151
|
Zong Y, Stanger BZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol 2010; 43:257-64. [PMID: 20601079 DOI: 10.1016/j.biocel.2010.06.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 04/12/2010] [Accepted: 06/22/2010] [Indexed: 12/11/2022]
Abstract
The mammalian biliary system, consisting of the intrahepatic and extrahepatic bile ducts, is responsible for transporting bile from the liver to the intestine. Bile duct dysfunction, as is seen in some congenital biliary diseases such as Alagille syndrome and biliary atresia, can lead to the accumulation of bile in the liver, preventing the excretion of detoxification products and ultimately leading to liver damage. Bile duct formation requires coordinated cell-cell interactions, resulting in the regulation of cell differentiation and morphogenesis. Multiple signaling molecules and transcription factors have been identified as important regulators of bile duct development. This review summarizes recent progress in the field. Insights gained from studies of the molecular mechanisms of bile duct development have the potential to reveal novel mechanisms of differentiation and morphogenesis in addition to potential targets for therapy of bile duct disorders.
Collapse
Affiliation(s)
- Yiwei Zong
- Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
152
|
Zhang F, Xu R, Zhao MJ. QSG-7701 human hepatocytes form polarized acini in three-dimensional culture. J Cell Biochem 2010; 110:1175-86. [DOI: 10.1002/jcb.22632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
153
|
Akkari L, Haouzi D, Binamé F, Floc'h N, Lassus P, Baghdiguian S, Hibner U. Cell shape and TGF-β signaling define the choice of lineage during in vitro differentiation of mouse primary hepatic precursors. J Cell Physiol 2010; 225:186-95. [DOI: 10.1002/jcp.22219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
154
|
Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 2010; 51:1391-400. [PMID: 20069650 PMCID: PMC2995854 DOI: 10.1002/hep.23431] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Alagille syndrome, a chronic hepatobiliary disease, is characterized by paucity of intrahepatic bile ducts (IHBDs). To determine the impact of Notch signaling specifically on IHBD arborization, we studied the influence of both chronic gain and loss of Notch function on the intact three-dimensional IHBD structure using a series of mutant mouse models and a resin casting method. Impaired Notch signaling in bipotential hepatoblast progenitor cells (BHPCs) dose-dependently decreased the density of peripheral IHBDs, whereas activation of Notch1 results in an increased density of peripheral IHBDs. Although Notch2 has a dominant role in IHBD formation, there is also a redundant role for other Notch receptors in determining the density of peripheral IHBDs. Because changes in IHBD density do not appear to be due to changes in cellular proliferation of bile duct progenitors, we suggest that Notch plays a permissive role in cooperation with other factors to influence lineage decisions of BHPCs and sustain peripheral IHBDs. CONCLUSION There is a threshold requirement for Notch signaling at multiple steps, including IHBD tubulogenesis and maintenance, during hepatic development that determines the density of three-dimensional peripheral IHBD architecture.
Collapse
Affiliation(s)
- Erin E. Sparks
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kari A. Huppert
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie A. Brown
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stacey S. Huppert
- Department of Cell and Developmental Biology and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
155
|
Sun A, Jiang Y, Wang X, Liu Q, Zhong F, He Q, Guan W, Li H, Sun Y, Shi L, Yu H, Yang D, Xu Y, Song Y, Tong W, Li D, Lin C, Hao Y, Geng C, Yun D, Zhang X, Yuan X, Chen P, Zhu Y, Li Y, Liang S, Zhao X, Liu S, He F. Liverbase: a comprehensive view of human liver biology. J Proteome Res 2010; 9:50-8. [PMID: 19670857 DOI: 10.1021/pr900191p] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Liverbase ( http://liverbase.hupo.org.cn ) integrates information on the human liver proteome, including the function, abundance, and subcellular localization of proteins as well as associated disease information. The overall objective of the Liverbase is to provide a unique public resource for the liver community by providing comprehensive functional annotation of proteins implicated in liver development and disease. The central database features are manually annotated proteins localized in or functionally associated with human liver. In this first version of Liverbase, the associated data includes the human liver proteome (6788 proteins) and transcriptome (11205 significantly expressed genes: 10224 from CHIP and 5422 from MPSS, respecively) from the Chinese human liver proteome project (CNHLPP). As a database made publicly available through the Web site, Liverbase provides browsing and searching capabilities and a compilation of external links to other databases and homepages. Liverbase enables (i) the establishment of liver GO slim with 51 nonredundant items; (ii) systematic searches for proteins within specific functional or metabolic pathways; (iii) systematic searches that aim to find the proteins that underlie common and rare liver diseases; and (iv) the integration of detailed protein annotations derived from the literature. Liverbase also contains an external links page with links to other biological databases and homepages, including GO, KEGG, pfam, SWISS-PROT, and GNF databases. Liverbase users can utilize all these information to conduct systems biology research on liver.
Collapse
Affiliation(s)
- Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Sukowati CH, Rosso N, Crocè LS, Tiribelli C. Hepatic cancer stem cells and drug resistance: Relevance in targeted therapies for hepatocellular carcinoma. World J Hepatol 2010; 2:114-126. [PMID: 21160982 PMCID: PMC2998960 DOI: 10.4254/wjh.v2.i3.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 01/15/2010] [Accepted: 01/22/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common malignancies in the world. Systemic treatments for HCC, particularly for advanced stages, are limited by the drug resistance phenomenon which ultimately leads to therapy failure. Recent studies have indicated an association between drug resistance and the existence of the cancer stem cells (CSCs) as tumor initiating cells. The CSCs are resistant to conventional chemotherapies and might be related to the mechanisms of the ATP Binding Cassette (ABC) transporters and alterations in the CSCs signaling pathways. Therefore, to contribute to the development of new HCC treatments, further information on the characterization of CSCs, the modulation of the ABC transporters expression and function and the signaling pathway involved in the self renewal, initiation and maintenance of the cancer are required. The combination of transporters modulators/inhibitors with molecular targeted therapies may be a potent strategy to block the tumoral progression. This review summarizes the association of CSCs, drug resistance, ABC transporters activities and changes in signaling pathways as a guide for future molecular therapy for HCC.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Caecilia HC Sukowati, Natalia Rosso, Claudio Tiribelli, Centro Studi Fegato, AREA Science Park Basovizza, Trieste 34012, Italy
| | | | | | | |
Collapse
|
157
|
Alpha-fetoprotein producing cells act as cancer progenitor cells in human cholangiocarcinoma. Cancer Lett 2010; 294:25-34. [PMID: 20149523 DOI: 10.1016/j.canlet.2010.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 12/26/2022]
Abstract
We aimed to demonstrate that alpha-fetoprotein (AFP)-producing cells in cholangiocarcinomas possessed cancer stem cell (CSC)-like properties. AFP enhancer/promoter-driven EGFP gene was transfected into human cholangiocarcinoma cell lines. One cell line, RBE, expressed both AFP and EGFP. Clonal analyses revealed that one EGFP-positive cell generated both EGFP-positive and EGFP-negative cell fractions. However, one EGFP-negative cell never produced EGFP-positive cells. The EGFP-positive cells had a greater tumorigenic potential. Only the EGFP-positive cells expressed Notch1. AFP and Notch1 expression was observed in clinical intrahepatic cholangiocarcinomas. The AFP-producing cells were suggested to be CSCs. The Notch pathway might play an important role in maintaining the CSC characteristics.
Collapse
|
158
|
Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010; 2010:984248. [PMID: 20169172 PMCID: PMC2821627 DOI: 10.1155/2010/984248] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 11/12/2009] [Indexed: 02/06/2023] Open
Abstract
The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.
Collapse
|
159
|
Abstract
Notch signaling is an important molecular pathway involved in the determination of cell fate. In recent years, this signaling has been frequently reported to play a critical role in maintaining progenitor/stem cell population as well as a balance between cell proliferation, differentiation and apoptosis. Thus, Notch signaling may be mechanistically involved carcinogenesis. Indeed, many studies have showed that Notch signaling is overexpressed or constitutively activated in many cancers including colorectal cancer (CRC). Consequently, inactivation of Notch signaling may constitute a novel molecular therapy for cancer. CRC is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. In this review article, the authors reviewed the current understanding and research findings of the role of Notch signaling in CRC and discussed the possible Notch-targeting approaches in CRC.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Medicine and Centre for Cancer Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
160
|
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
161
|
Morelli S, Salerno S, Piscioneri A, Campana C, Drioli E, Bartolo LD. Membrane bioreactors for regenerative medicine: an example of the bioartificial liver. ASIA-PAC J CHEM ENG 2010. [DOI: 10.1002/apj.366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
162
|
Lemaigre FP. Molecular mechanisms of biliary development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:103-26. [PMID: 21074731 DOI: 10.1016/b978-0-12-385233-5.00004-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biliary tree drains the bile produced by hepatocytes to the duodenum via a network of intrahepatic and extrahepatic ducts. In the embryo, the intrahepatic ducts are formed near the branches of the portal vein and derive from the liver precursor cells of the hepatic bud, whereas the extrahepatic ducts directly emerge from the primitive gut. Despite this dual origin, intrahepatic and extrahepatic ducts are lined by a common cell type, the cholangiocyte. In this chapter, we describe how bile ducts are formed and cholangiocytes differentiate, and focus on the regulation of these processes by intercellular signaling pathways and by transcriptional and posttranscriptional mechanisms.
Collapse
|
163
|
LI Y, LI XF, GUO K, GAO DM, ZHAO Y, LIU YK. Microarray Analysis of Differentiation of Mouse Embryonic Stem Cells Into Hepatocyte-like Cells*. PROG BIOCHEM BIOPHYS 2009; 36:95-102. [DOI: 10.3724/sp.j.1206.2008.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
164
|
Magold AI, Cacquevel M, Fraering PC. Gene expression profiling in cells with enhanced gamma-secretase activity. PLoS One 2009; 4:e6952. [PMID: 19763259 PMCID: PMC2739295 DOI: 10.1371/journal.pone.0006952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/27/2009] [Indexed: 01/10/2023] Open
Abstract
Background Processing by γ-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of γ-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of γ-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways. Methodology/Principal Findings To identify genes and molecular functions transcriptionally affected by γ-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited γ-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to γ-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by γ-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices. Conclusions/Significance Investigating the effects of γ-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better understanding of the biology of γ-secretase and its roles in cancer and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Alexandra I. Magold
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Matthias Cacquevel
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick C. Fraering
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
165
|
First Insight into the Human Liver Proteome from PROTEOMESKY-LIVERHu 1.0, a Publicly Available Database. J Proteome Res 2009; 9:79-94. [DOI: 10.1021/pr900532r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
166
|
Tchorz JS, Kinter J, Müller M, Tornillo L, Heim MH, Bettler B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 2009; 50:871-9. [PMID: 19551907 DOI: 10.1002/hep.23048] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Intrahepatic bile duct (IHBD) development begins with the differentiation of hepatoblasts into a single continuous biliary epithelial cell (BEC) layer, called the ductal plate. During ductal plate remodeling, tubular structures arise at distinct sites of the ductal plate, forming bile ducts that dilate into the biliary tree. Alagille syndrome patients, who suffer from bile duct paucity, carry Jagged1 and Notch2 mutations, indicating that Notch2 signaling is important for IHBD development. To clarify the role of Notch2 in BEC differentiation, tubulogenesis, and BEC survival, we developed a mouse model for conditional expression of activated Notch2 in the liver. We show that expression of the intracellular domain of Notch2 (Notch2ICD) differentiates hepatoblasts into BECs, which form additional bile ducts in periportal regions and ectopic ducts in lobular regions. Additional ducts in periportal regions are maintained into adulthood and connect to the biliary tight junction network, resulting in an increased number of bile ducts per portal tract. Remarkably, Notch2ICD-expressing ductal plate remnants were not eliminated during postnatal development, implicating Notch2 signaling in BEC survival. Ectopic ducts in lobular regions did not persist into adulthood, indicating that local signals in the portal environment are important for maintaining bile ducts. CONCLUSION Notch2 signaling regulates BEC differentiation, the induction of tubulogenesis during IHBD development, and BEC survival.
Collapse
Affiliation(s)
- Jan S Tchorz
- Department of Biomedicine, Institute of Physiology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
167
|
Gómez-Aristizábal A, Keating A, Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther 2009; 17:1504-8. [PMID: 19584815 PMCID: PMC2835270 DOI: 10.1038/mt.2009.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes and hematopoietic stem cells (HSCs) appear to share many of the same requirements for their survival, functionality, and proliferation. This may be due to a shared location during fetal development. Moreover, hepatocytes and HSCs are unable to function, or even survive, without stromal cell support. Bone marrow-derived mesenchymal stromal cells (MSCs) support the proliferation and functionality, not only of HSCs, but also of hepatocytes. Although knowledge of the mechanisms underlying HSCs' support is far more advanced than for hepatocytes, data suggest that many agents important for HSCs also maintain the normal hepatocyte phenotype in vitro. Thus, it is possible that new techniques for the maintenance and expansion of HSCs may also be useful for hepatocytes. Bone marrow-derived MSCs are easily cultured and expanded in vitro, and some data suggest that they are immunoregulatory as well as relatively nonimmunogenic. These observations suggest that allogeneic MSCs may be useful not only in supporting hepatocyte growth and proliferation but also in modulating immune responses such as stellate cell activation.
Collapse
|
168
|
Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, Liu C, Wu C, Ding M, Deng H. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS One 2009; 4:e6468. [PMID: 19649295 PMCID: PMC2714184 DOI: 10.1371/journal.pone.0006468] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/03/2009] [Indexed: 01/14/2023] Open
Abstract
The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell–derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.
Collapse
Affiliation(s)
- Dongxin Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Song Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Jun Cai
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yushan Guo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, The University Town, Shenzhen, China
| | - Zhihua Song
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, The University Town, Shenzhen, China
| | - Jie Che
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chun Liu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, The University Town, Shenzhen, China
| | - Chen Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, The University Town, Shenzhen, China
| | - Mingxiao Ding
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Hongkui Deng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, The University Town, Shenzhen, China
- * E-mail:
| |
Collapse
|
169
|
Hypoplastic glomerulocystic kidney disease and hepatoblastoma: a potential association not caused by mutations in hepatocyte nuclear factor 1beta. J Pediatr Hematol Oncol 2009; 31:527-9. [PMID: 19564751 DOI: 10.1097/mph.0b013e3181a974c8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoplastic glomerulocystic kidney disease is an autosomal dominant disorder caused by mutations in hepatocyte nuclear factor-1beta. Hepatoblastoma is a sporadic occurring tumor of embryonal origin that has been associated with the several overgrowth syndromes. We report a case of concomitant hypoplastic glomerulocystic kidney disease and hepatoblastoma. Review of the literature identified 4 other patients with a similar association. We propose that hypoplastic glomerulocystic kidney disease and hepatoblastoma represent a possible association, and we excluded mutations in hepatocyte nuclear factor-1beta in our patient as causative of this putative association.
Collapse
|
170
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
171
|
Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ. Notch signaling controls liver development by regulating biliary differentiation. Development 2009; 136:1727-39. [PMID: 19369401 DOI: 10.1242/dev.029140] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the mammalian liver, bile is transported to the intestine through an intricate network of bile ducts. Notch signaling is required for normal duct formation, but its mode of action has been unclear. Here, we show in mice that bile ducts arise through a novel mechanism of tubulogenesis involving sequential radial differentiation. Notch signaling is activated in a subset of liver progenitor cells fated to become ductal cells, and pathway activation is necessary for biliary fate. Notch signals are also required for bile duct morphogenesis, and activation of Notch signaling in the hepatic lobule promotes ectopic biliary differentiation and tubule formation in a dose-dependent manner. Remarkably, activation of Notch signaling in postnatal hepatocytes causes them to adopt a biliary fate through a process of reprogramming that recapitulates normal bile duct development. These results reconcile previous conflicting reports about the role of Notch during liver development and suggest that Notch acts by coordinating biliary differentiation and morphogenesis.
Collapse
Affiliation(s)
- Yiwei Zong
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol Biol Cell 2009; 20:2486-94. [PMID: 19297530 DOI: 10.1091/mbc.e08-02-0177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bile ducts are hepatic tubular structures that are lined by cholangiocytes, a type of liver epithelial cell. Cholangiocytes first form a single layer of cells, termed the ductal plate, surrounding the portal vein, which eventually remodels into the branching tubular network of bile ducts. The process of bile duct morphogenesis is not yet clear: a conventional model where cholangiocytes proliferate to duplicate a single layer of the ductal plate before lumen formation seems inconsistent with the observation that proliferation is dramatically reduced when hepatoblasts, liver progenitor cells, differentiate into cholangiocytes. Here, we developed a new culture system in which a liver progenitor cell line, HPPL, reorganizes from a monolayer to tubular structures in response to being overlaid with a gel containing type I collagen and Matrigel. We found that some of the HPPL in the monolayer depolarized and migrated to fold up the monolayer into a double-cell layer. These morphogenetic processes occurred without cell proliferation and required phosphatidylinositol 3-kinase and Akt activity. Later in morphogenesis, luminal space was generated between the two cell layers. This process, in particular enlargement of the apical lumen, involved transcriptional activity of HNF1beta. Thus, using this sandwich culture system, we could segregate tubulogenesis of bile ducts into distinct steps and found that the PI3K/Akt pathway and HNF1beta regulated different steps of the morphogenesis. Although the process of tubulogenesis in culture specifically resembled early bile duct formation, involvement of these two key players suggests that the sandwich culture might help us to find common principles of tubulogenesis in general.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Departments of Anatomy, and Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-2140, USA
| | | | | |
Collapse
|
173
|
Oikawa T, Kamiya A, Kakinuma S, Zeniya M, Nishinakamura R, Tajiri H, Nakauchi H. Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology 2009; 136:1000-11. [PMID: 19185577 DOI: 10.1053/j.gastro.2008.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 10/20/2008] [Accepted: 11/06/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Fetal hepatic stem/progenitor cells, called hepatoblasts, differentiate into both hepatocytes and cholangiocytes. The molecular mechanisms regulating this lineage segmentation process remain unknown. Sall4 has been shown to be among the regulators of organogenesis, embryogenesis, maintenance of pluripotency, and early embryonic cell fate decisions in embryonic stem cells. The expression and functional roles of Sall4 during liver development have not been elucidated. We here provide their first description in hepatoblasts. METHODS To investigate functions of Sall4 in fetal liver development, Dlk(+)CD45(-)Ter119(-) hepatoblasts derived from embryonic day 14 mouse livers were purified, and in vitro gain and loss of function analyses and in vivo transplantation analyses were performed using retrovirus- or lentivirus-mediated gene transfer. RESULTS We demonstrated that Sall4 was expressed in fetal hepatoblasts but not adult hepatocytes. The expression level of Sall4 gradually fell during liver development. Overexpression of Sall4 in hepatoblasts significantly inhibited maturation induced by oncostatin M and extracellular matrix in vitro, as evidenced by morphologic changes and suppression of hepatic maturation marker gene expression. When bile duct-like structures were induced by collagen gel-embedded culture, overexpression of Sall4 markedly augmented size and number of cytokeratin19(+)-branching structures. Knockdown of Sall4 inhibited formation of these branching structures. With in vivo transplantation, Sall4 enhanced differentiation of cytokeratin19(+)-bile ducts derived from transplanted hepatoblasts. CONCLUSIONS These results suggest that Sall4 plays a crucial role in controlling the lineage commitment of hepatoblasts not only inhibiting their differentiation into hepatocytes but also driving their differentiation toward cholangiocytes.
Collapse
Affiliation(s)
- Tsunekazu Oikawa
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
174
|
López-Terrada D, Gunaratne PH, Adesina AM, Pulliam J, Hoang DM, Nguyen Y, Mistretta TA, Margolin J, Finegold MJ. Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum Pathol 2009; 40:783-94. [PMID: 19200579 DOI: 10.1016/j.humpath.2008.07.022] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/28/2008] [Accepted: 07/31/2008] [Indexed: 12/28/2022]
Abstract
Hepatoblastoma is characterized by a diversity of differentiation patterns, some resembling stages of liver development, and occasionally associated with clinical behavior. Our hypothesis is that histologic microheterogeneity in hepatoblastoma correlates with molecular heterogeneity and reflects different stages of developmental arrest. We studied the activation status of the Wnt and Notch pathways and the differential expression of hepatocyte nuclear factor 4alpha, EGFR, and IGF2 genes, relevant to liver development and malignant transformation in histologic variants of hepatoblastoma. Eighty-seven percent of 32 hepatoblastoma cases studied carried CTNNB1 mutations within the ubiquitination domain. Large deletions were seen only in pure fetal cases, also characterized by CCND1 and GLUL (GS) overexpression. Hepatoblastomas with small-cell type appeared clearly distinct and were the only ones with negative GLUL expression. HES1 expression and HES1/AXIN2 used to measure Notch versus Wnt activation ratio were particularly elevated in pure fetal cases and were lowest in hepatoblastomas with small-cell component. Hepatocyte nuclear factor 4alpha was relatively elevated only in embryonal hepatoblastomas. DLK1, DKK, AXIN2, IGF2, and EGFR were increased in all subtypes. Our results support the hypothesis that hepatoblastoma microheterogeneity correlates with molecular heterogeneity. DLK1, a marker of bipotential oval cells, is consistently up-regulated in hepatoblastoma. Therefore, we speculate that hepatoblastomas may arise from a proliferating bipotential precursor. Wnt activation is prevalent in hepatoblastomas, most significantly in predominantly embryonal and mixed types, whereas Notch activation, needed for cholangiocytic differentiation at a more differentiated state, is highest in pure fetal hepatoblastomas. The relative Wnt versus Notch activation appears useful in stratifying different subtypes.
Collapse
|
175
|
|
176
|
Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 2008; 48:607-16. [PMID: 18666240 DOI: 10.1002/hep.22381] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED The Notch pathway is an evolutionary conserved, intercellular signaling pathway that plays an important role in cell fate specification and the embryonic development of many organs, including the liver. In humans, mutations in the Notch receptor ligand Jagged1 gene result in defective intrahepatic bile duct (IHBD) development in Alagille syndrome. Developmental abnormalities of IHBD in mice doubly heterozygous for Jagged1 and Notch2 mutations propose that interactions of Jagged1 and its receptor Notch2 are crucial for normal IHBD development. Because different cell types in the liver are involved in IHBD development and morphogenesis, the cell-specific role of Notch signaling is not entirely understood. We investigated the effect of combined or single targeted disruption of Notch1 and Notch2 specifically in hepatoblasts and hepatoblast-derived lineage cells on liver development using AlbCre transgenic mice. Hepatocyte differentiation and homeostasis were not impaired in mice after combined deletion of Notch1 and Notch2 (N1N2(F/F)AlbCre). However, we detected irregular ductal plate structures in N1N2(F/F)AlbCre newborns, and further postnatal development of IHBD was severely impaired characterized by disorganized ductular structures accompanied by portal inflammation, portal fibrosis, and foci of hepatocyte feathery degeneration in adulthood. Further characterization of mutant mice with single deletion of Notch1 (N1(F/F)AlbCre) or Notch2 (N2(F/F)AlbCre) showed that Notch2 but not Notch1 is indispensable for normal perinatal and postnatal IHBD development. Further reduction of Notch2 gene dosage in Notch2 conditional/mutant (N2(F/LacZ)AlbCre) animals further enhanced IHBD abnormalities and concomitant liver pathology. CONCLUSION Notch2 is required for proper IHBD development and morphogenesis.
Collapse
Affiliation(s)
- Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Suzuki K, Tanaka M, Watanabe N, Saito S, Nonaka H, Miyajima A. p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology 2008; 135:270-281.e3. [PMID: 18515089 DOI: 10.1053/j.gastro.2008.03.075] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 03/17/2008] [Accepted: 03/27/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) and portal fibroblasts (PFs) are 2 distinct mesenchymal cells in adult liver. HSCs in sinusoids accumulate lipids and express p75 neurotrophin receptor (p75NTR). HSCs and PFs play pivotal roles in liver regeneration and fibrosis. However, the roles of mesenchymal cells in fetal liver remain poorly understood. In this study, we aimed to characterize mesenchymal cells in mouse fetal liver. METHODS We prepared an anti-p75NTR monoclonal antibody applicable for flow cytometry and immunohistochemistry. p75NTR(+) cells isolated from fetal liver by flow cytometry were characterized by reverse-transcription polymerase chain reaction, immunohistochemistry, and cell cultivation. Lipid-containing cells were visualized by Oil-red O staining. RESULTS p75NTR(+) cells in fetal liver were clearly distinct from endothelial cells and showed characteristics of mesenchymal cells. At embryonic day (E) 10.5, p75NTR(+) cells were present at the periphery of the liver bud in close contact with endothelial cells, and spread over the liver at E11.5. With the formation of the liver architecture, they began to localize to 2 distinct areas, parenchymal and portal areas, and lipid-containing p75NTR(+) cells increased accordingly. p75NTR(+) cells around portal veins were adjacent to cholangiocytes and expressed Jagged1, a crucial factor for the commitment of hepatoblasts to cholangiocytes. By cultivation, p75NTR(+) cells showed features of adult HSCs with markedly increased expression of glial fibrillary acidic protein and alpha-smooth muscle actin. CONCLUSIONS p75NTR(+) mesenchymal cells in fetal liver include progenitors for HSCs and PFs, and the anti-p75NTR monoclonal antibody is useful for their isolation.
Collapse
Affiliation(s)
- Kaori Suzuki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
178
|
Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development 2008; 135:411-24. [PMID: 18192283 DOI: 10.1242/dev.000505] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Wnt and Notch signalling pathways represent two major channels of communication used by animal cells to control their identities and behaviour during development. A number of reports indicate that their activities are closely intertwined during embryonic development. Here, we review the evidence for this relationship and suggest that Wnt and Notch ('Wntch') signalling act as components of an integrated device that, rather than defining the fate of a cell, determines the probability that a cell will adopt that fate.
Collapse
Affiliation(s)
- Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
179
|
Hozumi K, Negishi N, Tsuchiya I, Abe N, Hirano KI, Suzuki D, Yamamoto M, Engel J, Habu S. Notch signaling is necessary for GATA3 function in the initiation of T cell development. Eur J Immunol 2008; 38:977-85. [DOI: 10.1002/eji.200737688] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
180
|
Abstract
Background Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis. Methodology/Principal Findings Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene. Conclusions/Significance Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification.
Collapse
|
181
|
Kano J, Ishiyama T, Iijima T, Morishita Y, Murata S, Hisakura K, Ohkohchi N, Noguchi M. Differentially expressed genes in a porcine adult hepatic stem-like cell line and their expression in developing and regenerating liver. J Transl Med 2008; 88:132-43. [PMID: 18059361 DOI: 10.1038/labinvest.3700709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To identify differentially expressed genes in adult hepatic stem cells, we performed suppression-subtractive hybridization (SSH) between adult porcine hepatic stem-like cells (HSLCs) and hepatocytes, and the expression of selected genes was assessed in porcine fetal livers and regenerating liver in an 80% hepatectomy model. SSH and subsequent differential screening selected 39 clones that were expressed differentially in HSLCs, including six known genes, 10 unknown genes, one unidentified gene and some chimeric fragments. Four of these genes showed significantly higher expression in HSLCs than in mature hepatocytes: anti-leukoproteinase, matrix Gla protein, amyloid-beta precursor protein (APP) and dickkopf-3 (DKK-3). Among them, the mRNA expression of APP and DKK-3 was significantly higher in fifth GW fetal liver than in seventh and thirteenth GW fetal and adult livers, unlike the expression patterns of alpha-fetoprotein (AFP) or albumin. These mRNAs were detected in the parenchyma of fifth GW fetal liver, whereas in normal adult liver possible expression was limited to the periportal area. On the other hand, immunohistochemistry, Masson's trichrome staining and silver impregnation demonstrated APP and DKK-3 proteins in fifth GW fetal liver in which intralobular bile ducts and hepatic plates had not completely developed. DKK-3 and AFP mRNAs were upregulated on the seventh day (7D) after 80% hepatectomy. In the liver tissue, DKK-3 and AFP proteins were detected in mesenchymal cells in the periportal area and parenchyma, respectively. These data for DKK-3 expression in adult livers suggest the possible presence of adult HSLCs in the periportal area. The pattern of histological staining suggested that 7D liver was in the process of regeneration, showing a character similar to the fifth GW fetal liver. It is speculated that DKK-3 is upregulated in immature and developing livers, and has possible involvement in hepatic differentiation and liver regeneration.
Collapse
Affiliation(s)
- Junko Kano
- Department of Pathology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Gao J, Song Z, Chen Y, Xia L, Wang J, Fan R, Du R, Zhang F, Hong L, Song J, Zou X, Xu H, Zheng G, Liu J, Fan D. Deregulated expression of Notch receptors in human hepatocellular carcinoma. Dig Liver Dis 2008; 40:114-21. [PMID: 17920003 DOI: 10.1016/j.dld.2007.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/07/2007] [Accepted: 08/03/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Notch signaling controls cellular differentiation and proliferation. Deregulated expression of Notch receptors is observed in a growing number of malignant tumours, however, the role of Notch signaling in hepatocellular carcinoma is still unknown. To address this, the expression of Notch receptors in human hepatocellular carcinoma was examined in both protein and ribonucleic acid levels. PATIENTS AND METHODS Fifty-three hepatocellular carcinoma tissue sections were detected by immunohistochemistry. Three paired fresh surgical hepatocellular carcinoma and adjacent nontumour liver samples were analyzed by Western blot and reverse transcriptase polymerase chain reaction. Immunohistochemistry, Western blot and reverse transcriptase polymerase chain reaction are reliable methods to examine the expression of protein and RNA. RESULTS All of the four Notch receptors were expressed in the neoplastic cells of hepatocellular carcinoma tissues with different intensity and extensity. Notch1 and Notch4 were expressed in both cytoplasm and nucleus, and all of the nuclear staining showed up in the cytoplasm-positive cases. Cytoplasmic and nuclear Notch1 was detected in 88.7% (47/53) and 9.4% (5/53) of hepatocellular carcinoma tissues, respectively; positive rates of Notch4 were 67.9% (36/53) in cytoplasm and 52.8% (31/53) in nucleus. Notch2 and Notch3 were only in cytoplasm, with positive rates of 26.4% (14/53) and 52.8% (28/53), respectively. Compared with adjacent nontumour liver, Notch1 (cytoplasmic) and Notch4 (nuclear) were up-regulated (P<0.05, P<0.05), Notch2 was down-regulated (P<0.05), while Notch1 (nuclear), Notch3 and Notch4 (cytoplasmic) showed no difference between hepatocellular carcinoma and adjacent nontumour liver. Western blot and reverse transcriptase polymerase chain reaction analysis showed a consistent result. CONCLUSION Our findings indicate that the expression of Notch receptors was deregulated and Notch signaling might be involved in the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- J Gao
- Department of Digestive Diseases, Wuhan General Hospital, Guangzhou Command PLA, Wuhan, Hubei Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Dezső K, Halász J, Bisgaard HC, Paku S, Turányi E, Schaff Z, Nagy P. Delta-like protein (DLK) is a novel immunohistochemical marker for human hepatoblastomas. Virchows Arch 2008; 452:443-8. [DOI: 10.1007/s00428-007-0571-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/18/2007] [Accepted: 12/27/2007] [Indexed: 11/25/2022]
|
184
|
Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta Mol Basis Dis 2007; 1782:61-74. [PMID: 18187050 DOI: 10.1016/j.bbadis.2007.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
185
|
Kuver R, Savard CE, Lee SK, Haigh WG, Lee SP. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. Am J Physiol Gastrointest Liver Physiol 2007; 293:G944-55. [PMID: 17717044 DOI: 10.1152/ajpgi.00263.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
186
|
Terrace JD, Currie IS, Hay DC, Masson NM, Anderson RA, Forbes SJ, Parks RW, Ross JA. Progenitor Cell Characterization and Location in the Developing Human Liver. Stem Cells Dev 2007; 16:771-8. [DOI: 10.1089/scd.2007.0016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- John D. Terrace
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - Ian S. Currie
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - Neil M. Masson
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - Richard A. Anderson
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - Rowan W. Parks
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| | - James A. Ross
- Centre for Regenerative Medicine, University of Edinburgh Medical School, EH16 4SB, Edinburgh, United Kingdom
| |
Collapse
|
187
|
Ochsner SA, Strick-Marchand H, Qiu Q, Venable S, Dean A, Wilde M, Weiss MC, Darlington GJ. Transcriptional profiling of bipotential embryonic liver cells to identify liver progenitor cell surface markers. Stem Cells 2007; 25:2476-87. [PMID: 17641245 PMCID: PMC2853184 DOI: 10.1634/stemcells.2007-0101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Bile Ducts/cytology
- Bile Ducts/embryology
- Biomarkers
- Cell Differentiation/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Dihydropyridines/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Lipopolysaccharides/toxicity
- Liver/cytology
- Liver/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Multipotent Stem Cells/drug effects
- Multipotent Stem Cells/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Scott A. Ochsner
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | | | - Qiong Qiu
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Susan Venable
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Adam Dean
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Wilde
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Mary C. Weiss
- Unité de Génétique de la Différenciation, Institut Pasteur, Paris, France
| | | |
Collapse
|
188
|
Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M, Torre G, Alberti D, Sonzogni A, Okolicsanyi L, Strazzabosco M. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:641-53. [PMID: 17600123 PMCID: PMC1934520 DOI: 10.2353/ajpath.2007.070073] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with Alagille syndrome (AGS), a genetic disorder of Notch signaling, suffer from severe ductopenia and cholestasis, but progression to biliary cirrhosis is rare. Instead, in biliary atresia (BA) severe cholestasis is associated with a pronounced "ductular reaction" and rapid progression to biliary cirrhosis. Given the role of Notch in biliary development, we hypothesized that defective Notch signaling would influence the reparative mechanisms in cholestatic cholangiopathies. Thus we compared phenotype and relative abundance of the epithelial components of the hepatic reparative complex in AGS (n = 10) and BA (n = 30) using immunohistochemistry and computer-assisted morphometry. BA was characterized by an increase in reactive ductular and hepatic progenitor cells, whereas in AGS, a striking increase in intermediate hepatobiliary cells contrasted with the near absence of reactive ductular cells and hepatic progenitor cells. Hepatocellular mitoinhibition index (p21(waf1)/Ki67) was similar in AGS and BA. Fibrosis was more severe in BA, where portal septa thickness positively correlated with reactive ductular cells and hepatic progenitor cells. AGS hepatobiliary cells failed to express hepatic nuclear factor (HNF) 1beta, a biliary-specific transcription factor. These data indicate that Notch signaling plays a role in liver repair mechanisms in postnatal life: its defect results in absent reactive ductular cells and accumulation of hepatobiliary cells lacking HNF1beta, thus being unable to switch to a biliary phenotype.
Collapse
Affiliation(s)
- Luca Fabris
- CeLiveR, Gastroenterology and Liver Transplant Unit, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B, Gripon P, Kremsdorf D, Guguen-Guillouzo C, Corlu A. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 2007; 45:957-67. [PMID: 17393521 DOI: 10.1002/hep.21536] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatic tumors, exhibiting mature hepatocytes and undifferentiated cells merging with cholangiocyte and hepatocyte phenotypes, are frequently described. The mechanisms by which they occur remain unclear. We report differentiation and transdifferentiation behaviors of human HepaRG cells isolated from a differentiated tumor developed consecutively to chronic HCV infection. We demonstrate that, in vitro, proliferating HepaRG cells differentiate toward hepatocyte-like and biliary-like cells at confluence. If hepatocyte-like cells are selectively isolated and cultured at high cell density, they proliferate and preserve their differentiation status. However, when plated at low density, they transdifferentiate into hepatocytic and biliary lineages through a bipotent progenitor. In accordance, transplantation of either undifferentiated or differentiated HepaRG cells in uPA/SCID mouse damaged liver gives rise mainly to functional human hepatocytes infiltrating mouse parenchyma. Analysis of the differentiation/transdifferentiation process reveals that: (1) the reversible differentiation fate of HepaRG cells is related to the absence of p21(CIP1) and p53 accumulation in differentiated cells; (2) HepaRG bipotent progenitors express the main markers of in vivo hepatic progenitors, and that cell differentiation process is linked to loss of their expression; (3) early and transient changes of beta-catenin localization and HNF3beta expression are correlated to Notch3 upregulation during hepatobiliary commitment of HepaRG cells. CONCLUSION Our results demonstrate the great plasticity of transformed hepatic progenitor cells and suggest that the transdifferentiation process could supply the pool of hepatic progenitor cells. Moreover, they highlight possible mechanisms by which transdifferentiation and proliferation of unipotent hepatocytes might cooperate in the development of mixed and differentiated tumors.
Collapse
|
190
|
Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell 2007; 18:1472-9. [PMID: 17314404 PMCID: PMC1838984 DOI: 10.1091/mbc.e06-09-0848] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cholangiocytes are cellular components of the bile duct system of the liver, which originate from hepatoblasts during embryonic liver development. Although several transcription factors and signaling molecules have been implicated in bile duct development, its molecular mechanism has not been studied in detail. Here, we applied a three-dimensional (3D) culture technique to a liver progenitor cell line, HPPL, to establish an in vitro culture system in which HPPL acquire differentiated cholangiocyte characteristics. When HPPL were grown in a gel containing Matrigel, which contains extracellular matrix components of basement membrane, HPPL developed apicobasal polarity and formed cysts, which had luminal space inside. In the cysts, F-actin bundles and atypical protein kinase C were at the apical membrane, E-cadherin was localized at the lateral membrane, and beta-catenin and integrin alpha6 were located at the basolateral membrane. HPPL in cysts expressed cholangiocyte markers, including cytokeratin 19, integrin beta4, and aquaporin-1, but not a hepatocyte marker, albumin. Furthermore, HPPL transported rhodamine 123, a substrate for multidrug resistance gene products, from the basal side to the central lumen. These data indicate that HPPL develop cholangiocyte-type epithelial polarity in 3D culture. Phosphatidylinositol 3-kinase signaling was essential for proliferation and survival of HPPL in culture, whereas laminin-1 was a crucial component of Matrigel for inducing epithelial polarization of HPPL. Because HPPL cysts display structural and functional similarities with bile ducts, the 3D culture of HPPL recapitulates in vivo cholangiocyte differentiation and is useful to study the molecular mechanism of bile duct development in vitro.
Collapse
Affiliation(s)
- Naoki Tanimizu
- *Departments of Anatomy and Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-2140; and
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Keith E. Mostov
- *Departments of Anatomy and Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-2140; and
| |
Collapse
|
191
|
Loomes KM, Russo P, Ryan M, Nelson A, Underkoffler L, Glover C, Fu H, Gridley T, Kaestner KH, Oakey RJ. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology 2007; 45:323-30. [PMID: 17366661 DOI: 10.1002/hep.21460] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The Notch signaling pathway is involved in determination of cell fate and control of cell proliferation in multiple organ systems. Jag1 encodes a ligand in the Notch pathway and has been identified as the disease-causing gene for the developmental disorder Alagille syndrome. Evidence from the study of human disease and mouse models has implicated Jag1 as having an important role in the development of bile ducts. We have derived a conditional knockout allele (Jag1(loxP)) to study the role of Jag1 and Notch signaling in liver and bile duct development. We crossed Jag1(loxP) mice with a transgenic line carrying Cre recombinase under the control of the albumin promoter and alpha-fetoprotein enhancer to ablate Jag1 in hepatoblasts. The liver-specific Jag1 conditional knockout mice showed normal bile duct development. To further decrease Notch pathway function, we crossed the Jag1 conditional knockout mice with mice carrying the hypomorphic Notch2 allele, and bile duct anatomy remained normal. When Jag1 conditional mice were crossed with mice carrying the Jag1 null allele, the adult progeny exhibited striking bile duct proliferation. CONCLUSION These results indicate that Notch signaling in the liver is sensitive to Jag1 gene dosage and suggest a role for the Notch pathway in postnatal growth and morphogenesis of bile ducts.
Collapse
Affiliation(s)
- Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The liver is the central organ for metabolism and has strong regenerative capability. Although the liver has been studied mostly biochemically and histopathologically, genetic studies using gene-targeting technology have identified a number of cytokines, intracellular signaling molecules, and transcription factors involved in liver development and regeneration. In addition, various in vitro systems such as fetal liver explant culture and primary culture of fetal liver cells have been established, and the combination of genetic and in vitro studies has accelerated investigation of liver development. Identification of the cell-surface molecules of liver progenitors has made it possible to identify and isolate liver progenitors, making the liver a unique model for stem cell biology. In this review, we summarize progresses in understanding liver development and regeneration.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Anatomy, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
193
|
Yamasaki H, Sada A, Iwata T, Niwa T, Tomizawa M, Xanthopoulos KG, Koike T, Shiojiri N. Suppression of C/EBPalpha expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development 2006; 133:4233-4243. [PMID: 17021047 DOI: 10.1242/dev.02591] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of C/EBPalpha, which may govern transcription of mature hepatocyte marker genes, was suppressed in periportal hepatoblasts in mouse liver development, leading to biliary cell differentiation. This study was undertaken to analyze how inactivation of the Cebpa gene affects biliary cell differentiation and gene expression of the regulatory genes for that differentiation, including Hnf1b and Hnf6. In the knockout mouse liver at midgestation stages, pseudoglandular structures were abundantly induced in the parenchyma with elevated expression of Hnf6 and Hnf1b mRNAs. The wild-type liver parenchyma expressed mRNAs of these transcription factors at low levels, though periportal biliary progenitors had strong expression of them. These results suggest that expression of Hnf6 and Hnf1b is downstream of C/EBPalpha action in fetal liver development, and that the suppression of C/EBPalpha expression in periportal hepatoblasts may lead to expression of Hnf6 and Hnf1b mRNAs. Immunohistochemical studies with biliary cell markers in knockout livers demonstrated that differentiated biliary epithelial cells were confined to around the portal veins. The suppression of C/EBPalpha expression may result in upregulation of Hnf6 and Hnf1b gene expression, but be insufficient for biliary cell differentiation. When liver fragments of Cebpa-knockout fetuses, in which hepatoblasts were contained as an endodermal component, were transplanted in the testis of Scid (Prkdc) male mice, almost all hepatoblasts gave rise to biliary epithelial cells. Wild-type hepatoblasts constructed mature hepatic tissue accompanied by biliary cell differentiation. These results also demonstrate that the suppression of C/EBPalpha expression may stimulate biliary cell differentiation.
Collapse
Affiliation(s)
- Harufumi Yamasaki
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, Surugaku, Shizuoka City, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the concept of a cellulr hierarchy in tissues and in tumors. Thus, only a few cells may be necessary and sufficient for tissue repair or tumor regeneration. This is known as the hierarchical model of tumorigenesis. This report will compare this model with the stochastic model of tumorigenesis. Under normal circumstances, the processes of tissue regeneration or homeostasis are tightly regulated by several morphogen pathways to prevent excessive or inappropriate cell growth. This review presents the recent evidence that dysregulation of these processes may provide opportunities for carcinogenesis for the long-lived, highly proliferative tissue stem cell population. New findings of cancer initiating tissue stem cells identified in several solid and circulating cancers including breast, brain hematopoietic tumors will also be reviewed. Finally, this report reviews the cellular biology of cancer and its relevance to the development of more effective cancer treatment protocols.
Collapse
Affiliation(s)
- Scott V Perryman
- Department of Surgery, Stanford University School of Medicine & Lucile Packard Children's Hospital StanfordCA, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine & Lucile Packard Children's Hospital StanfordCA, USA
- *Correspondence to : Karl G. SYLVESTER, MD Pediatric Surgery Research Laboratory, 257 Campus Drive, Stanford, CA 94305-5148, USA. Tel: (650) 723-6439, Fax: (650) 725-5577, E-mail:
| |
Collapse
|
195
|
Dudas J, Elmaouhoub A, Mansuroglu T, Batusic D, Tron K, Saile B, Papoutsi M, Pieler T, Wilting J, Ramadori G. Prospero-related homeobox 1 (Prox1) is a stable hepatocyte marker during liver development, injury and regeneration, and is absent from "oval cells". Histochem Cell Biol 2006; 126:549-62. [PMID: 16770575 DOI: 10.1007/s00418-006-0191-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to analyse the changes of Prospero-related homeobox 1 (Prox1) gene expression in rat liver under different experimental conditions of liver injury, regeneration and acute phase reaction, and to correlate it with that of markers for hepatoblasts, hepatocytes, cholangiocytes and oval cells. Gene expression was studied at RNA level by RT-PCR, and at protein level by immunohistochemistry. At embryonal stage of rat liver development (embryonal days (ED) 14-16) hepatoblasts were found to be Prox1(+)/Cytokeratin (CK) 19(+) and alpha-fetoprotein (AFP)(+), at this stage Prox1(-)/CK19(+)/AFP(-) small cells (early cholangiocytes?) were identified. In fetal liver (ED 18-22) hepatoblasts were Prox1(+)/CK19(-)/AFP(+). CK7(+) cholangiocytes were detected at this stage, and they were Prox1(-)/AFP(-). In the adult liver hepatocytes were Prox1(+)/CK19(-)/CK7(-)/AFP(-), cholangiocytes were CK19(+) and/or CK7(+) and AFP(-)/Prox1(-). In models of liver damage and regeneration Prox1 remained a stable marker of hepatocytes. After 2-acetyl-aminofluorene treatment with partial hepatectomy (AAF/PH) the amount of Prox1 specific transcripts was low in the liver, when CK19 and AFP gene expression was high, and at no time point AFP(+)/CK19(+ )"oval cells" were found to be Prox1(+). However, a few Prox1(+)/CK19(+) and a few Prox1(+)/CK7(+ )cells were identified in the liver of AAF/PH-animals, which may represent precursors of hepatocytes, or a precancerous state.
Collapse
Affiliation(s)
- Jozsef Dudas
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Recent studies using animal models have elucidated a growing number of evolutionarily conserved genes and pathways that control liver development from the embryonic endoderm. It is increasingly clear that the genetic programs active in embryogenesis are often deregulated or reactivated in disease, cancer, and tissue repair. Understanding the molecular control of liver development should impact diagnosis and treatment of pediatric and adult liver diseases and aid in efforts to differentiate liver tissue in vitro for stem cell-based therapies.
Collapse
Affiliation(s)
- Valérie A McLin
- Baylor College of Medicine, Texas Childrens' Liver Center, 1102 Bates Street, Houston, TX 77006, USA
| | | |
Collapse
|
197
|
Bassères DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, Fenyus M, Kocher O, Golub T, Wong KK, Halmos B, Tenen DG. Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol 2006; 26:1109-23. [PMID: 16428462 PMCID: PMC1347037 DOI: 10.1128/mcb.26.3.1109-1123.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/12/2005] [Accepted: 11/14/2005] [Indexed: 01/10/2023] Open
Abstract
The leucine zipper family transcription factor CCAAT enhancer binding protein alpha (C/EBPalpha) inhibits proliferation and promotes differentiation in various cell types. In this study, we show, using a lung-specific conditional mouse model of C/EBPalpha deletion, that loss of C/EBPalpha in the respiratory epithelium leads to respiratory failure at birth due to an arrest in the type II alveolar cell differentiation program. This differentiation arrest results in the lack of type I alveolar cells and differentiated surfactant-secreting type II alveolar cells. In addition to showing a block in type II cell differentiation, the neonatal lungs display increased numbers of proliferating cells and decreased numbers of apoptotic cells, leading to epithelial expansion and loss of airspace. Consistent with the phenotype observed, genes associated with alveolar maturation, survival, and proliferation were differentially expressed. Taken together, these results identify C/EBPalpha as a master regulator of airway epithelial maturation and suggest that the loss of C/EBPalpha could also be an important event in the multistep process of lung tumorigenesis. Furthermore, this study indicates that exploring the C/EBPalpha pathway might have therapeutic benefits for patients with respiratory distress syndromes.
Collapse
Affiliation(s)
- Daniela S Bassères
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Shafritz DA, Oertel M, Menthena A, Nierhoff D, Dabeva MD. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 2006; 43:S89-98. [PMID: 16447292 DOI: 10.1002/hep.21047] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although it was proposed almost 60 years ago that the adult mammalian liver contains hepatic stem cells, this issue remains controversial. Part of the problem is that no specific marker gene unique to the adult hepatic stem cell has yet been identified, and regeneration of the liver after acute injury is achieved through proliferation of adult hepatocytes and does not require activation or proliferation of stem cells. Also, there are differences in the expected properties of stem versus progenitor cells, and we attempt to use specific criteria to distinguish between these cell types. We review the evidence for each of these cell types in the adult versus embryonic/fetal liver, where tissue-specific stem cells are known to exist and to be involved in organ development. This review is limited to studies directed toward identification of hepatic epithelial stem cells and does not address the controversial issue of whether stem cells derived from the bone marrow have hepatocytic potential, a topic that has been covered extensively in other recent reviews.
Collapse
Affiliation(s)
- David A Shafritz
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
199
|
Ader T, Norel R, Levoci L, Rogler LE. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev 2006; 123:177-94. [PMID: 16412614 DOI: 10.1016/j.mod.2005.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 09/30/2005] [Accepted: 10/14/2005] [Indexed: 12/19/2022]
Abstract
Bile duct morphogenesis involves sequential induction of biliary specific gene expression, bilayer generation, cell proliferation, remodeling and apoptosis. HBC-3 cells are a model system to study differentiation of hepatoblasts along the hepatocytic or bile ductular lineage in vitro and in vivo. We used microarray to define molecular pathways during ductular differentiation in response to Matrigel. The temporal pattern of expression of marker genes induced was similar to that observed during bile duct formation in vivo. Notch, HNF1beta, Polycystic kidney disease 2, Bicaudal C 1 and beta-catenin were up regulated during the time course. Functional clustering analysis revealed significant up regulation of clusters of genes involved in extracellular matrix remodeling, ion transport, vacuoles, lytic vacuoles, pro-apoptotic and anti-apoptotic genes, transcription factors and negative regulators of the cell proliferation, while genes involved in the cell cycle were significantly down regulated. Notch signaling pathway was activated by treatment with Matrigel. In addition, TGFbeta/BMP signaling pathway members including the type I TGFbeta receptor and Smads 3, 4 and 5 were significantly up regulated, as were several TGFbeta/BMP responsive genes including Hey 1, a regulator of Notch pathway signaling. SMADS 3, 4 and 5 were present in the nuclear fraction of HBC-3 cells during ductular differentiation in vitro, but not during hepatocyte differentiation. SMAD 5 was preferentially expressed in hepatoblasts undergoing bile duct morphogenesis in the fetal liver, while the TGFbeta/BMP signaling antagonist chordin, was expressed throughout the liver suggesting a mechanism by which TGFbeta/BMP signaling is limited to hepatoblasts that contact portal mesenchyme in vivo.
Collapse
Affiliation(s)
- Tammy Ader
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
200
|
Tanimizu N, Tsujimura T, Takahide K, Kodama T, Nakamura K, Miyajima A. Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr Patterns 2006; 5:209-18. [PMID: 15567716 DOI: 10.1016/j.modgep.2004.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 08/10/2004] [Accepted: 08/10/2004] [Indexed: 01/11/2023]
Abstract
We previously showed that Dlk, a transmembrane protein containing six epidermal growth factor like repeats in its extracellular domain, is strongly expressed in hepatoblasts in murine fetal liver. Here, we examined the expression of Dlk in oval cells, which are adult hepatic progenitors, in the rat 2-acetylaminofluorene/partial hepatectomy (2AAF/PH) model. Reverse transcription polymerase chain reaction analysis showed that Dlk expression was significantly induced in the regenerating liver at day 12 and 14 after PH, when many oval cells were present in periportal areas. Immunofluoresence staining analysis revealed that Dlk(+) cells expressed oval cell markers, cytokeratin 19 (CK19) and alpha-fetoprotein, indicating that Dlk is expressed in oval cells. However, Dlk(+) cells accounted for only about 20% of total CK19(+) oval cells. Dlk(+) cells were localized more distantly from the portal vein than Dlk(-) cells, and were adjacent to mature hepatocytes, though Dlk(+) cells were surrounded by the basal membrane as other oval cells. Furthermore, at day 12 after PH, only 3% of Dlk(+) oval cells expressed Ki67, whereas about 13% of total oval cells expressed Ki67, indicating that Dlk(+) oval cells are less proliferative than Dlk(-) oval cells. Taken together, these results demonstrate that Dlk is expressed in a subpopulation of oval cells and that Dlk(+) cells represent intermediate cells between Dlk(-) oval cells and mature hepatocytes.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Stem Cell Regulation, Kanagawa Academy of Science and Technology, Teikyo University Biotechnology Research Center, Kawasaki, Kanagawa 216-0001, Japan
| | | | | | | | | | | |
Collapse
|