151
|
Park JY, Kim SK, Woo DH, Lee EJ, Kim JH, Lee SH. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 2010; 27:2646-54. [PMID: 19711444 DOI: 10.1002/stem.202] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In early embryonic development, spatial gradients of diffusible signaling molecules play important roles in controlling differentiation of cell types or arrays in diverse tissues. Thus, the concentration of exogenous cytokines or growth factors at any given time is crucial to the formation of an enriched population of a desired cell type from primitive stem cells in vitro. Microfluidic technology has proven very useful in the creation of cell-friendly microenvironments. Such techniques are, however, currently limited to a few cell types. Improved versatility is required if these systems are to become practically applicable to stem cells showing various plasticity ranges. Here, we built a microfluidic platform in which cells can be exposed to stable concentration gradients of various signaling molecules for more than a week with only minimal handling and no external power source. To maintain stability of the gradient concentration, the osmotic pumping performance was optimized by balancing the capillary action and hydraulic pressure in the inlet reagent reservoirs. We cultured an enriched population of neural progenitors derived from human embryonic stem cells in our microfluidic chamber for 8 days under continuous cytokine gradients (sonic hedgehog, fibroblast growth factor 8, and bone morphogenetic protein 4). Neural progenitors successfully differentiated into neurons, generating a complex neural network. The average numbers of both neuronal cell body clusters and neurite bundles were directly proportional to sonic hedgehog concentrations in the gradient chip. The system was shown to be useful for both basic and translational research, with straightforward mechanisms and operational schemes.
Collapse
Affiliation(s)
- Joong Yull Park
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | | | | | | | | | | |
Collapse
|
152
|
Zimmer C, Lee J, Griveau A, Arber S, Pierani A, Garel S, Guillemot F. Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 2010; 137:293-302. [PMID: 20040495 PMCID: PMC2799162 DOI: 10.1242/dev.041178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/14/2022]
Abstract
Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. These pioneer neurons are distributed throughout the cortical marginal zone in distinct graded distributions. Fate mapping and cell lineage tracing studies have recently shown that CR cells arise from restricted domains of the pallial ventricular zone, which are associated with signalling centres involved in the early regionalisation of the telencephalic vesicles. In this study, we identified a subpopulation of CR cells in the rostral telencephalon that expresses Er81, a downstream target of Fgf8 signalling. We investigated the role of the rostral telencephalic patterning centre, which secretes FGF molecules, in the specification of these cells. Using pharmacological inhibitors and genetic inactivation of Fgf8, we showed that production of Fgf8 by the rostral telencephalic signalling centre is required for the specification of the Er81+ CR cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from the dorsal pallium. These data showed that Fgf8 signalling is both required and sufficient to induce rostral CR cells. Together, our results shed light on the mechanisms specifying rostral CR cells and further emphasise the crucial role of telencephalic signalling centres in the generation of distinct CR cell populations.
Collapse
Affiliation(s)
- Céline Zimmer
- National Institute for Medical Research (NIMR), Medical Research Council (MRC), Department of Molecular Neurobiology, London NW7 1AA, UK
| | - Jun Lee
- Biozentrum, Department of Cell Biology, University of Basel, and Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Amélie Griveau
- Institut Jacques Monod, Program in Development and Neurobiology, CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, and Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Alessandra Pierani
- Institut Jacques Monod, Program in Development and Neurobiology, CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| | - Sonia Garel
- INSERM U784, Ecole Normale Supérieure, Département de Biologie, Paris 75005, France
| | - François Guillemot
- National Institute for Medical Research (NIMR), Medical Research Council (MRC), Department of Molecular Neurobiology, London NW7 1AA, UK
| |
Collapse
|
153
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
154
|
|
155
|
Role for TGF-beta superfamily signaling in telencephalic GABAergic neuron development. J Neurodev Disord 2009; 2:48-60. [PMID: 20339443 PMCID: PMC2834772 DOI: 10.1007/s11689-009-9035-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/12/2009] [Indexed: 12/02/2022] Open
Abstract
Signaling mechanisms mediated by the Transforming Growth Factor-β (TGF-β) superfamily regulate a variety of developmental processes. Here we show that components of both bone morphogenetic protein/growth differentiation factor and TGF-β/activin/Nodal branches of TGF-β superfamily signaling are expressed in the developing subpallium. Furthermore, Smad proteins, transcriptional effectors of TGF-β signaling, are co-expressed and physically interact in the basal ganglia with Dlx homeodomain transcription factors, which are critical regulators of the differentiation, migration and survival of telencephalic GABAergic neurons. We also show that Dlx and Smad proteins localize to promoters/enhancers of a number of common telencephalic genes in vivo and that Smad proteins co-activate transcription with Dlx family members, except with certain mutated human DLX proteins identified in autistic individuals. In agreement with these observations, expression of dominant-negative Smads in the developing basal ganglia phenocopies the cell migration defects observed in Dlx1/2-deficient mice. Together, these results suggest that TGF-β superfamily signaling plays a role in telencephalic GABAergic neuron development through functional interactions with Dlx transcription factors.
Collapse
|
156
|
Hwang CH, Simeone A, Lai E, Wu DK. Foxg1is required for proper separation and formation of sensory cristae during inner ear development. Dev Dyn 2009; 238:2725-34. [PMID: 19842177 DOI: 10.1002/dvdy.22111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chan Ho Hwang
- Lab of Molecular Biology, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
157
|
Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, Broccoli V. Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 2009; 334:59-71. [PMID: 19627984 DOI: 10.1016/j.ydbio.2009.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/28/2009] [Accepted: 07/06/2009] [Indexed: 12/17/2022]
Abstract
The homeobox-containing gene Arx is expressed during ventral telencephalon development and required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose symptoms are compatible with the loss of cortical interneurons and altered basal ganglia-related activities. Herein, we report the identification of a number of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Our analyses revealed a striking ectopic expression in the ganglionic eminences of several of these genes normally at most marginally expressed in the ventral telencephalon. Among them, Ebf3 was functionally analyzed. Thus, its ectopic expression in ventral telencephalon was found to prevent neuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissues partially rescues tangential cell movement. Together, these data provide new insights into the molecular pathways regulated by Arx during telencephalon development.
Collapse
Affiliation(s)
- Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
158
|
Gadue P, Gouon-Evans V, Cheng X, Wandzioch E, Zaret KS, Grompe M, Streeter PR, Keller GM. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm. Stem Cells 2009; 27:2103-13. [PMID: 19522011 PMCID: PMC2890285 DOI: 10.1002/stem.147] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.
Collapse
Affiliation(s)
- Paul Gadue
- Department of Pathology, Center for Cellular and Molecular Therapeutics; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Gene and Cell Medicine; Black Family Stem Cell Institute, Mount Sinai School of Medicine; New York, NY, USA
| | - Xin Cheng
- Department of Gene and Cell Medicine; Black Family Stem Cell Institute, Mount Sinai School of Medicine; New York, NY, USA
| | - Ewa Wandzioch
- Cell and Developmental Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Kenneth S Zaret
- Cell and Developmental Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Philip R. Streeter
- Oregon Stem Cell Center, OHSU Knight Cancer Institute, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Gordon M. Keller
- McEwen Centre for Regenerative Medicine; University Health Network; Toronto, Ontario, Canada
| |
Collapse
|
159
|
Sánchez-Arrones L, Ferrán JL, Rodríguez-Gallardo L, Puelles L. Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 2009; 335:43-65. [PMID: 19699194 DOI: 10.1016/j.ydbio.2009.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/23/2009] [Accepted: 08/13/2009] [Indexed: 12/19/2022]
Abstract
We correlated available fate maps for the avian neural plate at stages HH4 and HH8 with the progress of local molecular specification, aiming to determine when the molecular specification maps of the primary longitudinal and transversal domains of the anterior forebrain agree with the fate mapped data. To this end, we examined selected gene expression patterns as they normally evolved in whole mounts and sections between HH4 and HH8 (or HH10/11 in some cases), performed novel fate-mapping experiments within the anterior forebrain at HH4 and examined the results at HH8, and correlated grafts with expression of selected gene markers. The data provided new details to the HH4 fate map, and disclosed some genes (e.g., Six3 and Ganf) whose expression domains initially are very extensive and subsequently retract rostralwards. Apart from anteroposterior dynamics, some genes soon became downregulated at the prospective forebrain floor plate, or allowed to identify an early roof plate domain (dorsoventral pattern). Peculiarities of the telencephalon (initial specification and differentiation of pallium versus subpallium) are contemplated. The basic anterior forebrain subdivisions seem to acquire correlated specification and fate mapping patterns around stage HH8.
Collapse
Affiliation(s)
- Luisa Sánchez-Arrones
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine, Murcia, E30071, Spain
| | | | | | | |
Collapse
|
160
|
Development and evolution of the subpallium. Semin Cell Dev Biol 2009; 20:735-43. [DOI: 10.1016/j.semcdb.2009.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022]
|
161
|
Suzuki-Hirano A, Shimogori T. The role of Fgf8 in telencephalic and diencephalic patterning. Semin Cell Dev Biol 2009; 20:719-25. [DOI: 10.1016/j.semcdb.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
|
162
|
Medina L, Abellán A. Development and evolution of the pallium. Semin Cell Dev Biol 2009; 20:698-711. [DOI: 10.1016/j.semcdb.2009.04.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
|
163
|
Yu W, Wang Y, McDonnell K, Stephen D, Bai CB. Patterning of ventral telencephalon requires positive function of Gli transcription factors. Dev Biol 2009; 334:264-75. [PMID: 19632216 DOI: 10.1016/j.ydbio.2009.07.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The ability of neuroepithelial cells to generate a diverse array of neurons is influenced by locally secreted signals. In the spinal cord, Sonic Hedgehog (Shh) is known to induce distinct cell fates in a concentration-dependent manner by regulating the activities of the three Gli transcription factors in neural precursors. However, whether Gli-mediated Shh signaling is also required to induce different cell types in the ventral telencephalon has been controversial. In particular, loss of Shh has little effect on dorsoventral patterning of the telencephalon when Gli3 is also removed. Furthermore, no ventral telencephalic phenotypes have been found in individual Gli mutants. To address this issue, we first characterized Shh-responding ventral telencephalic progenitors between E9.5 and E12.5 and found that they produce neurons migrating to different layers of the cortex. We also discovered a loss of Nkx2.1 and Nkx6.2 expression in two subgroups of progenitors in embryos lacking major Gli activators. Finally, we analyzed the telencephalic phenotypes of embryos lacking all Gli genes and found that the ventral telencephalon was highly disorganized with intermingling of distinct neuronal cell types. Together, these studies unravel a role for Gli transcription factors in mediating Shh signaling to control specification, differentiation and positioning of ventral telencephalic neurons.
Collapse
Affiliation(s)
- Weiying Yu
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
164
|
Abstract
Fate-map studies have provided important information in relation to the regional topology of brain areas in different vertebrate species. Moreover, these studies have demonstrated that the distribution of presumptive territories in neural plate and neural tube are highly conserved in vertebrates. The aim of this review is to re-examine and correlate the distribution of presumptive neuroepithelial domains in the chick neural tube with molecular information and discuss recent data. First, we review descriptive fate map studies of neural plate in different vertebrate species that have been studied using diverse fate-mapping methods. Then, we summarize the available data on the localization of neuroepithelial progenitors for the brain subregions in the chick neural tube at stage HH10-11, the most used stage for experimental embryology. This analysis is mainly focused on experimental fate mapping results using quail-chick chimeras.
Collapse
Affiliation(s)
- Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Cientificas, Av. Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| | | | | |
Collapse
|
165
|
Hoch RV, Rubenstein JL, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 2009; 20:378-86. [DOI: 10.1016/j.semcdb.2009.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
|
166
|
Abstract
Holoprosencephaly (HPE), the most common human forebrain malformation, occurs in 1 in 250 fetuses and 1 in 16,000 live births. HPE is etiologically heterogeneous, and its pathology is variable. Several mouse models of HPE have been generated, and some of the molecular causes of different forms of HPE and the mechanisms underlying its variable pathology have been revealed by these models. Herein, we summarize the current knowledge on the genetic alterations that cause HPE and discuss some important questions about this disease that remain to be answered.
Collapse
Affiliation(s)
- Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
167
|
Subramanian L, Tole S. Mechanisms underlying the specification, positional regulation, and function of the cortical hem. Cereb Cortex 2009; 19 Suppl 1:i90-5. [PMID: 19359348 DOI: 10.1093/cercor/bhp031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cortical hem was first described as a potential signaling center at the telencephalic midline because of an enriched expression of multiple members of the Wnt and Bmp families of morphogens, and its position at the border between the presumptive cortex and the choroid plexus. There is now definitive evidence that the cortical hem is an organizing center in the telencephalon, and that it instructs the formation of the hippocampus. In this review, we present an analysis of the molecular and cellular events that lead to the formation of the cortical hem, and define its position and extent in the telencephalon. This directly controls the positioning of the hippocampus within the telencephalon. We conclude with a summary of the current understanding of the role of the hem as the hippocampal organizer.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
168
|
Abstract
Despite substantial and exciting recent progress in our understanding of developmental processes in the cerebral cortex, there is still much to be learned about the molecular and cellular mechanisms that account for formation of the cortical structures, and in turn, how the regulation of these mechanisms is linked to cortical functions and behaviors in animals and humans. Fibroblast growth factors (FGFs) are a classic family of growth factors that are important in neural development and whose structures and signaling have been well-studied molecularly and biochemically. Recent advances have revealed their diverse but specific functions in patterning and neurogenesis during cortical development, as evidenced by multiple experimental approaches using in vivo models. Importantly, changes in FGF signaling during development have been shown to influence structure and function of the cerebral cortex as well as animal behavior, and have been implicated in disorders of nervous system function and intellectual development in humans. For example, disturbance of FGF pathways during development has been implicated in the pathogenesis of autism spectrum disorders. Experimental models with altered cortical structure due to perturbations of FGF signaling present a unique opportunity whereby molecular and cellular mechanisms that underlie cortical function and animal behavior can be directly studied and linked to each other.
Collapse
Affiliation(s)
- Tomoko Iwata
- Division of Cancer Sciences & Molecular Pathology, University of Glasgow, Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | | |
Collapse
|
169
|
Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C. Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Cell 2009; 16:576-87. [PMID: 19386266 DOI: 10.1016/j.devcel.2009.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/16/2008] [Accepted: 03/05/2009] [Indexed: 12/26/2022]
Abstract
The forebrain is patterned along the dorsoventral (DV) axis by Sonic Hedgehog (Shh). However, previous studies have suggested the presence of an Shh-independent mechanism. Our study identifies Wnt/beta-catenin-activated from the telencephalic roof-as an Shh-independent pathway that is essential for telencephalic pallial (dorsal) specification during neurulation. We demonstrate that the transcription factor Foxg1 coordinates the activity of two signaling centers: Foxg1 is a key downstream effector of the Shh pathway during induction of subpallial (ventral) identity, and it inhibits Wnt/beta-catenin signaling through direct transcriptional repression of Wnt ligands. This inhibition restricts the dorsal Wnt signaling center to the roof plate and consequently limits pallial identities. Concomitantly to these roles, Foxg1 controls the formation of the compartment boundary between telencephalon and basal diencephalon. Altogether, these findings identify a key direct target of Foxg1, and uncover a simple molecular mechanism by which Foxg1 integrates two opposing signaling centers.
Collapse
Affiliation(s)
- Catherine Danesin
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFRalpha), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4(+) OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
171
|
Abstract
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience and Department of Psychology, University of California-Davis, Davis, California 95618, USA.
| |
Collapse
|
172
|
Pombero A, Martinez S. Telencephalic morphogenesis during the process of neurulation: an experimental study using quail-chick chimeras. J Comp Neurol 2009; 512:784-97. [PMID: 19065633 DOI: 10.1002/cne.21933] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After gastrulation, during the process of neurulation, the anterior neural region undergoes important morphological transformations. The almost flat epithelium of the rostral neural plate becomes transformed into a spherical region, the prosencephalic vesicle, in the neural tube. Later in development, two bilateral areas (the optic and telencephalic vesicles) progressively protrude from the prosencephalon, generating the eyes and the cerebral hemispheres, respectively. Although the principal processes of neurulation have been well characterized, the growth patterns and evolution of topological relations between internal prosencephalic regions have not been experimentally analyzed. In order to better characterize morphogenetic transformations of the prosencephalon, we have realized and comparatively analyzed neuroepithelial fate maps before and after neurulation using quail/chick chimerical experiments. Since we have previously reported the fate map of the prosencephalon at the neural plate stage, in the present work we report the corresponding fate map at the neural tube stage. Comparative analysis of the two maps has allowed us to descriptively characterize the morphogenetic transformations of the alar prosencephalic regions during neurulation and to establish the topologic evolution of the principal areas of the vertebrate telencephalon.
Collapse
Affiliation(s)
- Ana Pombero
- Instituto de Neurociencias, UMH-CSIC, San Juan, Alicante, Spain
| | | |
Collapse
|
173
|
Kelly CM, Dunnett SB, Rosser AE. Medium spiny neurons for transplantation in Huntington's disease. Biochem Soc Trans 2009; 37:323-8. [PMID: 19143656 DOI: 10.1042/bst0370323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-replacement therapy for Huntington's disease is one of very few therapies that has reported positive outcomes in clinical trials. However, for cell transplantation to be made more readily available, logistical, standardization and ethical issues associated with the current methodology need to be resolved. To achieve these goals, it is imperative that an alternative cell source be identified. One of the key requirements of the cells is that they are capable of acquiring an MSN (medium spiny neuron) morphology, express MSN markers such as DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa), and function in vivo in a manner that replicates those that have been lost to the disease. Developmental biology has progressed in recent years to provide a vast array of information with regard to the key signalling events involved in the proliferation, specification and differentiation of striatal-specific neurons. In the present paper, we review the rationale for cell-replacement therapy in Huntington's disease, discuss some potential donor sources and consider the value of developmental markers in the identification of cells with the potential to develop an MSN phenotype.
Collapse
Affiliation(s)
- Claire M Kelly
- Brain Repair Group, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | | | | |
Collapse
|
174
|
Wolanski M, KhosrowShahian F, Kelly LE, El-Hodiri HM, Crawford MJ. xArx2: An aristaless homolog that regulates brain regionalization during development inXenopus laevis. Genesis 2009; 47:19-31. [DOI: 10.1002/dvg.20449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
175
|
The Role of Otx Genes in Progenitor Domains of Ventral Midbrain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:36-46. [DOI: 10.1007/978-1-4419-0322-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
176
|
Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M, Yocum A, Dubourg C, Li X, Geng X, Oliver G, Epstein DJ. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet 2008; 40:1348-53. [PMID: 18836447 PMCID: PMC2648611 DOI: 10.1038/ng.230] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
Abstract
In humans, SHH haploinsufficiency results in holoprosencephaly (HPE), a defect in anterior midline formation. Despite the importance of maintaining SHH transcript levels above a critical threshold, we know little about the upstream regulators of SHH expression in the forebrain. Here we describe a rare nucleotide variant located 460 kb upstream of SHH in an individual with HPE that resulted in the loss of Shh brain enhancer-2 (SBE2) activity in the hypothalamus of transgenic mouse embryos. Using a DNA affinity-capture assay, we screened the SBE2 sequence for DNA-binding proteins and identified members of the Six3 and Six6 homeodomain family as candidate regulators of Shh transcription. Six3 showed reduced binding affinity for the mutant compared to the wild-type SBE2 sequence. Moreover, Six3 with HPE-causing alterations failed to bind and activate SBE2. These data suggest a direct link between Six3 and Shh regulation during normal forebrain development and in the pathogenesis of HPE.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Federico Coluccio Leskow
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Kenia El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Anastasia Yocum
- Department of Pharmacology, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Christele Dubourg
- Groupe Génétique Humaine, IFR140 GFAS, CNRS UMR 6061, Université de Rennes1, 2 avenue du PrLéon Bernard, CS 34317, 35043_Rennes Cedex, France
| | - Xue Li
- Department of Surgery/Urology, Children’s Hospital of Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Xin Geng
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794
| | - Douglas J. Epstein
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| |
Collapse
|
177
|
Abstract
Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the interrogation of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special emphasis on the cellular signaling involved in these processes. The derivation process affects the yield and homogeneity of the NP cells. Then when exposed to the correct environmental signaling cues, NP cells can follow a unique and robust temporal cell differentiation process forming numerous phenotypes.
Collapse
Affiliation(s)
- Sujoy K Dhara
- Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
178
|
Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM. Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 2008; 17:2986-96. [PMID: 18617531 DOI: 10.1093/hmg/ddn197] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.
Collapse
Affiliation(s)
- Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | |
Collapse
|
179
|
Butt SJB, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S, Fishell G. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 2008; 59:722-32. [PMID: 18786356 PMCID: PMC2562525 DOI: 10.1016/j.neuron.2008.07.031] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/03/2008] [Accepted: 07/29/2008] [Indexed: 01/02/2023]
Abstract
Previous work has demonstrated that the character of mouse cortical interneuron subtypes can be directly related to their embryonic temporal and spatial origins. The relationship between embryonic origin and the character of mature interneurons is likely reflected by the developmental expression of genes that direct cell fate. However, a thorough understanding of the early genetic events that specify subtype identity has been hampered by the perinatal lethality resulting from the loss of genes implicated in the determination of cortical interneurons. Here, we employ a conditional loss-of-function approach to demonstrate that the transcription factor Nkx2-1 is required for the proper specification of specific interneuron subtypes. Removal of this gene at distinct neurogenic time points results in a switch in the subtypes of neurons observed at more mature ages. Our strategy reveals a causal link between the embryonic genetic specification by Nkx2-1 in progenitors and the functional attributes of their neuronal progeny in the mature nervous system.
Collapse
Affiliation(s)
- Simon J B Butt
- Smilow Neuroscience Program and the Department of Cell Biology, New York University, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
The immense range of human behaviours is rooted in the complex neural networks of the cerebrum. The creation of these networks depends on the precise integration of specific neuronal subtypes that are born in different regions of the telencephalon. Here, using the mouse as a model system, we review how these proliferative zones are established. Moreover, we discuss how these regions can be traced back in development to the function of a few key genes, including those that encode fibroblast growth factors (FGFs), sonic hedgehog (SHH), bone morphogenetic proteins (BMPs), forkhead box G1 (FOXG1), paired box 6 (PAX6) and LIM homeobox protein 2 (LHX2), that pattern the early telencephalon.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, New York 10461, USA.
| | | |
Collapse
|
181
|
Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, Tsai SY, Tsai MJ, Studer M, Rubenstein JLR. COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 2008; 18:2117-31. [PMID: 18165280 PMCID: PMC2733307 DOI: 10.1093/cercor/bhm238] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major unsolved question in cortical development is how proliferation, neurogenesis, regional growth, regional identity, and laminar fate specification are coordinated. Here we provide evidence, using loss-of-function and gain-of-function manipulations, that the COUP-TFI orphan nuclear receptor promotes ventral cortical fate, promotes cell cycle exit and neural differentiation, regulates the balance of early- and late-born neurons, and regulates the balanced production of different types of layer V cortical projection neurons. We suggest that COUP-TFI controls these processes by repressing Mapk/Erk, Akt, and beta-catenin signaling.
Collapse
Affiliation(s)
- Andrea Faedo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Geng X, Speirs C, Lagutin O, Inbal A, Liu W, Solnica-Krezel L, Jeong Y, Epstein D, Oliver G. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 2008; 15:236-47. [PMID: 18694563 PMCID: PMC2597207 DOI: 10.1016/j.devcel.2008.07.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/13/2008] [Accepted: 07/12/2008] [Indexed: 12/31/2022]
Abstract
Holoprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE. Using zebrafish-based assays, we have now determined that HPE-associated Six3 mutant proteins function as hypomorphs. Haploinsufficiency of Six3 caused by deletion of one allele of Six3 or by replacement of wild-type Six3 with HPE-associated Six3 mutant alleles was sufficient to recapitulate in mouse models most of the phenotypic features of human HPE. We demonstrate that Shh is a direct target of Six3 in the rostral diencephalon ventral midline (RDVM). Reduced amounts of functional Six3 protein fail to activate Shh expression in the mutant RDVM and ultimately lead to HPE. These results identify Six3 as a direct regulator of Shh expression and reveal a crossregulatory loop between Shh and Six3 in the ventral forebrain.
Collapse
Affiliation(s)
- Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Christina Speirs
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Oleg Lagutin
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Wei Liu
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Yongsu Jeong
- Department of Genetics, University of Pennsylvania, School of Medicine, Clinical Research Bldg., Philadelphia, PA 19104, USA
| | - Douglas Epstein
- Department of Genetics, University of Pennsylvania, School of Medicine, Clinical Research Bldg., Philadelphia, PA 19104, USA
| | - Guillermo Oliver
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
183
|
Borello U, Cobos I, Long JE, McWhirter JR, Murre C, Rubenstein JLR. FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Dev 2008; 3:17. [PMID: 18625063 PMCID: PMC2492847 DOI: 10.1186/1749-8104-3-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth, differentiation and regional specification of telencephalic domains, such as the cerebral cortex, are regulated by the interplay of secreted proteins produced by patterning centers and signal transduction systems deployed in the surrounding neuroepithelium. Among other signaling molecules, members of the fibroblast growth factor (FGF) family have a prominent role in regulating growth, differentiation and regional specification. In the mouse telencephalon the rostral patterning center expresses members of the Fgf family (Fgf8, Fgf15, Fgf17, Fgf18). FGF8 and FGF17 signaling have major roles in specification and morphogenesis of the rostroventral telencephalon, whereas the functions of FGF15 and FGF18 in the rostral patterning center have not been established. RESULTS Using Fgf15-/- mutant mice, we provide evidence that FGF15 suppresses proliferation, and that it promotes differentiation, expression of CoupTF1 and caudoventral fate; thus, reducing Fgf15 and Fgf8 dosage have opposite effects. Furthermore, we show that FGF15 and FGF8 differentially phosphorylate ERK (p42/44), AKT and S6 in cultures of embryonic cortex. Finally, we show that FGF15 inhibits proliferation in cortical cultures. CONCLUSION FGF15 and FGF8 have distinct signaling properties, and opposite effects on neocortical patterning and differentiation; FGF15 promotes CoupTF1 expression, represses proliferation and promotes neural differentiation.
Collapse
Affiliation(s)
- Ugo Borello
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
184
|
Jenkins KT, Merkens LS, Tubb MR, Myatt L, Davidson WS, Steiner RD, Woollett LA. Enhanced placental cholesterol efflux by fetal HDL in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2008; 94:240-7. [PMID: 18346920 PMCID: PMC3037116 DOI: 10.1016/j.ymgme.2008.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies from this laboratory have shown that maternal-derived cholesterol can be effluxed from trophoblasts to fetal HDL and plasma. We had the opportunity to study for the first time the ability of HDL and plasma from a fetus with the Smith-Lemli-Opitz syndrome (SLOS) to efflux cholesterol from trophoblasts. It was unclear whether cholesterol could be effluxed to fetuses with SLOS since lipoprotein levels are often very low. To answer this question, cord blood was collected from the placentas of an SLOS fetus and unaffected fetuses just after delivery. Plasma cholesterol concentrations were very low in the affected fetus; cholesterol, 7-dehydrocholesterol, and 8-dehydocholesterol concentrations were 14.1, 4.5, and 5.2 mg/dl, respectively. The HDL from the fetal SLOS effluxed approximately 50% more cholesterol from a trophoblast cell line, were smaller in size, and had a lower cholesterol to phospholipid ratio as compared to HDL from unaffected fetuses or adults. Plasma from the SLOS fetus effluxed cholesterol to a similar percentage as unaffected fetal plasma or adult plasma, possibly due to fewer HDL particles as demonstrated in previous SLOS patients. These novel data demonstrate that the cholesterol-deficient SLOS fetus is able to obtain cholesterol from trophoblasts at a time when cholesterol is playing a critical role in development, and has implications for design of treatments for cholesterol deficiency syndromes as well as understanding of prenatal cholesterol transport in humans.
Collapse
Affiliation(s)
- Katie T. Jenkins
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Louise S. Merkens
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Tubb
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Leslie Myatt
- Departments of Obstetrics and Gynecology, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - W. Sean Davidson
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Robert D. Steiner
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Departments of Molecular and Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital and Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura A. Woollett
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| |
Collapse
|
185
|
García-Calero E, Fernández-Garre P, Martínez S, Puelles L. Early mammillary pouch specification in the course of prechordal ventralization of the forebrain tegmentum. Dev Biol 2008; 320:366-77. [PMID: 18597750 DOI: 10.1016/j.ydbio.2008.05.545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/28/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
The mammillary body, a ventral specialization of the caudal hypothalamus, lies close to the transition between epichordal and prechordal parts of the forebrain (Puelles and Rubenstein, 2003). This report examines its presumed causal connection with either prechordal or notochordal mesodermal induction, as well as the timing of its specification, in the context of early ventral forebrain patterning. It was recently found that the ephrin receptor gene EphA7 is selectively expressed in the mammillary pouch from early stages of development (HH14: García-Calero et al., 2006). We used mammillary EphA7 expression as well as ventral hypothalamic expression of the gene markers Nkx2.1 and Shh to analyze experimental effects on mammillary specification and morphogenesis after axial mesoderm ablation at stages HH4+ to HH6. Progressively delayed ablation of the prechordal plate revealed its sequential implication in molecular specification of the entire ventral forebrain, including the mammillary and tuberal regions of the hypothalamus. We observed differential contact requirements for induction by the prechordal plate of all the forebrain regions expressing Shh and Nkx2.1, including distant subpallial ones. In contrast, ablation of the anterior notochordal tip at these stages did not elicit significant patterning changes, particularly no effects on mammillary EphA7 expression or mammillary pouch development.
Collapse
Affiliation(s)
- Elena García-Calero
- Department of Human Anatomy and Psychobiology and CIBER en Enfermedades Raras, U736, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | | | | | | |
Collapse
|
186
|
García-López M, Abellán A, Legaz I, Rubenstein JLR, Puelles L, Medina L. Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 2008; 506:46-74. [PMID: 17990271 DOI: 10.1002/cne.21524] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amygdala controls emotional and social behavior and regulates instinctive reflexes such as defense and reproduction by way of descending projections to the hypothalamus and brainstem. The descending amygdalar projections are suggested to show a cortico-striato-pallidal organization similar to that of the basal ganglia (Swanson [2000] Brain Res 886:113-164). To test this model we investigated the embryological origin and molecular properties of the mouse centromedial and extended amygdalar subdivisions, which constitute major sources of descending projections. We analyzed the distribution of key regulatory genes that show restricted expression patterns within the subpallium (Dlx5, Nkx2.1, Lhx6, Lhx7/8, Lhx9, Shh, and Gbx1), as well as genes considered markers for specific subpallial neuronal subpopulations. Our results indicate that most of the centromedial and extended amygdala is formed by cells derived from multiple subpallial subdivisions. Contrary to a previous suggestion, only the central--but not the medial--amygdala derives from the lateral ganglionic eminence and has striatal-like features. The medial amygdala and a large part of the extended amygdala (including the bed nucleus of the stria terminalis) consist of subdivisions or cell groups that derive from subpallial, pallial (ventral pallium), or extratelencephalic progenitor domains. The subpallial part includes derivatives from the medial ganglionic eminence, the anterior peduncular area, and possibly a novel subdivision, called here commissural preoptic area, located at the base of the septum and related to the anterior commissure. Our study provides a molecular and morphological foundation for understanding the complex embryonic origins and adult organization of the centromedial and extended amygdala.
Collapse
Affiliation(s)
- Margarita García-López
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
187
|
Lavado A, Lagutin OV, Oliver G. Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 2008; 135:441-50. [PMID: 18094027 DOI: 10.1242/dev.010082] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The homeobox gene Six3 represses Wnt1 transcription. It is also required in the anterior neural plate for the development of the mammalian rostral forebrain. We have now determined that at the 15- to 17-somite stage, the prospective diencephalon is the most-anterior structure in the Six3-null brain, and Wnt1 expression is anteriorly expanded. Consequently, the brain caudalizes, and at the 22- to 24-somite stage, the prospective thalamic territory is the most-anterior structure. At around E11.0, the pretectum replaces this structure. Analysis of Six3;Wnt1 double-null mice revealed that Six3-mediated repression of Wnt1 is necessary for the formation of the rostral diencephalon and that Six3 activity is required for the formation of the telencephalon. These results provide insight into the mechanisms that establish anteroposterior identity in the developing mammalian brain.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA
| | | | | |
Collapse
|
188
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|
189
|
Hayhurst M, Gore BB, Tessier-Lavigne M, McConnell SK. Ongoing sonic hedgehog signaling is required for dorsal midline formation in the developing forebrain. Dev Neurobiol 2008; 68:83-100. [DOI: 10.1002/dneu.20576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
190
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
191
|
Abstract
Here we describe mechanisms regulating area patterning of developing mammalian neocortex, referred to as arealization. Current findings indicate an interplay between intrinsic genetic mechanisms and extrinsic information relayed to cortex by thalamocortical input. Intrinsic mechanisms are based on morphogens and signaling molecules secreted by patterning centers, positioned at the perimeter of dorsal telencephalon, that generate across nascent cortex the graded expression of transcription factors in cortical progenitors. Two major patterning centers are the commissural plate, which expresses Fgf8 and Fgf17, and the cortical hem, which expresses Bmps and Wnts. Four transcription factors, COUP-TFI, Emx2, Pax6, and Sp8, with graded expression across the embryonic cortical axes, are shown to determine sizes and positions of cortical areas by specifying or repressing area identities within cortical progenitors. They also interact to modify their expression, as well as expression of Fgf8. We review these mechanisms of arealization and discuss models and concepts of cortical area patterning.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
192
|
Gimeno L, Martinez S. Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh. Dev Dyn 2007; 236:2285-97. [PMID: 17654705 DOI: 10.1002/dvdy.21237] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factors (Fgfs) constitute a family of signaling molecules that play essential roles in development. We have studied the expression pattern of mouse Fgf15 in the developing brain. Fgf19 is another member of the FGF family that has been suggested as the chick and human ortholog of mouse and rat Fgf15. Here, we compare the expression pattern during neural development of chick Fgf19 with mouse Fgf15. Unlike Fgf15, Fgf19 presents an expression in the isthmic alar plate, diencephalic and mesencephalic parabasal plates, hindbrain basal plate, as well as in the zona limitans intrathalamica (zli). Moreover, we explored the regulation between Fgf19 and the signaling molecules of the isthmic and zli organizers: Fgf8 and Shh, respectively. Considering the possibility that Fgf19 plays a similar role in humans and chicks, this finding could explain the significant diencephalic phenotypic differences between humans and mice in models and diseases where the Shh pathway is affected.
Collapse
Affiliation(s)
- L Gimeno
- Instituto de Neurociencias de Alicante, CSIC-UMH. Campus de San Juan, Alicante, Spain
| | | |
Collapse
|
193
|
Guinazu MF, Chambers D, Lumsden A, Kiecker C. Tissue interactions in the developing chick diencephalon. Neural Dev 2007; 2:25. [PMID: 17999760 PMCID: PMC2217525 DOI: 10.1186/1749-8104-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 11/13/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The developing vertebrate brain is patterned first by global signalling gradients that define crude anteroposterior and dorsoventral coordinates, and subsequently by local signalling centres (organisers) that refine cell fate assignment within pre-patterned regions. The interface between the prethalamus and the thalamus, the zona limitans intrathalamica (ZLI), is one such local signalling centre that is essential for the establishment of these major diencephalic subdivisions by secreting the signalling factor Sonic hedgehog. Various models for ZLI formation have been proposed, but a thorough understanding of how this important local organiser is established is lacking. RESULTS Here, we describe tissue explant experiments in chick embryos aimed at characterising the roles of different forebrain areas in ZLI formation. We found that: the ZLI becomes specified unexpectedly early; flanking regions are required for its characteristic morphogenesis; ZLI induction can occur independently from ventral tissues; interaction between any prechordal and epichordal neuroepithelial tissue anterior to the midbrain-hindbrain boundary is able to generate a ZLI; and signals from the dorsal diencephalon antagonise ZLI formation. We further show that a localised source of retinoic acid in the dorsal diencephalon is a likely candidate to mediate this inhibitory signal. CONCLUSION Our results are consistent with a model where planar, rather than vertical, signals position the ZLI at early stages of neural development and they implicate retinoic acid as a novel molecular cue that determines its dorsoventral extent.
Collapse
Affiliation(s)
- Maria Flavia Guinazu
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, King's College, London SE1 1UL, UK
| | - David Chambers
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, King's College, London SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, King's College, London SE1 1UL, UK
| | - Clemens Kiecker
- MRC Centre for Developmental Neurobiology, Guy's Hospital Campus, King's College, London SE1 1UL, UK
| |
Collapse
|
194
|
Andreae LC, Peukert D, Lumsden A, Gilthorpe JD. Analysis of Lrrn1 expression and its relationship to neuromeric boundaries during chick neural development. Neural Dev 2007; 2:22. [PMID: 17973992 PMCID: PMC2225406 DOI: 10.1186/1749-8104-2-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 10/31/2007] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Drosophila leucine-rich repeat proteins Tartan (TRN) and Capricious (CAPS) mediate cell affinity differences during compartition of the wing imaginal disc. This study aims to identify and characterize the expression of a chick orthologue of TRN/CAPS and examine its potential function in relation to compartment boundaries in the vertebrate central nervous system. RESULTS We identified a complementary DNA clone encoding Leucine-rich repeat neuronal 1 (Lrrn1), a single-pass transmembrane protein with 12 extracellular leucine-rich repeats most closely related to TRN/CAPS. Lrrn1 is dynamically expressed during chick development, being initially localized to the neural plate and tube, where it is restricted to the ventricular layer. It becomes downregulated in boundaries following their formation. In the mid-diencephalon, Lrrn1 expression prefigures the position of the anterior boundary of the zona limitans intrathalamica (ZLI). It becomes progressively downregulated from the presumptive ZLI just before the onset of expression of the signalling molecule Sonic hedgehog (Shh) within the ZLI. In the hindbrain, downregulation at rhombomere boundaries correlates with the emergence of specialized boundary cell populations, in which it is subsequently reactivated. Immunocolocalization studies confirm that Lrrn1 protein is endocytosed from the plasma membrane and is a component of the endosomal system, being concentrated within the early endosomal compartment. CONCLUSION Chick Lrrn1 is expressed in ventricular layer neuroepithelial cells and is downregulated at boundary regions, where neurogenesis is known to be delayed, or inhibited. The timing of Lrrn1 downregulation correlates closely with the activation of signaling molecule expression at these boundaries. This expression is consistent with the emergence of secondary organizer properties at boundaries and its endosomal localisation suggests that Lrrn1 may regulate the subcellular localisation of specific components of signalling or cell-cell recognition pathways in neuroepithelial cells.
Collapse
Affiliation(s)
- Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, UK, SE1 1UL
- Department of Neurophysiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK, NW7 1AA
| | - Daniela Peukert
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, UK, SE1 1UL
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, UK, SE1 1UL
| | - Jonathan D Gilthorpe
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, UK, SE1 1UL
| |
Collapse
|
195
|
Jo AY, Park CH, Aizawa S, Lee SH. Contrasting and brain region-specific roles of neurogenin2 and mash1 in GABAergic neuron differentiation in vitro. Exp Cell Res 2007; 313:4066-81. [PMID: 17936272 DOI: 10.1016/j.yexcr.2007.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/10/2007] [Accepted: 08/26/2007] [Indexed: 10/22/2022]
Abstract
We have cultivated highly uniform populations of neural precursor cells, which retain their region-specific identities, from various rat embryonic brain regions. The roles of the proneural basic-helix-loop-helix (bHLH) factors neurogenin2 (Ngn2) and Mash1 in gamma-aminobutyric acid (GABA) neuron differentiation were explored in the region-specific cultures. Consistent with previous in vivo studies, forced expression of Mash1 promoted GABA neuron formation from the precursors derived from the developing forebrains, whereas Ngn2 displayed an inhibitory role in forebrain GABA neuron differentiation. Functional analyses of mutant bHLH proteins indicated that the helix-loop-helix domains of Mash1 and Ngn2, known as the structures for protein-protein interactions, impart the distinct activities. Intriguingly, the regulatory activities of Mash1 and Ngn2 in GABA neuron differentiation from the hindbrain- and spinal cord-derived precursor cells were completely opposite of those observed in the forebrain-derived cultures: increased GABA neuron yield by Ngn2 and decreased yield by Mash1 were shown in the precursors of those posterior brain regions. No clear difference that depended on dorsal-ventral brain regions was observed in the bHLH-mediated activities. Finally, we demonstrated that Otx2, the expression of which is developmentally confined to the regions anterior to the isthmus, is a factor responsible for the anterior-posterior region-dependent opposite effects of the bHLH proteins.
Collapse
Affiliation(s)
- A-Young Jo
- Department of Biochemistry and Molecular Biology, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
196
|
Monuki ES. The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol 2007; 66:566-75. [PMID: 17620982 DOI: 10.1097/nen.0b013e3180986e1b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Forebrain development is directed by secreted signaling molecules known as morphogens, and morphogen signaling defects often lead to failed midline induction and holoprosencephaly (HPE), the most common malformation of the human forebrain. Genetic studies in multiple organisms implicate 4 well-known morphogens or morphogen families--Nodal, Sonic hedgehog, Fibroblast growth factors, and Bone morphogenetic proteins--as causes of HPE. Here I review the roles of these morphogens in HPE and forebrain midline development. In particular, this review focuses on recent evidence for cross-regulatory interactions between morphogens, which lead to a signaling network model of forebrain development that can explain the distinctive HPE phenotypes seen in humans and animal models.
Collapse
Affiliation(s)
- Edwin S Monuki
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
197
|
Pombero A, Valdes L, Vieira C, Martinez S. Developmental mechanisms and experimental models to understand forebrain malformative diseases. GENES BRAIN AND BEHAVIOR 2007; 6 Suppl 1:45-52. [PMID: 17543039 DOI: 10.1111/j.1601-183x.2007.00322.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.
Collapse
Affiliation(s)
- A Pombero
- Instituto de Neurociencias, UMH-CSIC, Campus de San Juan, Alicante, Spain
| | | | | | | |
Collapse
|
198
|
Mühlfriedel S, Kirsch F, Gruss P, Chowdhury K, Stoykova A. Novel genes differentially expressed in cortical regions during late neurogenesis. Eur J Neurosci 2007; 26:33-50. [PMID: 17614941 DOI: 10.1111/j.1460-9568.2007.05639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential gene expression across the embryonic cerebral cortex is assumed to play a role in the subdivision of the cortex into distinct areas with specific morphology, physiology and function. In a search for genes that may be involved in the cortical regionalization during late neurogenesis in mouse, we performed an extensive in-situ expression analysis at embryonic day (E)16 and E18. The examined candidate genes were selected beforehand by a microarray screen by virtue of their preferential expression in the anlagen of the motor, somatosensory, visual and cingulate cortices or hippocampus. We present new information about graded or regionally enriched expression of 25 genes (nine of which are novel genes) across the mouse embryonic cortex, in progenitor cells as well as in the cortical plate. The established differential expression of most of these genes is persistent at both stages studied, suggesting that their expression is regulated by an intrinsic programme. For some of the genes, the concept of intrinsic regulation is further substantiated by the high similarity of the reported expression patterns at E16 and E18 and published data from earlier stages. Few genes with robust expression in the E16 caudal cortex showed a more restricted pattern at E18, possibly because of their response to extrinsic cues. In addition, several genes appeared to be suitable novel markers for amygdalar and diencephalic nuclei. Taken together, our findings reveal novel molecular partitions of the late mouse cortex that are in accordance with the model of a leading role of intrinsic mechanisms in cortical arealization.
Collapse
Affiliation(s)
- Sven Mühlfriedel
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
199
|
Huang X, Litingtung Y, Chiang C. Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly. Hum Mol Genet 2007; 16:1454-68. [PMID: 17468181 DOI: 10.1093/hmg/ddm096] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Holoprosencephaly (HPE) is the most common developmental anomaly of the human forebrain, and in its severe form, the cerebral hemispheres fail to completely separate into two distinct halves. Although disruption of ventral forebrain induction is thought to underlie most HPE cases, a subset of HPE patients exhibits preferential dysgenesis of forebrain dorsal midline structures with unknown etiology. In this study, we show that Sonic hedgehog (Shh) lacking cholesterol moiety in one allele (ShhN/+) in mice can elicit ectopic Shh signaling in early telencephalon to induce ventral progenitor marker expression in the cortical region and impair telencephalic dorsal midline development. Prolonged ectopic ShhN signaling impaired Bmp and Wnt signaling from the dorsal patterning center through upregulation of Fgf8, leading to augmented cell proliferation, decreased cell death and impaired roof plate morphogenesis. Accordingly, ShhN/+ mutant telencephalic dorsal midline structures, including cortical hem, hippocampus and choroid plexus, either failed to form or were hypoplastic. Strikingly, ShhN/+ mutants displayed a spectrum of phenotypic features such as failure of anterior cerebral hemisphere to divide, hydrocephalus and cleft palate which have been observed in a human patient with milder HPE predicted to produce SHHN protein due to a truncation mutation in one SHH allele. We propose that elevated ectopic Shh signaling can impair dorsal telencephalic midline morphogenesis, and lead to non-cleavage of midline structures mimicking human HPE with dorsal midline defects.
Collapse
Affiliation(s)
- Xi Huang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | | | | |
Collapse
|
200
|
Toro S, Varga ZM. Equivalent progenitor cells in the zebrafish anterior preplacodal field give rise to adenohypophysis, lens, and olfactory placodes. Semin Cell Dev Biol 2007; 18:534-42. [PMID: 17580121 DOI: 10.1016/j.semcdb.2007.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/31/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Embryonic organizing centers secrete signaling molecules that instruct target cells about their position and future identity. Information about cell position in relation to sources of instructive signals and about precursor cell lineages is key to our understanding of developmental processes that restrict cell potency and determine cell fate. We review adenohypophysis, lens, and olfactory placode formation and how gene expression patterns, cell positions, and cell fates in the anterior neural plate and anterior placodal field correlate in zebrafish and other vertebrates. Single cell lineage analysis in zebrafish suggests that the majority of preplacodal cells might be specified for pituitary, lens, or olfactory placode by the end of gastrulation.
Collapse
Affiliation(s)
- Sabrina Toro
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, United States.
| | | |
Collapse
|