+ CCR5+ monocytes. Importantly, a CCR2/CCR5 antagonist administered daily (15 mg/kg subcutaneously) starting two days prior to RT reduces both circulating and intratumoral monocytes resulting in increased efficacy of RT in radioresponsive tumors. Overall, these data have important implications for the mechanism of RT and present a means to improve RT efficacy across many cancer types.
Collapse
Affiliation(s)
- Kelli A Connolly
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nathania M Figueroa
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ankit Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
167
|
Pullamsetti SS, Savai R. Macrophage Regulation during Vascular Remodeling: Implications for Pulmonary Hypertension Therapy. Am J Respir Cell Mol Biol 2018; 56:556-558. [PMID: 28459385 DOI: 10.1165/rcmb.2017-0033ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- 1 Max Planck Institute for Heart and Lung Research Department of Lung Development and Remodeling Member of the German Center for Lung Research (DZL) Bad Nauheim, Germany and.,2 Department of Internal Medicine Universities of Giessen and Marburg Lung Center Member of the DZL Justus Liebig University Giessen, Germany
| | - Rajkumar Savai
- 1 Max Planck Institute for Heart and Lung Research Department of Lung Development and Remodeling Member of the German Center for Lung Research (DZL) Bad Nauheim, Germany and.,2 Department of Internal Medicine Universities of Giessen and Marburg Lung Center Member of the DZL Justus Liebig University Giessen, Germany
| |
Collapse
|
168
|
Su YC, Chang H, Sun SJ, Liao CY, Wang LY, Ko JL, Chang JT. Differential impact of CX3CL1 on lung cancer prognosis in smokers and non-smokers. Mol Carcinog 2018; 57:629-639. [DOI: 10.1002/mc.22787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ying-Chieh Su
- Department of Thoracic Surgery; Chi Mei Medical Center; Tainan, Taiwan (R.O.C)
- Department of Biomedical Engineering; National Cheng Kung University; Tainan, Taiwan (R.O.C)
| | - Han Chang
- Department of Pathology; China Medical University Hospital; Taichung, Taiwan (R.O.C)
| | - Shih-Jung Sun
- Institute of Medicine; Chung Shan Medical University; Taichung, Taiwan (R.O.C)
| | - Cheng-Yi Liao
- Institute of Medicine; Chung Shan Medical University; Taichung, Taiwan (R.O.C)
| | - Ling-Yi Wang
- Institute of Medicine; Chung Shan Medical University; Taichung, Taiwan (R.O.C)
| | - Jiunn-Lang Ko
- Institute of Medicine; Chung Shan Medical University; Taichung, Taiwan (R.O.C)
| | - Jinghua T. Chang
- Institute of Medicine; Chung Shan Medical University; Taichung, Taiwan (R.O.C)
- Department of Chest Medicine; Chung Shan Medical University Hospital; Taichung, Taiwan (R.O.C)
| |
Collapse
|
169
|
Afroz T, Hiraku Y, Ma N, Ahmed S, Oikawa S, Kawanishi S, Murata M. Nitrative DNA damage in cultured macrophages exposed to indium oxide. J Occup Health 2017; 60:148-155. [PMID: 29187674 PMCID: PMC5886882 DOI: 10.1539/joh.17-0146-oa] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives: Indium compounds are used in manufacturing displays of mobile phones and televisions. However, these materials cause interstitial pneumonia in exposed workers. Animal experiments demonstrated that indium compounds caused lung cancer. Chronic inflammation is considered to play a role in lung carcinogenesis and fibrosis induced by particulate matters. 8-Nitroguanine (8-nitroG) is a mutagenic DNA lesion formed during inflammation and may participate in carcinogenesis. To clarify the mechanism of carcinogenesis, we examined 8-nitroG formation in indium-exposed cultured cells. Methods: We treated RAW 264.7 mouse macrophages with indium oxide (In2O3) nanoparticles (primary diameter: 30-50 nm), and performed fluorescent immunocytochemistry to detect 8-nitroG. The extent of 8-nitroG formation was evaluated by quantitative image analysis. We measured the amount of nitric oxide (NO) in the culture supernatant of In2O3-treated cells by the Griess method. We also examined the effects of inhibitors of inducible NO synthase (iNOS) and endocytosis on In2O3-induced 8-nitroG formation. Results: In2O3 significantly increased the intensity of 8-nitroG formation in RAW 264.7 cells in a dose-dependent manner. In2O3-induced 8-nitroG formation was observed at 2 h and further increased at 4 h, and the amount of NO released from In2O3-exposed cells was significantly increased at 2-4 h compared with the control. 8-NitroG formation was suppressed by 1400W (an iNOS inhibitor), methyl-β-cyclodextrin and monodansylcadaverine (inhibitors of caveolae- and clathrin-mediated endocytosis, respectively). Conclusions: These results suggest that endocytosis and NO generation participate in indium-induced 8-nitroG formation. NO released from indium-exposed inflammatory cells may induce DNA damage in adjacent lung epithelial cells and contribute to carcinogenesis.
Collapse
Affiliation(s)
- Tahmina Afroz
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | - Ning Ma
- Faculty of Nursing, Suzuka University of Medical Science
| | - Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| |
Collapse
|
170
|
Pullamsetti SS, Kojonazarov B, Storn S, Gall H, Salazar Y, Wolf J, Weigert A, El-Nikhely N, Ghofrani HA, Krombach GA, Fink L, Gattenlöhner S, Rapp UR, Schermuly RT, Grimminger F, Seeger W, Savai R. Lung cancer–associated pulmonary hypertension: Role of microenvironmental inflammation based on tumor cell–immune cell cross-talk. Sci Transl Med 2017; 9. [DOI: 10.1126/scitranslmed.aai9048] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Lung cancer–associated pulmonary hypertension is associated with microenvironmental inflammation caused by tumor cell–immune cell cross-talk.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Baktybek Kojonazarov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Samantha Storn
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Henning Gall
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ylia Salazar
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Janine Wolf
- Department of Radiology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Nefertiti El-Nikhely
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
- Department of Medicine, Imperial College, London SW7 2AZ, UK
| | - Gabriele A. Krombach
- Department of Radiology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, Wetzlar 35578, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ulf R. Rapp
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
171
|
Yhim HY, Kim JA, Ko SH, Park Y, Yim E, Kim HS, Kwak JY. The prognostic significance of CD11b +CX3CR1 + monocytes in patients with newly diagnosed diffuse large B-cell lymphoma. Oncotarget 2017; 8:92289-92299. [PMID: 29190915 PMCID: PMC5696181 DOI: 10.18632/oncotarget.21241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Despite their critical roles in angiogenesis and host immunosuppression within the tumor microenvironment, the prognostic significance of myeloid-lineage cells expressing CD11b and CX3CR1 in diffuse large B-cell lymphoma (DLBCL) has not been well studied. We prospectively enrolled newly-diagnosed DLBCL patients at two Korean institutions between May 2011 and Aug 2015. CD11b+CX3CR1+ cells were analyzed by flow cytometry using peripheral blood (PB) and bone marrow (BM) aspirate samples before treatments. Eighty-nine patients (52 males) were enrolled. The median age was 65 years (range, 19–88 years). Thirty-seven patients (42%) were classified as high-intermediate or high risk according to the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI). Patients were categorized into either high or low PB-/BM-CD11b+CX3CR1+ monocyte group according to the cutoffs identified by the receiver-operating-characteristics analysis (PB, 3.68%; BM, 3.45%). The high PB-CD11b+CX3CR1+ monocyte group was significantly associated with high-intermediate and high risk NCCN-IPI group (P = 0.004). With a median follow-up of 27.7 months (range, 1.7-60.4 months), the low PB-CD11b+CX3CR1+ monocyte group showed significantly better overall survival (OS) than the high PB-CD11b+CX3CR1+ monocyte group (3-year, 92.3% vs. 51.2%, respectively; P < 0.001). In contrast, no significant difference was observed between the high and low BM-CD11b+CX3CR1+ monocyte groups. Among patients with high-intermediate to high risk NCCN-IPI, the high PB-CD11b+CX3CR1+ monocyte group showed significantly worse OS than the low PB-CD11b+CX3CR1+ monocyte group (3-year, 29.3% vs. 80.2%, respectively; P = 0.008). Taken together, PB-CD11b+CX3CR1+ monocyte percentage correlates with the NCCN-IPI risk stratification, which enables identification of subgroups with extremely poor clinical outcomes.
Collapse
Affiliation(s)
- Ho-Young Yhim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jeong-A Kim
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hye Ko
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngrok Park
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Eunjung Yim
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Sun Kim
- College of Nursing, Chonbuk National University, Jeonju, Republic of Korea
| | - Jae-Yong Kwak
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
172
|
Shiels MS, Shu XO, Chaturvedi AK, Gao YT, Xiang YB, Cai Q, Hu W, Shelton G, Ji BT, Pinto LA, Kemp TJ, Rothman N, Zheng W, Hildesheim A, Lan Q. A prospective study of immune and inflammation markers and risk of lung cancer among female never smokers in Shanghai. Carcinogenesis 2017; 38:1004-1010. [PMID: 28981818 DOI: 10.1093/carcin/bgx075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
There is a paucity of data on risk factors for lung cancer among never smokers. Here, we have carried out the first large study of circulating inflammation markers and lung cancer risk among female never smokers in Shanghai. A study of 248 lung cancer cases in female never smokers and 263 controls was nested within the Shanghai Women's Health Study (n = 75221), matched by dates of birth and blood collection (mean follow-up time = 7.5 years). Prediagnostic plasma levels of 65 inflammation markers were measured using a Luminex bead-based assay. Odds ratios (ORs) were estimated with multivariable logistic regression. Nine of 61 evaluable markers were statistically significantly associated with lung cancer risk among never smoking Chinese women (P-trend across categories <0.05). Soluble interleukin-6 receptor [sIL-6R; highest versus lowest category OR = 2.37; 95% confidence interval (CI) 1.40-4.02) and chemokine (C-C motif) ligand 2/monocyte chemotactic protein 1; (OR = 1.62; 95% CI 0.94-2.80) were associated with an increased risk of lung cancer, whereas interleukin (IL)-21 (OR = 0.53; 95%CI 0.31-0.93), chemokine (C-X3-C motif) ligand 1/fractalkine (OR = 0.54; 95% CI 0.30-0.96), soluble vascular endothelial growth factor receptor 2 (sVEGFR2, OR = 0.45; 95% CI 0.26-0.76), sVEGFR3 (OR = 0.53; 95% CI 0.32-0.90), soluble tumor necrosis factor receptor I (OR = 0.49; 95% CI 0.29-0.83), IL-10 (OR = 0.60; 95% CI 0.34-1.05) and C-reactive protein (OR = 0.63; 95% CI 0.37-1.06) were associated with a decreased risk. sIL-6R remained significantly associated with lung cancer risk >7.5 years prior to diagnosis. Markers involved in various aspects of the immune response were associated with subsequent lung cancer risk, implicating inflammation in the etiology of lung cancer among female never smokers.
Collapse
Affiliation(s)
- Meredith S Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anil K Chaturvedi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Gloriana Shelton
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Troy J Kemp
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
173
|
Antsiferova M, Piwko-Czuchra A, Cangkrama M, Wietecha M, Sahin D, Birkner K, Amann VC, Levesque M, Hohl D, Dummer R, Werner S. Activin promotes skin carcinogenesis by attraction and reprogramming of macrophages. EMBO Mol Med 2017; 9:27-45. [PMID: 27932444 PMCID: PMC5210090 DOI: 10.15252/emmm.201606493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activin has emerged as an important player in different types of cancer, but the underlying mechanisms are largely unknown. We show here that activin overexpression is an early event in murine and human skin tumorigenesis. This is functionally important, since activin promoted skin tumorigenesis in mice induced by the human papillomavirus 8 oncogenes. This was accompanied by depletion of epidermal γδ T cells and accumulation of regulatory T cells. Most importantly, activin increased the number of skin macrophages via attraction of blood monocytes, which was prevented by depletion of CCR2‐positive monocytes. Gene expression profiling of macrophages from pre‐tumorigenic skin and bioinformatics analysis demonstrated that activin induces a gene expression pattern in skin macrophages that resembles the phenotype of tumor‐associated macrophages in different malignancies, thereby promoting angiogenesis, cell migration and proteolysis. The functional relevance of this finding was demonstrated by antibody‐mediated depletion of macrophages, which strongly suppressed activin‐induced skin tumor formation. These results demonstrate that activin induces skin carcinogenesis via attraction and reprogramming of macrophages and identify novel activin targets involved in tumor formation.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mateusz Wietecha
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Dilara Sahin
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Katharina Birkner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Valerie C Amann
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | | | - Daniel Hohl
- Department of Dermatology, University of Lausanne, Lausanne, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
174
|
Taylor C, Mannion D, Miranda F, Karaminejadranjbar M, Herrero-Gonzalez S, Hellner K, Zheng Y, Bartholomeusz G, Bast RC, Ahmed AA. Loss of PFKFB4 induces cell death in mitotically arrested ovarian cancer cells. Oncotarget 2017; 8:17960-17980. [PMID: 28152500 PMCID: PMC5392300 DOI: 10.18632/oncotarget.14910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Taxanes represent some of the most commonly used chemotherapeutic agents for ovarian cancer treatment. However, they are only effective in approximately 40% of patients. Novel therapeutic strategies are required to potentiate their effect and improve patient outcome. A hallmark of many cancers is the constitutive activation of the PI3K/AKT pathway, which drives cell survival and metabolism. We discovered a striking decrease in AKT activity coupled with a significant reduction in glucose 6-phosphate and ATP levels during mitotic arrest in the majority of ovarian cancer cell lines tested, indicating a potential metabolic vulnerability. A high-content siRNA screen to detect novel metabolic targets in mitotically arrested ovarian cancer cells identified the glycolytic enzyme PFKFB4. PFKFB4 depletion increased caspase 3/7 activity, and levels of reactive oxygen species only in mitotically arrested cells, and significantly enhanced mitotic cell death after paclitaxel treatment. Depletion of PFKFB3 demonstrated a similar phenotype. The observation that some ovarian cancer cells lose AKT activity during mitotic arrest and become vulnerable to metabolic targeting is a new concept in cancer therapy. Thus, combining mitotic-targeted therapies with glycolytic inhibitors may act to potentiate the effects of antimitotics in ovarian cancer through mitosis-specific cell death.
Collapse
Affiliation(s)
- Charlotte Taylor
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Mannion
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fabrizio Miranda
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mohammad Karaminejadranjbar
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sandra Herrero-Gonzalez
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Karin Hellner
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
175
|
Weiss ID, Huff LM, Evbuomwan MO, Xu X, Dang HD, Velez DS, Singh SP, Zhang HH, Gardina PJ, Lee JH, Lindenberg L, Myers TG, Paik CH, Schrump DS, Pittaluga S, Choyke PL, Fojo T, Farber JM. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget 2017; 8:73387-73406. [PMID: 29088715 PMCID: PMC5650270 DOI: 10.18632/oncotarget.19945] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023] Open
Abstract
Expression of the chemokine receptor CXCR4 by many cancers correlates with aggressive clinical behavior. As part of the initial studies in a project whose goal was to quantify CXCR4 expression on cancers non-invasively, we examined CXCR4 expression in cancer samples by immunohistochemistry using a validated anti-CXCR4 antibody. Among solid tumors, we found expression of CXCR4 on significant percentages of major types of kidney, lung, and pancreatic adenocarcinomas, and, notably, on metastases of clear cell renal cell carcinoma and squamous cell carcinoma of the lung. We found particularly high expression of CXCR4 on adrenocortical cancer (ACC) metastases. Microarrays of ACC metastases revealed correlations between expression of CXCR4 and other chemokine system genes, particularly CXCR7/ACKR3, which encodes an atypical chemokine receptor that shares a ligand, CXCL12, with CXCR4. A first-in-human study using 64Cu-plerixafor for PET in an ACC patient prior to resection of metastases showed heterogeneity among metastatic nodules and good correlations among PET SUVs, CXCR4 staining, and CXCR4 mRNA. Additionally, we were able to show that CXCR4 expression correlated with the rates of growth of the pulmonary lesions in this patient. Further studies are needed to understand better the role of CXCR4 in ACC and whether targeting it may be beneficial. In this regard, non-invasive methods for assessing CXCR4 expression, such as PET using 64Cu-plerixafor, should be important investigative tools.
Collapse
Affiliation(s)
- Ido D Weiss
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lyn M Huff
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Moses O Evbuomwan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Xu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hong Duc Dang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul J Gardina
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jae-Ho Lee
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chang H Paik
- Radiopharmaceutical Laboratory, Nuclear Medicine Division, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tito Fojo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
176
|
Wu CY, Cherng JY, Yang YH, Lin CL, Kuan FC, Lin YY, Lin YS, Shu LH, Cheng YC, Liu HT, Lu MC, Lung J, Chen PC, Lin HK, Lee KD, Tsai YH. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells. Oncotarget 2017; 8:90925-90947. [PMID: 29207614 PMCID: PMC5710895 DOI: 10.18632/oncotarget.18767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/10/2017] [Indexed: 01/29/2023] Open
Abstract
In traditional Chinese medicine, Salvia miltiorrhiza Bunge (danshen) is widely used in the treatment of numerous cancers. However, its clinical effort and mechanism in the treatment of advanced lung cancer are unclear. In our study, the in vivo protective effort of danshen in patients with advanced lung cancer were validated using data from the National Health Insurance Research Database in Taiwan. We observed in vitro that dihydroisotanshinone I (DT), a bioactive compound in danshen, exerts anticancer effects through many pathways. First, 10 μM DT substantially inhibited the migration ability of lung cancer cells in both macrophage and macrophage/lung cancer direct mixed coculture media. Second, 10 μM DT repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), the protein expression of S-phase kinase associated protein-2 (Skp2), and the mRNA levels of STAT3-related genes, including chemokine (C–C motif) ligand 2 (CCL2). In addition, 10 μM DT suppressed the macrophage recruitment ability of lung cancer cells by reducing CCL2 secretion from both macrophages and lung cancer cells. Third, 20 μM DT induced apoptosis in lung cancer cells. Furthermore, DT treatment significantly inhibited the final tumor volume in a xenograft nude mouse model. In conclusion, danshen exerts protective efforts in patients with advanced lung cancer. These effects can be attributed to DT-mediated interruption of the cross talk between lung cancer cells and macrophages and blocking of lung cancer cell proliferation.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jong-Yuh Cherng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chu Lu
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jthau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, USA.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Kuan-Der Lee
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan, Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.,Chang-Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
177
|
Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One 2017; 12:e0175558. [PMID: 28441391 PMCID: PMC5404872 DOI: 10.1371/journal.pone.0175558] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-associated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.
Collapse
|
178
|
Cui J, Xu W, Chen J, Li H, Dai L, Frank JA, Peng S, Wang S, Chen G. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells. Oncotarget 2017; 8:21398-21409. [PMID: 28423485 PMCID: PMC5400592 DOI: 10.18632/oncotarget.15232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages.
Collapse
Affiliation(s)
- Jiajun Cui
- Department of Biochemistry, Medical College of Yichun University, Yichun, Jiangxi 336000, China
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Wenhua Xu
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Neurology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Jian Chen
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361001, China
| | - Hui Li
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Lu Dai
- Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jacqueline A. Frank
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Shaojun Peng
- Department of Biochemistry, Medical College of Yichun University, Yichun, Jiangxi 336000, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gang Chen
- Department Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
179
|
Wang X, Yang X, Tsai Y, Yang L, Chuang KH, Keng PC, Lee SO, Chen Y. IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer. Radiat Res 2017; 187:50-59. [PMID: 28054838 DOI: 10.1667/rr14503.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Xiaodong Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Li Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Peter C Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
180
|
Li XJ, Gangadaran P, Kalimuthu S, Oh JM, Zhu L, Jeong SY, Lee SW, Lee J, Ahn BC. Role of pulmonary macrophages in initiation of lung metastasis in anaplastic thyroid cancer. Int J Cancer 2016; 139:2583-2592. [PMID: 27537102 DOI: 10.1002/ijc.30387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Several clinical studies have demonstrated that increased macrophage infiltration into tumors confers metastatic potential and poor prognosis in cancer. Preclinical studies are needed to develop new strategies for countering metastasis. Our study was designed to investigate the impact of pulmonary macrophages on lung metastasis of anaplastic thyroid cancer (ATC). ATC (CAL-62) and macrophage (Raw264.7) were transfected with the effluc (CAL-62/effluc, Raw264.7/effluc). Coculture and migration assays were used to assess the effect of Raw264.7 or THP1 (human macrophage) (or conditioned medium) on the proliferation and/or migration of CAL-62/effluc cells in vitro. The effect of clodro-lipo or PBS-lipo on macrophage depletion was confirmed in vitro and in vivo. CAL-62/effluc cells (1 × 10(6) ) were intravenously injected into nude mice 24 h after clodro-lipo or PBS-lipo administration. Effect of clodro-lipo on the lung metastasis of CAL-62/effluc was assessed by bioluminescence imaging (BLI). Micro computed tomography (micro-CT) and histology. BLI signals of CAL-62/effluc and Raw264.7/effluc increased to cell number. Raw264.7 cells and THP1 cells promoted CAL-62/effluc proliferation, and conditioned medium of Raw264.7 cells promoted CAL-62/effluc migration. Clodro-lipo significantly depleted pulmonary macrophages in vitro and in vivo. Intensity of BLI signals in ATC lung metastasis was weaker in the clodro-lipo group than PBS-lipo control. Micro-CT imaging and hematoxylin/eosin staining revealed smaller tumor masses in the clodro-lipo group than PBS-lipo control. Our findings indicate that pulmonary macrophages have an important role in initiation of lung metastasis of ATC. New therapeutic strategies that preclude initiation of pulmonary metastasis could potentially be developed by targeting pulmonary macrophages.
Collapse
Affiliation(s)
- Xiu Juan Li
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea.
| |
Collapse
|
181
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
182
|
Nandi B, Shapiro M, Samur MK, Pai C, Frank NY, Yoon C, Prabhala RH, Munshi NC, Gold JS. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncoimmunology 2016; 5:e1189052. [PMID: 27622061 DOI: 10.1080/2162402x.2016.1189052] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022] Open
Abstract
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been implicated in promoting colon cancer; however, the mechanisms behind this effect are poorly understood. We have previously demonstrated that deficiency of CCR6 is associated with decreased tumor macrophage accumulation in a model of sporadic intestinal tumorigenesis. In this study, we aimed to determine the role of stromal CCR6 expression in a murine syngeneic transplantable colon cancer model. We show that deficiency of host CCR6 is associated with decreased growth of syngeneic CCR6-expressing colon cancers. Colon cancers adoptively transplanted into CCR6-deficient mice have decreased tumor-associated macrophages without alterations in the number of monocytes in blood or bone marrow. CCL20, the unique ligand for CCR6, promotes migration of monocytes in vitro and promotes accumulation of macrophages in vivo. Depletion of tumor-associated macrophages decreases the growth of tumors in the transplantable tumor model. Macrophages infiltrating the colon cancers in this model secrete the inflammatory mediators CCL2, IL-1α, IL-6 and TNFα. Ccl2, Il1α and Il6 are consequently downregulated in tumors from CCR6-deficient mice. CCL2, IL-1α and IL-6 also promote proliferation of colon cancer cells, linking the decreased macrophage migration into tumors mediated by CCL20-CCR6 interactions to the delay in tumor growth in CCR6-deficient hosts. The relevance of these findings in human colon cancer is demonstrated through correlation of CCR6 expression with that of the macrophage marker CD163 as well as that of CCL2, IL1α and TNFα. Our findings support the exploration of targeting the CCL20-CCR6 pathway for the treatment of colon cancer.
Collapse
Affiliation(s)
- Bisweswar Nandi
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mia Shapiro
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mehmet K Samur
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine Pai
- Research Service, VA Boston Healthcare System , West Roxbury, MA, USA
| | - Natasha Y Frank
- Harvard Medical School, Boston, MA, USA; Medicine Service, VA Boston Healthcare System, West Roxbury, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Yoon
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Rao H Prabhala
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nikhil C Munshi
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Medicine Service, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Jason S Gold
- Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA; Surgery Service, VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
183
|
Wang X, Li T, Wang W, Yuan W, Liu H, Cheng Y, Wang P, Zhang Y, Han W. Cytokine-like 1 Chemoattracts Monocytes/Macrophages via CCR2. THE JOURNAL OF IMMUNOLOGY 2016; 196:4090-9. [DOI: 10.4049/jimmunol.1501908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
|
184
|
Venosa A, Malaviya R, Choi H, Gow AJ, Laskin JD, Laskin DL. Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard-Induced Lung Injury and Fibrosis. Am J Respir Cell Mol Biol 2016; 54:436-46. [PMID: 26273949 PMCID: PMC4821033 DOI: 10.1165/rcmb.2015-0120oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022] Open
Abstract
Nitrogen mustard (NM) is an alkylating agent known to cause extensive pulmonary injury progressing to fibrosis. This is accompanied by a persistent macrophage inflammatory response. In these studies, we characterized the phenotype of macrophages accumulating in the lung over time following NM exposure. Treatment of rats with NM (0.125 mg/kg, intratracheally) resulted in an increase in CD11b(+) macrophages in histologic sections. These cells consisted of inducible nitric oxide synthase(+) (iNOS) proinflammatory M1 macrophages, and CD68(+), CD163(+), CD206(+), YM-1(+), and arginase-II(+)antiinflammatory M2 macrophages. Although M1 macrophages were prominent 1-3 days after NM, M2 macrophages were most notable at 28 days. At this time, they were enlarged and vacuolated, consistent with a profibrotic phenotype. Flow cytometric analysis of isolated lung macrophages identified three phenotypically distinct subpopulations: mature CD11b(-), CD43(-), and CD68(+) resident macrophages, which decreased in numbers after NM; and two infiltrating (CD11b(+)) macrophage subsets: immature CD43(+) M1 macrophages and mature CD43(-) M2 macrophages, which increased sequentially. Time-related increases in M1 (iNOS, IL-12α, COX-2, TNF-α, matrix metalloproteinase-9, matrix metalloproteinase-10) and M2 (IL-10, pentraxin-2, connective tissue growth factor, ApoE) genes, as well as chemokines/chemokine receptors associated with trafficking of M1 (CCR2, CCR5, CCL2, CCL5) and M2 (CX3CR1, fractalkine) macrophages to sites of injury, were also noted in macrophages isolated from the lung after NM. The appearance of M1 and M2 macrophages in the lung correlated with NM-induced acute injury and the development of fibrosis, suggesting a potential role of these macrophage subpopulations in the pathogenic response to NM.
Collapse
Affiliation(s)
- Alessandro Venosa
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, and
| | - Rama Malaviya
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, and
| | - Hyejeong Choi
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, and
| | - Andrew J. Gow
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, and
| | - Jeffrey D. Laskin
- Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Debra L. Laskin
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, and
| |
Collapse
|
185
|
Hamilton G, Rath B, Klameth L, Hochmair MJ. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells. Oncoimmunology 2015; 5:e1093277. [PMID: 27141354 DOI: 10.1080/2162402x.2015.1093277] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14+, CD163weak and CD68+ macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293 cell line revealed no induction of macrophages, whereas incubation of PBMNCs with recombinant CHI3L1 gave positive results. Thus, the specific contributions of CTCs in SCLC affect CFD/adipsin, possibly involved in immunity/cachexia, VDBP which gives rise to group-specific component protein-derived macrophage-activating factor (GcMAF), GDF-15/MIC-1 which enhances the malignant phenotype of tumor cells and ENA-78/CXCL5 which attracts angiogenic neutrophils. In conclusion, CTCs are competent to specifically manipulate TAMs to increase invasiveness, angiogenesis, immunosuppression and possibly lipid catabolism.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University Vienna , Vienna, Austria
| | - Barbara Rath
- Ludwig Boltzmann Cluster of Translational Oncology , Vienna, Austria
| | - Lukas Klameth
- Ludwig Boltzmann Cluster of Translational Oncology , Vienna, Austria
| | | |
Collapse
|
186
|
Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, Herrley E, Rasquinha N, McArdle S, Wu R, Peluso E, Metzger D, Ichinose H, Shaked I, Chodaczek G, Biswas SK, Hedrick CC. Patrolling monocytes control tumor metastasis to the lung. Science 2015; 350:985-90. [PMID: 26494174 DOI: 10.1126/science.aac9407] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 11/02/2022]
Abstract
The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical "patrolling" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | - Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Robert Tacke
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Graham D Thomas
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Heba Nowyhed
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erica Herrley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Nicole Rasquinha
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sara McArdle
- Microscopy Core, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Esther Peluso
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Daniel Metzger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Iftach Shaked
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grzegorz Chodaczek
- Microscopy Core, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
187
|
Banat GA, Tretyn A, Pullamsetti SS, Wilhelm J, Weigert A, Olesch C, Ebel K, Stiewe T, Grimminger F, Seeger W, Fink L, Savai R. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PLoS One 2015; 10:e0139073. [PMID: 26413839 PMCID: PMC4587668 DOI: 10.1371/journal.pone.0139073] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.
Collapse
Affiliation(s)
- G-Andre Banat
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Aleksandra Tretyn
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Katharina Ebel
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research, Bad Nauheim, Germany
| | - Thorsten Stiewe
- Molecular Oncology, Philipps-University, Member of the German Center for Lung Research, Marburg, Germany
| | - Friedrich Grimminger
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research, Bad Nauheim, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | - Rajkumar Savai
- Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
188
|
Abstract
Tumor-associated macrophages (TAMs) are major component of leukocytic infiltrate of tumors and play important roles in progression and regression of tumors. Tumor microenvironment determines the mutual conversion between M1 and M2 macrophages. In many kinds of tumors, M2 type macrophages are of the majority in TAMs and promote tumor progression and metastasis. The dynamic balance and interaction between TAMs and tumor cells have important effects on the occurrence and development of tumor. TAMs in malignant tumors are useful for clinical diagnosis and may provide a novel target for cancer treatment.
Collapse
|
189
|
Rivas-Fuentes S, Salgado-Aguayo A, Pertuz Belloso S, Gorocica Rosete P, Alvarado-Vásquez N, Aquino-Jarquin G. Role of Chemokines in Non-Small Cell Lung Cancer: Angiogenesis and Inflammation. J Cancer 2015; 6:938-52. [PMID: 26316890 PMCID: PMC4543754 DOI: 10.7150/jca.12286] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of aggressive cancer. The tumor tissue, which shows an active angiogenesis, is composed of neoplastic and stromal cells, and an abundant inflammatory infiltrate. Angiogenesis is important to support tumor growth, while infiltrating cells contribute to the tumor microenvironment through the secretion of growth factors, cytokines and chemokines, important molecules in the progression of the disease. Chemokines are important in development, activation of the immune response, and physiological angiogenesis. Chemokines have emerged as important regulators in the pathophysiology of cancer. These molecules are involved in the angiogenesis/angiostasis balance and in the recruitment of tumor infiltrating hematopoietic cells. In addition, chemokines promote tumor cell survival, as well as the directing and establishment of tumor cells to metastasis sites. The findings summarized here emphasize the central role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in the inflammatory process of NSCLC angiogenesis.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- 1. Department of Biochemistry Research, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- 2. Laboratory of Research on Rheumatic Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Silvana Pertuz Belloso
- 3. Department of Comparative Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Patricia Gorocica Rosete
- 1. Department of Biochemistry Research, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Noé Alvarado-Vásquez
- 1. Department of Biochemistry Research, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Guillermo Aquino-Jarquin
- 4. Laboratory of Research on Genomics, Genetics and Bioinformatics. Tower of Haemato-oncology, Children´s Hospital of Mexico “Federico Gomez”, Mexico City, Mexico
| |
Collapse
|