151
|
Reddy SK, Weng Y, Rudd JC, Akhunova A, Liu S. Transcriptomics of induced defense responses to greenbug aphid feeding in near isogenic wheat lines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:26-36. [PMID: 24094051 DOI: 10.1016/j.plantsci.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 05/10/2023]
Abstract
The greenbug aphid, Schizaphis graminum (Rondani) is an important cereal pest, periodically threatening wheat yields in the United States and around the world. The single dominant gene, Gb3-based resistance is highly durable against prevailing greenbug biotypes under field conditions; however, the molecular mechanisms of Gb3-mediated defense responses remain unknown. We used Affymetrix GeneChip Wheat Genome Arrays to investigate the transcriptomics of host defense responses upon greenbug feeding on resistant and susceptible bulks (RB and SB, respectively) derived from two near-isogenic lines. The study identified 692 differentially expressed transcripts and further functional classification recognized 122 transcripts that are putatively associated to mediate biotic stress responses. In RB, Gb3-mediated resistance resulted in activation of transmembrane receptor kinases and signaling-related transcripts involved in early signal transduction cascades. While in SB, transcripts mediating final steps in jasmonic acid biosynthesis, redox homeostasis, peroxidases, glutathione S-transferases, and notable defense-related secondary metabolites were induced. Also transcripts involved in callose and cell wall decomposition were elevated SB, plausibly to facilitate uninterrupted feeding operations. These results suggest that Gb3-mediated resistance is less vulnerable to cell wall modification and the data provides ample tools for further investigations concerning R gene based model of resistance.
Collapse
|
152
|
Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Sci Rep 2013; 3:3021. [PMID: 24149340 PMCID: PMC3805973 DOI: 10.1038/srep03021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022] Open
Abstract
Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.
Collapse
Affiliation(s)
- Kun Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
153
|
Qi X, Wu J, Wang L, Li L, Cao Y, Tian L, Dong X, Zhang S. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC Genomics 2013; 14:727. [PMID: 24152304 PMCID: PMC4046677 DOI: 10.1186/1471-2164-14-727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 11/25/2022] Open
Abstract
Background 'Kuerlexiangli’ (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes. Results Digital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results. Conclusions We identified candidate genes that showed highly dynamic changes in expression during the calyx abscission process. These genes are potential targets for future functional characterization and should be valuable for exploration of the mechanisms of calyx abscission, and eventually for developing methods based on small molecule application to induce calyx abscission in fruit production. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-727) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | |
Collapse
|
154
|
Wrzaczek M, Brosché M, Kangasjärvi J. ROS signaling loops - production, perception, regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:575-82. [PMID: 23876676 DOI: 10.1016/j.pbi.2013.07.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species are recognized as important signaling components in a wide range of processes in plants and most other organisms. Reactive oxygen species are produced in different subcellular compartments in response to specific stimuli and the production is under tight control in order to avoid detrimental side-effects. Calcium signaling, protein phosphorylation and other signaling pathways are intimately involved in the control and coordination of reactive oxygen production. Any signal that should result in a specific response must eventually be perceived. Direct redox modification of transcription factors and other proteins are critical for the perception of intracellular reactive oxygen species; however, sensing of their extracellular counterparts awaits elucidation.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
155
|
Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, Liu X, Hofberger J, de Bruijn S, Bhide AS, Kuelahoglu C, Bian C, Chen J, Fan G, Kaufmann K, Hall JC, Becker A, Bräutigam A, Weber AP, Shi C, Zheng Z, Li W, Lv M, Tao Y, Wang J, Zou H, Quan Z, Hibberd JM, Zhang G, Zhu XG, Xu X, Schranz ME. The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. THE PLANT CELL 2013; 25:2813-30. [PMID: 23983221 PMCID: PMC3784582 DOI: 10.1105/tpc.113.113480] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/06/2013] [Accepted: 08/06/2013] [Indexed: 05/18/2023]
Abstract
The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for minichromosome maintenance1, AGAMOUS, DEFICIENS and serum response factor) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical serine receptor kinase receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.
Collapse
Affiliation(s)
| | - Erik van den Bergh
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Peng Zeng
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Xiao Zhong
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Jiajia Xu
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences/Max Planck Society, Shanghai 200031, China
| | - Xin Liu
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Johannes Hofberger
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Suzanne de Bruijn
- Molecular Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Amey S. Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University, 35392 Giessen, Germany
| | - Canan Kuelahoglu
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | - Chao Bian
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Jing Chen
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Guangyi Fan
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Kerstin Kaufmann
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jocelyn C. Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University, 35392 Giessen, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | | | - Zhijun Zheng
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Wujiao Li
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Mingju Lv
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences/Max Planck Society, Shanghai 200031, China
| | - Yimin Tao
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences/Max Planck Society, Shanghai 200031, China
| | - Junyi Wang
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - Hongfeng Zou
- Beijing Genomics Institute, 518083 Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, 518083 Shenzhen, China
- Key Laboratory of Genomics, Ministry of Agriculture, Beijing Genomics Institute, 518083 Shenzhen, China
| | - Zhiwu Quan
- Beijing Genomics Institute, 518083 Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, 518083 Shenzhen, China
- Key Laboratory of Genomics, Ministry of Agriculture, Beijing Genomics Institute, 518083 Shenzhen, China
| | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Gengyun Zhang
- Beijing Genomics Institute, 518083 Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, 518083 Shenzhen, China
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Xin-Guang Zhu
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences/Max Planck Society, Shanghai 200031, China
| | - Xun Xu
- Beijing Genomics Institute, 518083 Shenzhen, China
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
156
|
Tolin S, Arrigoni G, Trentin AR, Veljovic-Jovanovic S, Pivato M, Zechman B, Masi A. Biochemical and quantitative proteomics investigations in Arabidopsisggt1mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment. Proteomics 2013; 13:2031-45. [DOI: 10.1002/pmic.201200479] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/13/2013] [Accepted: 04/24/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Serena Tolin
- DAFNAE, University of Padova; Legnaro Italy
- Proteomics Center of Padova University; VIMM, Padova University Hospital; Padova Italy
| | - Giorgio Arrigoni
- Proteomics Center of Padova University; VIMM, Padova University Hospital; Padova Italy
- Department of Biomedical Sciences; University of Padova; Padova Italy
| | | | | | | | - Bernd Zechman
- Karl-Franzens-University of Graz; Institute of Plant Sciences; Graz Austria
| | | |
Collapse
|
157
|
Sierla M, Rahikainen M, Salojärvi J, Kangasjärvi J, Kangasjärvi S. Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal 2013. [PMID: 23157163 DOI: 10.1089/ars.2012.5016 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Interplay among apoplastic and chloroplastic redox signaling networks is emerging as a key mechanism in plant stress responses. RECENT ADVANCES Recent research has revealed components involved in apoplastic and chloroplastic redox signaling. Also, the sequence of events from stress perception, activation of apoplastic reactive oxygen species (ROS) burst through NADPH oxidases, cytoplasmic and chloroplastic Ca(2+)-transients, and organellar redox signals to physiological responses is starting to emerge. Moreover, a functional overlap between light acclimation and plant immunity in photosynthetically active tissues has been demonstrated. CRITICAL ISSUES Any deviations from the basal cellular redox balance may induce acclimation responses that continuously readjust cellular functions. However, diversion of resources to stress responses may lead to attenuation of growth, and exaggeration of defensive reactions may thus be detrimental to the plant. The ultimate outcome of acclimation responses must therefore be tightly controlled by the redox signaling networks between organellar and apoplastic signaling systems. FUTURE DIRECTIONS Two major questions still remain to be solved: the sensory mechanism for ROS and the components involved in relaying the signals from the apoplast to the chloroplast. A comprehensive view of regulatory networks will facilitate the understanding on how environmental factors affect the production of phytonutrients and biomass in plants. Translation of such information from model plants to crop species will be at the cutting edge of research in the near future. These challenges give a frame for future studies on ROS and redox regulation of stress acclimation in photosynthetic organisms.
Collapse
Affiliation(s)
- Maija Sierla
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
158
|
Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:189-98. [PMID: 23583936 DOI: 10.1016/j.plaphy.2013.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/13/2013] [Indexed: 05/10/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,(2)NCED5,(3)ABA2,(4) and AAO3(5) were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes.
Collapse
Affiliation(s)
- Xiujuan Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Guanyu Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Rui Shi
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Xiaomin Han
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Liwang Qi
- The Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Liming Xiong
- Plant Stress Genomics Research Center, Division of Chemical and Life Sciences & Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Guojing Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| |
Collapse
|
159
|
Sierla M, Rahikainen M, Salojärvi J, Kangasjärvi J, Kangasjärvi S. Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal 2013; 18:2220-39. [PMID: 23157163 DOI: 10.1089/ars.2012.5016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SIGNIFICANCE Interplay among apoplastic and chloroplastic redox signaling networks is emerging as a key mechanism in plant stress responses. RECENT ADVANCES Recent research has revealed components involved in apoplastic and chloroplastic redox signaling. Also, the sequence of events from stress perception, activation of apoplastic reactive oxygen species (ROS) burst through NADPH oxidases, cytoplasmic and chloroplastic Ca(2+)-transients, and organellar redox signals to physiological responses is starting to emerge. Moreover, a functional overlap between light acclimation and plant immunity in photosynthetically active tissues has been demonstrated. CRITICAL ISSUES Any deviations from the basal cellular redox balance may induce acclimation responses that continuously readjust cellular functions. However, diversion of resources to stress responses may lead to attenuation of growth, and exaggeration of defensive reactions may thus be detrimental to the plant. The ultimate outcome of acclimation responses must therefore be tightly controlled by the redox signaling networks between organellar and apoplastic signaling systems. FUTURE DIRECTIONS Two major questions still remain to be solved: the sensory mechanism for ROS and the components involved in relaying the signals from the apoplast to the chloroplast. A comprehensive view of regulatory networks will facilitate the understanding on how environmental factors affect the production of phytonutrients and biomass in plants. Translation of such information from model plants to crop species will be at the cutting edge of research in the near future. These challenges give a frame for future studies on ROS and redox regulation of stress acclimation in photosynthetic organisms.
Collapse
Affiliation(s)
- Maija Sierla
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
160
|
Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. PLANTA 2013; 237:1527-45. [PMID: 23494614 DOI: 10.1007/s00425-013-1864-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/25/2013] [Indexed: 05/27/2023]
Abstract
Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Germination/drug effects
- Germination/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Epidermis/cytology
- Plant Epidermis/drug effects
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Transport/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Salinity
- Sequence Alignment
- Sequence Analysis, DNA
- Sodium Chloride/pharmacology
- Glycine max/drug effects
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- XiaoLi Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Kerchev PI, Karpińska B, Morris JA, Hussain A, Verrall SR, Hedley PE, Fenton B, Foyer CH, Hancock RD. Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis. Antioxid Redox Signal 2013; 18:2091-105. [PMID: 23343093 DOI: 10.1089/ars.2012.5097] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS Aphids, like other insects, are probably unable to synthesize vitamin C (ascorbic acid), which is therefore an essential dietary nutrient that has to be obtained from the host plant. Plant responses to aphids involve hormones such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), but hormone/redox interactions remain poorly characterized. We therefore investigated hormone/redox signaling in the response of Arabidopsis thaliana to infestation by the aphid Myzus persicae, focusing on the interactions between ascorbic acid and ABA, together with the influence of altered ascorbate and ABA signaling on the SA- and JA-dependent pathways. RESULTS Whole-genome microarray analysis revealed highly dynamic transcriptional responses to aphid infestation with extensive differences between transcript profiles of infested and systemic leaves, revealing aphid-dependent effects on the suites of transcripts involved in the redox, SA, and ABA responses. Central roles for ascorbate, ABA-insensitive 4 (ABI4), and oxidative signal-inducible 1 in plant resistance to aphids were demonstrated by altered fecundity on respective mutants. However, ABA had a negative effect on aphid resistance, as did ABI4 or redox-responsive transcription factor 1. The decrease in aphid fecundity observed in mutants defective in ascorbate accumulation (vtc2) was absent from abi4vtc2 double mutants that are also deficient in ABA signaling (abi4). Aphid-dependent transcriptome responses reveal a role for ascorbate-regulated receptor-like kinases in plant defenses against aphids. INNOVATION Vitamin C deficiency enhances plant resistance to aphids through redox signaling pathways rather than dietary requirements. CONCLUSION ABI4 is a linchpin of redox regulation of the innate immune response to aphids.
Collapse
Affiliation(s)
- Pavel I Kerchev
- Faculty of Biology, Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Lan P, Li W, Schmidt W. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. BMC Genomics 2013; 14:210. [PMID: 23547783 PMCID: PMC3636113 DOI: 10.1186/1471-2164-14-210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Phosphorus (P) is one of the essential but often limiting elements for plants. Based on transcriptional profiling we reported previously that more than 3,000 genes are differentially expressed between phosphate (Pi)-deficient and Pi-sufficient Arabidopsis roots (MCP 11(11):1156-1166, 2012). The current study extends these findings by focusing on the analysis of genes that encode protein kinases (PK) and phosphatases (PP) by mining PK and PP genes that were differentially expressed in response to Pi deficiency. RESULTS Subsets of 1,118 and 205 annotated PK and PP genes were mined on the basis of the TAIR10 release of the Arabidopsis genome. Analysis of RNA-seq data showed that 92 PK and 19 PP genes were not detected in roots (zero reads in three biological repeats); 96 PK and 10 PP showed low abundance (≤ 10 reads). Gene ontology analysis revealed that the 188 PK genes with no or low expression level in Arabidopsis roots are mainly involved in pollen recognition, pollen tube growth or other processes not relevant for root hair formation. More than 50% of the cysteine-rich RLK (receptor-like protein kinase) subfamily genes belong to this group. Among the 29 PP genes with no or low expression level, purple acid phosphatases, haloacid dehalogenase-like hydrolases, and PP2C genes with functions in the dephosphorylation of RNA polymerase II C-terminal domain and mRNA capping were enriched. Subsets of 173 PK and 35 PP genes were differentially expressed under Pi-deficient conditions. Putative functional modules (clusters) of these PK and PP genes were constructed based on co-expression analysis using the MACCU toolbox. A co-expression network comprising 65 known or annotated PK and PP genes (60 PK and 5 PP genes, respectively) was subdivided into several highly co-expressed gene sub-clusters. The largest sub-cluster was composed of 22 genes, most of which have been assigned to the RLK superfamily and were associated with cell wall metabolism, pollen tube and/or root hair development and growth. CONCLUSIONS We here provide comprehensive 'digital' transcriptional information on PK and PP genes in Arabidopsis roots. The co-expression network derived from our data mining approach sets the stage for follow-up experimentation that helps to complete our understanding of the post-translational regulation of Pi deficiency-induced changes in root hair morphogenesis.
Collapse
Affiliation(s)
- Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, People's Republic of China.
| | | | | |
Collapse
|
163
|
Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R. DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet 2013; 9:e1003267. [PMID: 23408907 PMCID: PMC3567176 DOI: 10.1371/journal.pgen.1003267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Collapse
Affiliation(s)
- Jochen Gohlke
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Claus-Juergen Scholz
- IZKF Laboratory for Microarray Applications, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Dana Weber
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Rosalia Deeken
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
164
|
Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ, Sipari N, Strid Å, Lindfors AV, Tegelberg R, Aphalo PJ. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. PLANT PHYSIOLOGY 2013; 161:744-59. [PMID: 23250626 PMCID: PMC3561016 DOI: 10.1104/pp.112.211375] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.
Collapse
Affiliation(s)
- Luis O Morales
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Munné-Bosch S, Queval G, Foyer CH. The impact of global change factors on redox signaling underpinning stress tolerance. PLANT PHYSIOLOGY 2013; 161:5-19. [PMID: 23151347 PMCID: PMC3532280 DOI: 10.1104/pp.112.205690] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/13/2012] [Indexed: 05/18/2023]
|
166
|
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:445-58. [PMID: 23307915 DOI: 10.1093/jxb/ers354] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions have negative effects on plant growth and development. Receptor proteins on the plasma membrane sense various environmental stimuli and transduce them to downstream intra- and intercellular signalling networks. Receptor-like kinases (RLKs) play important roles in perceiving the extracellular ligands and activating the downstream pathway via phosphorylation of intracellular serine/threonine kinase domains. The Arabidopsis genome possesses >600 RLK-encoding genes, some of which are implicated in the perception of environmental signals during the life cycle of the sessile plants. Histidine kinases are also membrane-localized kinases and perceive osmotic stress and plant hormones. In this review, we focus on the RLKs and histidine kinases that play a role in plant response to abiotic stresses. We summarize our recent understanding of their specific roles in stress responses and absicisic acid (ABA) regulation. Elucidation of the functions of these kinases in the osmotic stress response will provide a better understanding of stress-sensing mechanisms in plants and help to identify potential candidate genes for genetic engineering of improved stress-tolerant crops.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| | | | | | | |
Collapse
|
167
|
Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. PLANT MOLECULAR BIOLOGY 2012; 80:587-608. [PMID: 22987115 DOI: 10.1007/s11103-012-9969-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/08/2012] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is considered the most common toxic metalloid, but its molecular mode of action is not well understood. We investigated whether arsenate [As(V)] can induce intracellular reactive oxygen species production and calcium oscillation in rice roots. To better understand the molecular basis of plant cell responses to As, we performed a large-scale analysis of the rice transcriptome during As(V) stress. As(V) induced genes involved in abiotic stress, detoxification pathways and secondary metabolic process. Genes involved in secondary cell wall biogenesis, cell cycle and oligopeptide transport were mainly downregulated. Genes encoding signalling components such as receptor-like cytoplasmic kinases protein kinase, APETALA2/ethylene response factor, heat shock factor, MYB and zinc-finger protein expressed in inflorescence meristem transcription factors were increased in expression. The expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. The predominant families of As(V)-regulated transporters belonged to the ATP-binding cassette superfamily and telurite-resistance/dicarboxylate transporters. Several factors involved in signaling, such as mitogen-activated protein kinase (MAPK), MAPK kinase kinase and calcium-dependent protein kinase (CDPK), were also upregulated. Moreover, As(V) markedly increased the activity of MAPKs and CDPK-like kinases, and CDPK and NADPH oxidases were involved in As-induced MAPK activation. Further characterization of these As(V)-responsive genes and signalling pathways may help better understand the mechanisms of metalloid uptake, tolerance and detoxification in plants.
Collapse
Affiliation(s)
- Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
168
|
Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. PLANT SIGNALING & BEHAVIOR 2012; 7:1621-33. [PMID: 23072988 PMCID: PMC3578903 DOI: 10.4161/psb.22455] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS.
Collapse
|
169
|
Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One 2012; 7:e46673. [PMID: 23118859 PMCID: PMC3484130 DOI: 10.1371/journal.pone.0046673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. Methodology/Principal Findings We used electrophysiology to determine the plasma membrane potential (Vm) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. Vm depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min −2 h) than to M. persicae (4–6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. Conclusions/Significance Arabidopsis plasma membranes respond with a Vm depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between Vm depolarization and gene expression was found. At Vm depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former suppressing and the latter activating Arabidopsis defense responses.
Collapse
Affiliation(s)
- Irene Bricchi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Andrea Occhipinti
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Ivan A. Paponov
- Institut für Biologie II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
170
|
Short EF, North KA, Roberts MR, Hetherington AM, Shirras AD, McAinsh MR. A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:948-61. [PMID: 22563867 DOI: 10.1111/j.1365-313x.2012.05043.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Changes in gene expression form a key component of the molecular mechanisms by which plants adapt and respond to environmental stresses. There is compelling evidence for the role of stimulus-specific Ca(2+) signatures in plant stress responses. However, our understanding of how they orchestrate the differential expression of stress-induced genes remains fragmentary. We have undertaken a global study of changes in the Arabidopsis transcriptome induced by the pollutant ozone in order to establish a robust transcriptional response against which to test the ability of Ca(2+) signatures to encode stimulus-specific transcriptional information. We show that the expression of a set of co-regulated ozone-induced genes is Ca(2+)-dependent and that abolition of the ozone-induced Ca(2+) signature inhibits the induction of these genes by ozone. No induction of this set of ozone-regulated genes was observed in response to H(2)O(2), one of the reactive oxygen species (ROS) generated by ozone, or cold stress, which also generates ROS, both of which stimulate changes in [Ca(2+)](cyt). These data establish unequivocally that the Ca(2+)-dependent changes in gene expression observed in response to ozone are not simply a consequence of an ROS-induced increase in [Ca(2+) ](cyt) per se. The magnitude and temporal dynamics of the ozone, H(2)O(2) , and cold Ca(2+) signatures all differ markedly. This finding is consistent with the hypothesis that stimulus-specific transcriptional information can be encoded in the spatiotemporal dynamics of complex Ca(2+) signals in plants.
Collapse
Affiliation(s)
- Eleri F Short
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | | | | | | | | |
Collapse
|
171
|
Reitz MU, Bissue JK, Zocher K, Attard A, Hückelhoven R, Becker K, Imani J, Eichmann R, Schäfer P. The subcellular localization of Tubby-like proteins and participation in stress signaling and root colonization by the mutualist Piriformospora indica. PLANT PHYSIOLOGY 2012; 160:349-64. [PMID: 22751378 PMCID: PMC3498949 DOI: 10.1104/pp.112.201319] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tubby and Tubby-like proteins (TLPs) were first discovered in mammals, where they are involved in the development and function of neuronal cells. Due to their importance as plasma membrane (PM)-tethered transcription factors or mediators of vesicle trafficking, their lack causes obesity and other disease syndromes. Phosphatidylinositol 4,5-bisphosphate binding of the carboxyl-terminal Tubby domain attaches these proteins to the PM and vesicles and is essential for function. TLPs are conserved across eukaryotic kingdoms including plants, suggesting fundamental biological functions of TLPs. Plant TLPs possess an amino-terminal F-box domain that distinguishes them from other eukaryotic TLPs. Arabidopsis (Arabidopsis thaliana) encodes 11 AtTLPs that fall into six phylogenetic clades. We identified the significance of AtTLPs for root colonization of Arabidopsis by the mutualistic fungus Piriformospora indica. Our results further indicate conserved phosphatidylinositol 4,5-bisphosphate-binding sites in the Tubby domains that are required for PM anchoring of AtTLPs. More detailed studies revealed phospholipase C-triggered release of AtTLP3 from the PM, indicating a conserved mechanism as reported for mammalian Tubby and TLP3. We further show that hydrogen peroxide stimulates the release of AtTLP3 from the PM, presumably for activating downstream events. Different from mammalian homologs, the amino-terminal part of almost all AtTLPs has nucleocytosolic and plastidial localization patterns. Thus, it is tempting to assume that TLPs translate reactive oxygen species currents into signaling not only for transcriptional regulation in the nucleus but also affect plastid-associated functions after release from the PM.
Collapse
|
172
|
Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:680-9. [PMID: 22624681 DOI: 10.1111/j.1467-7652.2012.00706.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Establishment of the nitrogen-fixing nodulation symbiosis between legumes and rhizobia requires plant-wide reprogramming to allow infection and development of nodules. Nodulation is regulated principally via a mechanism called autoregulation of nodulation (AON). AON is dependent on shoot and root factors and is maintained by the nodulation autoregulation receptor kinase (NARK) in soybean. We developed a bioassay to detect root-derived signalling molecules in xylem sap of soybean plants which may function in AON. The bioassay involves feeding of xylem extracts via the cut hypocotyl of soybean seedlings and monitoring of molecular markers of AON in the leaf. Transcript abundance changes occurring in the leaf in response to feeding were used to determine the biological activity of the extracts. To identify transcript abundance changes that occur during AON, which may also be used in the bioassay, we used an RNA-seq-based transcriptomics approach. We identified changes in the leaves of bioassay plants fed with xylem extracts derived from either Bradyrhizobium japonicum-inoculated or uninoculated plants. Differential expression responses were detected for genes involved in jasmonic acid metabolism, pathogenesis and receptor kinase signalling. We identified an inoculation- and NARK-dependent candidate gene (GmUFD1a) that responds in both the bioassay and intact, inoculated plants. GmUFD1a is a component of the ubiquitin-dependent protein degradation pathway and provides new insight into the molecular responses occurring during AON. It may now also be used in our feeding bioassay as a molecular marker to assist in identifying the factors contributing to the systemic regulation of nodulation.
Collapse
Affiliation(s)
- Dugald E Reid
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
173
|
RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem J 2012; 442:573-81. [PMID: 22150398 DOI: 10.1042/bj20111739] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcriptional regulation of gene expression is one major determinant of developmental control and stress adaptation in virtually all living organisms. In recent years numerous transcription factors controlling various aspects of plant life have been identified. The activity of transcription factors needs to be regulated to prevent unspecific, prolonged or inappropriate responses. The transcription factor DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING 2A) has been identified as one of the main regulators of drought and heat responses, and it is regulated through protein stability. In the present paper we describe evidence that the interaction with RCD1 (RADICAL-INDUCED CELL DEATH 1) contributes to the control of DREB2A under a range of conditions. The interaction is mediated by a novel protein motif in DREB2A and a splice variant of DREB2A which lacks the interaction domain accumulates during heat stress and senescence. In addition RCD1 is rapidly degraded during heat stress, thus our results suggest that removal of RCD1 protein or the loss of the interaction domain in DREB2A appears to be required for proper DREB2A function under stress conditions.
Collapse
|
174
|
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inzé D, Østergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I. Tackling drought stress: receptor-like kinases present new approaches. THE PLANT CELL 2012; 24:2262-2278. [PMID: 22693282 PMCID: PMC3406892 DOI: 10.1105/tpc.112.096677] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/04/2012] [Accepted: 05/22/2012] [Indexed: 11/08/2022]
Abstract
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
Collapse
Affiliation(s)
- Alex Marshall
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Reidunn B. Aalen
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Martin R. Broadley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Melinka A. Butenko
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre de Recerca en Agrigenòmica, 08193 Barcelona, Spain
| | - Sacco de Vries
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, Plant Biochemistry, University Tübingen, 72076 Tuebingen, Germany
| | - Neil S. Graham
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Christine Granier
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Unité Mixte de Recherche 759, Institut National de la Recherche Agronomique-SupAgro, 34060 Montpellier, cedex 1, France
| | - Thomas Greb
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zurich, Switzerland
| | - John P. Hammond
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Renze Heidstra
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Charlie Hodgman
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael Hothorn
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Yvonne Stahl
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
175
|
Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:599-613. [PMID: 22225700 DOI: 10.1111/j.1365-313x.2012.04901.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. THE PLANT CELL 2012; 24:893-914. [PMID: 22408074 PMCID: PMC3336118 DOI: 10.1105/tpc.112.096180] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 01/25/2012] [Accepted: 02/15/2012] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.
Collapse
Affiliation(s)
- David L. Des Marais
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - John K. McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - James H. Richards
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-8627
| | - Saunak Sen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94143-0560
| | - Tierney Wayne
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Thomas E. Juenger
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| |
Collapse
|
177
|
Brosché M, Kangasjärvi J. Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1849-61. [PMID: 22213815 PMCID: PMC3295383 DOI: 10.1093/jxb/err358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 05/04/2023]
Abstract
Production of reactive oxygen species (ROS) is linked to signalling in both developmental and stress responses. The level of ROS is controlled by both production and removal through various scavengers including ascorbic acid and glutathione. Here, the role of low ascorbic acid or glutathione concentrations was investigated on ozone-induced cell death, defence signalling, and developmental responses. Low ascorbic acid concentrations in vtc1 activated expression of salicylic acid (SA)-regulated genes, a response found to be dependent on the redox-regulated transcriptional co-regulator NPR1. In contrast, low glutathione concentrations in cad2 or pad2 reduced expression of SA-regulated genes. Testing different responses to jasmonic acid (JA) revealed the presence of at least two separate JA signalling pathways. Treatment of the vtc1 mutant with JA led to hyper-induction of MONODEHYDROASCORBATE REDUCTASE3, indicating that low ascorbic acid concentrations prime the response to JA. Furthermore, NPR1 was found to be a positive regulator of JA-induced expression of MDHAR3 and TAT3. The vtc1 and npr1 mutants were sensitive to glucose inhibition of seed germination; an opposite response was found in cad2 and pad2. Overall, low ascorbic acid concentrations mostly led to opposite phenotypes to low glutathione concentrations, and both antioxidants interacted with SA and JA signalling pathways.
Collapse
Affiliation(s)
- Mikael Brosché
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
178
|
Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. THE PLANT CELL 2012; 24:1256-70. [PMID: 22427336 PMCID: PMC3336125 DOI: 10.1105/tpc.112.095778] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 05/18/2023]
Abstract
Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor kinase-VI.2 (LecRK-VI.2) contributes to disease resistance against the hemibiotrophic Pseudomonas syringae and the necrotrophic Pectobacterium carotovorum bacteria. Accordingly, LecRK-VI.2 mRNA levels increased after bacterial inoculation or treatments with microbe-associated molecular patterns (MAMPs). We also show that LecRK-VI.2 is required for full activation of pattern-triggered immunity (PTI); notably, lecrk-VI.2-1 mutants show reduced upregulation of PTI marker genes, impaired callose deposition, and defective stomatal closure. Overexpression studies combined with genome-wide microarray analyses indicate that LecRK-VI.2 positively regulates the PTI response. LecRK-VI.2 is demonstrated to act upstream of mitogen-activated protein kinase signaling, but independently of reactive oxygen production and Botrytis-induced kinase1 phosphorylation. In addition, complex formation between the MAMP receptor flagellin sensing2 and its signaling partner brassinosteroid insensitive1-associated kinase1 is observed in flg22-treated lecrk-VI.2-1 mutants. LecRK-VI.2 is also required for full BABA-induced resistance and priming of PTI. Our work identifies LecRK-VI.2 as a novel mediator of the Arabidopsis PTI response and provides insight into molecular mechanisms governing priming.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Kuo
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Swati Mishra
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hong Tsai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Cheng Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Wei Chen
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Marie Desclos-Theveniau
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Po-Wei Chu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Birgit Schulze
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Thomas Boller
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
179
|
Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjær MF. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. MOLECULAR PLANT PATHOLOGY 2012; 13:135-47. [PMID: 21819533 PMCID: PMC6638725 DOI: 10.1111/j.1364-3703.2011.00736.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The receptor-like protein kinases (RLKs) constitute a large and diverse group of proteins controlling numerous plant physiological processes, including development, hormone perception and stress responses. The cysteine-rich RLKs (CRKs) represent a prominent subfamily of transmembrane-anchored RLKs. We have identified a putative barley (Hordeum vulgare) CRK gene family member, designated HvCRK1. The mature putative protein comprises 645 amino acids, and includes a putative receptor domain containing two characteristic 'domain 26 of unknown function' (duf26) domains in the N-terminal region, followed by a rather short 17-amino-acid transmembrane domain, which includes an AAA motif, two features characteristic of endoplasmic reticulum (ER)-targeted proteins and, finally, a characteristic putative protein kinase domain in the C-terminus. The HvCRK1 transcript was isolated from leaves inoculated with the biotrophic fungal pathogen Blumeria graminis f.sp. hordei (Bgh). HvCRK1 transcripts were observed to accumulate transiently following Bgh inoculation of susceptible barley. Transient silencing of HvCRK1 expression in bombarded epidermal cells led to enhanced resistance to Bgh, but did not affect R-gene-mediated resistance. Silencing of HvCRK1 phenocopied the effective penetration resistance found in mlo-resistant barley plants, and the possible link between HvCRK1 and MLO was substantiated by the fact that HvCRK1 induction on Bgh inoculation was dependent on Mlo. Finally, using both experimental and in silico approaches, we demonstrated that HvCRK1 localizes to the ER of barley cells. The negative effect on basal resistance against Bgh and the functional aspects of MLO- and ER-localized HvCRK1 signalling on Bgh inoculation are discussed.
Collapse
Affiliation(s)
- Cbgowda Rayapuram
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J. ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through. FRONTIERS IN PLANT SCIENCE 2012; 3:292. [PMID: 23293644 PMCID: PMC3530830 DOI: 10.3389/fpls.2012.00292] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/07/2012] [Indexed: 05/18/2023]
Abstract
The production of reactive oxygen species (ROS) in different plant subcellular compartments is the hallmark of the response to many stress stimuli and developmental cues. The past two decades have seen a transition from regarding ROS as exclusively cytotoxic agents to being considered as reactive compounds which participate in elaborate signaling networks connecting various aspects of plant life. We have now arrived at a stage where it has become increasingly difficult to disregard the communication between different types and pools of ROS. Production of ROS in the extracellular space, the apoplast, can influence their generation in the chloroplast and both can regulate nuclear gene expression. In spite of existing information on these signaling events, we can still barely grasp the mechanisms of ROS signaling and communication between the organelles. In this review, we summarize evidence that supports the mutual influence of extracellular and chloroplastic ROS production on nuclear gene regulation and how this interaction might occur. We also reflect on how, and via which routes signals might reach the nucleus where they are ultimately integrated for transcriptional reprogramming. New ideas and approaches will be needed in the future to address the pressing questions of how ROS as signaling molecules can participate in the coordination of stress adaptation and development and how they are involved in the chatter of the organelles.
Collapse
Affiliation(s)
| | | | | | - Jaakko Kangasjärvi
- *Correspondence: Jaakko Kangasjärvi, Division of Plant Biology, Department of Biosciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FIN-00014 Helsinki, Finland. e-mail:
| |
Collapse
|
181
|
Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One 2012. [PMID: 23118859 DOI: 10.1371/journalpone0046673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress agents: Spodoptera littoralis, Myzus persicae, and the pathogen Pseudomonas syringae. METHODOLOGY/PRINCIPAL FINDINGS We used electrophysiology to determine the plasma membrane potential (V(m)) and we performed a gene microarray transcriptome analysis on Arabidopsis upon either herbivory or bacterial infection. V(m) depolarization was induced by insect attack; however, the response was much more rapid to S. littoralis (30 min -2 h) than to M. persicae (4-6 h). M. persicae differentially regulated almost 10-fold more genes than by S. littoralis with an opposite regulation. M. persicae modulated genes involved in flavonoid, fatty acid, hormone, drug transport and chitin metabolism. S. littoralis regulated responses to heat, transcription and ion transport. The latest Vm depolarization (16 h) was found for P. syringae. The pathogen regulated responses to salicylate, jasmonate and to microorganisms. Despite this late response, the number of genes differentially regulated by P. syringae was closer to those regulated by S. littoralis than by M. persicae. CONCLUSIONS/SIGNIFICANCE Arabidopsis plasma membranes respond with a V(m) depolarization at times depending on the nature of biotic attack which allow setting a time point for comparative genome-wide analysis. A clear relationship between V(m) depolarization and gene expression was found. At V(m) depolarization timing, M. persicae regulates a wider array of Arabidopsis genes with a clear and distinct regulation than S. littoralis. An almost completely opposite regulation was observed between the aphid and the pathogen, with the former suppressing and the latter activating Arabidopsis defense responses.
Collapse
Affiliation(s)
- Irene Bricchi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
182
|
Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1866-83. [PMID: 22007024 PMCID: PMC3327221 DOI: 10.1104/pp.111.181883] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/15/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.
Collapse
|
183
|
Ederli L, Madeo L, Calderini O, Gehring C, Moretti C, Buonaurio R, Paolocci F, Pasqualini S. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1784-94. [PMID: 21742407 DOI: 10.1016/j.jplph.2011.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/31/2011] [Accepted: 05/03/2011] [Indexed: 05/23/2023]
Abstract
In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Applied Biology, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A. Arabidopsis plasmodesmal proteome. PLoS One 2011; 6:e18880. [PMID: 21533090 PMCID: PMC3080382 DOI: 10.1371/journal.pone.0018880] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/11/2011] [Indexed: 11/26/2022] Open
Abstract
The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants.
Collapse
Affiliation(s)
| | - Christine Faulkner
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - John Walshaw
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Emmanuelle Bayer
- CNRS - Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | | | - Andrew Maule
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
185
|
Abstract
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.
Collapse
Affiliation(s)
- Lindsey A Gish
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
186
|
Vaahtera L, Brosché M. More than the sum of its parts--how to achieve a specific transcriptional response to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:421-30. [PMID: 21421388 DOI: 10.1016/j.plantsci.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 05/08/2023]
Abstract
A rapid and appropriate response to stress is key to survival. A major part of plant adaptation to abiotic stresses is regulated at the level of gene expression. The regulatory steps involved in accurate expression of stress related genes need to be tailored to the specific stress for optimal plant performance. Accumulating evidence suggests that there are several processes contributing to signalling specificity: post-translational activation and selective nuclear import of transcription factors, regulation of DNA accessibility by chromatin modifying and remodelling enzymes, and cooperation between two or more response elements in a stress-responsive promoter. These mechanisms should not be viewed as independent events, instead the nuclear DNA is in a complex landscape where many proteins interact, compete, and regulate each other. Hence future studies should consider an integrated view of gene regulation composed of numerous chromatin associated proteins in addition to transcription factors. Although most studies have focused on a single regulatory mechanism, it is more likely the combined actions of several mechanisms that provide a stress specific output. In this review recent progress in abiotic stress signalling is discussed with emphasis on possible mechanisms for generating specific responses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, FI-00014 Helsinki, Finland
| | | |
Collapse
|