151
|
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62:1040-50. [PMID: 22261372 DOI: 10.1016/j.neuroimage.2012.01.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.
Collapse
|
152
|
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta Gen Subj 2011; 1820:1243-52. [PMID: 22223119 DOI: 10.1016/j.bbagen.2011.12.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF). SCOPE OF REVIEW This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems. MAJOR CONCLUSIONS Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored. GENERAL SIGNIFICANCE Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
Affiliation(s)
- Carl Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
153
|
Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ. Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 2011; 590:273-88. [PMID: 22083600 DOI: 10.1113/jphysiol.2011.221846] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning-related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input-output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I-X), and each lobule receives different sensory information. However, lobule-specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III-V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III-V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A-type K(+) current and early inactivation of fast Na(+) conductance with activation of 4-aminopyridine-sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule-specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Physiology, Seoul National University College of Medicine, 28 Yeongon-dong, Chongro-gu, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
154
|
Cruz JS, Silva DF, Ribeiro LA, Araújo IGA, Magalhães N, Medeiros A, Freitas C, Araujo IC, Oliveira FA. Resurgent Na+ current: a new avenue to neuronal excitability control. Life Sci 2011; 89:564-9. [PMID: 21683085 DOI: 10.1016/j.lfs.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Integrative and firing properties are important characteristics of neuronal circuits and these responses are determined in large part by the repertoire of ion channels they express, which can vary considerably between cell types. Recently, a new mode of operation of voltage dependent sodium channels has been described that generates a so-called resurgent Na+ current. Accumulating evidence suggests resurgent Na current participates in the generation of sub-threshold inward Na+ current causing membrane depolarization which provides the necessary drive to fire high-frequency action potentials. Recent studies indicate that resurgent Na+ current could be a more widespread feature than previously thought.
Collapse
Affiliation(s)
- Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
156
|
Luque NR, Garrido JA, Carrillo RR, Coenen OJMD, Ros E. Cerebellarlike corrective model inference engine for manipulation tasks. ACTA ACUST UNITED AC 2011; 41:1299-312. [PMID: 21536535 DOI: 10.1109/tsmcb.2011.2138693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents how a simple cerebellumlike architecture can infer corrective models in the framework of a control task when manipulating objects that significantly affect the dynamics model of the system. The main motivation of this paper is to evaluate a simplified bio-mimetic approach in the framework of a manipulation task. More concretely, the paper focuses on how the model inference process takes place within a feedforward control loop based on the cerebellar structure and on how these internal models are built up by means of biologically plausible synaptic adaptation mechanisms. This kind of investigation may provide clues on how biology achieves accurate control of non-stiff-joint robot with low-power actuators which involve controlling systems with high inertial components. This paper studies how a basic temporal-correlation kernel including long-term depression (LTD) and a constant long-term potentiation (LTP) at parallel fiber-Purkinje cell synapses can effectively infer corrective models. We evaluate how this spike-timing-dependent plasticity correlates sensorimotor activity arriving through the parallel fibers with teaching signals (dependent on error estimates) arriving through the climbing fibers from the inferior olive. This paper addresses the study of how these LTD and LTP components need to be well balanced with each other to achieve accurate learning. This is of interest to evaluate the relevant role of homeostatic mechanisms in biological systems where adaptation occurs in a distributed manner. Furthermore, we illustrate how the temporal-correlation kernel can also work in the presence of transmission delays in sensorimotor pathways. We use a cerebellumlike spiking neural network which stores the corrective models as well-structured weight patterns distributed among the parallel fibers to Purkinje cell connections.
Collapse
Affiliation(s)
- Niceto Rafael Luque
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
157
|
Oakley JC, Kalume F, Catterall WA. Insights into pathophysiology and therapy from a mouse model of Dravet syndrome. Epilepsia 2011; 52 Suppl 2:59-61. [PMID: 21463282 DOI: 10.1111/j.1528-1167.2011.03004.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in voltage-gated sodium channels are associated with epilepsy syndromes with a wide range of severity. Complete loss of function in the Na(v) 1.1 channel encoded by the SCN1A gene is associated with severe myoclonic epilepsy in infancy (SMEI), a devastating infantile-onset epilepsy with ataxia, cognitive dysfunction, and febrile and afebrile seizures resistant to current medications. Genetic mouse models of SMEI have been created that strikingly recapitulate the SMEI phenotype including age and temperature dependence of seizures and ataxia. Loss-of-function in Na(v) 1.1 channels results in severely impaired sodium current and action potential firing in hippocampal γ-aminobutyric acid (GABA)ergic interneurons without detectable changes in excitatory pyramidal neurons. The resulting imbalance between excitation and inhibition likely contributes to hyperexcitability and seizures. Reduced sodium current and action potential firing in cerebellar Purkinje neurons likely contributes to comorbid ataxia. A mechanistic understanding of hyperexcitability, seizures, and comorbidities such as ataxia has led to novel strategies for treatment.
Collapse
Affiliation(s)
- John C Oakley
- Department of Pharmacology Neurology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
158
|
Barmack NH, Yakhnitsa V. Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 2011; 17:221-36. [PMID: 21362689 DOI: 10.1177/1073858410380251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cerebellum's role in sensory-motor control and adaptation is undisputed. However, a key hypothesis pertaining to the function of cerebellar circuitry lacks experimental support. It is universally assumed that the discharge of mossy fibers accounts for modulation of Purkinje cell "simple spikes" (SSs). This assumption acts as a prism through which all other functions of cerebellar circuitry are viewed. The vestibulo-cerebellum (nodulus and uvula) receives a large, unilateral, vestibular primary afferent mossy fiber projection. We can test its role in modulating Purkinje cell SSs by recording the modulated activity of both mossy fiber terminals and Purkinje cell SSs evoked by identical natural vestibular stimulation. Sinusoidal rotation about the longitudinal axis (roll) modulates the activity of vestibular primary afferent mossy and climbing fibers as well as Purkinje cell SSs and complex spikes (CSs). Remarkably, vestibular primary afferent mossy fibers discharge 180 degrees out of phase with SSs. This indicates that mossy fibers cannot account for SS modulation unless an inhibitory synapse is interposed between mossy fibers or vestibular climbing fibers and Purkinje cells. The authors review several experiments that address the relative contributions of mossy and climbing fiber afferents to the modulation of SSs. They conclude that climbing fibers, not mossy fibers, are primarily responsible for the modulation of SSs as well as CSs and they propose revised functions for these two afferent systems.
Collapse
Affiliation(s)
- Neal H Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
159
|
Sonner PM, Lee S, Ryu PD, Lee SY, Stern JE. Imbalanced K+ and Ca2+ subthreshold interactions contribute to increased hypothalamic presympathetic neuronal excitability in hypertensive rats. J Physiol 2011; 589:667-83. [PMID: 21149460 PMCID: PMC3055550 DOI: 10.1113/jphysiol.2010.198556] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/09/2010] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of brain-mediated sympathetic activation in the morbidity and mortality of patients with high blood pressure, the precise cellular mechanisms involved remain largely unknown. We show that an imbalanced interaction between two opposing currents mediated by potassium (I(A)) and calcium (I(T)) channels occurs in sympathetic-related hypothalamic neurons in hypertensive rats. We show that this imbalance contributes to enhanced membrane excitability and firing activity in this neuronal population. Knowledge of how these opposing ion channels interact in normal and disease states increases our understanding of underlying brain mechanisms contributing to the high blood pressure condition.
Collapse
Affiliation(s)
- P M Sonner
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
160
|
Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. THE CEREBELLUM 2011; 9:352-74. [PMID: 20396983 PMCID: PMC2949560 DOI: 10.1007/s12311-010-0168-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca(2+) current during the immediate phase of rebound firing and Ca(2+)-dependent K(+) channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation.
Collapse
Affiliation(s)
- Reza Tadayonnejad
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Dustin Anderson
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Michael L. Molineux
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - W. Hamish Mehaffey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Kusala Jayasuriya
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Ray W. Turner
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
- Hotchkiss Brain Institute, HRIC 1AA14, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta Canada T2N 4N1
| |
Collapse
|
161
|
Huth T, Rittger A, Saftig P, Alzheimer C. β-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel β4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current. Pflugers Arch 2011; 461:355-71. [PMID: 21246381 DOI: 10.1007/s00424-010-0913-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/30/2022]
Abstract
In cerebellar Purkinje cells, the β4-subunit of voltage-dependent Na(+) channels has been proposed to serve as an open-channel blocker giving rise to a "resurgent" Na(+) current (I (NaR)) upon membrane repolarization. Notably, the β4-subunit was recently identified as a novel substrate of the β-secretase, BACE1, a key enzyme of the amyloidogenic pathway in Alzheimer's disease. Here, we asked whether BACE1-mediated cleavage of β4-subunit has an impact on I (NaR) and, consequently, on the firing properties of Purkinje cells. In cerebellar tissue of BACE1-/- mice, mRNA levels of Na(+) channel α-subunits 1.1, 1.2, and 1.6 and of β-subunits 1-4 remained unchanged, but processing of β4 peptide was profoundly altered. Patch-clamp recordings from acutely isolated Purkinje cells of BACE1-/- and WT mice did not reveal any differences in steady-state properties and in current densities of transient, persistent, and resurgent Na(+) currents. However, I (NaR) was found to decay significantly faster in BACE1-deficient Purkinje cells than in WT cells. In modeling studies, the altered time course of I (NaR) decay could be replicated when we decreased the efficiency of open-channel block. In current-clamp recordings, BACE1-/- Purkinje cells displayed lower spontaneous firing rate than normal cells. Computer simulations supported the hypothesis that the accelerated decay kinetics of I (NaR) are responsible for the slower firing rate. Our study elucidates a novel function of BACE1 in the regulation of neuronal excitability that serves to tune the firing pattern of Purkinje cells and presumably other neurons endowed with I (NaR).
Collapse
Affiliation(s)
- Tobias Huth
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
162
|
Carter BC, Bean BP. Incomplete inactivation and rapid recovery of voltage-dependent sodium channels during high-frequency firing in cerebellar Purkinje neurons. J Neurophysiol 2010; 105:860-71. [PMID: 21160003 DOI: 10.1152/jn.01056.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purkinje neurons can spike very rapidly for sustained periods. We examined the cycle of sodium channel gating during high-frequency firing of Purkinje neurons, focusing on the kinetics of sodium channel inactivation and recovery during and after spikes. To analyze sodium channel availability during spiking, we recorded the firing patterns of acutely dissociated Purkinje neurons in current clamp and used these records as command voltages in voltage-clamp experiments in the same cell, adding step depolarizations at various points to assay availability. Sodium channel availability decreased abruptly during the spike, as expected, but never reached zero. During spontaneous firing (∼ 40 Hz at 37°C), availability decreased from nearly 90% before the spike to about 10-20% after the spike. With fast steady firing stimulated by current injection (∼ 300 Hz at 37°C), the availability decreased from about 60% between spikes to roughly 15-20% after the spike. Thus even at the fastest firing rates, sodium channel inactivation is incomplete after a spike, leaving a substantial fraction of sodium channels immediately available for activation. Also, inactivation recovered quickly during the early interspike interval (time constant ∼ 1 ms at 37°C), but developed slowly during the depolarization of the late interspike interval, ensuring high availability until spike threshold. These features of sodium channel gating, especially the availability remaining after the spike, reduce the refractory period and facilitate rapid repetitive firing.
Collapse
Affiliation(s)
- Brett C Carter
- Harvard Medical School, Department of Neurobiology, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
163
|
Dendritic spikes mediate negative synaptic gain control in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 2010; 107:22284-9. [PMID: 21131572 DOI: 10.1073/pnas.1008605107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic spikes appear to be a ubiquitous feature of dendritic excitability. In cortical pyramidal neurons, dendritic spikes increase the efficacy of distal synapses, providing additional inward current to enhance axonal action potential (AP) output, thus increasing synaptic gain. In cerebellar Purkinje cells, dendritic spikes can trigger synaptic plasticity, but their influence on axonal output is not well understood. We have used simultaneous somatic and dendritic patch-clamp recordings to directly assess the impact of dendritic calcium spikes on axonal AP output of Purkinje cells. Dendritic spikes evoked by parallel fiber input triggered brief bursts of somatic APs, followed by pauses in spiking, which cancelled out the extra spikes in the burst. As a result, average output firing rates during trains of input remained independent of the input strength, thus flattening synaptic gain. We demonstrate that this "clamping" of AP output by the pause following dendritic spikes is due to activation of high conductance calcium-dependent potassium channels by dendritic spikes. Dendritic spikes in Purkinje cells, in contrast to pyramidal cells, thus have differential effects on temporally coded and rate coded information: increasing the impact of transient parallel fiber input, while depressing synaptic gain for sustained parallel fiber inputs.
Collapse
|
164
|
Kaffashian M, Shabani M, Goudarzi I, Behzadi G, Zali A, Janahmadi M. Profound alterations in the intrinsic excitability of cerebellar Purkinje neurons following neurotoxin 3-acetylpyridine (3-AP)-induced ataxia in rat: new insights into the role of small conductance K+ channels. Physiol Res 2010; 60:355-65. [PMID: 21114365 DOI: 10.33549/physiolres.932032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alterations in the intrinsic properties of Purkinje cells (PCs) may contribute to the abnormal motor performance observed in ataxic rats. To investigate whether such changes in the intrinsic neuronal excitability could be attributed to the role of Ca(2+)-activated K(+) channels (K(Ca)), whole cell current clamp recordings were made from PCs in cerebellar slices of control and ataxic rats. 3-AP induced profound alterations in the intrinsic properties of PCs, as evidenced by a significant increase in both the membrane input resistance and the initial discharge frequency, along with the disruption of the firing regularity. In control PCs, the blockade of small conductance K(Ca) channels by UCL1684 resulted in a significant increase in the membrane input resistance, action potential (AP) half-width, time to peak of the AP and initial discharge frequency. SK channel blockade also significantly decreased the neuronal discharge regularity, the peak amplitude of the AP, the amplitude of the afterhyperpolarization and the spike frequency adaptation ratio. In contrast, in ataxic rats, both the firing regularity and the initial firing frequency were significantly increased by the blockade of SK channels. In conclusion, ataxia may arise from alterations in the functional contribution of SK channels, to the intrinsic properties of PCs.
Collapse
Affiliation(s)
- M Kaffashian
- Neuroscience Research Centre and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
165
|
Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y. Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells. Nat Neurosci 2010; 13:1171-80. [DOI: 10.1038/nn.2638] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
166
|
Wang Y, Garro M, Kuehl-Kovarik MC. Estradiol attenuates multiple tetrodotoxin-sensitive sodium currents in isolated gonadotropin-releasing hormone neurons. Brain Res 2010; 1345:137-45. [PMID: 20580637 PMCID: PMC2897899 DOI: 10.1016/j.brainres.2010.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022]
Abstract
Secretion from gonadotropin-releasing hormone (GnRH) neurons is necessary for the production of gametes and hormones from the gonads. Subsequently, GnRH release is regulated by steroid feedback. However, the mechanisms by which steroids, specifically estradiol, modulate GnRH secretion are poorly understood. We have previously shown that estradiol administered to the female mouse decreases inward currents in fluorescently labeled GnRH neurons. The purpose of this study was to examine the contribution of sodium currents in the negative feedback action of estradiol. Electrophysiology was performed on GnRH neurons dissociated from young, middle-aged, or old female mice. All mice were ovariectomized; half were estradiol replaced. The amplitude of the sodium current underlying the action potential was significantly decreased in GnRH neurons from young estradiol-treated animals. In addition, in vivo estradiol significantly decreased the transient sodium current amplitude, but prolonged the sodium current inactivation time constant. Estradiol decreased the persistent sodium current amplitude, and induced a significant negative shift in peak current potential. In contrast to results obtained from cells from young reproductive animals, estradiol did not significantly attenuate the sodium current underlying the action potential in cells isolated from middle-aged or old mice. Sodium channels can modulate cell threshold, latency of firing, and action potential characteristics. The reduction of sodium current amplitude by estradiol suggests a negative feedback on GnRH neurons, which could lead to a downregulation of cell excitability and hormone release. The attenuation of estradiol regulation in peripostreproductive and postreproductive animals could lead to dysregulated hormone release with advancing age.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, University of Missouri, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65211
| | - Mona Garro
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine, 1600 E. Rollins, Columbia, MO 65211
| | - M. Cathleen Kuehl-Kovarik
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine, 1600 E. Rollins, Columbia, MO 65211
| |
Collapse
|
167
|
Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states. Proc Natl Acad Sci U S A 2010; 107:13153-8. [PMID: 20615960 DOI: 10.1073/pnas.1002082107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We demonstrate that single interneurons can toggle the output neurons of the cerebellar cortex (the Purkinje cells) between their two states. The firing of Purkinje cells has previously been shown to alternate between an "up" state in which the cell fires spontaneous action potentials and a silent "down" state. We show here that small hyperpolarizing currents in Purkinje cells can bidirectionally toggle Purkinje cells between down and up states and that blockade of the hyperpolarization-activated cation channels (H channels) with the specific antagonist ZD7288 (10 microM) blocks the transitions from down to up states. Likewise, hyperpolarizing inhibitory postsnyaptic potentials (IPSPs) produced by small bursts of action potentials (10 action potentials at 50 Hz) in molecular-layer interneurons induce these bidirectional transitions in Purkinje cells. Furthermore, single interneurons in paired interneuron --> Purkinje cell recordings, produce bidirectional switches between the two states of Purkinje cells. The ability of molecular-layer interneurons to toggle Purkinje cells occurs when Purkinje cells are recorded under whole-cell patch-clamp conditions as well as when action potentials are recorded in an extracellular loose cell-attached configuration. The mode switch demonstrated here indicates that a single presynaptic interneuron can have opposite effects on the output of a given Purkinje cell, which introduces a unique type of synaptic interaction that may play an important role in cerebellar signaling.
Collapse
|
168
|
Gittis AH, Moghadam SH, du Lac S. Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J Neurophysiol 2010; 104:1625-34. [PMID: 20592126 DOI: 10.1152/jn.00378.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.
Collapse
Affiliation(s)
- Aryn H Gittis
- Salk Institute for Biological Studies, Howard Hughes Medical Institute, Systems Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
169
|
Abstract
Voltage-gated sodium channels initiate action potentials in brain neurons, and sodium channel blockers are used in therapy of epilepsy. Mutations in sodium channels are responsible for genetic epilepsy syndromes with a wide range of severity, and the NaV1.1 channel encoded by the SCN1A gene is the most frequent target of mutations. Complete loss-of-function mutations in NaV1.1 cause severe myoclonic epilepsy of infancy (SMEI or Dravet's Syndrome), which includes severe, intractable epilepsy and comorbidities of ataxia and cognitive impairment. Mice with loss-of-function mutations in NaV1.1 channels have severely impaired sodium currents and action potential firing in hippocampal GABAergic inhibitory neurons without detectable effect on the excitatory pyramidal neurons, which would cause hyperexcitability and contribute to seizures in SMEI. Similarly, the sodium currents and action potential firing are also impaired in the GABAergic Purkinje neurons of the cerebellum, which is likely to contribute to ataxia. The imbalance between excitatory and inhibitory transmission in these mice can be partially corrected by compensatory loss-of-function mutations of NaV1.6 channels, and thermally induced seizures in these mice can be prevented by drug combinations that enhance GABAergic neurotransmission. Generalized epilepsy with febrile seizures plus (GEFS+) is caused by missense mutations in NaV1.1 channels, which have variable biophysical effects on sodium channels expressed in non-neuronal cells, but may primarily cause loss of function when expressed in mice. Familial febrile seizures is caused by mild loss-of-function mutations in NaV1.1 channels; mutations in these channels are implicated in febrile seizures associated with vaccination; and impaired alternative splicing of the mRNA encoding these channels may also predispose some children to febrile seizures. We propose a unified loss-of-function hypothesis for the spectrum of epilepsy syndromes caused by genetic changes in NaV1.1 channels, in which mild impairment predisposes to febrile seizures, intermediate impairment leads to GEFS+ epilepsy, and severe or complete loss of function leads to the intractable seizures and comorbidities of SMEI.
Collapse
Affiliation(s)
- William A Catterall
- University of Washington, Department of Pharmacology, SJ-30, Seattle, WA 98195-7280, USA.
| | | | | |
Collapse
|
170
|
Carter BC, Bean BP. Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 2010; 64:898-909. [PMID: 20064395 DOI: 10.1016/j.neuron.2009.12.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2009] [Indexed: 11/24/2022]
Abstract
We measured the time course of sodium entry during action potentials of mouse central neurons at 37 degrees C to examine how efficiently sodium entry is coupled to depolarization. In cortical pyramidal neurons, sodium entry was nearly completely confined to the rising phase of the spike: only approximately 25% more sodium enters than the theoretical minimum necessary for spike depolarization. However, in fast-spiking GABAergic neurons (cerebellar Purkinje cells and cortical interneurons), twice as much sodium enters as the theoretical minimum. The extra entry occurs because sodium channel inactivation is incomplete during the falling phase of the spike. The efficiency of sodium entry in different cell types is primarily a function of action potential shape and not cell-type-specific differences in sodium channel kinetics. The narrow spikes of fast-spiking GABAergic neurons result in incomplete inactivation of sodium channels; this reduces metabolic efficiency but likely enhances the ability to fire spikes at high frequency.
Collapse
Affiliation(s)
- Brett C Carter
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
171
|
Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N, Oyama F, Ranscht B, Isom LL. Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci U S A 2010; 107:2283-8. [PMID: 20133873 PMCID: PMC2836661 DOI: 10.1073/pnas.0909434107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated Na(+) channel (VGSC) beta1 subunits regulate cell-cell adhesion and channel activity in vitro. We previously showed that beta1 promotes neurite outgrowth in cerebellar granule neurons (CGNs) via homophilic cell adhesion, fyn kinase, and contactin. Here we demonstrate that beta1-mediated neurite outgrowth requires Na(+) current (I(Na)) mediated by Na(v)1.6. In addition, beta1 is required for high-frequency action potential firing. Transient I(Na) is unchanged in Scn1b (beta1) null CGNs; however, the resurgent I(Na), thought to underlie high-frequency firing in Na(v)1.6-expressing cerebellar neurons, is reduced. The proportion of axon initial segments (AIS) expressing Na(v)1.6 is reduced in Scn1b null cerebellar neurons. In place of Na(v)1.6 at the AIS, we observed an increase in Na(v)1.1, whereas Na(v)1.2 was unchanged. This indicates that beta1 is required for normal localization of Na(v)1.6 at the AIS during the postnatal developmental switch to Na(v)1.6-mediated high-frequency firing. In agreement with this, beta1 is normally expressed with alpha subunits at the AIS of P14 CGNs. We propose reciprocity of function between beta1 and Na(v)1.6 such that beta1-mediated neurite outgrowth requires Na(v)1.6-mediated I(Na), and Na(v)1.6 localization and consequent high-frequency firing require beta1. We conclude that VGSC subunits function in macromolecular signaling complexes regulating both neuronal excitability and migration during cerebellar development.
Collapse
Affiliation(s)
- William J. Brackenbury
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632
| | - Jeffrey D. Calhoun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632
| | - Chunling Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632
| | - Haruko Miyazaki
- Molecular Neuropathology Group, RIKEN Brain Science Institute, Saitama, 351-0198 Japan; and
| | - Nobuyuki Nukina
- Molecular Neuropathology Group, RIKEN Brain Science Institute, Saitama, 351-0198 Japan; and
| | - Fumitaka Oyama
- Molecular Neuropathology Group, RIKEN Brain Science Institute, Saitama, 351-0198 Japan; and
| | | | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632
| |
Collapse
|
172
|
Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:235-88. [PMID: 20813245 PMCID: PMC2936723 DOI: 10.1016/s0074-7742(10)91008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
Collapse
Affiliation(s)
- Hitoshi Morikawa
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
173
|
Jarecki BW, Piekarz AD, Jackson JO, Cummins TR. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 2009; 120:369-78. [PMID: 20038812 DOI: 10.1172/jci40801] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022] Open
Abstract
Inherited mutations in voltage-gated sodium channels (VGSCs; or Nav) cause many disorders of excitability, including epilepsy, chronic pain, myotonia, and cardiac arrhythmias. Understanding the functional consequences of the disease-causing mutations is likely to provide invaluable insight into the roles that VGSCs play in normal and abnormal excitability. Here, we sought to test the hypothesis that disease-causing mutations lead to increased resurgent currents, unusual sodium currents that have not previously been implicated in disorders of excitability. We demonstrated that a paroxysmal extreme pain disorder (PEPD) mutation in the human peripheral neuronal sodium channel Nav1.7, a paramyotonia congenita (PMC) mutation in the human skeletal muscle sodium channel Nav1.4, and a long-QT3/SIDS mutation in the human cardiac sodium channel Nav1.5 all substantially increased the amplitude of resurgent sodium currents in an optimized adult rat-derived dorsal root ganglion neuronal expression system. Computer simulations indicated that resurgent currents associated with the Nav1.7 mutation could induce high-frequency action potential firing in nociceptive neurons and that resurgent currents associated with the Nav1.5 mutation could broaden the action potential in cardiac myocytes. These effects are consistent with the pathophysiology associated with the respective channelopathies. Our results indicate that resurgent currents are associated with multiple channelopathies and are likely to be important contributors to neuronal and muscle disorders of excitability.
Collapse
Affiliation(s)
- Brian W Jarecki
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 Walnut Street, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
174
|
Elrick MJ, Pacheco CD, Yu T, Dadgar N, Shakkottai VG, Ware C, Paulson HL, Lieberman AP. Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum Mol Genet 2009; 19:837-47. [PMID: 20007718 DOI: 10.1093/hmg/ddp552] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathways regulating neuronal vulnerability are poorly understood, yet are central to identifying therapeutic targets for degenerative neurological diseases. Here, we characterize mechanisms underlying neurodegeneration in Niemann-Pick type C (NPC) disease, a lysosomal storage disorder characterized by impaired cholesterol trafficking. To date, the relative contributions of neuronal and glial defects to neuron loss are poorly defined. Using gene targeting, we generate Npc1 conditional null mutant mice. Deletion of Npc1 in mature cerebellar Purkinje cells leads to an age-dependent impairment in motor tasks, including rotarod and balance beam performance. Surprisingly, these mice did not show the early death or weight loss that are characteristic of global Npc1 null mice, suggesting that Purkinje cell degeneration does not underlie these phenotypes. Histological examination revealed the progressive loss of Purkinje cells in an anterior-to-posterior gradient. This cell autonomous neurodegeneration occurs in a spatiotemporal pattern similar to that of global knockout mice. A subpopulation of Purkinje cells in the posterior cerebellum exhibits marked resistance to cell death despite Npc1 deletion. To explore this selective response, we investigated the electrophysiological properties of vulnerable and susceptible Purkinje cell subpopulations. Unexpectedly, Purkinje cells in both subpopulations displayed no electrophysiological abnormalities prior to degeneration. Our data establish that Npc1 deficiency leads to cell autonomous, selective neurodegeneration and suggest that the ataxic symptoms of NPC disease arise from Purkinje cell death rather than cellular dysfunction.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0605, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Kreiner L, Christel CJ, Benveniste M, Schwaller B, Lee A. Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k. J Neurophysiol 2009; 103:371-81. [PMID: 19906882 DOI: 10.1152/jn.00635.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.
Collapse
Affiliation(s)
- Lisa Kreiner
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
176
|
Womack MD, Hoang C, Khodakhah K. Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons. Neuroscience 2009; 162:989-1000. [PMID: 19446607 PMCID: PMC2723190 DOI: 10.1016/j.neuroscience.2009.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/17/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
We investigated the contribution of large conductance calcium-activated potassium (BK) channels to spontaneous activity of cerebellar Purkinje neurons in mice and rats. In Purkinje neurons which fire tonically, block of BK channels increased the firing rate and caused the neurons to fire irregularly. In Purkinje neurons which exhibited a trimodal pattern of activity, present primarily in mature animals, block of BK channels had little effect on firing rate or regularity but shortened the single cycle duration of the trimodal pattern. The contribution of BK channels to the action potential waveform was also examined. BK channels contributed a brief afterhyperpolarization (AHP) of approximately 3 mV which followed each action potential, but made little contribution to action potential repolarization. The amplitude of the BK-dependent AHP did not change with age although there was an increase in the total AHP. The difference in the contribution of BK channels to the firing rate among the two populations of Purkinje neurons was the consequence of the decrease in the fractional contribution of BK channels to the AHP. We also found that block of BK channels increases intracellular calcium concentration during spontaneous firing. Thus, although BK channels do not affect action potential repolarization, they nevertheless control calcium entry with each action potential by contributing to the AHP.
Collapse
Affiliation(s)
- M D Womack
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, 506 Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|
177
|
De Schutter E, Steuber V. Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 2009; 162:816-26. [PMID: 19249335 DOI: 10.1016/j.neuroscience.2009.02.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 11/30/2022]
Abstract
We review our recent experimental and modeling results on how cerebellar Purkinje cells encode information in their simple spike trains and present a theory of the function of pauses and regular spiking patterns. The regular spiking patterns were discovered in extracellular recordings of simple spikes in awake and anesthetized rodents, where it was shown that more than half of the spontaneous activity consists of short epochs of regular spiking. These periods of regular spiking are interrupted by pauses, which can be tightly synchronized among nearby Purkinje cells, while the spikes in the regular patterns are not. Interestingly, pauses are affected by long-term depression of the parallel fiber synapses. Both in modeling and slice experiments it was demonstrated that long-term depression causes a decrease in the duration of pauses, leading to an increase of the spike output of the neuron. Based on these results we propose that pauses in the simple spike train form a temporal code which can lead to a rebound burst in the target deep cerebellar nucleus neurons. Conversely, the regular spike patterns may be a rate code, which presets the amplitude of future rebound bursts.
Collapse
Affiliation(s)
- E De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan; Theoretical Neurobiology, University of Antwerp, Belgium.
| | | |
Collapse
|
178
|
Lozovaya N, Min R, Tsintsadze V, Burnashev N. Dual modulation of CNS voltage-gated calcium channels by cannabinoids: Focus on CB1 receptor-independent effects. Cell Calcium 2009; 46:154-62. [PMID: 19682741 DOI: 10.1016/j.ceca.2009.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 01/13/2023]
Abstract
The neuromodulatory effects of cannabinoids in the central nervous system have mainly been associated with G-protein coupled cannabinoid receptor (CB1R) mediated inhibition of voltage-gated calcium channels (VGCCs). Numerous studies show, however, that cannabinoids can also modulate VGCCs independent of CB1R activation. Nevertheless, despite the fact that endocannabinoids have a nearly equal efficacy for direct and CB1R-mediated effects on VGCC, the role of the direct cannabinoid-VGCC interaction has been largely underestimated. In this review, we summarize recent studies on the modulation of different types of VGCCs by cannabinoids, highlight the evidence for and implications of the CB1R-independent modulation, and put forward the concept, that direct interaction of cannabinoids and VGCCs is as important in regulation of VGCCs function as the CB1R-mediated effects.
Collapse
Affiliation(s)
- Natalia Lozovaya
- Institut de Neurobiologie de la Méditerranée INSERM U, Marseille, France
| | | | | | | |
Collapse
|
179
|
Goldfinger MD. Probability distributions of Markovian sodium channel states during propagating axonal impulses with or without recovery supernormality. J Integr Neurosci 2009; 8:203-21. [PMID: 19618487 DOI: 10.1142/s0219635209002125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/06/2009] [Indexed: 12/19/2022] Open
Abstract
This study addressed a macroscopic neurophysiological phenomenon - supernormality during the recovery phase of propagating axonal impulses - in explicit chemical terms. Excitation was reconstructed numerically using the kinetic scheme of multiple-state probabilistic transitions within a population of voltage-dependent sodium channels (NaCh) derived by Vandenberg and Bezanilla ("PC" scheme). Each NaCh transition was characterized as a reversible Markov process with voltage-dependent rate constants associated with each respective directional transition. While recovery reconstructed with the Hodgkin-Huxley formalism included a supernormal period, the PC scheme did not. The present analysis showed that the occurrence and degree of supernormality with the PC scheme was determined by the relative speed of the transitions within the closed loop of the kinetic scheme; supernormality was promoted by speeding these kinetics. The analysis also showed that concurrent with supernormality, the faster loop kinetics caused (1) an elevation in the C(1) --> C(2) transitions, and (2) a reduction in the I(4) --> I(5) transitions. Thus, macroscopic functionality in information processing could be expressed in terms of probabilistic interstate transitions among a population of NaCh molecules.
Collapse
Affiliation(s)
- M D Goldfinger
- Department of Neuroscience, Cell Biology, & Physiology, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
180
|
Kaufmann WA, Ferraguti F, Fukazawa Y, Kasugai Y, Shigemoto R, Laake P, Sexton JA, Ruth P, Wietzorrek G, Knaus HG, Storm JF, Ottersen OP. Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 2009; 515:215-30. [PMID: 19412945 DOI: 10.1002/cne.22066] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells.
Collapse
Affiliation(s)
- Walter A Kaufmann
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Thomsen K, Piilgaard H, Gjedde A, Bonvento G, Lauritzen M. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex. J Neurophysiol 2009; 102:1503-12. [PMID: 19571198 DOI: 10.1152/jn.00289.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One contention within the field of neuroimaging concerns the character of the depicted activity: Does it represent neuronal action potential generation (i.e., spiking) or postsynaptic excitation? This question is related to the metabolic costs of different aspects of neurosignaling. The cerebellar cortex is well suited for addressing this problem because synaptic input to and spiking of the principal cell, the Purkinje cell (PC), are spatially segregated. Also, PCs are pacemakers, able to generate spikes endogenously. We examined the contributions to cerebellar cortical oxygen consumption (CMRO2) of postsynaptic excitation and PC spiking during evoked and ongoing neuronal activity in the rat. By inhibiting excitatory synaptic input using ionotropic glutamate receptor blockers, we found that the increase in CMRO2 evoked by parallel fiber (PF) stimulation depended entirely on postsynaptic excitation. In contrast, PC spiking was largely responsible for the increase in CMRO2 when ongoing neuronal activity was increased by gamma-aminobutyric acid type A receptor blockade. In this case, CMRO2 increased equally during PC spiking with excitatory synaptic activity as during PC pacemaker spiking without excitatory synaptic input. Subsequent inhibition of action potential propagation and neurotransmission by blocking voltage-gated Na+-channels eliminated the increases in CMRO2 due to PF stimulation and increased PC spiking, but left a large fraction of CMRO2, i.e., basal CMRO2, intact. In conclusion, whereas basal CMRO2 in anesthetized animals did not seem to be related to neurosignaling, increases in CMRO2 could be induced by all aspects of neurosignaling. Our findings imply that CMRO2 responses cannot a priori be assigned to specific neuronal activities.
Collapse
Affiliation(s)
- Kirsten Thomsen
- Institute of Neuroscience and Pharmacology, University of Copenhagen, and Department of Clinical Neurophysiology, Glostrup Hospital, Panum Institute 12.5, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
182
|
Activation of corticotropin-releasing factor 2 receptor inhibits Purkinje neuron P-type calcium currents via G(o)alpha-dependent PKC epsilon pathway. Cell Signal 2009; 21:1436-43. [PMID: 19439178 DOI: 10.1016/j.cellsig.2009.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/05/2009] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing factor (CRF) receptors have been demonstrated to be widely expressed in the central nervous system and in many peripheral tissues of mammalians. However, it is still unknown whether CRF receptors will function in cerebellar Purkinje neurons. In the present study, we investigated the expression profile of CRF receptors in rat cerebellum and identified a novel functional role of CRFR2 in modulating Purkinje neuron P-type Ca(2+) currents (P-currents). We found that CRFR2alpha mRNA, but not CRFR1 and CRFR2beta, was endogenously expressed in rat cerebellum. Activation of CRFR2 by UCN2 inhibited P-currents in a concentration-dependent manner (IC(50) approximately 0.07 microM). This inhibitory effect was abolished by astressin2B, a CRFR2 antagonist, and was blocked by GDP-beta-S, pertussis toxin, or a selective antibody raised against the G(o)alpha. Inhibition of phospholipase C (PLC) blocked the inhibitory action of UCN2. The application of diacylglycerol (DAG) antagonist, 1-hexadecyl-2-acetyl-sn-glycerol, as well as inhibition of either protein kinase C or its epsilon isoform (PKCepsilon) abolished the UCN2 effect while 1-oleoyl-2-acetyl-sn-glycerol (EI-150), a membrane-permeable DAG analogue, occluded UCN2-mediated inhibition. In addition, UCN2 significantly increases spontaneous firing frequency of Purkinje neurons in cerebellar slices. In summary, activation of CRFR2 inhibits P-currents in Purkinje neurons via G(o)alpha-dependent PLC/PKCepsilon pathway, which might contribute to its physiological functions in the cerebellum.
Collapse
|
183
|
Chen K, Godfrey DA, Ilyas O, Xu J, Preston TW. Cerebellum-related characteristics of Scn8a-mutant mice. THE CEREBELLUM 2009; 8:192-201. [PMID: 19424768 DOI: 10.1007/s12311-009-0110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/19/2022]
Abstract
Among ten sodium channel alpha-subunit genes mapped in human and mouse genomes, the SCN8A gene is primarily expressed in neurons and glia. Mice with two types of Scn8a null mutations--Scn8a ( med ) and Scn8a ( medTg )--live for only 21-24 days, but those with incomplete mutations-Scn8a ( medJ ) and Scn8a ( medJo )--and those with knockout of Scn8a only in cerebellar Purkinje cells live to adult age. We review here previous work on cerebellum and related regions of Scn8a mutant mice and include some newer immunohistochemical and microchemical results. The resurgent sodium current that underlies the repeated firing of Purkinje cells is reduced in Scn8a mutant and knockout mice. Purkinje cells of mutant mice have greatly reduced spontaneous activity, as do the analogous cartwheel cells of the dorsal cochlear nucleus. Up-regulation of GABA(A) receptors in regions to which Purkinje cells project may partially compensate for their decreased activity in the mutant mice. The somata of cerebellar Purkinje cells of Scn8a ( medJ ) and Scn8a ( medJo ) mice, as revealed by PEP-19 immunoreaction, are slightly smaller than normal, and their axons, especially in Scn8a ( medJo ) mice, sometimes show enlargements similar to those in other types of mutant mice. Density of GABA-like immunoreactivity is decreased in Purkinje somata and regions of termination in deep cerebellar and vestibular nuclei of Scn8a ( medJ ) mice, but measured GABA concentration is not significantly reduced in microdissected samples of these regions. The concentrations of taurine and glutamine are significantly increased in cerebellar-related regions of Scn8a ( medJ ) mice, possibly suggesting up-regulation of glial amino acid metabolism.
Collapse
|
184
|
Janahmadi M, Goudarzi I, Kaffashian MR, Behzadi G, Fathollahi Y, Hajizadeh S. Co-treatment with riluzole, a neuroprotective drug, ameliorates the 3-acetylpyridine-induced neurotoxicity in cerebellar Purkinje neurones of rats: Behavioural and electrophysiological evidence. Neurotoxicology 2009; 30:393-402. [DOI: 10.1016/j.neuro.2009.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/22/2023]
|
185
|
Pugh JR, Raman IM. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci 2009; 32:170-7. [PMID: 19178955 PMCID: PMC2721329 DOI: 10.1016/j.tins.2008.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Many cerebellar neurons fire spontaneously, generating 10-100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to induce long-term increases in the strength of excitatory inputs. Instead, excitatory synaptic currents are potentiated by combinations of inhibition and excitation that resemble the activity of Purkinje and mossy fiber afferents that is predicted to occur during cerebellar associative learning tasks. Such results indicate that circuits with intrinsically active neurons have rules for information transfer and storage that distinguish them from other brain regions.
Collapse
Affiliation(s)
- Jason R Pugh
- Vollum Institute, Oregon Health Science University, Portland, OR 97201, USA
| | | |
Collapse
|
186
|
Kress GJ, Mennerick S. Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 2009; 158:211-22. [PMID: 18472347 PMCID: PMC2661755 DOI: 10.1016/j.neuroscience.2008.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/22/2008] [Accepted: 03/03/2008] [Indexed: 02/06/2023]
Abstract
Axonal action potentials initiate the cycle of synaptic communication that is key to our understanding of nervous system functioning. The field has accumulated vast knowledge of the signature action potential waveform, firing patterns, and underlying channel properties of many cell types, but in most cases this information comes from somatic intracellular/whole-cell recordings, which necessarily measure a mixture of the currents compartmentalized in the soma, dendrites, and axon. Because the axon in many neuron types appears to be the site of lowest threshold for action potential initiation, the channel constellation in the axon is of particular interest. However, the axon is more experimentally inaccessible than the soma or dendrites. Recent studies have developed and applied single-fiber extracellular recording, direct intracellular recording, and optical recording techniques from axons toward understanding the behavior of the axonal action potential. We are starting to understand better how specific channels and other cellular properties shape action potential threshold, waveform, and timing: key elements contributing to downstream transmitter release. From this increased scrutiny emerges a theme of axons with more computational power than in traditional conceptualizations.
Collapse
Affiliation(s)
- G J Kress
- Graduate Program in Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
187
|
Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, Morgan JI, DeVries AC, Nelson RJ, Zhu MX, Oberdick J. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci 2009; 40:62-75. [PMID: 18930827 PMCID: PMC2637474 DOI: 10.1016/j.mcn.2008.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/10/2008] [Indexed: 11/15/2022] Open
Abstract
Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to "tune" G(i/o)-coupled receptor modulation of physiological effectors, including the P-type Ca(2+) channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses.
Collapse
Affiliation(s)
- Emilia Iscru
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
| | - Yelda Serinagaoglu
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
- Molecular, Cellular, & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Karl Schilling
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jinbin Tian
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | | | - Rui Zhang
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Randy J. Nelson
- Department of Psychology, The Ohio State University, Columbus, OH
| | - Michael X. Zhu
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | - John Oberdick
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH
- Department of Neuroscience, The Ohio State University, Columbus, OH
| |
Collapse
|
188
|
Chevalier M, Mironneau C, Macrez N, Quignard J. Intracellular Ca2+ oscillations induced by over-expressed CaV3.1 T-type Ca2+ channels in NG108-15 cells. Cell Calcium 2008; 44:592-603. [DOI: 10.1016/j.ceca.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/04/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
|
189
|
Atherton JF, Wokosin DL, Ramanathan S, Bevan MD. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus. J Physiol 2008; 586:5679-700. [PMID: 18832425 DOI: 10.1113/jphysiol.2008.155861] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
190
|
Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 2008; 105:11987-92. [PMID: 18687887 DOI: 10.1073/pnas.0804350105] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by CAG repeat expansions within the voltage-gated calcium (Ca(V)) 2.1 channel gene. It remains controversial whether the mutation exerts neurotoxicity by changing the function of Ca(V)2.1 channel or through a gain-of-function mechanism associated with accumulation of the expanded polyglutamine protein. We generated three strains of knockin (KI) mice carrying normal, expanded, or hyperexpanded CAG repeat tracts in the Cacna1a locus. The mice expressing hyperexpanded polyglutamine (Sca6(84Q)) developed progressive motor impairment and aggregation of mutant Ca(V)2.1 channels. Electrophysiological analysis of cerebellar Purkinje cells revealed similar Ca(2+) channel current density among the three KI models. Neither voltage sensitivity of activation nor inactivation was altered in the Sca6(84Q) neurons, suggesting that expanded CAG repeat per se does not affect the intrinsic electrophysiological properties of the channels. The pathogenesis of SCA6 is apparently linked to an age-dependent process accompanied by accumulation of mutant Ca(V)2.1 channels.
Collapse
|
191
|
Liu S, Friel DD. Impact of the leaner P/Q-type Ca2+ channel mutation on excitatory synaptic transmission in cerebellar Purkinje cells. J Physiol 2008; 586:4501-15. [PMID: 18669535 DOI: 10.1113/jphysiol.2008.156232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in the gene encoding P/Q-type Ca(2+) channels cause cerebellar ataxia in mice and humans, but the underlying mechanism(s) are unknown. These Ca(2+) channels play important roles in regulating both synaptic transmission and intrinsic membrane properties, and defects in either could contribute to ataxia. Our previous work described changes in intrinsic properties and excitability of cerebellar Purkinje cells (PCs) resulting from the leaner mutation, which is known to reduce whole-cell Ca(2+) currents in PCs and cause severe ataxia. Here we describe the impact of this mutation on excitatory synaptic transmission from parallel and climbing fibres (PFs, CFs) to PCs in acute cerebellar slices. We found that in leaner PCs, PF-evoked excitatory postsynaptic currents (PF-EPSCs) are approximately 50% smaller, and CF-evoked EPSCs are approximately 80% larger, than in wild-type (WT) mice. To investigate whether reduced presynaptic Ca(2+) entry plays a role in attenuating PF-EPSCs in leaner mice, we examined paired-pulse facilitation (PPF). We found that PPF is enhanced in leaner, suggesting that reduced presynaptic Ca(2+) entry reduces neurotransmitter release at these synapses. Short-term plasticity was unchanged at CF-PC synapses, suggesting that CF-EPSCs are larger in leaner PCs because of increased synapse number or postsynaptic sensitivity, rather than enhanced presynaptic Ca(2+) entry. To investigate the functional impact of the observed EPSC changes, we also compared excitatory postsynaptic potentials (EPSPs) elicited by PF and CF stimulation in WT and leaner PCs. Importantly, we found that despite pronounced changes in PF- and CF-EPSCs, evoked EPSPs in leaner mice are very similar to those observed in WT animals. These results suggest that changes in synaptic currents and intrinsic properties of PCs produced by the leaner mutation together maintain PC responsiveness to excitatory synaptic inputs. They also implicate other consequences of the leaner mutation as causes of abnormal cerebellar motor control in mutant mice.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|
192
|
Kessler M, Kiliman B, Humes C, Arai AC. Spontaneous activity in Purkinje cells: multi-electrode recording from organotypic cerebellar slice cultures. Brain Res 2008; 1218:54-69. [PMID: 18533133 DOI: 10.1016/j.brainres.2008.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
Organotypic cerebellar cultures were maintained on multi-electrode dishes (MED) with an 8x8 array of electrodes and examined for physiological activity. The cultures remained viable for up to seven months and exhibited spontaneous discharges most likely originating from Purkinje cells. Spike frequencies varied but were mostly around 10-30 Hz and were often stable over weeks with average drifts of <20% per week. Spontaneous firing was significantly reduced by blockers of sodium channels (riluzole) and several potassium channels (iberiotoxin, TEA, 4-amino-pyridine), but blockers of calcium channels, GIRK channels, and SK-type potassium channels were ineffective. Inhibitors of excitatory and inhibitory synaptic transmission made spike discharges more regular. Particularly robust changes in spike frequency were produced by agents that increase cGMP. Bromo-cGMP, the NO donor SNAP, the guanylate cyclase activator YC-1, and the phosphodiesterase inhibitor zaprinast greatly reduced spike frequency. Activation of the metabotropic receptor mGluR1 and inhibition of I(h) channels caused a majority of cells to switch from tonic firing to a cyclic activity mode in which intense firing alternated with silence. Agonists for cholinergic, serotonergic, histamine, opiate, and CRF receptors had no effect, but those for adrenergic and adenosine A1 receptors reduced firing. Moreover, brief application of bromocriptine caused a delayed decrease in firing that reached a minimum after 24 to 48 h and recovered after 1-2 weeks. Taken together, our results demonstrate that long-term cultures maintained on multi-electrode arrays retain many essential features of cerebellar physiology and that they provide a test system that is well suited for broad screening of pharmacological agents as well as for studying long-term effects of drugs, tissue factors, and pathogens.
Collapse
Affiliation(s)
- Markus Kessler
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | | | | | | |
Collapse
|
193
|
Cheron G, Servais L, Dan B. Cerebellar network plasticity: From genes to fast oscillation. Neuroscience 2008; 153:1-19. [DOI: 10.1016/j.neuroscience.2008.01.074] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/30/2022]
|
194
|
Ma YL, Weston SE, Whalley BJ, Stephens GJ. The phytocannabinoid Delta(9)-tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum. Br J Pharmacol 2008; 154:204-15. [PMID: 18311186 DOI: 10.1038/bjp.2008.57] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. EXPERIMENTAL APPROACH Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. KEY RESULTS The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. CONCLUSIONS AND IMPLICATIONS We show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.
Collapse
Affiliation(s)
- Y-L Ma
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, UK
| | | | | | | |
Collapse
|
195
|
Gittis AH, du Lac S. Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons. J Neurophysiol 2008; 99:2060-5. [PMID: 18287543 DOI: 10.1152/jn.01389.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sodium currents in fast firing neurons are tuned to support sustained firing rates >50-60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na current kinetics and voltage-dependent properties were compared in two classes of MVN neurons with distinct firing properties. Non-GABAergic neurons (fluorescently labeled in YFP-16 transgenic mice) have action potentials with faster rise and fall kinetics and sustain higher firing rates than GABAergic neurons (fluorescently labeled in GIN transgenic mice). A previous study showed that these neurons express a differential balance of K currents. To determine whether the Na currents in these two populations were different, their kinetics and voltage-dependent properties were measured in acutely dissociated neurons from 24- to 40-day-old mice. All neurons expressed persistent Na currents and large transient Na currents with resurgent kinetics tuned for fast firing. No differences were found between the Na currents expressed in GABAergic and non-GABAergic MVN neurons, suggesting that differences in properties of these neurons are tuned by their K currents.
Collapse
Affiliation(s)
- Aryn H Gittis
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
196
|
Karelina TV. Effect of harmaline on firing pattern of rat cerebellar Purkinje cells in ontogenesis. J EVOL BIOCHEM PHYS+ 2008. [DOI: 10.1134/s0022093008010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Giocomo LM, Hasselmo ME. Computation by oscillations: implications of experimental data for theoretical models of grid cells. Hippocampus 2008; 18:1186-99. [PMID: 19021252 PMCID: PMC2653064 DOI: 10.1002/hipo.20501] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recordings in awake, behaving animals demonstrate that cells in medial entorhinal cortex (mEC) show "grid cell" firing activity when a rat explores an open environment. Intracellular recording in slices from different positions along the dorsal to ventral axis show differences in intrinsic properties such as subthreshold membrane potential oscillations (MPO), resonant frequency, and the presence of the hyperpolarization-activated cation current (h-current). The differences in intrinsic properties correlate with differences in grid cell spatial scale along the dorsal-ventral axis of mEC. Two sets of computational models have been proposed to explain the grid cell firing phenomena: oscillatory interference models and attractor-dynamic models. Both types of computational models are briefly reviewed, and cellular experimental evidence is interpreted and presented in the context of both models. The oscillatory interference model has variations that include an additive model and a multiplicative model. Experimental data on the voltage-dependence of oscillations presented here support the additive model. The additive model also simulates data from ventral neurons showing large spacing between grid firing fields within the limits of observed MPO frequencies. The interactions of h-current with synaptic modification suggest that the difference in intrinsic properties could also contribute to differences in grid cell properties due to attractor dynamics along the dorsal to ventral axis of mEC. Mechanisms of oscillatory interference and attractor dynamics may make complementary contributions to the properties of grid cell firing in entorhinal cortex.
Collapse
Affiliation(s)
- Lisa M Giocomo
- Center for Memory and Brain, Program in Neuroscience, and Psychology Department, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
198
|
Ovsepian SV, Friel DD. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts. Eur J Neurosci 2007; 27:93-103. [PMID: 18093175 DOI: 10.1111/j.1460-9568.2007.05998.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The leaner mouse mutation of the Cacna1a gene leads to a reduction in P-type Ca2+ current, the dominant Ca2+ current in Purkinje cells (PCs). Here, we compare the electro-responsiveness and structure of PCs from age-matched leaner and wild-type (WT) mice in pharmacological isolation from synaptic inputs in cerebellar slices. We report that compared with WT, leaner PCs exhibit lower current threshold for Na+ spike firing, larger subthreshold membrane depolarization, rapid adaptation followed by complete block of Na+ spikes upon strong depolarization, and fail to generate Ca2+-Na+ spike bursts. The Na+ spike waveforms in leaner PCs have slower kinetics, reduced spike amplitude and afterhyperpolarization. We show that a deficit in the P-type Ca2+ current caused by the leaner mutation accounts for most but not all of the changes in mutant PC electro-responsiveness. The selective P-type Ca2+ channel blocker, omega-agatoxin-IVA, eliminated differences in subthreshold membrane depolarization, adaptation of Na+ spikes upon strong current-pulse stimuli, Na+ spike waveforms and Ca2+-Na+ burst activity. In contrast, a lower current threshold for eliciting repetitive Na+ spikes in leaner PCs was still observed after blockade of the P-type Ca2+ current, suggesting secondary effects of the mutation that render PCs hyper-excitable. Higher input resistance, reduced whole-cell capacitance and smaller dendritic size accompanied the enhanced excitability in leaner PCs, indicative of developmental retardation in these cells caused by P/Q-type Ca2+ channel malfunction. Our data indicate that a deficit in P-type Ca2+ current leads to complex functional and structural changes in PCs, impairing their intrinsic and integrative properties.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
199
|
Goddard CA, Knudsen EI, Huguenard JR. Intrinsic excitability of cholinergic neurons in the rat parabigeminal nucleus. J Neurophysiol 2007; 98:3486-93. [PMID: 17898138 DOI: 10.1152/jn.00960.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurons in the parabigeminal nucleus of the rat midbrain were studied in an acute slice preparation. Spontaneous, regular action potentials were observed both with cell-attached patch recordings as well as with whole cell current-clamp recordings. The spontaneous activity of parabigeminal nucleus (PBN) neurons was not due to synaptic input as it persisted in the presence of the pan-ionotropic excitatory neurotransmitter receptor blocker, kynurenic acid, and the cholinergic blockers dihydro-beta-erythroidine (DHbetaE) and atropine. This result suggests the existence of intrinsic currents that enable spontaneous activity. In voltage-clamp recordings, I(H) and I(A) currents were observed in most PBN neurons. I(A) had voltage-dependent features that would permit it to contribute to spontaneous firing. In contrast, I(H) was significantly activated at membrane potentials lower than the trough of the spike afterhyperpolarization, suggesting that I(H) does not contribute to spontaneous firing of PBN neurons. Consistent with this interpretation, application of 25 microM ZD-7288, which blocked I(H), did not affect the rate of spontaneous firing in PBN neurons. Counterparts to I(A) and I(H) were observed in current-clamp recordings: I(A) was reflected as a slow voltage ramp observed between action potentials and on release from hyperpolarization, and I(H) was reflected as a depolarizing sag often accompanied by rebound spikes in response to hyperpolarizing current injections. In response to depolarizing current injections, PBN neurons fired at high frequencies, with relatively little accommodation. Ultimately, the spontaneous activity in PBN neurons could be used to modulate cholinergic drive in the superior colliculus in either positive or negative directions.
Collapse
Affiliation(s)
- C Alex Goddard
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.
| | | | | |
Collapse
|
200
|
Yazdi HH, Janahmadi M, Behzadi G. The role of small-conductance Ca2+-activated K+ channels in the modulation of 4-aminopyridine-induced burst firing in rat cerebellar Purkinje cells. Brain Res 2007; 1156:59-66. [PMID: 17493598 DOI: 10.1016/j.brainres.2007.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/25/2022]
Abstract
Small-conductance Ca(2+)-activated K(+) channels (SK) regulate the firing properties of many types of neurons. In the mammalian brain, 3 subunits (SK1-SK3) are expressed with different distributions. Purkinje cells (PCs), the central neuron of the cerebellar basic circuit, express the SK2 subunit in their soma and dendrites. Mature PCs fire bursts of Na(+)-Ca(2+) spikes that constitute the sole output of the cerebellar cortex. Application of 4-aminopyridine (4-AP), blocker of Kv potassium channels in brain slices, augments the electrical activity and burst firing in mature PCs. Using conventional intracellular recordings from acutely prepared brain slices, we examined the role of SK channels in regulation of the 4-AP-induced burst activity in PCs. Application of apamin, blocker of the SK channels induced a depolarization in the membrane potential particularly between spontaneous bursts induced by 4-AP. To study the role of SK channels in 4-AP-induced burst, the spontaneous activity was suppressed by injecting adequate hyperpolarizing current and the bursts were evoked by depolarizing pulse. Apamin decreased the duration of the evoked bursts in 4-AP-treated neurons. It also prolonged the duration and repolarization time of the Ca(2+) spikes and decreased the number of and interval between Na(+) spikes in the 4-AP-induced bursts. Decrease in interval between Na(+) spikes was also seen in the rebound responses. Our findings suggest that SK channels are active at membrane potentials close to resting membrane potential in mature PCs and play an important role in the regulation of neuronal hyperexcitability and burst firing.
Collapse
Affiliation(s)
- Hashem Haghdoost Yazdi
- Neuroscience Research Center and Department of Physiology, Shaheed Beheshti Medical Sciences University, Tehran, Iran
| | | | | |
Collapse
|