151
|
Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:499-530. [PMID: 24014420 DOI: 10.1002/wdev.98] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
Collapse
Affiliation(s)
- Zachary Neeb
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
152
|
Right ventricular outflow tract imaging with CT and MRI: Part 1, Morphology. AJR Am J Roentgenol 2013; 200:W39-50. [PMID: 23255770 DOI: 10.2214/ajr.12.9333] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE MRI and CT have become the ideal methods for assessing the complex morphology of the conotruncal region, including the right ventricular outflow tract (RVOT). Detailed information about the embryology and anatomy of the RVOT provides a better understanding of the spectrum of diseases of this region and helps to narrow the differential diagnoses of abnormalities involving this important structure. In this review, we focus on the role of CT and MRI to evaluate morphology in relation to developmental malformation of the RVOT. CONCLUSION A spectrum of conotruncal anomalies with abnormally positioned great arteries may arise from a perturbation of RVOT formation. Complications after surgery are common, and many patients need follow-up imaging for diagnosis and surgical planning. In this regard, the spectrum of diseases, differential diagnoses, and postoperative findings are briefly described. With CT and MRI, the relationship of the RVOT to critical structures, such as the coronary arteries, can be revealed.
Collapse
|
153
|
Restivo A, Unolt M, Putotto C, Marino B. Double outlet right ventricle versus aortic dextroposition: morphologically distinct defects. Anat Rec (Hoboken) 2013; 296:559-63. [PMID: 23401466 DOI: 10.1002/ar.22657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/16/2012] [Indexed: 12/21/2022]
Abstract
This study concerns the morphological differentiation between double outlet right ventricle (DORV) and aortic dextroposition (AD) defects, namely tetralogy of Fallot and Eisenmenger anomaly. Indeed, despite the similar condition in terms of sequential ventriculo-arterial connections, DORV and AD are two distinct morphological entities. It is proposed that the borderline between these two groups of malformations is represented by the specific insertion of the infundibular septum into the left anterior cranial division of the septomarginal trabeculation (or septal band) occurring in ADs and lacking in DORV. Furthermore, the spiraliform versus straight parallel arrangement of the great arteries in the two groups of anomalies is emphasized as an additional and distinctive morphological feature. Emphasis is also given to the association of straight parallel great arteries conotruncal malformations, DORV and transposition of the great arteries, with the asplenia type of heterotaxy laterality defects. Within this context, the absence of subaortic ventricular septal defect and concomitantly of spiraliform great arteries in the asplenia group of heterotaxy anomalies, as detected by this study, further substantiates our belief of not mixing collectively the ADs with the DORV in clinico-pathological diagnosis.
Collapse
Affiliation(s)
- Angelo Restivo
- Department of Pediatrics, Pediatric Cardiology, University of Rome La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
154
|
Clark CD, Zhang B, Lee B, Evans SI, Lassar AB, Lee KH. Evolutionary conservation of Nkx2.5 autoregulation in the second heart field. Dev Biol 2013; 374:198-209. [PMID: 23165293 PMCID: PMC3549048 DOI: 10.1016/j.ydbio.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/22/2012] [Accepted: 11/09/2012] [Indexed: 11/28/2022]
Abstract
The cardiac homeobox gene Nkx2.5 plays a key and dosage-sensitive role in the differentiation of outflow tract and right ventricle from progenitors of the second heart field (SHF) and Nkx2.5 mutation is strongly associated with human outflow tract congenital heart disease (OFT CHD). Therefore defining the regulatory mechanisms controlling Nkx2.5 expression in SHF populations serves an important function in understanding the etiology of complex CHD. Through a comparative analysis of regulatory elements controlling SHF expression of Nkx2.5 in the chicken and mouse, we have found evidence that Nkx2.5 autoregulation is important for maintaining Nkx2.5 expression during SHF differentiation in both species. However the mechanism of Nkx2.5 maintenance differs between placental mammals and non-mammalian vertebrates: in chick Nkx2.5 binds directly to a genomic enhancer element that is required to maintain Nkx2.5 expression in the SHF. In addition, it is likely that this is true in other non-mammalian vertebrates given that they possess a similar genomic organization. By contrast, in placental mammals, Nkx2.5 autoregulation in the SHF functions indirectly through Mef2c. These data underscore a tight relationship in mammals between Nkx2.5 and Mef2c in SHF transcriptional regulation, and highlight the potential for evolutionary cis-regulatory analysis to identify core, conserved components of the gene networks controlling heart development.
Collapse
Affiliation(s)
- Christopher D. Clark
- Regenerative Medicine, Cell Biology and Anatomy Department, Medical University of South Carolina, Charleston, SC
| | - Boding Zhang
- Regenerative Medicine, Cell Biology and Anatomy Department, Medical University of South Carolina, Charleston, SC
| | - Benjamin Lee
- Regenerative Medicine, Cell Biology and Anatomy Department, Medical University of South Carolina, Charleston, SC
| | - Samuel I. Evans
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Andrew B. Lassar
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Kyu-Ho Lee
- Regenerative Medicine, Cell Biology and Anatomy Department, Medical University of South Carolina, Charleston, SC
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Hospital, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
155
|
Camp E, Dietrich S, Münsterberg A. Fate mapping identifies the origin of SHF/AHF progenitors in the chick primitive streak. PLoS One 2012; 7:e51948. [PMID: 23272192 PMCID: PMC3521730 DOI: 10.1371/journal.pone.0051948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/13/2012] [Indexed: 12/15/2022] Open
Abstract
Heart development depends on the spatio-temporally regulated contribution of progenitor cells from the primary, secondary and anterior heart fields. Primary heart field (PHF) cells are first recruited to form a linear heart tube; later, they contribute to the inflow myocardium of the four-chambered heart. Subsequently cells from the secondary (SHF) and anterior heart fields (AHF) are added to the heart tube and contribute to both the inflow and outflow myocardium. In amniotes, progenitors of the linear heart tube have been mapped to the anterior-middle region of the early primitive streak. After ingression, these cells are located within bilateral heart fields in the lateral plate mesoderm. On the other hand SHF/AHF field progenitors are situated anterior to the linear heart tube, however, the origin and location of these progenitors prior to the development of the heart tube remains elusive. Thus, an unresolved question in the process of cardiac development is where SHF/AHF progenitors originate from during gastrulation and whether they come from a region in the primitive streak distinct from that which generates the PHF. To determine the origin and location of SHF/AHF progenitors we used vital dye injection and tissue grafting experiments to map the location and ingression site of outflow myocardium progenitors in early primitive streak stage chicken embryos. Cells giving rise to the AHF ingressed from a rostral region of the primitive streak, termed region 'A'. During development these cells were located in the cranial paraxial mesoderm and in the pharyngeal mesoderm. Furthermore we identified region 'B', located posterior to 'A', which gave rise to progenitors that contributed to the primary heart tube and the outflow tract. Our studies identify two regions in the early primitive streak, one which generates cells of the AHF and a second from which cardiac progenitors of the PHF and SHF emerge.
Collapse
Affiliation(s)
- Esther Camp
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
156
|
Anderson RH, Brown NA, Mohun TJ, Moorman AFM. Insights from cardiac development relevant to congenital defects and adult clinical anatomy. J Cardiovasc Transl Res 2012; 6:107-17. [PMID: 23225336 DOI: 10.1007/s12265-012-9430-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/22/2012] [Indexed: 12/11/2022]
Abstract
Advances made in understanding temporal changes in structure of the developing heart, along with advances in knowledge of the lineage of cardiomyocytes forming the components of cardiac chambers, permit us to draw inferences concerning substrates for arrhythmias such as atrial fibrillation and outflow tract tachycardias. We frame these insights in our description of the formation of cardiac chambers. Adult-like electrocardiograms can be generated by developing hearts before it is possible to recognize an anatomically discrete conduction system. Working components of the atrial and ventricular chambers, which are rapidly conducting, balloon from walls of the primary heart tube, themselves slowly conducting. Recognition of the locations of these populations of primary and secondary myocardial pools suggests that some potential myocardial substrates (those producing outflow tract tachycardias) initially had a primary phenotype. In contrast, cardiomyocytes forming pulmonary venous sleeves, substrates for many cases of atrial fibrillation, have never possessed a primary phenotype. This article is part of a JCTR special issue on Cardiac Anatomy.
Collapse
|
157
|
Seagraves NJ, McBride KL. Cardiac teratogenicity in mouse maternal phenylketonuria: defining phenotype parameters and genetic background influences. Mol Genet Metab 2012; 107:650-8. [PMID: 22951387 PMCID: PMC3504168 DOI: 10.1016/j.ymgme.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/23/2022]
Abstract
Maternal phenylketonuria (MPKU) is a syndrome including cardiovascular malformations (CVMs), microcephaly, intellectual impairment, and small size for gestational age, caused by in-utero exposure to elevated serum phenylalanine (Phe) due to PKU in the mother. It is becoming a public health concern as more women with PKU reach child bearing age. Although a mouse model of PKU, BTBR Pah(enu2), has been available for 20 years, it has not been well utilized for studying MPKU. We used this model to delineate critical parameters in Phe cardiovascular teratogenicity and study the effect of genetic background. Dosing and timing experiments were performed with the BTBR Pah(enu2) mouse. A dose response curve was noted, with CVM rates at maternal serum Phe levels <360 μM (control), 360-600 μM (low), 600-900 μM (mid), and >900 μM (high) of 11.86%, 16.67%, 30.86%, and 46.67% respectively. A variety of CVMs were noted on the BTBR background, including double outlet right ventricle (DORV), aortic arch artery (AAA) abnormalities, and ventricular septal defects (VSDs). Timed exposure experiments identified a teratogenic window from embryonic day 8.5-13.5, with higher rates of conotruncal and valve defects occurring in early exposure time and persistent truncus arteriosus (PTA) and aortic arch branching abnormalities occurring with late exposure. Compared to the BTBR strain, N10+ Pah(enu2) congenics on the C3H/HeJ background had higher rates of CVMs in general and propensity to left ventricular outflow tract (LVOT) malformations, while the C57B/L6 background had similar CVM rates but predominately AAA abnormalities. We have delineated key parameters of Phe cardiovascular teratogenicity, demonstrated the utility of this MPKU model on different mouse strains, and shown how genetic background profoundly affects the phenotype.
Collapse
Affiliation(s)
- Nikki J Seagraves
- Center for Molecular and Human Genetics, Nationwide Children's Hospital, USA
| | | |
Collapse
|
158
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
159
|
Sun X, Meng Y, You T, Li P, Wu H, Yu M, Xie X. Association of growth/differentiation factor 1 gene polymorphisms with the risk of congenital heart disease in the Chinese Han population. Mol Biol Rep 2012; 40:1291-9. [PMID: 23076529 DOI: 10.1007/s11033-012-2172-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/08/2012] [Indexed: 01/15/2023]
Abstract
There is evidence suggesting that genetic variants of Nodal signaling may be associated with risk of congenital heart diseases (CHDs), in which several polymorphisms, such as Nodal rs1904589, have been considered to be implicated in the accumulation of the genetic burden of CHD risk with interacting genes. We hypothesized that genetic variants of GDF1, a protein that heterodimerizes with Nodal, may be related to increased CHD susceptibility. In this study, four tagSNPs of GDF1 were genotyped in 310 non-syndromic CHD patients and 320 healthy controls by using PCR-based DHPLC and RFLP. The results showed no statistically significant differences in genotype and allele frequencies between CHDs and controls with any of the analyzed variants of GDF1. However, a weak statistical association existed between GDF1 rs4808870 and conotruncal defects (CTDs) (uncorrected P = 0.027). Further stratified analysis for subtype revealed the SNP AA genotype and A allele have statistical significance in pulmonary atresia (PA) (corrected P = 1.01 × 10(-3) and 0.015, respectively), especially in pulmonary atresia with intact ventricular septum (PA + IVS) (corrected P = 1.67 × 10(-3) and 0.034, respectively). Furthermore, two haplotypes, TGGT and CAGT, were found to be significantly associated with increased CHD susceptibility (corrected P = 3.20 × 10(-3) and 2.73 × 10(-7), respectively). In summary, our results provide evidence that genetic variations of the Nodal-like factor, GDF1 may be associated with CHD risk, and these variations contribute at least in part to the development of some subtypes of CTD in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaowei Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
160
|
Francou A, Saint-Michel E, Mesbah K, Théveniau-Ruissy M, Rana MS, Christoffels VM, Kelly RG. Second heart field cardiac progenitor cells in the early mouse embryo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:795-8. [PMID: 23051926 DOI: 10.1016/j.bbamcr.2012.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Institute of Marseille-Luminy, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
PURPOSE OF REVIEW In this review, we aim at presenting and discussing the cellular and molecular mechanisms of embryonic epicardial development that may underlie the origin of congenital heart disease (CHD). RECENT FINDINGS New discoveries on the multiple cell lineages that form part of the original pool of epicardial progenitors and the roles played by epicardial transcription factors and morphogens in the regulation of epicardial epithelial-to-mesenchymal transition, epicardial-derived cell (EPDCs) differentiation, coronary blood vessel morphogenesis and cardiac interstitium formation are presented in a comprehensive manner. SUMMARY We have provided evidence on the critical participation of epicardial cells and EPDCs in normal and abnormal cardiac development, suggesting the implication of defective epicardial development in various forms of CHD.
Collapse
|
162
|
Domínguez JN, Meilhac SM, Bland YS, Buckingham ME, Brown NA. Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ Res 2012; 111:1323-35. [PMID: 22955731 DOI: 10.1161/circresaha.112.271247] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The second heart field (SHF) contains progenitors of all heart chambers, excluding the left ventricle. The SHF is patterned, and the anterior region is known to be destined to form the outflow tract and right ventricle. OBJECTIVE The aim of this study was to map the fate of the posterior SHF (pSHF). METHODS AND RESULTS We examined the contribution of pSHF cells, labeled by lipophilic dye at the 4- to 6-somite stage, to regions of the heart at 20 to 25 somites, using mouse embryo culture. Cells more cranial in the pSHF contribute to the atrioventricular canal (AVC) and atria, whereas those more caudal generate the sinus venosus, but there is intermixing of fate throughout the pSHF. Caudal pSHF contributes symmetrically to the sinus venosus, but the fate of cranial pSHF is left/right asymmetrical. Left pSHF moves to dorsal left atrium and superior AVC, whereas right pSHF contributes to right atrium, ventral left atrium, and inferior AVC. Retrospective clonal analysis shows the relationships between AVC and atria to be clonal and that right and left progenitors diverge before first and second heart lineage separation. Cranial pSHF cells also contribute to the outflow tract: proximal and distal at 4 somites, and distal only at 6 somites. All outflow tract-destined cells are intermingled with those that will contribute to inflow and AVC. CONCLUSIONS These observations show asymmetric fate of the pSHF, resulting in unexpected left/right contributions to both poles of the heart and can be integrated into a model of the morphogenetic movement of cells during cardiac looping.
Collapse
Affiliation(s)
- Jorge N Domínguez
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | | | | | | | |
Collapse
|
163
|
Zhen YS, Wu Q, Xiao CL, Chang NN, Wang X, Lei L, Zhu X, Xiong JW. Overlapping cardiac programs in heart development and regeneration. J Genet Genomics 2012; 39:443-9. [PMID: 23021544 DOI: 10.1016/j.jgg.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 02/03/2023]
Abstract
Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.
Collapse
Affiliation(s)
- Yi-Song Zhen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Scherptong RWC, Jongbloed MRM, Wisse LJ, Vicente-Steijn R, Bartelings MM, Poelmann RE, Schalij MJ, Gittenberger-De Groot AC. Morphogenesis of outflow tract rotation during cardiac development: the pulmonary push concept. Dev Dyn 2012; 241:1413-22. [PMID: 22826212 DOI: 10.1002/dvdy.23833] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Understanding of cardiac outflow tract (OFT) remodeling is essential to explain repositioning of the aorta and pulmonary orifice. In wild type embryos (E9.5-14.5), second heart field contribution (SHF) to the OFT was studied using expression patterns of Islet 1, Nkx2.5, MLC-2a, WT-1, and 3D-reconstructions. Abnormal remodeling was studied in VEGF120/120 embryos. RESULTS In wild type, Islet 1 and Nkx2.5 positive myocardial precursors formed an asymmetric elongated column almost exclusively at the pulmonary side of the OFT up to the pulmonary orifice. In VEGF120/120 embryos, the Nkx2.5-positive mesenchymal population was disorganized with a short extension along the pulmonary OFT. CONCLUSIONS We postulate that normally the pulmonary trunk and orifice are pushed in a higher and more frontal position relative to the aortic orifice by asymmetric addition of SHF-myocardium. Deficient or disorganized right ventricular OFT expansion might explain cardiac malformations with abnormal position of the great arteries, such as double outlet right ventricle.
Collapse
|
165
|
Sinha T, Wang B, Evans S, Wynshaw-Boris A, Wang J. Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis. Dev Biol 2012; 370:135-44. [PMID: 22841628 DOI: 10.1016/j.ydbio.2012.07.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/15/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
Disheveled (Dvl) is a key regulator of both the canonical Wnt and the planar cell polarity (PCP) pathway. Previous genetic studies in mice indicated that outflow tract (OFT) formation requires Dvl1 and 2, but it was unclear which pathway was involved and whether Dvl1/2-mediated signaling was required in the second heart field (SHF) or the cardiac neural crest (CNC) lineage, both of which are critical for OFT development. In this study, we used Dvl1/2 null mice and a set of Dvl2 BAC transgenes that function in a pathway-specific fashion to demonstrate that Dvl1/2-mediated PCP signaling is essential for OFT formation. Lineage-specific gene-ablation further indicated that Dvl1/2 function is dispensable in the CNC, but required in the SHF for OFT lengthening to promote cardiac looping. Mutating the core PCP gene Vangl2 and non-canonical Wnt gene Wnt5a recapitulated the OFT morphogenesis defects observed in Dvl1/2 mutants. Consistent with genetic interaction studies suggesting that Wnt5a signals through the PCP pathway, Dvl1/2 and Wnt5a mutants display aberrant cell packing and defective actin polymerization and filopodia formation specifically in SHF cells in the caudal splanchnic mesoderm (SpM), where Wnt5a and Dvl2 are co-expressed specifically. Our results reveal a critical role of PCP signaling in the SHF during early OFT lengthening and cardiac looping and suggest that a Wnt5a→ Dvl PCP signaling cascade may regulate actin polymerization and protrusive cell behavior in the caudal SpM to promote SHF deployment, OFT lengthening and cardiac looping.
Collapse
Affiliation(s)
- Tanvi Sinha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, UK
| | | | | | | | | |
Collapse
|
166
|
Liu A, Yin X, Shi L, Li P, Thornburg KL, Wang R, Rugonyi S. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 2012; 7:e40869. [PMID: 22844414 PMCID: PMC3402486 DOI: 10.1371/journal.pone.0040869] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/18/2012] [Indexed: 11/28/2022] Open
Abstract
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xin Yin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kent L. Thornburg
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
167
|
Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012; 5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
168
|
Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Dobreva G. The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. Dev Cell 2012; 23:58-70. [PMID: 22771034 DOI: 10.1016/j.devcel.2012.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
Abstract
Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebrafish embryos show an increased pool of Isl1(+) cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1(+) cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells.
Collapse
Affiliation(s)
- Hagen R Witzel
- Origin of Cardiac Cell Lineages Group, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
169
|
New developments in the second heart field. Differentiation 2012; 84:17-24. [DOI: 10.1016/j.diff.2012.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
|
170
|
Norden J, Kispert A. Wnt/Ctnnb1 Signaling and the Mesenchymal Precursor Pools of the Heart. Trends Cardiovasc Med 2012; 22:118-22. [DOI: 10.1016/j.tcm.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 02/01/2023]
|
171
|
Normal and abnormal development of the cardiac conduction system; implications for conduction and rhythm disorders in the child and adult. Differentiation 2012; 84:131-48. [DOI: 10.1016/j.diff.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/16/2012] [Indexed: 11/20/2022]
|
172
|
Anderson RH, Chaudhry B, Mohun TJ, Bamforth SD, Hoyland D, Phillips HM, Webb S, Moorman AF, Brown NA, Henderson DJ. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res 2012; 95:108-15. [PMID: 22499773 PMCID: PMC4228308 DOI: 10.1093/cvr/cvs147] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The definitive cardiac outflow channels have three components: the intrapericardial arterial trunks; the arterial roots with valves; and the ventricular outflow tracts (OFTs). We studied the normal and abnormal development of the most distal of these, the arterial trunks, comparing findings in mice and humans. METHODS AND RESULTS Using lineage tracing and three-dimensional visualization by episcopic reconstruction and scanning electron microscopy, we studied embryonic day 9.5-12.5 mouse hearts, clarifying the development of the OFTs distal to the primordia of the arterial valves. We characterize a transient aortopulmonary (AP) foramen, located between the leading edge of a protrusion from the dorsal wall of the aortic sac and the distal margins of the two outflow cushions. The foramen is closed by fusion of the protrusion, with its cap of neural crest cells (NCCs), with the NCC-filled cushions; the resulting structure then functioning transiently as an AP septum. Only subsequent to this closure is it possible to recognize, more proximally, the previously described AP septal complex. The adjacent walls of the intrapericardial trunks are derived from the protrusion and distal parts of the outflow cushions, whereas the lateral walls are formed from intrapericardial extensions of the pharyngeal mesenchyme derived from the second heart field. CONCLUSIONS We provide, for the first time, objective evidence of the mechanisms of closure of an AP foramen that exists distally between the lumens of the developing intrapericardial arterial trunks. Our findings provide insights into the formation of AP windows and the variants of common arterial trunk.
Collapse
Affiliation(s)
| | - Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, UK
| | - Timothy J. Mohun
- Division of Developmental Biology, MRC National Institute for Medical Research, London, UK
| | | | | | | | - Sandra Webb
- Division of Biomedical Sciences, St George’s, University of London, UK
| | - Antoon F.J. Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Nigel A. Brown
- Division of Biomedical Sciences, St George’s, University of London, UK
| | | |
Collapse
|
173
|
Briggs LE, Kakarla J, Wessels A. The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 2012; 84:117-30. [PMID: 22709652 PMCID: PMC3389176 DOI: 10.1016/j.diff.2012.05.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD). AVSDs are congenital malformations in which the atria are permitted to communicate due to defective septation between the inferior margin of the septum primum and the atrial surface of the common atrioventricular valve. The clinical presentation of AVSDs is variable and depends on both the size and/or type of defect; less severe defects may be asymptomatic while the most severe defect, if untreated, results in infantile heart failure. For many years, maldevelopment of the endocardial cushions was thought to be the sole etiology of AVSDs. More recent work, however, has demonstrated that perturbation of DMP development also results in AVSD. Here, we discuss in detail the formation of the DMP, its contribution to cardiac septation and describe the morphological features as well as potential etiologies of ASDs and AVSDs.
Collapse
Affiliation(s)
- Laura E. Briggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Jayant Kakarla
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| |
Collapse
|
174
|
Martin-Puig S, Fuster V, Torres M. Heart repair: from natural mechanisms of cardiomyocyte production to the design of new cardiac therapies. Ann N Y Acad Sci 2012; 1254:71-81. [PMID: 22548572 DOI: 10.1111/j.1749-6632.2012.06488.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most organs in mammals, including the heart, show a certain level of plasticity and repair ability during gestation. This plasticity is, however, compromised for many organs in adulthood, resulting in the inability to repair organ injury, including heart damage produced by acute or chronic ischemic conditions. In contrast, lower vertebrates, such as fish or amphibians, retain a striking regenerative ability during their entire life, being able to repair heart injuries. There is a great interest in understanding both the mechanisms that allow heart plasticity during mammalian fetal life and those that permit adult cardiac regeneration in zebrafish. Here, we revise strategies for cardiomyocyte production during development and in response to injury and discuss differential regeneration ability of teleosts and mammals. Understanding these mechanisms may allow establishing alternative therapeutic approaches to cope with heart failure in humans.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones, Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
175
|
Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Dev Biol 2012; 369:199-210. [PMID: 22750409 DOI: 10.1016/j.ydbio.2012.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 01/17/2023]
Abstract
Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart.
Collapse
|
176
|
Xavier-Neto J, Trueba SS, Stolfi A, Souza HM, Sobreira TJP, Schubert M, Castillo HA. An unauthorized biography of the second heart field and a pioneer/scaffold model for cardiac development. Curr Top Dev Biol 2012; 100:67-105. [PMID: 22449841 DOI: 10.1016/b978-0-12-387786-4.00003-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The identification of subpharyngeal cardiac precursors has had a strong influence on the way we think about early cardiac development. From this discovery was born the concept of multiple heart fields. Early support for the concept came from gene expression, genetic retrospective fate mapping, and gene targeting studies, which collectively suggested the existence of a second heart field (SHF) on the basis of specific Islet-1 (Isl-1) expression, presence of two cardiac ancestral lineages, and compatible cardiac knockout phenotypes, respectively. A decade after the original studies, support for the SHF concept is dwindling. This is because in all bilaterian models studied, Isl expression in heart progenitors is not SHF-specific, because lineage data are best explained by alternative models including an older, truly ancestral, lineage of cardiac pioneers with unrestricted contribution to all cardiac segments and, finally, because the inflow-to-outflow segmental nature of the early vertebrate peristaltic heart has been reaffirmed with novel, less invasive, methodologies. Altogether, the paradigms derived from the discovery of subpharyngeal cardiac progenitors helped us shift from relatively simple models, which rely predominantly either on patterning, gene expression patterns or lineages, to a much more sophisticated body of knowledge in which all these parameters must be accounted. Thus, it is well possible that due consideration of the key elements contained in the inflow/outflow, pioneer/scaffold, ballooning, and SHF hypotheses may provide us with a unified framework of the early stages of cardiac development. Here, we advance into this direction by suggesting an intuitive model of early heart development based on the concept of an inflow/outflow scaffold erected by cardiac pioneers, one that is required to assemble all the subsequent cell contribution that emigrates from cardiac progenitor areas.
Collapse
Affiliation(s)
- José Xavier-Neto
- Brazilian National Laboratory for Biosciences, Brazilian Association for Synchrotron Light Technology, Rua Giuseppe Máximo Scolfaro, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
177
|
Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci U S A 2012; 109:10921-6. [PMID: 22711842 DOI: 10.1073/pnas.1121236109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Progenitor cells of the first and second heart fields depend on cardiac-specific transcription factors for their differentiation. Using conditional mutagenesis of mouse embryos, we define the hierarchy of signaling events that controls the expression of cardiac-specific transcription factors during differentiation of cardiac progenitors at embryonic day 9.0. Wnt/β-catenin and Bmp act downstream of Notch/RBPJ at this developmental stage. Mutation of Axin2, the negative regulator of canonical Wnt signaling, enhances Wnt and Bmp4 signals and suffices to rescue the arrest of cardiac differentiation caused by loss of RBPJ. Using FACS enrichment of cardiac progenitors in RBPJ and RBPJ/Axin2 mutants, embryo cultures in the presence of the Bmp inhibitor Noggin, and by crossing a Bmp4 mutation into the RBPJ/Axin2 mutant background, we show that Wnt and Bmp4 signaling activate specific and nonoverlapping cardiac-specific genes in the cardiac progenitors: Nkx2-5, Isl1 and Baf60c are controlled by Wnt/β-catenin, and Gata4, SRF, and Mef2c are controlled by Bmp signaling. Our study contributes to the understanding of the regulatory hierarchies of cardiac progenitor differentiation and outflow tract development and has implications for understanding and modeling heart development.
Collapse
|
178
|
Gittenberger-de Groot AC, Winter EM, Bartelings MM, Goumans MJ, DeRuiter MC, Poelmann RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012; 84:41-53. [PMID: 22652098 DOI: 10.1016/j.diff.2012.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 02/01/2023]
Abstract
The importance of the epicardium covering the heart and the intrapericardial part of the great arteries has reached a new summit. It has evolved as a major cellular component with impact both in development, disease and more recently also repair potential. The role of the epicardium in development, its differentiation from a proepicardial organ at the venous pole (vPEO) and the differentiation capacities of the vPEO initiating cardiac epicardium (cEP) into epicardium derived cells (EPDCs) have been extensively described in recent reviews on growth and transcription factor pathways. In short, the epicardium is the source of the interstitial, the annulus fibrosus and the adventitial fibroblasts, and differentiates into the coronary arterial smooth muscle cells. Furthermore, EPDCs induce growth of the compact myocardium and differentiation of the Purkinje fibers. This review includes an arterial pole located PEO (aPEO) that provides the epicardium covering the intrapericardial great vessels. In avian and mouse models disturbance of epicardial outgrowth and maturation leads to a broad spectrum of cardiac anomalies with main focus on non-compaction of the myocardium, deficient annulus fibrosis, valve malformations and coronary artery abnormalities. The discovery that in disease both arterial and cardiac epicardium can again differentiate into EPDCs and thus reactivate its embryonic program and potential has highly broadened the scope of research interest. This reactivation is seen after myocardial infarction and also in aneurysm formation of the ascending aorta. Use of EPDCs for cell therapy show their positive function in paracrine mediated repair processes which can be additive when combined with the cardiac progenitor stem cells that probably share the same embryonic origin with EPDCs. Research into the many cell-autonomous and cell-cell-based capacities of the adult epicardium will open up new realistic therapeutic avenues.
Collapse
Affiliation(s)
- Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, Postal zone: S-5-24, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
179
|
Kirby M. Margaret Kirby: a cardiologist against the odds. Interview by Ruth Williams. Circ Res 2012; 110:1408-10. [PMID: 22628573 DOI: 10.1161/res.0b013e31825caf18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
180
|
de Boer BA, van den Berg G, de Boer PAJ, Moorman AFM, Ruijter JM. Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Dev Biol 2012; 368:203-13. [PMID: 22617458 DOI: 10.1016/j.ydbio.2012.05.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/04/2012] [Accepted: 05/03/2012] [Indexed: 11/20/2022]
Abstract
Analysis of experiments aimed at understanding the genetic mechanisms of differentiation and growth of the heart, calls for detailed insights into cardiac growth and proliferation rate of myocytes and their precursors. Such insights in mouse heart development are currently lacking. We quantitatively assessed the 3D patterns of proliferation in the forming mouse heart and in the adjacent splanchnic mesoderm, from the onset of heart formation till the developed heart at late gestation. These results are presented in an interactive portable document format (Suppl. PDF) to facilitate communication and understanding. We show that the mouse splanchnic mesoderm is highly proliferative, and that the proliferation rate drops upon recruitment of cells into the cardiac lineage. Concomitantly, the proliferation rate locally increases at the sites of chamber formation, generating a regionalized proliferation pattern. Quantitative analysis shows a gradual decrease in proliferation rate of the ventricular walls with progression of development, and a base-to-top decline in proliferation rate in the trabecules. Our data offers clear insights into the growth and morphogenesis of the mouse heart and shows that in early development the phases of tube formation and chamber formation overlap. The resulting interactive quantitative 3D atlas of cardiac growth and morphogenesis provides a resource for interpretation of mechanistic studies.
Collapse
Affiliation(s)
- Bouke A de Boer
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
181
|
Islet1-expressing cardiac progenitor cells: a comparison across species. Dev Genes Evol 2012; 223:117-29. [PMID: 22526874 PMCID: PMC3552366 DOI: 10.1007/s00427-012-0400-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/03/2012] [Indexed: 01/05/2023]
Abstract
Adult mammalian cardiac stem cells express the LIM-homeodomain transcription factor Islet1 (Isl1). They are considered remnants of Isl1-positive embryonic cardiac progenitor cells. During amniote heart development, Isl1-positive progenitor cells give rise mainly to the outflow tract, the right ventricle, and parts of the atria. This led to the hypothesis that the development of the right ventricle of the amniote heart depends on the recruitment of additional cells to the primary heart tube. The region from which these additional, Isl1-positive cells originate is called second heart field, as opposed to the first heart field whose cells form the primary heart tube. Here, we review the available data about Isl1 in different species, demonstrating that Isl1 is an important component of the core transcription factor network driving early cardiogenesis in animals of the two clades, deuterostomes, and protostomes. The data support the view of a single cardiac progenitor cell population that includes Isl1-expressing cells and which differentiates into the various cardiac lineages during embryonic development in vertebrates but not in other phyla of the animal kingdom.
Collapse
|
182
|
Xue L, Wang X, Xu J, Xu X, Liu X, Hu Z, Shen H, Chen Y. ISL1 common variant rs1017 is not associated with susceptibility to congenital heart disease in a Chinese population. Genet Test Mol Biomarkers 2012; 16:679-83. [PMID: 22480195 DOI: 10.1089/gtmb.2011.0249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND ISL1, as a member of the LIM homeodomain transcription factor family, is expressed in a distinct population of undifferentiated cardiac progenitors and plays a pivotal role in cardiogenesis. Lacking ISL1 expression results in growth arrest or displays profound defects in heart development, including atria, ventricle, and the inflow and outflow tracts, which constitute a major form of congenital heart disease (CHD). Recently, an important study by Stevens et al. found that genetic variation in ISL1 is associated with risk of CHD in white and black/African American populations; this observation led us to hypothesize that ISL1 common variants might influence susceptibility to sporadic CHD in our Chinese population. METHODS We conducted a case-control study of CHD in Chinese to test our hypothesis by genotyping ISL1 common variant rs1017 in 1003 CHD cases and 1012 non-CHD controls. RESULTS We found that rs1017 was not associated with the risk of CHD (p=0.213). When we performed stratified analyses according to subjects' age, sex, and CHD classifications, we found no overall heterogeneity of risk in different subgroups. CONCLUSIONS This is the first study which indicates that ISL1 common variant rs1017 may not play a role in sporadic CHD susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Lei Xue
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Jongbloed MRM, Vicente-Steijn R, Douglas YL, Wisse LJ, Mori K, Yokota Y, Bartelings MM, Schalij MJ, Mahtab EA, Poelmann RE, Gittenberger-De Groot AC. Expression of Id2 in the second heart field and cardiac defects in Id2 knock-out mice. Dev Dyn 2012; 240:2561-77. [PMID: 22012595 DOI: 10.1002/dvdy.22762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The inhibitor of differentiation Id2 is expressed in mesoderm of the second heart field, which contributes myocardial and mesenchymal cells to the primary heart tube. The role of Id2 in cardiac development is insufficiently known. Heart development was studied in sequential developmental stages in Id2 wildtype and knockout mouse embryos. Expression patterns of Id2, MLC-2a, Nkx2.5, HCN4, and WT-1 were analyzed. Id2 is expressed in myocardial progenitor cells at the inflow and outflow tract, in the endocardial and epicardial lineage, and in neural crest cells. Id2 knockout embryos show severe cardiac defects including abnormal orientation of systemic and pulmonary drainage, abnormal myocardialization of systemic and pulmonary veins, hypoplasia of the sinoatrial node, large interatrial communications, ventricular septal defects, double outlet right ventricle, and myocardial hypoplasia. Our results indicate a role for Id2 in the second heart field contribution at both the arterial and the venous poles of the heart.
Collapse
Affiliation(s)
- M R M Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA. Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 2012; 110:922-6. [PMID: 22394517 DOI: 10.1161/circresaha.112.266510] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. OBJECTIVE Determine whether Isl1 is expressed by cardiac neural crest. METHODS AND RESULTS We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1(Cre/+), a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. CONCLUSIONS Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.
Collapse
Affiliation(s)
- Kurt A Engleka
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Golzio C, Havis E, Daubas P, Nuel G, Babarit C, Munnich A, Vekemans M, Zaffran S, Lyonnet S, Etchevers HC. ISL1 directly regulates FGF10 transcription during human cardiac outflow formation. PLoS One 2012; 7:e30677. [PMID: 22303449 PMCID: PMC3267757 DOI: 10.1371/journal.pone.0030677] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
Abstract
The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations.
Collapse
Affiliation(s)
- Christelle Golzio
- Center for Human Disease Modeling, Department of Cell Biology, Duke Medical Center, Durham, North Carolina, United States of America
| | | | | | - Gregory Nuel
- CNRS 8145, Mathématiques appliquées, Université Paris Descartes, Paris, France
| | - Candice Babarit
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Arnold Munnich
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Michel Vekemans
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Stéphane Zaffran
- INSERM, U910, Marseille, France; Aix-Marseille Univ, Faculté de Médecine, UMR 910, Marseille, France
| | - Stanislas Lyonnet
- INSERM U781, Université Paris Descartes, Faculté de Médecine, Paris, France
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Heather C. Etchevers
- INSERM, U910, Marseille, France; Aix-Marseille Univ, Faculté de Médecine, UMR 910, Marseille, France
- * E-mail:
| |
Collapse
|
186
|
de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, Lagendijk AK, Schilling TF, Herzog W, Abdelilah-Seyfried S, Hammerschmidt M, Bakkers J. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res 2012; 110:578-87. [PMID: 22247485 DOI: 10.1161/circresaha.111.261172] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered. OBJECTIVE To identify when and where Bmp signaling regulates cardiogenic differentiation. METHODS AND RESULTS Here we have observed that in zebrafish embryos, Bmp signaling is active in cardiac progenitor cells prior to their differentiation into cardiomyocytes. Bmp signaling is continuously required during somitogenesis within the anterior lateral plate mesoderm to induce myocardial differentiation. Surprisingly, Bmp signaling is actively repressed in differentiating myocardial cells. We identified the inhibitory Smad6a, which is expressed in the cardiac tissue, to be required to inhibit Bmp signaling and thereby promote expansion of the ventricular myocardium. CONCLUSION Bmp signaling exerts opposing effects on myocardial differentiation in the embryo by promoting as well as inhibiting cardiac growth.
Collapse
Affiliation(s)
- Emma de Pater
- Cardiac development and genetics group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Zhang Y, Ruest LB. Analysis of neural crest cell fate during cardiovascular development using Cre-activated lacZ/β-galactosidase staining. Methods Mol Biol 2012; 843:125-138. [PMID: 22222527 DOI: 10.1007/978-1-61779-523-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is important to identify the mechanisms regulating cardiovascular development. However, complex genetic tools are often required, including transgenic animals that express the lacZ transgene encoding the β-galactosidase enzyme under the control of a specific promoter or following recombination with the Cre recombinase. The latter can be useful for identifying specific cell populations of the developing cardiovascular system, including neural crest cells. The tracking of these cells can help clarify their fate in mutant embryos and elucidate the etiology of some congenital cardiovascular birth defects. This chapter highlights the methods used to stain embryonic tissues in whole mount or sections to detect the expression of the lacZ transgene with a focus on tracking cardiac neural crest cells using the Wnt1-Cre and R26R mouse lines. We also provide a protocol using fluorescence-activated cell sorting for collecting neural crest cells for further analysis. These protocols can be used with any embryos expressing Cre and lacZ.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, Texas A&M Healthy Science Center-Baylor College of Dentistry, Dallas, TX, USA
| | | |
Collapse
|
188
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
189
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|
190
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
191
|
Takahashi M, Terasako Y, Yanagawa N, Kai M, Yamagishi T, Nakajima Y. Myocardial progenitors in the pharyngeal regions migrate to distinct conotruncal regions. Dev Dyn 2011; 241:284-93. [PMID: 22184055 DOI: 10.1002/dvdy.23714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The cardiac progenitor cells for the outflow tract (OFT) reside in the visceral mesoderm and mesodermal core of the pharyngeal region, which are defined as the secondary and anterior heart fields (SHF and AHF), respectively. RESULTS Using chick embryos, we injected fluorescent-dye into the SHF or AHF at stage 14, and the destinations of the labeled cells were examined at stage 31. Labeled cells from the right SHF were found in the myocardium on the left dorsal side of the OFT, and cells from the left SHF were detected on the right ventral side of the OFT. Labeled cells from the right and left AHF migrated to regions of the ventral wall of the OFT close to the aortic and pulmonary valves, respectively. CONCLUSION These observations indicate that myocardial progenitors from the SHF and AHF contribute to distinct conotruncal regions and that cells from the SHF migrate rotationally while cells from the AHF migrate in a non-rotational manner.
Collapse
Affiliation(s)
- Makiko Takahashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Abenoku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
192
|
Role for p21-activated kinase PAK4 in development of the mammalian heart. Transgenic Res 2011; 21:797-811. [PMID: 22173944 DOI: 10.1007/s11248-011-9578-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/30/2011] [Indexed: 01/28/2023]
Abstract
The serine-threonine kinase PAK4 plays a pivotal role in cell proliferation, survival, and control of the cytoskeleton. Mice that lack Pak4 die in midgestation prior to embryonic day E11 from unidentified causes. Analysis of PAK4 protein levels demonstrated that it was highly expressed in the whole embryo and in the developing heart but became low in the hearts of adult mice. In this study we analyzed development of the heart in conventional and conditional Pak4 knockout mice and embryos. We found that in conventional Pak4 knockout mice cardiogenesis is strongly affected from early developmental stages and by E9.5, hearts of Pak4⁻/⁻ embryos developed multiple profound deficits. Conditional deletion of Pak4 in the progenitors of the secondary heart field led to abnormal development of the outflow tract, in which the pulmonary artery had a smaller diameter, and the aortal wall was thinner than in wildtype mice. The conditional knockout mice also displayed the characteristic enlargement of the right ventricles and right atria. Pak4⁻/⁻ embryos and cardiomyocytes in which PAK4 was depleted exhibited low levels of LIMK1, a protein that plays key roles in cytoskeletal organization. Knock down of PAK4 in cultured cardiomyocytes led to severely compromised sarcomeric structure and deficits in contraction. These results indicate that PAK4 functions, including control of actin dynamics, are necessary for normal development of the heart.
Collapse
|
193
|
Selective serotonin reuptake inhibitors (SSRIs) and heart defects: Potential mechanisms for the observed associations. Reprod Toxicol 2011; 32:484-9. [DOI: 10.1016/j.reprotox.2011.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/22/2011] [Accepted: 09/17/2011] [Indexed: 02/07/2023]
|
194
|
Matthes SA, Taffet S, Delmar M. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. ACTA ACUST UNITED AC 2011; 18:73-84. [PMID: 21985446 DOI: 10.3109/15419061.2011.621561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
195
|
Laforest B, Nemer M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol 2011; 358:368-78. [PMID: 21839733 DOI: 10.1016/j.ydbio.2011.07.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 12/12/2022]
Abstract
Members of the GATA family of transcription factors are critical regulators of heart development and mutations in 2 of them, GATA4 and GATA6 are associated with outflow tract and septal defects in human. The heart expresses 3 GATA factors, GATA4, 5 and 6 in a partially overlapping pattern. Here, we report that compound Gata4/Gata5 and Gata5/Gata6 mutants die embryonically or perinatally due to severe congenital heart defects. Almost all Gata4(+/-)Gata5(+/-) mutant embryos have double outlet right ventricles (DORV), large ventricular septal defects (VSD) as well as hypertrophied mitral and tricuspid valves. Only 25% of double compound Gata4/Gata5 heterozygotes survive to adulthood and these mice have aortic stenosis. Compound loss of a Gata5 and a Gata6 allele also leads to DORVs associated with subaortic VSDs. Expression of several transcription factors important for endocardial and myocardial cell differentiation, such as Tbx20, Mef2c, Hey1 and Hand2, was reduced in compound heterozygote embryos. These findings suggest the existence of important genetic interactions between Gata5 and the 2 other cardiac GATA factors in endocardial cushion formation and outflow tract morphogenesis. The data identify GATA5 as a potential genetic modifier of congenital heart disease and provide insight for elucidating the genetic basis of an important class of human birth defects.
Collapse
Affiliation(s)
- Brigitte Laforest
- Laboratoire de Développement et Différentiation Cardiaque, Programme de Biologie Moléculaire, Université de Montréal, Montréal QC, Canada H3C 3J7
| | | |
Collapse
|
196
|
Burchill L, Greenway S, Silversides CK, Mital S. Genetic counseling in the adult with congenital heart disease: what is the role? Curr Cardiol Rep 2011; 13:347-355. [PMID: 21537992 DOI: 10.1007/s11886-011-0188-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
New discoveries using high-resolution methods for detecting genetic aberrations indicate that the genetic contribution to congenital heart disease has been significantly underestimated in the past. DNA diagnostics have become more accessible and genetic test results are increasingly being used to guide clinical management. Adult congenital heart disease specialists seeking to counsel adults with congenital heart disease about the genetic aspects of their condition face the challenge of keeping abreast of new genetic techniques and discoveries. The emphasis of this review is on the genetic basis of structural cardiovascular defects. A framework for identifying adult congenital heart disease patients most likely to benefit from genetic testing is suggested, along with a summary of current techniques for genetic testing. The clinical and ethical challenges associated with genetic counseling are highlighted. Finally, emerging technologies and future directions in genetics and adult congenital heart disease are discussed.
Collapse
Affiliation(s)
- Luke Burchill
- Department of Medicine, Division of Cardiology, Toronto General Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
197
|
Hami D, Grimes AC, Tsai HJ, Kirby ML. Zebrafish cardiac development requires a conserved secondary heart field. Development 2011; 138:2389-98. [PMID: 21558385 DOI: 10.1242/dev.061473] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole.
Collapse
Affiliation(s)
- Danyal Hami
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
198
|
Bento M, Correia E, Tavares AT, Becker JD, Belo JA. Identification of differentially expressed genes in the heart precursor cells of the chick embryo. Gene Expr Patterns 2011; 11:437-47. [PMID: 21767665 DOI: 10.1016/j.gep.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 07/04/2011] [Indexed: 02/04/2023]
Abstract
Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Margaret Bento
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal.
| | | | | | | | | |
Collapse
|
199
|
Franco D, Chinchilla A, Daimi H, Dominguez JN, Aránega A. Modulation of conductive elements by Pitx2 and their impact on atrial arrhythmogenesis. Cardiovasc Res 2011; 91:223-31. [PMID: 21427120 DOI: 10.1093/cvr/cvr078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The development of the heart is a complex process during which different cell types progressively contribute to shape a four-chambered pumping organ. Over the last decades, our understanding of the specification and transcriptional regulation of cardiac development has been greatly augmented as has our understanding of the functional bases of cardiac electrophysiology during embryogenesis. The nascent heart gradually acquires distinct cellular and functional characteristics, such as the formation of contractile structures, the development of conductive capabilities, and soon thereafter the co-ordinated conduction of the electrical impulse, in order to fulfil its functional properties. Over the last decade, we have learnt about the consequences of impairing cardiac morphogenesis, which in many cases leads to congenital heart defects; however, we are not yet aware of the consequences of impairing electrical function during cardiogenesis. The most prevalent cardiac arrhythmia is atrial fibrillation (AF), although its genetic aetiology remains rather elusive. Recent genome-wide association studies have identified several genetic variants highly associated with AF. Among them are genetic variants located on chromosome 4q25 adjacent to PITX2, a transcription factor known to play a critical role in left-right asymmetry and cardiogenesis. Here, we review new insights into the cellular and molecular links between PITX2 and AF.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, 23071 Jáen, Spain.
| | | | | | | | | |
Collapse
|
200
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|