151
|
Maruyama M, Ishida K, Watanabe Y, Nishikawa M, Takakura Y. Effects of methyl-beta-cyclodextrin treatment on secretion profile of interferon-beta and zonula occuludin-1 architecture in Madin-Darby canine kidney cell monolayers. Biol Pharm Bull 2009; 32:910-5. [PMID: 19420763 DOI: 10.1248/bpb.32.910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interferon (IFN) is a paradigm of secretory protein. However, it has been poorly understood how its secretion is regulated in polarized epithelial cells. Recently, we had shown that exogenous IFNs transiently expressed in polarized monolayers were predominantly secreted to the side on which gene transfection had been performed, while stably expressed IFNs were secreted almost equally to the both cell sides. Since those modes of secretion did not affect each other, epithelial cell layers seemed to have at least two protein sorting/secretion pathways, one for transient expression and the other for stable expression, for identical secretory proteins. Furthermore, this dual secretion profile seemed to be mediated by distinct post-trans Golgi network vesicles, suggesting the involvement of lipid rafts in the sorting multiplicity. To address this issue, here we studied the effects of cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD) on the secretion profile of IFN-beta exogenously expressed in Madin-Darby canine kidney (MDCK) cells. The MbetaCD-treatment, however, did not affect the profile in either transient or stable expression, although the architecture of zonula occuludin-1, which links to the tight junction, was substantially disrupted by the treatment. Further analysis of Triton X-100-insoluble cell extracts by sucrose density centrifugation demonstrated that IFN-beta was not apparently associated with lipid rafts in either transient or stable expression. These results suggest that lipid rafts may not be crucially involved in the regulation of secretion polarity of IFN-beta in the epithelial cells.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
152
|
Runkler N, Dietzel E, Carsillo M, Niewiesk S, Maisner A. Sorting signals in the measles virus wild-type glycoproteins differently influence virus spread in polarized epithelia and lymphocytes. J Gen Virol 2009; 90:2474-2482. [PMID: 19570960 DOI: 10.1099/vir.0.012575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The spread of virus infection within an organism is partially dictated by the receptor usage of the virus and can be influenced by sorting signals present in the viral glycoproteins expressed in infected cells. In previous studies, we have shown that the haemagglutinin (H) and fusion protein (F) of the measles virus (MV) vaccine strain MV(Edm) harbour tyrosine-dependent sorting signals which influence virus spread in both lymphocytes and epithelial cells to a similar degree. In contrast with the vaccine strain, MV wild-type virus does not use CD46 but CD150/SLAM and a not clearly identified molecule on epithelial cells as receptors. To determine differences in viral spread between vaccine and wild-type virus, we generated recombinant MV expressing glycoproteins of both the wild-type strain WTFb and the corresponding tyrosine mutants. In contrast with observations based on vaccine virus glycoproteins, mutations in wild-type virus H and F differently influenced cell-to-cell fusion and replication in polarized epithelia and lymphocytes. For wild-type H, our data suggest a key role of the cytoplasmic tyrosine signal for virus dissemination in vivo. It seems to be important for efficient virus spread between lymphocytes, while the tyrosine signal in the F protein gains importance in epithelial cells as both signals have to be intact to allow efficient spread of infection within epithelia.
Collapse
Affiliation(s)
- Nicole Runkler
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany
| | - Mary Carsillo
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210-1093, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210-1093, USA
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany
| |
Collapse
|
153
|
Lorenowicz MJ, Korswagen HC. Sailing with the Wnt: charting the Wnt processing and secretion route. Exp Cell Res 2009; 315:2683-9. [PMID: 19559695 DOI: 10.1016/j.yexcr.2009.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 11/29/2022]
Abstract
Wnt proteins are members of a highly conserved family of signalling molecules that play a central role in development and disease. During the past years, the different signalling pathways that are triggered by Wnt proteins have been studied in detail, but it is still largely unknown how a functional Wnt protein is produced and secreted. The recent finding that Wnt proteins are post-translationally modified and the discovery of the Wnt binding protein Wntless and its trafficking by the retromer complex show that Wnt secretion is a complex and highly regulated process. In this review, we will give an overview of the Wnt maturation and secretion pathway and discuss how this process may influence the spreading and signalling activity of Wnt.
Collapse
Affiliation(s)
- Magdalena J Lorenowicz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
154
|
Magal LG, Yaffe Y, Shepshelovich J, Aranda JF, de Marco MDC, Gaus K, Alonso MA, Hirschberg K. Clustering and lateral concentration of raft lipids by the MAL protein. Mol Biol Cell 2009; 20:3751-62. [PMID: 19553470 DOI: 10.1091/mbc.e09-02-0142] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MAL, a compact hydrophobic, four-transmembrane-domain apical protein that copurifies with detergent-resistant membranes is obligatory for the machinery that sorts glycophosphatidylinositol (GPI)-anchored proteins and others to the apical membrane in epithelia. The mechanism of MAL function in lipid-raft-mediated apical sorting is unknown. We report that MAL clusters formed by two independent procedures-spontaneous clustering of MAL tagged with the tandem dimer DiHcRED (DiHcRED-MAL) in the plasma membrane of COS7 cells and antibody-mediated cross-linking of FLAG-tagged MAL-laterally concentrate markers of sphingolipid rafts and exclude a fluorescent analogue of phosphatidylethanolamine. Site-directed mutagenesis and bimolecular fluorescence complementation analysis demonstrate that MAL forms oligomers via xx intramembrane protein-protein binding motifs. Furthermore, results from membrane modulation by using exogenously added cholesterol or ceramides support the hypothesis that MAL-mediated association with raft lipids is driven at least in part by positive hydrophobic mismatch between the lengths of the transmembrane helices of MAL and membrane lipids. These data place MAL as a key component in the organization of membrane domains that could potentially serve as membrane sorting platforms.
Collapse
|
155
|
Dodelet-Devillers A, Cayrol R, van Horssen J, Haqqani AS, de Vries HE, Engelhardt B, Greenwood J, Prat A. Functions of lipid raft membrane microdomains at the blood-brain barrier. J Mol Med (Berl) 2009; 87:765-74. [PMID: 19484210 DOI: 10.1007/s00109-009-0488-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) is a highly specialized structural and functional component of the central nervous system that separates the circulating blood from the brain and spinal cord parenchyma. Brain endothelial cells (BECs) that primarily constitute the BBB are tightly interconnected by multiprotein complexes, the adherens junctions and the tight junctions, thereby creating a highly restrictive cellular barrier. Lipid-enriched membrane microdomain compartmentalization is an inherent property of BECs and allows for the apicobasal polarity of brain endothelium, temporal and spatial coordination of cell signaling events, and actin remodeling. In this manuscript, we review the role of membrane microdomains, in particular lipid rafts, in the BBB under physiological conditions and during leukocyte transmigration/diapedesis. Furthermore, we propose a classification of endothelial membrane microdomains based on their function, or at least on the function ascribed to the molecules included in such heterogeneous rafts: (1) rafts associated with interendothelial junctions and adhesion of BECs to basal lamina (scaffolding rafts); (2) rafts involved in immune cell adhesion and migration across brain endothelium (adhesion rafts); (3) rafts associated with transendothelial transport of nutrients and ions (transporter rafts).
Collapse
Affiliation(s)
- Aurore Dodelet-Devillers
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CHUM-Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
156
|
|
157
|
Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. ACTA ACUST UNITED AC 2009; 185:601-12. [PMID: 19433450 PMCID: PMC2711577 DOI: 10.1083/jcb.200901145] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery.
Collapse
Affiliation(s)
- Robin W Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Staubach S, Razawi H, Hanisch FG. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 2009; 9:2820-35. [DOI: 10.1002/pmic.200800793] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
159
|
Rollason R, Korolchuk V, Hamilton C, Jepson M, Banting G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. ACTA ACUST UNITED AC 2009; 184:721-36. [PMID: 19273615 PMCID: PMC2686410 DOI: 10.1083/jcb.200804154] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells.
Collapse
Affiliation(s)
- Ruth Rollason
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | | | | | | | | |
Collapse
|
160
|
Jin S, Zhou F. Lipid raft redox signaling platforms in vascular dysfunction: Features and mechanisms. Curr Atheroscler Rep 2009; 11:220-6. [DOI: 10.1007/s11883-009-0034-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
161
|
Kielland A, Bochorishvili G, Corson J, Zhang L, Rosin DL, Heggelund P, Zhu JJ. Activity patterns govern synapse-specific AMPA receptor trafficking between deliverable and synaptic pools. Neuron 2009; 62:84-101. [PMID: 19376069 PMCID: PMC2682220 DOI: 10.1016/j.neuron.2009.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 10/30/2008] [Accepted: 03/03/2009] [Indexed: 12/13/2022]
Abstract
In single neurons, glutamatergic synapses receiving distinct afferent inputs may contain AMPA receptors (-Rs) with unique subunit compositions. However, the cellular mechanisms by which differential receptor transport achieves this synaptic diversity remain poorly understood. In lateral geniculate neurons, we show that retinogeniculate and corticogeniculate synapses have distinct AMPA-R subunit compositions. Under basal conditions at both synapses, GluR1-containing AMPA-Rs are transported from an anatomically defined reserve pool to a deliverable pool near the postsynaptic density (PSD), but further incorporate into the PSD or functional synaptic pool only at retinogeniculate synapses. Vision-dependent activity, stimulation mimicking retinal input, or activation of CaMKII or Ras signaling regulated forward GluR1 trafficking from the deliverable pool to the synaptic pool at both synapses, whereas Rap2 signals reverse GluR1 transport at retinogeniculate synapses. These findings suggest that synapse-specific AMPA-R delivery involves constitutive and activity-regulated transport steps between morphological pools, a mechanism that may extend to the site-specific delivery of other membrane protein complexes.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Animals, Newborn
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Enzyme Inhibitors/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/genetics
- Excitatory Postsynaptic Potentials/physiology
- Geniculate Bodies/cytology
- Green Fluorescent Proteins/genetics
- Hippocampus/cytology
- In Vitro Techniques
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Knockout
- Microscopy, Immunoelectron/methods
- Models, Neurological
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Protein Subunits/metabolism
- Protein Transport/genetics
- Protein Transport/physiology
- Rats
- Receptors, AMPA/deficiency
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, AMPA/ultrastructure
- Signal Transduction/genetics
- Signal Transduction/physiology
- Statistics, Nonparametric
- Synapses/drug effects
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Tetrodotoxin/pharmacology
- Transduction, Genetic/methods
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Anders Kielland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, N-0317, Norway
| | | | - James Corson
- Department of Psychology, University of Virginia, Charlottesville, VA 22908
| | - Lei Zhang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Paul Heggelund
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, N-0317, Norway
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
162
|
Epithelial cell–cell junctions and plasma membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:820-31. [DOI: 10.1016/j.bbamem.2008.07.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
|
163
|
Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 2009; 296:F459-69. [PMID: 18971212 PMCID: PMC2660186 DOI: 10.1152/ajprenal.90340.2008] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/27/2008] [Indexed: 12/26/2022] Open
Abstract
Polarized distribution of plasma membrane transporters and receptors in epithelia is essential for vectorial functions of epithelia. This polarity is maintained by sorting of membrane proteins into apical or basolateral transport containers in the trans-Golgi network and/or endosomes followed by their delivery to the appropriate plasma membrane domains. Sorting depends on the recognition of sorting signals in proteins by specific sorting machinery. In the present review, we summarize experimental evidence for and against the hypothesis that N-glycans attached to the membrane proteins can act as apical sorting signals. Furthermore, we discuss the roles of N-glycans in the apical sorting event per se and their contribution to folding and quality control of glycoproteins in the endoplasmic reticulum or retention of glycoproteins in the plasma membrane. Finally, we review existing hypotheses on the mechanism of apical sorting and discuss the potential roles of the lectins, VIP36 and galectin-3, as putative apical sorting receptors.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, David Geffen School of Medicine at University of California, Bldg. 113, Rm. 324, 11301 Wilshire Blvd., Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
164
|
Asano A, Selvaraj V, Buttke DE, Nelson JL, Green KM, Evans JE, Travis AJ. Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 2009; 218:537-48. [PMID: 19006178 PMCID: PMC2706022 DOI: 10.1002/jcp.21623] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite enormous interest in membrane raft micro-domains, no studies in any cell type have defined the relative compositions of the raft fractions on the basis of their major components--sterols, phospholipids, and proteins--or additional raft-associating lipids such as the ganglioside, G(M1). Our previous localization data in live sperm showed that the plasma membrane overlying the acrosome represents a stabilized platform enriched in G(M1) and sterols. These findings, along with the physiological requirement for sterol efflux for sperm to function, prompted us to characterize sperm membrane fractions biochemically. After confirming limitations of commonly used detergent-based approaches, we utilized a non-detergent-based method, separating membrane fractions that were reproducibly distinct based on sterol, G(M1), phospholipid, and protein compositions (both mass amounts and molar ratios). Based on fraction buoyancy and biochemical composition, we identified at least three highly reproducible sub-types of membrane raft. Electron microscopy revealed that raft fractions were free of visible contaminants and were separated by buoyancy rather than morphology. Quantitative proteomic comparisons and fluorescence localization of lipids suggested that different organelles contributed differentially to individual raft sub-types, but that multiple membrane micro-domain sub-types could exist within individual domains. This has important implications for scaffolding functions broadly associated with rafts. Most importantly, we show that the common practice of characterizing membrane domains as either "raft" or "non-raft" oversimplifies the actual biochemical complexity of cellular membranes.
Collapse
Affiliation(s)
- Atsushi Asano
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Vimal Selvaraj
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Danielle E. Buttke
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Jacquelyn L. Nelson
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Karin M. Green
- The University of Massachusetts Medical School, Proteomics and Mass Spectrometry Facility, Worcester, MA 01605
| | - James E. Evans
- The University of Massachusetts Medical School, Proteomics and Mass Spectrometry Facility, Worcester, MA 01605
| | - Alexander J. Travis
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
165
|
Zhang Y, Lucocq JM, Hayes JD. The Nrf1 CNC/bZIP protein is a nuclear envelope-bound transcription factor that is activated by t-butyl hydroquinone but not by endoplasmic reticulum stressors. Biochem J 2009; 418:293-310. [PMID: 18990090 DOI: 10.1042/bj20081575] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In rat liver RL-34 cells, endogenous Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is localized in the ER (endoplasmic reticulum) where it exists as a glycosylated protein. Electron microscopy has demonstrated that ectopic Nrf1 in COS-1 cells is located in the ER and the NE (nuclear envelope). Subcellular fractionation, together with a membrane proteinase protection assay, revealed that Nrf1 is an integral membrane protein with both luminal and cytoplasmic domains. The N-terminal 65 residues of Nrf1 direct its integration into the ER and NE membranes and tether it to a Triton X-100-resistant membrane microdomain that is associated with lipid rafts. The activity of Nrf1 was increased by the electrophile tBHQ (t-butyl hydroquinone) probably through an N-terminal domain-dependent process. We found that the NST (Asn/Ser/Thr-rich) domain, along with AD1 (acidic domain 1), contributes positively to the transactivation activity of full-length Nrf1. Furthermore, the NST domain contains seven putative -Asn-Xaa-Ser/Thr- glycosylation sites and, when glycosylation was prevented by replacing all of the seven asparagine residues with either glutamine (Nrf1(1-7xN/Q)) or aspartic acid (Nrf1(1-7xN/D)), the former multiple point mutant possessed less activity than the wild-type factor, whereas the latter mutant exhibited substantially greater activity. Lastly, the ER stressors tunicamycin, thapsigargin and Brefeldin A were found to inhibit basal Nrf1 activity by approximately 25%, and almost completely prevented induction of Nrf1-mediated transactivation by tBHQ. Collectively, these results suggest that the activity of Nrf1 critically depends on its topology within the ER, and that this is modulated by redox stressors, as well as by its glycosylation status.
Collapse
Affiliation(s)
- Yiguo Zhang
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, Scotland, UK.
| | | | | |
Collapse
|
166
|
Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes. Appl Environ Microbiol 2009; 75:1938-49. [PMID: 19201970 DOI: 10.1128/aem.02728-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1-->3)-beta-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1-->3)-beta-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth.
Collapse
|
167
|
Stechly L, Morelle W, Dessein AF, André S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 2009; 10:438-50. [PMID: 19192249 DOI: 10.1111/j.1600-0854.2009.00882.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously reported that silencing of galectin-4 expression in polarized HT-29 cells perturbed apical biosynthetic trafficking and resulted in a phenotype similar to the inhibitor of glycosylation, 1-benzyl-2-acetamido-2-deoxy-beta-d-galactopyranoside (GalNAcalpha-O-bn). We now present evidence of a lipid raft-based galectin-4-dependent mechanism of apical delivery of glycoproteins in these cells. First, galectin-4 recruits the apical glycoproteins in detergent-resistant membranes (DRMs) because these glycoproteins were depleted in DRMs isolated from galectin-4-knockdown (KD) HT-29 5M12 cells. DRM-associated glycoproteins were identified as ligands for galectin-4. Structural analysis showed that DRMs were markedly enriched in a series of complex N-glycans in comparison to detergent-soluble membranes. Second, in galectin-4-KD cells, the apical glycoproteins still exit the Golgi but accumulated inside the cells, showing that their recruitment within lipid rafts and their apical trafficking required the delivery of galectin-4 at a post-Golgi level. This lectin that is synthesized on free cytoplasmic ribosomes is externalized from HT-29 cells mostly in the apical medium and follows an apical endocytic-recycling pathway that is required for the apical biosynthetic pathway. Together, our data show that the pattern of N-glycosylation of glycoproteins serves as a recognition signal for endocytosed galectin-4, which drives the raft-dependent apical pathway of glycoproteins in enterocyte-like HT-29 cells.
Collapse
Affiliation(s)
- Laurence Stechly
- Centre de Recherche Jean-Pierre Aubert, Unité INSERM U837, Faculté de Médecine, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Krtolica A, Genbacev O, Escobedo C, Zdravkovic T, Nordstrom A, Vabuena D, Nath A, Simon C, Mostov K, Fisher SJ. Disruption of Apical-Basal Polarity of Human Embryonic Stem Cells Enhances Hematoendothelial Differentiation. Stem Cells 2009; 25:2215-23. [PMID: 17569786 DOI: 10.1634/stemcells.2007-0230] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During murine development, the formation of tight junctions and acquisition of polarity are associated with allocation of the blastomeres on the outer surface of the embryo to the trophoblast lineage, whereas the absence of polarization directs cells to the inner cell mass. Here, we report the results of ultrastructural analyses that suggest a similar link between polarization and cell fate in human embryos. In contrast, the five human embryonic stem cell (hESC) lines displayed apical-basal, epithelial-type polarity with electron-dense tight junctions, apical microvilli, and asymmetric distribution of organelles. Consistent with these findings, molecules that are components of tight junctions or play regulatory roles in polarization localized to the apical regions of the hESCs at sites of cell-cell contact. The tight junctions were functional, as shown by the ability of hESC colonies to exclude the pericellular passage of a biotin compound. Depolarization of hESCs produced multilayered aggregates of rapidly proliferating cells that continued to express transcription factors that are required for pluripotency at the same level as control cells. However, during embryoid body formation, depolarized cells differentiated predominantly along mesenchymal lineage and spontaneously produced hematoendothelial precursors more efficiently than control ESC. Our findings have numerous implications with regard to strategies for deriving, propagating, and differentiating hESC.
Collapse
Affiliation(s)
- Ana Krtolica
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
|
170
|
Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 2008; 9:833-45. [PMID: 18946473 DOI: 10.1038/nrm2525] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polarized distribution of functions in polarized cells requires the coordinated interaction of three machineries that modify the basic mechanisms of intracellular protein trafficking and distribution. First, intrinsic protein-sorting signals and cellular decoding machineries regulate protein trafficking to plasma membrane domains; second, intracellular signalling complexes define the plasma membrane domains to which proteins are delivered; and third, proteins that are involved in cell-cell and cell-substrate adhesion orientate the three-dimensional distribution of intracellular signalling complexes and, accordingly, the direction of membrane traffic. The integration of these mechanisms into a complex and dynamic network is crucial for normal tissue function and is often defective in disease states.
Collapse
|
171
|
Nokes RL, Fields IC, Collins RN, Fölsch H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. ACTA ACUST UNITED AC 2008; 182:845-53. [PMID: 18779367 PMCID: PMC2528589 DOI: 10.1083/jcb.200802176] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To maintain polarity, epithelial cells continuously sort transmembrane proteins to the apical or basolateral membrane domains during biosynthetic delivery or after internalization. During biosynthetic delivery, some cargo proteins move from the trans-Golgi network (TGN) into recycling endosomes (RE) before being delivered to the plasma membrane. However, proteins that regulate this transport step remained elusive. In this study, we show that Rab13 partially colocalizes with TGN38 at the TGN and transferrin receptors in RE. Knockdown of Rab13 with short hairpin RNA in human bronchial epithelial cells or overexpression of dominant-active or dominant-negative alleles of Rab13 in Madin-Darby canine kidney cells disrupts TGN38/46 localization at the TGN. Moreover, overexpression of Rab13 mutant alleles inhibits surface arrival of proteins that move through RE during biosynthetic delivery (vesicular stomatitis virus glycoprotein [VSVG], A-VSVG, and LDLR-CT27). Importantly, proteins using a direct route from the TGN to the plasma membrane are not affected. Thus, Rab13 appears to regulate membrane trafficking between TGN and RE.
Collapse
Affiliation(s)
- Rita L Nokes
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
172
|
Distinct Lipid Rafts in Subdomains from Human Placental Apical Syncytiotrophoblast Membranes. J Membr Biol 2008; 224:21-31. [DOI: 10.1007/s00232-008-9125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/19/2008] [Indexed: 12/13/2022]
|
173
|
Hill EJ, Vernallis AB. Polarized secretion of leukemia inhibitory factor. BMC Cell Biol 2008; 9:53. [PMID: 18801170 PMCID: PMC2556326 DOI: 10.1186/1471-2121-9-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/18/2008] [Indexed: 11/16/2022] Open
Abstract
Background The direction of cytokine secretion from polarized cells determines the cytokine's cellular targets. Leukemia inhibitory factor (LIF) belongs to the interleukin-6 (IL-6) family of cytokines and signals through LIFR/gp130. Three factors which may regulate the direction of LIF secretion were studied: the site of stimulation, signal peptides, and expression levels. Stimulation with IL-1β is known to promote IL-6 secretion from the stimulated membrane (apical or basolateral) in the human intestinal epithelial cell line Caco-2. Since LIF is related to IL-6, LIF secretion was also tested in Caco-2 following IL-1β stimulation. Signal peptides may influence the trafficking of LIF. Two isoforms of murine LIF, LIF-M and LIF-D, encode different signal peptides which have been associated with different locations of the mature protein in fibroblasts. To determine the effect of the signal peptides on LIF secretion, secretion levels were compared in Madin-Darby canine kidney (MDCK) clones which expressed murine LIF-M or LIF-D or human LIF under the control of an inducible promoter. Low and high levels of LIF expression were also compared since saturation of the apical or basolateral route would reveal specific transporters for LIF. Results When Caco-2 was grown on permeable supports, LIF was secreted constitutively with around 40% secreted into the apical chamber. Stimulation with IL-1β increased LIF production. After treating the apical surface with IL-1β, the percentage secreted apically remained similar to the untreated, whereas, when the cells were stimulated at the basolateral surface only 20% was secreted apically. In MDCK cells, an endogenous LIF-like protein was detected entirely in the apical compartment. The two mLIF isoforms showed no difference in their secretion patterns in MDCK. Interestingly, about 70% of murine and human LIF was secreted apically from MDCK over a 400-fold range of expression levels within clones and a 200,000-fold range across clones. Conclusion The site of stimulation affected the polarity of LIF secretion, while, signal peptides and expression levels did not. Exogenous LIF is transported in MDCK without readily saturated steps.
Collapse
Affiliation(s)
- Eric J Hill
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | |
Collapse
|
174
|
Importance of cholesterol for infection of cells by transmissible gastroenteritis virus. Virus Res 2008; 137:220-4. [PMID: 18727942 PMCID: PMC7114513 DOI: 10.1016/j.virusres.2008.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 12/31/2022]
Abstract
In this study, we addressed the question whether cholesterol is important for transmissible gastroenteritis virus (TGEV), a porcine coronavirus, in the initiation of an infection. We found that cholesterol depletion from the cellular membrane by methyl-β-cyclodextrin (MβCD) significantly impaired the efficiency of TGEV infection. Infectivity was also reduced after depleting cholesterol from the viral envelope. This finding is surprising because coronaviruses bud from a pre-Golgi compartment which is expected to be low in cholesterol compared to the plasma membrane. Addition of exogenous cholesterol resulted in a restoration of the infectivity confirming our conclusion that efficient TGEV infection requires cholesterol in both the viral and the cellular membranes. Our data raise the possibility that the viral and cellular proteins involved in the entry process may be associated with cholesterol-rich membrane microdomains.
Collapse
|
175
|
Batonick M, Oomens AGP, Wertz GW. Human respiratory syncytial virus glycoproteins are not required for apical targeting and release from polarized epithelial cells. J Virol 2008; 82:8664-72. [PMID: 18562526 PMCID: PMC2519684 DOI: 10.1128/jvi.00827-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.
Collapse
Affiliation(s)
- Melissa Batonick
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA
| | | | | |
Collapse
|
176
|
Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 2008; 105:10005-10. [PMID: 18621689 DOI: 10.1073/pnas.0804374105] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell membranes are not randomly organized, but rather are populated by fluctuating nanoassemblies of increased translational order termed lipid rafts. This lateral heterogeneity can be biophysically extended because cooling formaldehyde-isolated plasma membrane preparations results in separation into phases similar to the liquid-ordered (Lo) and liquid-disordered (Ld) states seen in model membrane systems [Baumgart T, et al. (2007) Proc Natl Acad Sci USA 104:3165-3170]. In this work we demonstrate that raft clustering, i.e., amplifying underlying raft-based connectivity to a larger scale, makes an analogous capacity accessible at 37 degrees C. In plasma membranes at this temperature, cholera toxin-mediated cross-linking of the raft ganglioside GM1 induced the sterol-dependent emergence of a slower diffusing micrometer-scale phase that was enriched in cholesterol and selectively reorganized the lateral distribution of membrane proteins. Although parallels can be drawn, we argue that this raft coalescence in a complex biological matrix cannot be explained by only those interactions that define Lo formation in model membranes. Under this light, our induction of raft-phase separation suggests that plasma membrane composition is poised for selective and functional raft clustering at physiologically relevant temperature.
Collapse
|
177
|
Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 2008; 119:33-43. [PMID: 18558434 PMCID: PMC2579790 DOI: 10.1016/j.pharmthera.2008.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/28/2008] [Indexed: 12/27/2022]
Abstract
Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface.
Collapse
Affiliation(s)
- Neil M Nathanson
- Department of Pharmacology, School of Medicine, University of Washington, Box 357750, Seattle, WA 98195-7750, USA.
| |
Collapse
|
178
|
Kitt KN, Hernández-Deviez D, Ballantyne SD, Spiliotis ET, Casanova JE, Wilson JM. Rab14 regulates apical targeting in polarized epithelial cells. Traffic 2008; 9:1218-31. [PMID: 18429929 PMCID: PMC2773667 DOI: 10.1111/j.1600-0854.2008.00752.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.
Collapse
Affiliation(s)
- Khameeka N. Kitt
- Department of Cell Biology and Anatomy, Arizona Health Sciences Center, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| | | | - Sarah D. Ballantyne
- Department of Cell Biology and Anatomy, Arizona Health Sciences Center, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| | - Elias T. Spiliotis
- Department of Biological Science, Stanford University, Stanford, CA 94305, USA
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jean M. Wilson
- Department of Cell Biology and Anatomy, Arizona Health Sciences Center, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| |
Collapse
|
179
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
180
|
Abstract
Sulfatide is abundantly expressed in various mammalian organs, including the intestines and trachea, in which influenza A viruses (IAVs) replicate. However, the function of sulfatide in IAV infection remains unknown. Sulfatide is synthesized by two transferases, ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST), and is degraded by arylsulfatase A (ASA). In this study, we demonstrated that sulfatide enhanced IAV replication through efficient translocation of the newly synthesized IAV nucleoprotein (NP) from the nucleus to the cytoplasm, by using genetically produced cells in which sulfatide expression was down-regulated by RNA interference against CST mRNA or overexpression of the ASA gene and in which sulfatide expression was up-regulated by overexpression of both the CST and CGT genes. Treatment of IAV-infected cells with an antisulfatide monoclonal antibody (MAb) or an anti-hemagglutinin (HA) MAb, which blocks the binding of IAV and sulfatide, resulted in a significant reduction in IAV replication and accumulation of the viral NP in the nucleus. Furthermore, antisulfatide MAb protected mice against lethal challenge with pathogenic influenza A/WSN/33 (H1N1) virus. These results indicate that association of sulfatide with HA delivered to the cell surface induces translocation of the newly synthesized IAV ribonucleoprotein complexes from the nucleus to the cytoplasm. Our findings provide new insights into IAV replication and suggest new therapeutic strategies.
Collapse
|
181
|
Abstract
The composition and identity of cell organelles are dictated by the flux of lipids and proteins that they receive and lose through cytosolic exchange and membrane trafficking. The trans-Golgi network (TGN) is a major sorting centre for cell lipids and proteins at the crossroads of the endocytic and exocytic pathways; it has a complex dynamic structure composed of a network of tubular membranes that generate pleiomorphic carriers targeted to different destinations. Live-cell imaging combined with three-dimensional tomography has recently provided the temporal and topographical framework that allows the assembly of the numerous molecular machineries so far implicated in sorting and trafficking at the TGN.
Collapse
|
182
|
Torkko JM, Manninen A, Schuck S, Simons K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J Cell Sci 2008; 121:1193-203. [PMID: 18349078 DOI: 10.1242/jcs.015495] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epithelial cells are vital for maintaining the complex architecture and functions of organs in the body. Directed by cues from the extracellular matrix, cells polarize their surface into apical and basolateral domains, and connect by extensive cell-cell junctions to form tightly vowen epithelial layers. In fully polarized cells, primary cilia project from the apical surface. Madin-Darby canine kidney (MDCK) cells provide a model to study organization of cells as monolayers and also in 3D in cysts. In this study retrovirus-mediated RNA interference (RNAi) was used to generate a series of knockdowns (KDs) for proteins implicated in apical transport: annexin-13, caveolin-1, galectin-3, syntaxin-3, syntaxin-2 and VIP17 and/or MAL. Cyst cultures were then employed to study the effects of these KDs on epithelial morphogenesis. Depletion of these proteins by RNAi stalled the development of the apical lumen in cysts and resulted in impaired ciliogenesis. The most severe ciliary defects were observed in annexin-13 and syntaxin-3 KD cysts. Although the phenotypes demonstrate the robustness of the formation of the polarized membrane domains, they indicate the important role of apical membrane biogenesis in epithelial organization.
Collapse
Affiliation(s)
- Juha M Torkko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
183
|
Rózycki B, Weikl TR, Lipowsky R. Stable patterns of membrane domains at corrugated substrates. PHYSICAL REVIEW LETTERS 2008; 100:098103. [PMID: 18352753 DOI: 10.1103/physrevlett.100.098103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Indexed: 05/26/2023]
Abstract
Multicomponent membranes such as ternary mixtures of lipids and cholesterol can exhibit coexistence regions between two liquid phases. When such membranes adhere to a corrugated substrate, the phase separation process strongly depends on the interplay between substrate topography, bending rigidities, and line tension of the membrane domains as we show theoretically via energy minimization and Monte Carlo simulations. For sufficiently large bending rigidity contrast between the two membrane phases, the corrugated substrate truncates the phase separation process and leads to a stable pattern of membrane domains. Our theory is consistent with recent experimental observations and provides a possible control mechanism for domain patterns in biological membranes.
Collapse
Affiliation(s)
- Bartosz Rózycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | | | |
Collapse
|
184
|
Affiliation(s)
- Irwin M Arias
- National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
185
|
Poveda JA, Fernández AM, Encinar JA, González-Ros JM. Protein-promoted membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1583-90. [PMID: 18294450 DOI: 10.1016/j.bbamem.2008.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/21/2008] [Accepted: 01/24/2008] [Indexed: 12/31/2022]
Abstract
The current notion of biological membranes encompasses a very complex structure, made of dynamically changing compartments or domains where different membrane components partition. These domains have been related to important cellular functions such as membrane sorting, signal transduction, membrane fusion, neuronal maturation, and protein activation. Many reviews have dealt with membrane domains where lipid-lipid interactions direct their formation, especially in the case of raft domains, so in this review we considered domains induced by integral membrane proteins. The nature of the interactions involved and the different mechanisms through which membrane proteins segregate lipid domains are presented, in particular with regard to those induced by the nAChR. It may be concluded that coupling of favourable lipid-lipid and lipid-protein interactions is a general condition for this phenomenon to occur.
Collapse
Affiliation(s)
- J A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain.
| | | | | | | |
Collapse
|
186
|
Functional coupling of Gs and CFTR is independent of their association with lipid rafts in epithelial cells. Pflugers Arch 2008; 456:929-38. [PMID: 18224335 DOI: 10.1007/s00424-008-0460-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has been found to be colocalized with G-protein-coupled receptors (GPCRs) and the downstream signaling molecules; however, the mechanisms of the colocalization remain largely elusive. The present work has investigated the role of lipid rafts in the localized signaling from GPCRs to CFTR. Using commonly used sucrose gradient centrifugation, we found that CFTR along with G(alpha)S was associated with lipid rafts, and the association was disrupted by cholesterol depletion with methyl-beta-cyclodextrin (MCD) treatment in Calu-3 human airway epithelial cells. Using short-circuit current (I (sc)) as a readout of CFTR in Calu-3 cells or T84 human colonic epithelial cells, we showed that MCD, while increasing basal membrane permeability, had no effect on the I (sc) induced by several GPCR agonists. Similar results were also obtained with a cholesterol biosynthesis inhibitor lovastatin and a cholesterol-binding agent filipin in Calu-3 cells. Furthermore, cholesterol depletion did not impair cyclic AMP production elicited by the GPCR agonists in Calu-3 cells. Our data suggest that GPCR-mediated signaling maintain their integrity after lipid raft disruption in Calu-3 and T84 epithelial cells and cast doubts on the role of lipid rafts as signaling platforms in GPCR-mediated signaling.
Collapse
|
187
|
The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82:3236-49. [PMID: 18216092 DOI: 10.1128/jvi.01887-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies.
Collapse
|
188
|
Abstract
The trans-Golgi network (TGN) is one of the main, if not the main, sorting stations in the process of intracellular protein trafficking. It is therefore of central importance to understand how the key players in the TGN-based sorting and delivery process, the post-Golgi carriers (PGCs), form and function. Over the last few years, modern morphological approaches have generated new insights into the questions of PGC biogenesis, structure and dynamics. Here, we present a view by which the “lifecycle” of a PGC consists of several distinct stages: the formation of TGN tubular export domains (where different cargoes are segregated from each other and from the Golgi enzymes); the docking of these tubular domains onto molecular motors and their extrusion towards the cell periphery along microtubules; the fission of the forming PGC from the donor membrane; and the delivery of the newly formed PGC to its specific acceptor organelle. It is now important to add the many molecular machineries that have been described as operating at the TGN to this “morphofunctional map” of the TGN export process.
Collapse
|
189
|
Maier O, Hoekstra D, Baron W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 2008; 35:35-53. [DOI: 10.1007/s12031-007-9024-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/13/2007] [Indexed: 12/15/2022]
|
190
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
191
|
Abstract
The biological membrane is a complicated matrix wherein different lipid environments are thought to exist. The more ordered or raft environment has been perceived biochemically accessible via its relative resistance to detergent. This paper outlines the protocols developed in our laboratory for the analysis of such detergent-resistant membranes (DRMs). We stress the fact that DRMs are artifactual in nature and should not be equivocated to lipid rafts, their usefulness being limited to assigning raft-association potential most convincingly when changes in DRM composition are induced by biochemically/physiologically relevant events. These protocols are completed in 1-2 d.
Collapse
Affiliation(s)
- Daniel Lingwood
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
192
|
Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez-Boulan E, González A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 2007; 18:4872-84. [PMID: 17881725 PMCID: PMC2096610 DOI: 10.1091/mbc.e07-06-0563] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/11/2007] [Indexed: 01/03/2023] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
Collapse
Affiliation(s)
- Jorge Cancino
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Carolina Torrealba
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - María Isabel Yuseff
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Diego Gravotta
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Henklein
- Institute of Biochemistry Faculty of Medicine, Humboldt University, 10117 Berlin, Germany; and
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Alfonso González
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| |
Collapse
|
193
|
Fasciotto BH, Kühn U, Cohn DV, Gorr SU. Secretory cargo composition affects polarized secretion in MDCK epithelial cells. Mol Cell Biochem 2007; 310:67-75. [PMID: 18049865 DOI: 10.1007/s11010-007-9666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a "sorting escort" (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as "sorting escorts" to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells.
Collapse
|
194
|
Yaradanakul A, Hilgemann DW. Unrestricted diffusion of exogenous and endogenous PIP(2 )in baby hamster kidney and Chinese hamster ovary cell plasmalemma. J Membr Biol 2007; 220:53-67. [PMID: 18008024 DOI: 10.1007/s00232-007-9074-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 09/26/2007] [Indexed: 01/21/2023]
Abstract
We used two approaches to characterize the lateral mobility of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in the plasmalemma of baby hamster kidney and Chinese hamster ovary fibroblasts. First, nitrobenzoxadiazole-labeled C6-phosphatidylcholine and C16-PIP(2) were incorporated into plasma membrane "lawns" ( approximately 20 x 30 microm) from these cells and into the outer monolayer of intact cells. Diffusion coefficients determined by fluorescence recovery after photobleaching were similar for the two lipids and were higher in lawns, approximately 0.3 microm(2)/s, than on the cell surface, approximately 0.1 microm(2)/s. For membrane lawns, the fractional recoveries (75-90%) were close to those expected from the fraction of total membrane bleached, and labeling by the probes was several times greater than for intact cells. Second, we analyzed cells expressing M1 muscarinic receptors and green fluorescent protein fused with PIP(2)-binding pleckstrin-homology domains, Tubby domains or diacylglycerol (DAG)-binding C1 domains. On-cell gigaseal patches were formed with pipette tips >5 microm in diameter. When the agonist carbachol (0.3 mM: ) was applied either within or outside of the pipette, lipid signals crossed the pipette barrier rapidly in both directions and membrane blebbing occurred on both membrane sides. Accurate simulations of lipid gradients required diffusion coefficients >1 microm(2)/s. Exogenous DAG also crossed the pipette barrier rapidly. In summary, we found no evidence for restricted diffusion of signaling lipids in these cells. The lower mobility and incorporation of phospholipid at the extracellular leaflet may reflect a more ordered and condensed extracellular monolayer, as expected from previous studies.
Collapse
Affiliation(s)
- Alp Yaradanakul
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
195
|
Vieira OV, Verkade P, Manninen A, Simons K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. ACTA ACUST UNITED AC 2007; 170:521-6. [PMID: 16103222 PMCID: PMC2171512 DOI: 10.1083/jcb.200503078] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol-4-phosphate (PI(4)P) is the main phosphoinositide in the Golgi complex and has been reported to play a pleiotropic role in transport of cargo from the trans-Golgi network to the plasma membrane (PM) in polarized Madin–Darby canine kidney (MDCK) cells. Overexpression of the chimeric fluorescent protein encoding the pleckstrin homology domain, which is specific for PI(4)P, inhibited both apical and basolateral transport pathways. The transport of apical cargo from the Golgi was shown to be specifically decreased by adenovirus-mediated RNA interference directed against PI(4)P adaptor protein (FAPP) 2. FAPP1 depletion had no effect on transport. On the other hand, FAPP2 was not involved in the Golgi-to-PM transport of cargo that was targeted to the basolateral membrane domain. Thus, we conclude that FAPP2 plays a specific role in apical transport in MDCK cells.
Collapse
Affiliation(s)
- Otilia V Vieira
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | | | | | | |
Collapse
|
196
|
Jaulin F, Xue X, Rodriguez-Boulan E, Kreitzer G. Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell 2007; 13:511-22. [PMID: 17925227 PMCID: PMC3712496 DOI: 10.1016/j.devcel.2007.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 05/13/2007] [Accepted: 08/01/2007] [Indexed: 02/01/2023]
Abstract
Microtubule-based vesicular transport is well documented in epithelial cells, but the specific motors involved and their regulation during polarization are largely unknown. We demonstrate that KIF5B mediates post-Golgi transport of an apical protein in epithelial cells, but only after polarity has developed. Time-lapse imaging of EB1-GFP in polarized MDCK cells showed microtubule plus ends growing toward the apical membrane, implying that plus end-directed N-kinesins might be used to transport apical proteins. Indeed, time-lapse microscopy revealed that expression of a KIF5B dominant negative or microinjection of function-blocking KIF5 antibodies inhibited selectively post-Golgi transport of the apical marker, p75-GFP, after polarization of MDCK cells. Expression of other KIF dominant negatives did not alter p75-GFP trafficking. Immunoprecipitation experiments demonstrated an interaction between KIF5B and p75-GFP in polarized, but not in subconfluent, MDCK cells. Our results demonstrate that apical protein transport depends on selective microtubule motors and that epithelial cells switch kinesins for post-Golgi transport during acquisition of polarity.
Collapse
Affiliation(s)
- Fanny Jaulin
- Department of Cell and Developmental Biology, Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Xiaoxiao Xue
- Department of Cell and Developmental Biology, Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Enrique Rodriguez-Boulan
- Department of Cell and Developmental Biology, Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
- Margaret M. Dyson Vision Research Institute, Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Geri Kreitzer
- Department of Cell and Developmental Biology, Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
197
|
Nejsum LN, Nelson WJ. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. ACTA ACUST UNITED AC 2007; 178:323-35. [PMID: 17635938 PMCID: PMC2064450 DOI: 10.1083/jcb.200705094] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanisms involved in maintaining plasma membrane domains in fully polarized epithelial cells are known, but when and how directed protein sorting and trafficking occur to initiate cell surface polarity are not. We tested whether establishment of the basolateral membrane domain and E-cadherin–mediated epithelial cell–cell adhesion are mechanistically linked. We show that the basolateral membrane aquaporin (AQP)-3, but not the equivalent apical membrane AQP5, is delivered in post-Golgi structures directly to forming cell–cell contacts where it co-accumulates precisely with E-cadherin. Functional disruption of individual components of a putative lateral targeting patch (e.g., microtubules, the exocyst, and soluble N-ethylmaleimide–sensitive factor attachment protein receptors) did not inhibit cell–cell adhesion or colocalization of the other components with E-cadherin, but each blocked AQP3 delivery to forming cell–cell contacts. Thus, components of the lateral targeting patch localize independently of each other to cell–cell contacts but collectively function as a holocomplex to specify basolateral vesicle delivery to nascent cell–cell contacts and immediately initiate cell surface polarity.
Collapse
Affiliation(s)
- Lene N Nejsum
- Department of Biological Sciences and Department of Molecular and Cellular Physiology, The James H Clark Center, Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
198
|
Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR. Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers. J Am Chem Soc 2007; 129:11543-50. [PMID: 17715922 DOI: 10.1021/ja073271j] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified proteins in the outer leaflet of the plasma membrane. GPI-anchored proteins play vital roles in signal transduction, the vertebrate immune response, and the pathobiology of trypanosomal parasites. While many GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. We synthesized a series of GPI-protein analogues bearing modified anchor structures that were designed to dissect the contribution of various glycan components to the GPI-protein's membrane behavior. These anchor analogues were similar in length to native GPI anchors and included mimics of the native structure's three domains. A combination of expressed protein ligation and native chemical ligation was used to attach these analogues to the green fluorescent protein (GFP). These modified GFPs were incorporated in supported lipid bilayers, and their mobilities were analyzed using fluorescence correlation spectroscopy. The data from these experiments suggest that the GPI anchor is more than a simple membrane-anchoring device; it also may prevent transient interactions between the attached protein and the underlying lipid bilayer, thereby permitting rapid diffusion in the bilayer. The ability to generate chemically defined analogues of GPI-anchored proteins is an important step toward elucidating the molecular functions of this interesting post-translational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
199
|
Blankenship JT, Fuller MT, Zallen JA. The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J Cell Sci 2007; 120:3099-110. [PMID: 17698923 DOI: 10.1242/jcs.004770] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polarized architecture of epithelial tissues involves a dynamic balance between apical and basolateral membrane domains. Here we show that epithelial polarity in the Drosophila embryo requires the exocyst complex subunit homolog Exo84. Exo84 activity is essential for the apical localization of the Crumbs transmembrane protein, a key determinant of epithelial apical identity. Adherens junction proteins become mislocalized at the cell surface in Exo84 mutants in a pattern characteristic of defects in apical, but not basolateral, components. Loss of Crumbs from the cell surface precedes the disruption of Bazooka and Armadillo localization in Exo84 mutants. Moreover, Exo84 mutants display defects in apical cuticle secretion that are similar to crumbs mutants and are suppressed by a reduction in the basolateral proteins Dlg and Lgl. In Exo84 mutants at advanced stages of epithelial degeneration, apical and adherens junction proteins accumulate in an expanded recycling endosome compartment. These results suggest that epithelial polarity in the Drosophila embryo is actively maintained by exocyst-dependent apical localization of the Crumbs transmembrane protein.
Collapse
Affiliation(s)
- J Todd Blankenship
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
200
|
Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 2007; 448:366-369. [PMID: 17597763 DOI: 10.1038/nature05929] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 05/15/2007] [Indexed: 11/08/2022]
Abstract
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.
Collapse
Affiliation(s)
- Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellullar Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|