2101
|
Guisbert E, Herman C, Lu CZ, Gross CA. A chaperone network controls the heat shock response in E. coli. Genes Dev 2004; 18:2812-21. [PMID: 15545634 PMCID: PMC528900 DOI: 10.1101/gad.1219204] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, sigma32. The DnaK chaperone machine regulates both the amount and activity of sigma32, thereby coupling sigma32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate sigma32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of sigma32. We show that increasing the level of GroEL/S leads to a decrease in sigma32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of sigma32 by increasing the level of sigma32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to sigma32 and decreases sigma32-dependent transcription in vitro, suggesting that this regulation is direct. We discuss why using a chaperone network to regulate sigma32 results in a more sensitive and accurate detection of the protein folding environment.
Collapse
Affiliation(s)
- Eric Guisbert
- Department of Biochemistry and Biophysics, Microbiology and Immunology, and Stomatology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
2102
|
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 2004; 29:471-87. [PMID: 15625403 DOI: 10.1007/bf02712120] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Collapse
Affiliation(s)
- Sanjeev Kumar Baniwal
- Department of Molecular Cell Biology, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2103
|
Sakane I, Ikeda M, Matsumoto C, Higurashi T, Inoue K, Hongo K, Mizobata T, Kawata Y. Structural Stability of Oligomeric Chaperonin 10: the Role of Two β-Strands at the N and C Termini in Structural Stabilization. J Mol Biol 2004; 344:1123-33. [PMID: 15544816 DOI: 10.1016/j.jmb.2004.09.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 09/24/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Chaperonin 10 (cpn10) is a well-conserved subgroup of the molecular chaperone family. GroES, the cpn10 from Escherichia coli, is composed of seven 10kDa subunits, which form a dome-like oligomeric ring structure. From our previous studies, it was found that GroES unfolded completely through a three-state unfolding mechanism involving a partly folded monomer and that this reaction was reversible. In order to study whether these unfolding-refolding characteristics were conserved in other cpn10 proteins, we have examined the structural stabilities of cpn10s from rat mitochondria (RatES) and from hyperthermophilic eubacteria Thermotoga maritima (TmaES), and compared the values to those of GroES. From size-exclusion chromatography experiments in the presence of various concentrations of Gdn-HCl at 25 degrees C, both cpn10s showed unfolding-refolding characteristics similar to those of GroES, i.e. two-stage unfolding reactions that include formation of a partially folded monomer. Although the partially folded monomer of TmaES was considerably more stable compared to GroES and RatES, it was found that the overall stabilities of all three cpn10s were achieved significantly by inter-subunit interactions. We studied this contribution of inter-subunit interactions to overall stability in the GroES heptamer by introducing a mutation that perturbed subunit association, specifically the interaction between the two anti-parallel beta-strands at the N and C termini of this protein. From analyses of the mutants' stabilities, it was revealed that the anti-parallel beta-strands at the subunit interface are crucial for subunit association and stabilization of the heptameric GroES protein.
Collapse
Affiliation(s)
- Isao Sakane
- Department of Biotechnology, Faculty of Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2104
|
Abstract
Exposure to stressors is an omnipresent variable for all living organisms, which have evolved anti-stress mechanisms to deal with the consequences of stress. The chaperoning systems are among these mechanisms, and their central components are the molecular chaperones that play important roles in protein biogenesis. Recent data suggest that failure of the chaperoning systems due to defective chaperones, for example, leads to pathology. Consequently, medical researchers and practitioners must now also consider the chaperoning systems, both as potentially major players in pathogenesis and as diagnostic-prognostic indicators.
Collapse
Affiliation(s)
- Alberto J L Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, The University at Albany (SUNY), Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
2105
|
Kane JK, Konu O, Ma JZ, Li MD. Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. ACTA ACUST UNITED AC 2004; 132:181-91. [PMID: 15582157 DOI: 10.1016/j.molbrainres.2004.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2004] [Indexed: 10/26/2022]
Abstract
Previously, we used cDNA microarrays to demonstrate that the phosphatidylinositol and MAP kinase signaling pathways are regulated by nicotine in different rat brain regions. In the present report, we show that, after exposure to nicotine for 14 days, ubiquitin, ubiquitin-conjugating enzymes, 20S and 19S proteasomal subunits, and chaperonin-containing TCP-1 protein (CCT) complex members are upregulated in rat prefrontal cortex (PFC) while being downregulated in the medial basal hypothalamus (MBH). In particular, relative to saline controls, ubiquitins B and C were upregulated by 33% and 47% (P<0.01), respectively, in the PFC. The proteasome beta subunit 1 (PSMB1) and 26S ATPase 3 (PSMC3) genes were upregulated in the PFC by 95% and 119% (P<0.001), respectively. In addition to the protein degradation pathway of the ubiquitin-proteasome complexes, we observed in the PFC an increase in the expression of small, ubiquitin-related modifiers (SUMO) 1 and 2 by 80% and 33%, respectively (P<0.001), and in 3 of 6 CCT subunits by up to 150% (P<0.0001). To a lesser extent, a change in the opposite direction was obtained in the expression of the same gene families in the MBH. Quantitative real-time RT-PCR was used to validate the microarray results obtained with some representative genes involved in these pathways. Taken together, our results suggest that, in response to systemic nicotine administration, the ubiquitin-proteasome, SUMO, and chaperonin complexes provide an intricate control mechanism to maintain cellular homeostasis, possibly by regulating the composition and signaling of target neurons in a region-specific manner.
Collapse
Affiliation(s)
- Justin K Kane
- Program in Genomics and Bioinformatics on Drug Addiction, Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | | | |
Collapse
|
2106
|
Yang C, Compton MM, Yang P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol Biol Cell 2004; 16:637-48. [PMID: 15563613 PMCID: PMC545900 DOI: 10.1091/mbc.e04-09-0787] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|
2107
|
Brasier AR, Spratt H, Wu Z, Boldogh I, Zhang Y, Garofalo RP, Casola A, Pashmi J, Haag A, Luxon B, Kurosky A. Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected a549 cells identified by high-resolution two-dimensional gel electrophoresis. J Virol 2004; 78:11461-76. [PMID: 15479789 PMCID: PMC523268 DOI: 10.1128/jvi.78.21.11461-11476.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.
Collapse
Affiliation(s)
- Allan R Brasier
- Division of Endocrinology, MRB 8.138, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2108
|
Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 2004; 11:1215-22. [PMID: 15543156 DOI: 10.1038/nsmb860] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 10/05/2001] [Indexed: 12/21/2022]
Abstract
Protein conformational changes that result in misfolding, aggregation and amyloid fibril formation are a common feature of many neurodegenerative disorders. Studies with beta-amyloid (Abeta), alpha-synuclein and other amyloid-forming proteins indicate that the assembly of misfolded protein conformers into fibrils is a complex process that may involve the population of metastable spherical and/or annular oligomeric assemblies. Here, we show by atomic force microscopy that a mutant huntingtin fragment with an expanded polyglutamine repeat forms spherical and annular oligomeric structures reminiscent of those formed by Abeta and alpha-synuclein. Notably, the molecular chaperones Hsp70 and Hsp40, which are protective in animal models of neurodegeneration, modulate polyglutamine aggregation reactions by partitioning monomeric conformations and disfavoring the accretion of spherical and annular oligomers.
Collapse
Affiliation(s)
- Jennifer L Wacker
- Department of Pharmacology, University of Washington, Seattle, Washington, 98195-2120, USA
| | | | | | | | | |
Collapse
|
2109
|
Endo Y, Sawasaki T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. ACTA ACUST UNITED AC 2004; 5:45-57. [PMID: 15263842 DOI: 10.1023/b:jsfg.0000029208.83739.49] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Current cell-free protein expression systems are capable of synthesizing proteins with high speed and accuracy; however, the yields are low due to their instability over time. Escherichia coli based systems are not always sufficient for expression of eukaryotic proteins. This report reviews a high-throughput protein production method based on the cell-free system prepared from eukaryote, wheat embryos. We first demonstrate a method for preparation of this extract that exhibited a high degree of stability and activity. To maximize translation yield and throughput, we address and resolve the following issues: (1) optimization of the ORF flanking regions; (2) PCR-based generation of DNA for mRNA production; (3) expression vectors for large-scale protein production; and (4) a translation reaction that does not require a membrane. The combination of these elemental processes with robotic automation resulted in high-throughput protein synthesis.
Collapse
Affiliation(s)
- Yaeta Endo
- Cell-Free Science and Technology Research Center, and the Venture Business Laboratory, Ehime University, Matsuyama 790-8577, Japan.
| | | |
Collapse
|
2110
|
Lin Z, Rye HS. Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 2004; 16:23-34. [PMID: 15469819 PMCID: PMC3759401 DOI: 10.1016/j.molcel.2004.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The GroEL-GroES chaperonin system is required for the assisted folding of many essential proteins. The precise nature of this assistance remains unclear, however. Here we show that denatured RuBisCO from Rhodospirillum rubrum populates a stable, nonaggregating, and kinetically trapped monomeric state at low temperature. Productive folding of this nonnative intermediate is fully dependent on GroEL, GroES, and ATP. Reactivation of the trapped RuBisCO monomer proceeds through a series of GroEL-induced structural rearrangements, as judged by resonance energy transfer measurements between the amino- and carboxy-terminal domains of RuBisCO. A general mechanism used by GroEL to push large, recalcitrant proteins like RuBisCO toward their native states thus appears to involve two steps: partial unfolding or rearrangement of a nonnative protein upon capture by a GroEL ring, followed by spatial constriction within the GroEL-GroES cavity that favors or enforces compact, folding-competent intermediate states.
Collapse
|
2111
|
Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 2004; 9:127-34. [PMID: 15538645 DOI: 10.1007/s00792-004-0427-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Accepted: 10/12/2004] [Indexed: 11/24/2022]
Abstract
The group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 (PhCPN) and its functional cooperation with the cognate prefoldin were investigated. PhCPN existed as a homo-oligomer in a double-ring structure, which protected the citrate synthase of a porcine heart from thermal aggregation at 45 degrees C, and did the same on the isopropylmalate dehydrogenase (IPMDH) of a thermophilic bacterium, Thermus thermophilus HB8, at 90 degrees C. PhCPN also enhanced the refolding of green fluorescent protein (GFP), which had been unfolded by low pH, in an ATP-dependent manner. Unexpectedly, functional cooperation between PhCPN and Pyrococcus prefoldin (PhPFD) in the refolding of GFP was not observed. Instead, cooperation between PhCPN and PhPFD was observed in the refolding of IPMDH unfolded with guanidine hydrochloride. Although PhCPN alone was not effective in the refolding of IPMDH, the refolding efficiency was enhanced by the cooperation of PhCPN with PhPFD.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
2112
|
Stewart GR, Robertson BD, Young DB. Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling. Tuberculosis (Edinb) 2004; 84:180-7. [PMID: 15207487 DOI: 10.1016/j.tube.2003.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 01/09/2023]
Abstract
Regulation of expression of the Hsp70/DnaK chaperone plays an important role during infection with Mycobacterium tuberculosis. We have examined the effect of manipulating the level of expression of DnaJ, one of the components of the chaperone apparatus. Overexpression of DnaJ1 resulted in elevated transcription of both the hsp70/dnaK and hsp60/groE chaperone genes, consistent with an increase in the cellular content of nascent and unfolded peptide substrates. There was also an increase in transcription of genes flanking the origin of chromosomal replication, suggesting an important role for DnaJ1 in controlling interaction of the Hsp70 chaperone with the DnaA protein. Overexpression of DnaJ2 had no detectable effect on transcription of other genes. Overexpression in combination with microarray profiling provides a complementary approach to gene deletion for exploring the function of essential genes in M. tuberculosis.
Collapse
Affiliation(s)
- Graham R Stewart
- Centre for Molecular Microbiology and Infection, Flowers Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK.
| | | | | |
Collapse
|
2113
|
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5:781-91. [PMID: 15459659 DOI: 10.1038/nrm1492] [Citation(s) in RCA: 837] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate polypeptides from the point of initial synthesis on ribosomes to the final stages of folding.
Collapse
Affiliation(s)
- Jason C Young
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
2114
|
Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M. Lipopolysaccharide-free Heat Shock Protein 60 Activates T Cells. J Biol Chem 2004; 279:47906-11. [PMID: 15371451 DOI: 10.1074/jbc.m408440200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A possible function of eukaryotic heat shock protein 60 (Hsp60) as endogenous danger signal has been controversially discussed in the past. Hsp60 was shown to induce the secretion of proinflammatory cytokines in professional antigen-presenting cells and to enhance the activation of T cells in primary stimulation. However, in vitro activation of macrophages by Hsp60 was attributed to contaminating endotoxin in the recombinant Hsp60 protein preparations. Here, we employ low endotoxin recombinant human Hsp60 and murine Hsp60 expressed by eukaryotic cell lines to dissect the Hsp60 protein-mediated effects from biologic effects that are mediated by prokaryotic contaminants in the Hsp60 protein preparation. The induction of tumor necrosis factor-alpha secretion in mouse macrophages is lost after endotoxin removal and is not mediated by Hsp60 expressed in eukaryotic systems. In contrast, the Hsp60-mediated enhancement of antigen-specific T cell activation does not correlate with endotoxin contamination. Moreover, Hsp60 that is expressed on the surface of different eukaryotic cell lines increases the activation of T cells in primary stimulation. Taken together, we provide evidence that endogenous Hsp60, which is thought to be released from dying infected cells in vivo, has a biological function that is not due to contaminating pathogen-associated molecules.
Collapse
Affiliation(s)
- Anke Osterloh
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
2115
|
Ermolenko DN, Zherdev AV, Dzantiev BB. Antibodies as specific chaperones. BIOCHEMISTRY (MOSCOW) 2004; 69:1233-8. [PMID: 15627377 DOI: 10.1007/s10541-005-0069-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein folding is often accompanied by formation of non-native conformations leading to protein aggregation. A number of reports indicate that antibodies can facilitate folding and prevent aggregation of protein antigens. The influence of antibodies on folding is strictly antigen specific. Chaperone-like antibody activity may be due to the stabilization of native antigen conformations or folding transition states, or screening of aggregating hydrophobic surfaces. Taking advantage of chaperone-like activity of antibodies for immunotherapy may prove to be a promising approach to the treatment of Alzheimer's and prion-related diseases. Antibody-assisted folding may enhance renaturation of recombinant proteins from inclusion bodies.
Collapse
Affiliation(s)
- D N Ermolenko
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | |
Collapse
|
2116
|
|
2117
|
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, Bukau B. Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell 2004; 119:653-65. [PMID: 15550247 DOI: 10.1016/j.cell.2004.11.027] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 08/20/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2118
|
Kim WY, Horbinski C, Sigurdson W, Higgins D. Proteasome inhibitors suppress formation of polyglutamine-induced nuclear inclusions in cultured postmitotic neurons. J Neurochem 2004; 91:1044-56. [PMID: 15569248 DOI: 10.1111/j.1471-4159.2004.02788.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least nine neurodegenerative disorders are caused by expansion of polyglutamine repeats in various genes. This expansion induces the formation of nuclear inclusions (NI) within various cell types. In this study, we developed a model for polyglutamine diseases using primary cultures of sympathetic neurons from the superior cervical ganglia of prenatal rat pups. Transfection with a plasmid encoding 127 glutamine repeats causes NI to develop in approximately 70% of the sympathetic neurons within 6 days. In addition, it causes somatic atrophy and inhibits dendritic growth. The NIs contain ubiquitinated proteins and sequester the molecular chaperone heat shock protein 70 (Hsp70). We found that two specific proteasome inhibitors, lactacystin and CEP1612, suppress thezformation of polyglutamine-induced NI. In addition, lactacystin treatment induced the removal of preexisting NI. Western blotting and immunocytochemistry revealed that lactacystin and CEP1612 strongly induce the expression of Hsp70, whereas less specific proteasome inhibitor such as N-acetyl-Leu-Leu-Norleucinal does not. Coexpression of 127 glutamines with a plasmid encoding wild-type Hsp70 gene resulted in a marked reduction of the percentage of neurons containing NI. In addition, transfection with plasmids encoding mutant Hsp70 blocked the effects of lactacystin. These findings further implicate Hsp70 as a neuroprotective molecule and they suggest the potential utility of certain proteasome inhibitors in the treatment of polyglutamine diseases.
Collapse
Affiliation(s)
- Woo-Yang Kim
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
2119
|
Balashova N, Chang FJ, Lamothe M, Sun Q, Beuve A. Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J Biol Chem 2004; 280:2186-96. [PMID: 15509556 DOI: 10.1074/jbc.m411545200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) remains the only firmly established endogenous modulator of soluble guanylyl cyclase (sGC) activity, but physiological, structural, and biochemical evidence now suggests that in vivo regulation of sGC involves direct interaction with other factors. We searched for such endogenous modulators in human umbilical vein endothelial cells and COS-7 cells. The cytosolic fraction of both cell types stimulated the activity of semipurified sGC severalfold in the absence or presence of a saturating concentration of NO. The cytosolic factor was sensitive to proteinase K and destroyed by boiling, suggesting that it contains a protein component. Size exclusion chromatography revealed peaks of activity between 40 and 70 kDa. The sGC-activating effect was further purified by ion exchange chromatography. In the presence of the benzylindazole YC-1 or NO, the partially purified factor synergistically activated sGC, suggesting that this factor had a mode of activation different from that of YC-1 or NO. Four candidate activators were identified from the final purification step by matrix-assisted laser desorption ionization mass spectrometry analysis. Using an sGC affinity matrix, one of them, the molecular chaperone Hsp70, was shown to directly interact with sGC. This interaction was further confirmed by co-immunoprecipitation in lung tissues and by co-localization in smooth muscle cells. sGC and Hsp70 co-localized at the plasma membrane, supporting the idea that sGC can be translocated to the membrane. Hsp70 co-purifies with the sGC-activating effect, and immunodepletion of Hsp70 from COS-7 cytosol coincided with a marked attenuation of the sGC-activating effect, yet the effect was not rescued by the addition of pure Hsp70. Thus, Hsp70 is a novel sGC-interacting protein that is responsible for the sGC-activating effect, probably in association with other factors or after covalent modification.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pharmacology and Physiology, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
2120
|
Abstract
This review summarises our current understanding of the underlying and universal mechanism by which newly synthesised proteins achieve their biologically functional states. Protein molecules, however, all have a finite tendency either to misfold, or to fail to maintain their correctly folded states, under some circumstances. This article describes some of the consequences of such behaviour, particularly in the context of the aggregation events that are frequently associated with aberrant folding. It focuses in particular on the emerging links between protein aggregation and the increasingly prevalent forms of debilitating disease with which it is now known to be associated.
Collapse
Affiliation(s)
- Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
2121
|
Helmlinger D, Bonnet J, Mandel JL, Trottier Y, Devys D. Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice. J Biol Chem 2004; 279:55969-77. [PMID: 15494410 DOI: 10.1074/jbc.m409062200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nine neurodegenerative diseases, including spinocerebellar ataxia type 7 (SCA7), are caused by the expansion of polyglutamine stretches in the respective disease-causing proteins. A hallmark of these diseases is the aggregation of expanded polyglutamine-containing proteins in nuclear inclusions that also accumulate molecular chaperones and components of the ubiquitin-proteasome system. Manipulation of HSP70 and HSP40 chaperone levels has been shown to suppress aggregates in cellular models, prevent neuronal death in Drosophila, and improve to some extent neurological symptoms in mouse models. An important issue in mammals is the relative expression levels of toxic and putative rescuing proteins. Furthermore, overexpression of both HSP70 and its co-factor HSP40/HDJ2 has never been investigated in mice. We decided to address this question in a SCA7 transgenic mouse model that progressively develops retinopathy, similar to SCA7 patients. To co-express HSP70 and HDJ2 with the polyglutamine protein, in the same cell type, at comparable levels and with the same time course, we generated transgenic mice that express the heat shock proteins specifically in rod photoreceptors. While co-expression of HSP70 with its co-factor HDJ2 efficiently suppressed mutant ataxin-7 aggregation in transfected cells, they did not prevent either neuronal toxicity or aggregate formation in SCA7 mice. Furthermore, nuclear inclusions in SCA7 mice were composed of a cleaved mutant ataxin-7 fragment, whereas they contained the full-length protein in transfected cells. We propose that differences in the aggregation process might account for the different effects of chaperone overexpression in cellular and animal models of polyglutamine diseases.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
2122
|
Bhattacharyya M, Ray S, Bhattacharya S, Chakrabarti A. Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin. J Biol Chem 2004; 279:55080-8. [PMID: 15492010 DOI: 10.1074/jbc.m406418200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin, the major constituent protein of the erythrocyte membrane skeleton, exhibits chaperone activity by preventing the irreversible aggregation of insulin at 25 degrees C and that of alcohol dehydrogenase at 50 degrees C. The dimeric spectrin and the two subunits, alpha-spectrin and beta-spectrin prevent such aggregation appreciably better, 70% in presence of dimeric spectrin at an insulin:spectrin ratio of 1:1, than that in presence of the tetramer of 25%. Our results also show that spectrin binds to denatured enzymes alpha-glucosidase and alkaline phosphatase during refolding and the reactivation yields are increased in the presence of the spectrin derivatives when compared with those refolded in their absence. The unique hydrophobic binding site on spectrin for the fluorescence probe, 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been established to localize at the self-associating domain with the binding stoichiometry of one Prodan/both dimeric and tetrameric spectrin. The other fluorescence probe, 1-anilinonaphthalene-8-sulfonic acid, does not show such specificity for spectrin, and the binding stoichiometry is between 3 and 5 1-anilinonaphthalene-8-sulfonic acid/dimeric and tetrameric spectrin, respectively. Regions in alpha- and beta-spectrins have been found to have sequence homology with known chaperone proteins. More than 50% similarities in alpha-spectrin near the N terminus with human Hsp90 and in beta-spectrin near the C terminus with human Hsp90 and Escherichia coli DnaJ have been found, indicating a potential chaperone-like sequence to be present near the self-associating domain that is formed by portions of alpha-spectrin near the N terminus and the beta-spectrin near the C terminus. There are other patches of sequences also in both the spectrin polypeptides, at the other termini as well as in the middle of the rod domain having significant homology with well known chaperone proteins.
Collapse
Affiliation(s)
- Malyasri Bhattacharyya
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagr, Kolkata 700064, India
| | | | | | | |
Collapse
|
2123
|
D'Silva P, Liu Q, Walter W, Craig EA. Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat Struct Mol Biol 2004; 11:1084-91. [PMID: 15489862 DOI: 10.1038/nsmb846] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/27/2004] [Indexed: 02/07/2023]
Abstract
Preproteins synthesized on cytosolic ribosomes, but destined for the mitochondrial matrix, pass through the presequence translocase of the inner membrane. Translocation is driven by the import motor, having at its core the essential chaperone mtHsp70 (Ssc1 in yeast). MtHsp70 is tethered to the translocon channel at the matrix side of the inner membrane by the peripheral membrane protein Tim44. A key question in mitochondrial import is how the mtHsp70-Tim44 interaction is regulated. Here we report that Tim44 interacts with both the ATPase and peptide-binding domains of mtHsp70. Disruption of these interactions upon binding of polypeptide substrates requires concerted conformational changes involving both domains of mtHsp70. Our results fit a model in which regulated interactions between Tim44 and mtHsp70, controlled by polypeptide binding, are required for efficient translocation across the mitochondrial inner membrane in vivo.
Collapse
Affiliation(s)
- Patrick D'Silva
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
2124
|
Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proc Natl Acad Sci U S A 2004; 101:15005-12. [PMID: 15479763 PMCID: PMC523455 DOI: 10.1073/pnas.0406132101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A conundrum has arisen in the study of the structural states of the GroEL-GroES chaperonin machine: When either ATP or ADP is added along with GroES to GroEL, the same asymmetric complex, with one ring in a GroES-domed state, is observed by either x-ray crystallographic study or cryoelectron microscopy. Yet only ATP/GroES can trigger productive folding inside the GroES-encapsulated cis cavity by ejecting bound polypeptide from hydrophobic apical binding sites during attendant rigid body elevation and twisting of these domains. Here, we show that this difference occurs because polypeptide substrate in fact presents a load on the apical domains, and, although ATP can counter this load effectively, ADP cannot. We monitored apical domain movement in real time by fluorescence resonance energy transfer (FRET) between a fixed equatorial fluorophore and one attached to the mobile apical domain. In the absence of bound polypeptide, addition of either ATP/GroES or ADP/GroES to GroEL produced the same rapid rate and extent of decrease of FRET (t(1/2) < 1 sec), reflecting similarly rapid apical movement to the same end-state and explaining the results of the structural studies, which were all carried out in the absence of substrate polypeptide. But in the presence of bound malate dehydrogenase or rhodanese, whereas similar rapid and extensive FRET changes were observed with ATP/GroES, the rate of FRET change with ADP/GroES was slowed by >100-fold and the extent of change was reduced, indicating that the apical domains opened in a slow and partial fashion. These results indicate that the free energy of gamma-phosphate binding, measured earlier as 43 kcal per mol (1 cal = 4.184 J) of rings, is required for driving the forceful excursion or "power stroke" of the apical domains needed to trigger release of the polypeptide load into the central cavity.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Department of Genetics, Yale School of Medicine, Boyer Center, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
2125
|
Fossati G, Cremonesi P, Izzo G, Rizzi E, Sandrone G, Harding S, Errington N, Walters C, Henderson B, Roberts MM, Coates ARM, Mascagni P. The Mycobacterium tuberculosis chaperonin 10 monomer exhibits structural plasticity. Biopolymers 2004; 75:148-62. [PMID: 15356869 DOI: 10.1002/bip.20106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conditions which favor dissociation of oligomeric Mycobacterium tuberculosis chaperonin 10 and the solution structure of the monomer were studied by analytical ultracentrifugation, size exclusion chromatography, fluorescence, and circular dichroism spectroscopies. At neutral pH and in the absence of divalent cations, the protein is fully monomeric below approximately a 4.7 microM concentration. Under these conditions the monomer forms completely unfolded and partially folded conformers which are in equilibrium with each other. One conformer accumulates over the others which is stable within a very narrow range of temperatures. It contains a beta-sheet-structured C-terminal half and a mostly disordered N-terminal half. Other components of the equilibrium include partially helical structures which do not completely unfold at high temperature or under strong acidic conditions. Complete unfolding of the monomer occurs in the presence of denaturants or below 14 degrees C. Cold-denaturation is detected at an unusually high temperature and this may be due to the concentration of hydrophobic residues, which is larger in chaperonins than in other globular proteins. Finally, the monomer self-associates in the pH range 5.8-2.9, where it forms small oligomers. A structure-activity relationship was investigated with the sequences known to be involved in the various biological activities of the monomer.
Collapse
Affiliation(s)
- Gianluca Fossati
- Italfarmaco Research Centre, via Lavoratori 54, Cinisello Balsamo 20092 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2126
|
Spatuzza C, Renna M, Faraonio R, Cardinali G, Martire G, Bonatti S, Remondelli P. Heat Shock Induces Preferential Translation of ERGIC-53 and Affects Its Recycling Pathway. J Biol Chem 2004; 279:42535-44. [PMID: 15292203 DOI: 10.1074/jbc.m401860200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERGIC-53 is a lectin-like transport receptor protein, which recirculates between the ER and the Golgi complex and is required for the intracellular transport of a restricted number of glycoproteins. We show in this article that ERGIC-53 accumulates during the heat shock response. However, at variance with the unfolded protein response, which results in enhanced transcription of ERGIC-53 mRNA, heat shock leads only to enhanced translation of ERGIC-53 mRNA. In addition, the half-life of the protein does not change during heat shock. Therefore, distinct signal pathways of the cell stress response modulate the ERGIC-53 protein level. Heat shock also affects the recycling pathway of ERGIC-53. The protein rapidly redistributes in a more peripheral area of the cell, in a vesicular compartment that has a lighter sedimentation density on sucrose gradient in comparison to the compartment that contains the majority of ERGIC-53 at 37 degrees C. This effect is specific, as no apparent reorganization of the endoplasmic reticulum, intermediate compartment and Golgi complex is morphologically detectable in the cells exposed to heat shock. Moreover, the anterograde transport of two unrelated reporter proteins is not affected. Interestingly, MCFD2, which interacts with ERGIC-53 to form a complex required for the ER-to-Golgi transport of specific proteins, is regulated similarly to ERGIC-53 in response to cell stress. These results support the view that ERGIC-53 alone, or in association with MCFD2, plays important functions during cellular response to stress conditions.
Collapse
MESH Headings
- 5' Untranslated Regions
- Base Sequence
- Biological Transport
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/metabolism
- Cell Line
- Centrifugation, Density Gradient
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Genes, Reporter
- Genistein/pharmacology
- Glycoproteins/metabolism
- Golgi Apparatus/metabolism
- Hot Temperature
- Humans
- Immunoblotting
- Immunoprecipitation
- Lectins/metabolism
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/physiology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- Quercetin/pharmacology
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Sucrose/pharmacology
- Temperature
- Time Factors
- Transcriptional Activation
- Transfection
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Carmen Spatuzza
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, I-80131, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
2127
|
Flower TR, Witt SN. Mutational Analysis of the Yeast Nucleotide Exchange Factor Mge1p. J CHIN CHEM SOC-TAIP 2004. [DOI: 10.1002/jccs.200400169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2128
|
Li J, Sha B. Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library. Biol Proced Online 2004; 6:204-208. [PMID: 15472720 PMCID: PMC521342 DOI: 10.1251/bpo90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 09/01/2004] [Accepted: 09/01/2004] [Indexed: 11/30/2022] Open
Abstract
We have identified a peptide substrate for molecular chaperone Hsp40 Ydj1 by utilizing the combination of phage display library screening and isothemol titration calirimetry (ITC). The initial peptide substrate screening for Hsp40 Ydj1 has been carried out by utilizing a 7-mer phage display library. The peptide sequences from the bio-panning were synthesized and object to the direct affinity measurement for Hsp40 Ydj1 by isothemol titration calirimetry studies. The peptide which has the measurable affinity with Ydj1 shows enriched hydrophobic residues in the middle of the substrate fragment. The peptide substrate specificity for molecular chaperone Hsp40 has been analyzed.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cel Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham. MCLM 364, 1918 Univ. Blvd., University of Alabama at Birmingham, Birmingham, AL 35294-0005. USA
| | - Bingdong Sha
- Department of Cel Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham. MCLM 364, 1918 Univ. Blvd., University of Alabama at Birmingham, Birmingham, AL 35294-0005. USA
| |
Collapse
|
2129
|
Abstract
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
2130
|
Suppini JP, Amor M, Alix JH, Ladjimi MM. Complementation of an Escherichia coli DnaK defect by Hsc70-DnaK chimeric proteins. J Bacteriol 2004; 186:6248-53. [PMID: 15342595 PMCID: PMC515143 DOI: 10.1128/jb.186.18.6248-6253.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli DnaK and rat Hsc70 are members of the highly conserved 70-kDa heat shock protein (Hsp70) family that show strong sequence and structure similarities and comparable functional properties in terms of interactions with peptides and unfolded proteins and cooperation with cochaperones. We show here that, while the DnaK protein is, as expected, able to complement an E. coli dnaK mutant strain for growth at high temperatures and lambda phage propagation, Hsc70 protein is not. However, an Hsc70 in which the peptide-binding domain has been replaced by that of DnaK is able to complement this strain for both phenotypes, suggesting that the peptide-binding domain of DnaK is essential to fulfill the specific functions of this protein necessary for growth at high temperatures and for lambda phage replication. The implications of these findings on the functional specificities of the Hsp70s and the role of protein-protein interactions in the DnaK chaperone system are discussed.
Collapse
|
2131
|
|
2132
|
Zmijewski MA, Kwiatkowska JM, Lipińska B. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Arch Microbiol 2004; 182:436-49. [PMID: 15448982 DOI: 10.1007/s00203-004-0727-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/03/2004] [Accepted: 08/10/2004] [Indexed: 11/29/2022]
Abstract
The marine bacterium Vibrio harveyi is a potential indicator organism for evaluating marine environmental pollution. The DnaK-DnaJ-GrpE chaperone machinery of V. harveyi has been studied as a model of response to stress conditions and compared to the Escherichia coli DnaK system. The genes encoding DnaK, DnaJ and GrpE of V. harveyi were cloned into expression vectors and grpE was sequenced. It was found that V. harveyi possesses a unique organization of the hsp gene cluster (grpE-gltP-dnaK-dnaJ), which is present exclusively in marine Vibrio species. In vivo experiments showed that suppression of the E. coli dnaK mutation by V. harveyi DnaK protein was weak or absent, while suppression of the dnaJ and grpE mutations by V. harveyi DnaJ and GrpE proteins was efficient. These results suggest higher species-specificity of the DnaK chaperone than the GrpE and DnaJ cochaperones. Proteins of the DnaK chaperone machinery of V. harveyi were purified to homogeneity and their efficient cooperation with the E. coli chaperones in the luciferase refolding reaction and in stimulation of DnaK ATPase activity was demonstrated. Compared to the E. coli system, the purified DnaK-DnaJ-GrpE system of V. harveyi exhibited about 20% lower chaperoning activity in the luciferase reactivation assay. ATPase activity of V. harveyi DnaK protein was at least twofold higher than that of the E. coli model DnaK but its stimulation by the cochaperones DnaJ and GrpE was significantly (10 times) weaker. These results indicate that, despite their high structural identity (approximately 80%) and similar mechanisms of action, the DnaK chaperones of closely related V. harveyi and E.coli bacteria differ functionally.
Collapse
Affiliation(s)
- Michał A Zmijewski
- Department of Biochemistry, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | |
Collapse
|
2133
|
Huff JL, Hansen LM, Solnick JV. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun 2004; 72:5216-26. [PMID: 15322016 PMCID: PMC517414 DOI: 10.1128/iai.72.9.5216-5226.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with Helicobacter pylori is usually asymptomatic but sometimes progresses to peptic ulcer disease or gastric adenocarcinoma. The development of disease involves both host and bacterial factors. In order to better understand host factors in pathogenesis, we studied the gastric transcription profile of H. pylori infection in the rhesus macaque by using DNA microarrays. Significant changes were found in the expression of genes important for innate immunity, chemokines and cytokines, cell growth and differentiation, apoptosis, structural proteins, and signal transduction and transcription factors. This broad transcription profile demonstrated expected up-regulation of cell structural elements and the host inflammatory and immune response, as well as the novel finding of down-regulation of heat shock proteins. These results provide a unique view of acute H. pylori infection in a relevant animal model system and will direct future studies regarding the host response to H. pylori infection.
Collapse
Affiliation(s)
- Jennifer L Huff
- Department of Medical Microbiology and Immunology, Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
2134
|
Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, Annavarapu S, Mouttaki A, Sondarva G, Wei S, Wu J, Djeu J, Bhalla K. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 2004; 105:1246-55. [PMID: 15388581 DOI: 10.1182/blood-2004-05-2041] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bcr-Abl-expressing primary or cultured leukemia cells display high levels of the antiapoptotic heat shock protein (hsp) 70 and are resistant to cytarabine (Ara-C), etoposide, or Apo-2L/TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis. Conversely, a stable expression of the cDNA of hsp70 in the reverse orientation attenuated not only hsp70 but also signal transducers and activators of transcription 5 (STAT5) and Bcl-x(L) levels. This increased apoptosis induced by cytarabine, etoposide, or Apo-2L/TRAIL. Ectopic expression of hsp70 in HL-60 cells (HL-60/hsp70) inhibited Ara-C and etoposide-induced Bax conformation change and translocation to the mitochondria; attenuated the accumulation of cytochrome c, Smac, and Omi/HtrA2 in the cytosol; and inhibited the processing and activity of caspase-9 and caspase-3. Hsp70 was bound to death receptors 4 and 5 (DR4 and DR5) and inhibited Apo-2L/TRAIL-induced assembly and activity of the death-inducing signaling complex (DISC). HL-60/hsp70 cells exhibited increased levels and DNA binding activity of STAT5, which was associated with high levels of Pim-2 and Bcl-x(L) and resistance to apoptosis. Expression of the dominant negative (DN) STAT5 resensitized HL-60/hsp70 cells to cytarabine, etoposide, and Apo-2L/TRAIL-induced apoptosis. Collectively, these findings suggest that hsp70 inhibits apoptosis upstream and downstream of the mitochondria and is a promising therapeutic target for reversing drug-resistance in chronic myeloid leukemia-blast crisis and acute myeloid leukemia cells.
Collapse
Affiliation(s)
- Fei Guo
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2135
|
Colgan J, Asmal M, Neagu M, Yu B, Schneidkraut J, Lee Y, Sokolskaja E, Andreotti A, Luban J. Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity 2004; 21:189-201. [PMID: 15308100 DOI: 10.1016/j.immuni.2004.07.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 06/11/2004] [Accepted: 06/16/2004] [Indexed: 11/27/2022]
Abstract
Cyclophilin A (CypA/Ppia) is a peptidyl-prolyl isomerase (PPIase) that binds the immunosuppressive drug cyclosporine. The resulting complex blocks T cell function by inhibiting the calcium-dependent phosphatase calcineurin. To identify the native function of CypA, long suspected of regulating signal transduction, we generated mice lacking the Ppia gene. These animals develop allergic disease, with elevated IgE and tissue infiltration by mast cells and eosinophils, that is driven by CD4+ T helper type II (Th2) cytokines. Ppia(-/-) Th2 cells were hypersensitive to TCR stimulation, a phenotype consistent with increased activity of Itk, a Tec family tyrosine kinase crucial for Th2 responses. CypA bound Itk via the PPIase active site. Mutation of a conformationally heterogeneous proline in the SH2 domain of Itk disrupted interaction with CypA and specifically increased Th2 cytokine production from wild-type CD4+ T cells. Thus, CypA inhibits CD4+ T cell signal transduction in the absence of cyclosporine via a regulatory proline residue in Itk.
Collapse
Affiliation(s)
- John Colgan
- Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2136
|
Walton TA, Sousa MC. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell 2004; 15:367-74. [PMID: 15304217 DOI: 10.1016/j.molcel.2004.07.023] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 11/16/2022]
Abstract
The Seventeen Kilodalton Protein (Skp) is a trimeric periplasmic chaperone that assists outer membrane proteins in their folding and insertion into membranes. Here we report the crystal structure of Skp from E. coli. The structure of the Skp trimer resembles a jellyfish with alpha-helical tentacles protruding from a beta barrel body defining a central cavity. The architecture of Skp is unexpectedly similar to that of Prefoldin/GimC, a cytosolic chaperone present in eukaria and archea, that binds unfolded substrates in its central cavity. The ability of Skp to prevent the aggregation of model substrates in vitro is independent of ATP. Skp can interact directly with membrane lipids and lipopolysaccharide (LPS). These interactions are needed for efficient Skp-assisted folding of membrane proteins. We have identified a putative LPS binding site on the outer surface of Skp and propose a model for unfolded substrate binding.
Collapse
Affiliation(s)
- Troy A Walton
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
2137
|
Ying BW, Taguchi H, Ueda H, Ueda T. Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochem Biophys Res Commun 2004; 320:1359-64. [PMID: 15303282 DOI: 10.1016/j.bbrc.2004.06.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A protein-synthesizing system based on a minimal set of purified components was used to investigate the roles molecular chaperones play in the folding of newly synthesized polypeptides. After we ascertained that this system lacks intrinsic chaperones, the effect of adding chaperones in a co-translational or post-translational manner was directly evaluated. An aggregation-prone single-chain antibody was used as the model nascent chain. The participation of the trigger factor or the DnaK system during translation efficiently increased the level of functional protein that was generated. In addition, both systems also acted as chaperones after translation had been stopped. In contrast, the GroEL/ES system showed little or no co- or post-translational assistance in folding.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
2138
|
Ludlam AV, Moore BA, Xu Z. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc Natl Acad Sci U S A 2004; 101:13436-41. [PMID: 15353602 PMCID: PMC518775 DOI: 10.1073/pnas.0405868101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trigger factor is a molecular chaperone that is present in all species of eubacteria. It binds to the ribosomal 50S subunit near the translation exit tunnel and is thought to be the first protein to interact with nascent polypeptides emerging from the ribosome. The chaperone has a peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the rate-limiting proline isomerization in the protein-folding process. We have determined the crystal structure of nearly full-length trigger factor from Vibrio cholerae by x-ray crystallography at 2.5-A resolution. The structure is composed of two trigger-factor molecules related by a noncrystallographic two-fold symmetry axis. The monomer has an elongated shape and is folded into three domains: an N-terminal domain I that binds to the ribosome, a central domain II that contains PPIase activity, and a C-terminal domain III. The active site of the PPIase domain is occupied by a loop from domain III, suggesting that the PPIase activity of the protein could be regulated. The dimer interface is formed between domains I and III and contains residues of mixed properties. Further implications about dimerization, ribosome binding, and other functions of trigger factor are discussed.
Collapse
Affiliation(s)
- Anthony V Ludlam
- Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
2139
|
Jewett AI, Baumketner A, Shea JE. Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc Natl Acad Sci U S A 2004; 101:13192-7. [PMID: 15331776 PMCID: PMC516546 DOI: 10.1073/pnas.0400720101] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Indexed: 11/18/2022] Open
Abstract
Recent experiments suggest that the folding of certain proteins can take place entirely within a chaperonin-like cavity. These substrate proteins experience folding rate enhancements without undergoing multiple rounds of ATP-induced binding and release from the chaperonin. Rather, they undergo only a single binding event, followed by sequestration into the chaperonin cage. The present work uses molecular dynamics simulations to investigate the folding of a highly frustrated protein within this chaperonin cavity. The chaperonin interior is modeled by a sphere with a lining of tunable degree of hydrophobicity. We demonstrate that a moderately hydrophobic environment, similar to the interior of the GroEL cavity upon complexion with ATP and GroES, is sufficient to accelerate the folding of a frustrated protein by more than an order of magnitude. Our simulations support a mechanism by which the moderately hydrophobic chaperonin environment provides an alternate pathway to the native state through a transiently bound intermediate state.
Collapse
Affiliation(s)
- A I Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
2140
|
Geraci F, Pinsino A, Turturici G, Savona R, Giudice G, Sconzo G. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s. Biochem Biophys Res Commun 2004; 322:873-7. [PMID: 15336544 DOI: 10.1016/j.bbrc.2004.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/28/2022]
Abstract
Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages.
Collapse
Affiliation(s)
- Fabiana Geraci
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Italy
| | | | | | | | | | | |
Collapse
|
2141
|
Mansy SS, Cowan JA. Iron-sulfur cluster biosynthesis: toward an understanding of cellular machinery and molecular mechanism. Acc Chem Res 2004; 37:719-25. [PMID: 15379587 DOI: 10.1021/ar0301781] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur clusters are among the most complex metal-containing prosthetic centers in biology. Most if not all of the proteins involved in the biosynthesis of "simple" Fe-S clusters have been identified. The structural and functional chemistry of these proteins has been the subject of intense research efforts, and many of the key details are now understood in structural and mechanistic detail. The fact that Fe-S cluster-binding proteins can be reconstituted in vitro with no accessory proteins provides an important indicator of the intracellular roles for many proteins on the Fe-S cluster assembly pathway. Indeed, such proteins are more correctly viewed as carrier proteins, rather than as catalysts for the reaction, that both avoid the toxicity associated with free iron and sulfide and allow delivery at lower intracellular concentrations of these species. The IscU (or ISU) family of proteins serves a key role as scaffolding proteins on which [2Fe-2S] building blocks are assembled prior to transfer to final apo target proteins. IscU in particular exhibits highly unusual conformational flexibility that appears critical to its function.
Collapse
Affiliation(s)
- Sheref S Mansy
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
2142
|
Vetsch M, Puorger C, Spirig T, Grauschopf U, Weber-Ban EU, Glockshuber R. Pilus chaperones represent a new type of protein-folding catalyst. Nature 2004; 431:329-33. [PMID: 15372038 DOI: 10.1038/nature02891] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/26/2004] [Indexed: 11/08/2022]
Abstract
Adhesive type 1 pili from uropathogenic Escherichia coli strains have a crucial role during infection by mediating the attachment to and potentially the invasion of host tissue. These filamentous, highly oligomeric protein complexes are assembled by the 'chaperone-usher' pathway, in which the individual pilus subunits fold in the bacterial periplasm and form stoichiometric complexes with a periplasmic chaperone molecule that is essential for pilus assembly. The chaperone subsequently delivers the subunits to an assembly platform (usher) in the outer membrane, which mediates subunit assembly and translocation to the cell surface. Here we show that the periplasmic type 1 pilus chaperone FimC binds non-native pilus subunits and accelerates folding of the subunit FimG by 100-fold. Moreover, we find that the FimC-FimG complex is formed quantitatively and very rapidly when folding of FimG is initiated in the presence of both FimC and the assembly-competent subunit FimF, even though the FimC-FimG complex is thermodynamically less stable than the FimF-FimG complex. FimC thus represents a previously unknown type of protein-folding catalyst, and simultaneously acts as a kinetic trap preventing spontaneous subunit assembly in the periplasm.
Collapse
Affiliation(s)
- Michael Vetsch
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
2143
|
Hanafy KA, Martin E, Murad F. CCTeta, a novel soluble guanylyl cyclase-interacting protein. J Biol Chem 2004; 279:46946-53. [PMID: 15347653 DOI: 10.1074/jbc.m404134200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of cGMP from GTP. In this paper, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit eta and the alpha1beta1 isoform of sGC. CCTeta was found to interact with the beta1 subunit of sGC via a yeast-two-hybrid screen. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast two-hybrid system, CCTeta was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTeta and Sf9 lysate expressing sGC resulted in a 30-50% inhibition of diethylamine diazeniumdiolate-NO-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTeta had no effect on this activity. Furthermore, CCTeta had no effect on basal or sodium nitroprusside-stimulated alphabeta(Cys-105) sGC, a constitutively active mutant that only lacks the heme group. The N-terminal 94 amino acids of CCTeta seem to be critical for the mediation of this inhibition. Lastly, a 45% inhibition of sGC activity by CCTeta was seen in vivo in BE2 cells stably transfected with CCTeta and treated with sodium nitroprusside. These data suggest that CCTeta binds to sGC and, in cooperation with some other factor, inhibits its activity by modifying the binding of NO to the heme group or the subsequent conformational changes.
Collapse
Affiliation(s)
- Khalid A Hanafy
- Department of Integrative Biology and Pharmacology and Institute of Molecular Medicine, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
2144
|
Taguchi H, Tsukuda K, Motojima F, Koike-Takeshita A, Yoshida M. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. J Biol Chem 2004; 279:45737-43. [PMID: 15347650 DOI: 10.1074/jbc.m406795200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.
Collapse
Affiliation(s)
- Hideki Taguchi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan
| | | | | | | | | |
Collapse
|
2145
|
Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 2004; 431:590-6. [PMID: 15334087 DOI: 10.1038/nature02899] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 07/27/2004] [Indexed: 11/09/2022]
Abstract
During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state. Here we present a 2.7 A crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding 'tail', the peptidyl-prolyl isomerase 'head', the carboxy-terminal 'arms' and connecting regions building up the 'back'. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones.
Collapse
Affiliation(s)
- Lars Ferbitz
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg (ETH Zürich), HPK Gebäude, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
2146
|
Albrecht AN, Kornak U, Böddrich A, Süring K, Robinson PN, Stiege AC, Lurz R, Stricker S, Wanker EE, Mundlos S. A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet 2004; 13:2351-9. [PMID: 15333588 DOI: 10.1093/hmg/ddh277] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly-alanine (Ala) tract expansions in transcription factors have been shown to be associated with human birth defects such as malformations of the brain, the digits, and other structures. Expansions of a poly-Ala tract from 15 to 22 (+7)-29 (+14) Ala in Hoxd13, for example, result in the limb malformation synpolydactyly in humans and in mice [synpolydactyly homolog (spdh)]. Here, we show that an increase of the Ala repeat above a certain length (22 Ala) is associated with a shift in the localization of Hoxd13 from nuclear to cytoplasmic, where it forms large amorphous aggregates. We observed similar aggregates for expansion mutations in SOX3, RUNX2 and HOXA13, pointing to a common mechanism. Cytoplasmic aggregation of mutant Hoxd13 protein is influenced by the length of the repeat, the level of expression and the efficacy of degradation by the proteasome. Heat shock proteins Hsp70 and Hsp40 co-localize with the aggregates and activation of the chaperone system by geldanamycin leads to a reduction of aggregate formation. Furthermore, recombinant mutant Hoxd13 protein forms aggregates in vitro demonstrating spontaneous misfolding of the protein. We analyzed the mouse mutant spdh, which harbors a +7 Ala expansion in Hoxd13 similar to the human synpolydactyly mutations, as an in vivo model and were able to show a reduction of mutant Hoxd13 and, in contrast to wt Hoxd13, a primarily cytoplasmic localization of the protein. Our results provide evidence that poly-Ala repeat expansions in transcription factors result in misfolding, degradation and cytoplasmic aggregation of the mutant proteins.
Collapse
Affiliation(s)
- Andrea N Albrecht
- Max-Planck Institute for Molecular Genetics, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2147
|
Hatakeyama T, Okada M, Shimamoto S, Kubota Y, Kobayashi R. Identification of intracellular target proteins of the calcium-signaling protein S100A12. ACTA ACUST UNITED AC 2004; 271:3765-75. [PMID: 15355353 DOI: 10.1111/j.1432-1033.2004.04318.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.
Collapse
Affiliation(s)
- Takashi Hatakeyama
- Department of Signal Transduction Sciences, Kagawa University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
2148
|
Hu K, Beck J, Nassal M. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of reverse transcription. Nucleic Acids Res 2004; 32:4377-89. [PMID: 15314208 PMCID: PMC514392 DOI: 10.1093/nar/gkh772] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 07/28/2004] [Indexed: 01/06/2023] Open
Abstract
Protein-primed replication of hepatitis B viruses (HBVs) is initiated by the chaperone dependent binding of the reverse transcriptase (P protein) to the bulged epsilon stem-loop on the pregenomic RNA, and the epsilon-templated synthesis of the 5' terminal nucleotides of the first DNA strand. How P protein recognizes the initiation site is poorly understood. In mammalian HBVs and in duck HBV (DHBV) the entire stem-loop is extensively base paired; in other avian HBVs the upper stem regions have a low base pairing potential. Initiation can be reconstituted with in vitro translated DHBV, but not HBV, P protein and DHBV epsilon (Depsilon) RNA. Employing the SELEX method on a constrained library of Depsilon upper stem variants, we obtained a series of well-binding aptamers. Most contained C-rich consensus motifs with very low base pairing potential; some supported initiation, others did not. Consensus-based secondary mutants allowed to pin down this functional difference to the residues flanking the conserved loop, and an unpaired U. In vitro active consensus sequences also supported virus replication. Hence, most of the upper stem acts as a spacer, which, if not base paired, warrants accessibility of relevant anchor residues. This suggests that the base paired Depsilon represents an exceptional rather than a prototypic avian HBV epsilon signal, and it offers an explanation as to why attempts to in vitro reconstitute initiation with human HBV have thus far failed.
Collapse
Affiliation(s)
- Kanghong Hu
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
2149
|
Li J, Qian X, Sha B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 2004; 11:1475-83. [PMID: 14656432 DOI: 10.1016/j.str.2003.10.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms by which Hsp40 functions as a molecular chaperone to recognize and bind non-native polypeptides is not understood. We have identified a peptide substrate for Ydj1, a member of the type I Hsp40 from yeast. The structure of the Ydj1 peptide binding fragment and its peptide substrate complex was determined to 2.7 A resolution. The complex structure reveals that Ydj1 peptide binding fragment forms an L-shaped molecule constituted by three domains. The domain I exhibits a similar protein folds as domain III while the domain II contains two Zinc finger motifs. The peptide substrate binds Ydj1 by forming an extra beta strand with domain I of Ydj1. The Leucine residue in the middle of the peptide substrate GWLYEIS inserts its side chain into a hydrophobic pocket formed on the molecular surface of Ydj1 domain I. The Zinc finger motifs located in the Ydj1 domain II are not in the vicinity of peptide substrate binding site.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
2150
|
Marsee DK, Venkateswaran A, Tao H, Vadysirisack D, Zhang Z, Vandre DD, Jhiang SM. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem 2004; 279:43990-7. [PMID: 15302866 DOI: 10.1074/jbc.m407503200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.
Collapse
Affiliation(s)
- Derek K Marsee
- Medical Scientist Program, The Ohio State University College of Medicine, Columbus 43210, USA
| | | | | | | | | | | | | |
Collapse
|