2151
|
Abstract
The present review focuses on the concept that cellular and humoral immunity to the phylogenetically highly conserved antigen heat shock protein 60 (HSP60) is the initiating mechanism in the earliest stages of atherosclerosis. Subjecting arterial endothelial cells to classical atherosclerosis risk factors leads to the expression of HSP60 that then may serve as a target for pre-existent cross-reactive antimicrobial HSP60 immunity or bona fide autoimmune reactions induced by biochemically altered autologous HSP60. Endothelial cells can also bind microbial or autologous HSP60 via Toll-like receptors, providing another possibility for targetting adaptive or innate immunological effector mechanisms.
Collapse
Affiliation(s)
- Georg Wick
- Institute for Pathophysiology, University of Innsbruck, Medical School, Fritz-Pregl-Str. 3/IV, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
2152
|
Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson's disease. ACTA ACUST UNITED AC 2004; 46:44-70. [PMID: 15297154 DOI: 10.1016/j.brainresrev.2004.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 01/12/2023]
Abstract
Sporadic Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by the loss of midbrain dopamine neurons and Lewy body inclusions. It is thought to result from a complex interaction between multiple predisposing genes and environmental influences, although these interactions are still poorly understood. Several causative genes have been identified in different families. Mutations in two genes [alpha-synuclein and nuclear receptor-related 1 (Nurr1)] cause the same pathology, and a third locus on chromosome 2 also causes this pathology. Other familial PD mutations have identified genes involved in the ubiquitin-proteasome system [parkin and ubiquitin C-terminal hydroxylase L1 (UCHL1)], although such cases do not produce Lewy bodies. These studies highlight critical cellular proteins and mechanisms for dopamine neuron survival as disrupted in Parkinson's disease. Understanding the genetic variations impacting on dopamine neurons may illuminate other molecular mechanisms involved. Additional candidate genes involved in dopamine cell survival, dopamine synthesis, metabolism and function, energy supply, oxidative stress, and cellular detoxification have been indicated by transgenic animal models and/or screened in human populations with differing results. Genetic variation in genes known to produce different patterns and types of neurodegeneration that may impact on the function of dopamine neurons are also reviewed. These studies suggest that environment and genetic background are likely to have a significant influence on susceptibility to Parkinson's disease. The identification of multiple genes predisposing to Parkinson's disease will assist in determining the cellular pathway/s leading to the neurodegeneration observed in this disease.
Collapse
Affiliation(s)
- Yue Huang
- Prince of Wales Medical Research Institute and the University of New South Wales, Barker Street, Randwick, Sydney 2031, Australia
| | | | | | | |
Collapse
|
2153
|
Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, Murai N, Yoshida M, Taguchi H, Iwata S. Crystal Structure of the Native Chaperonin Complex from Thermus thermophilus Revealed Unexpected Asymmetry at the cis-Cavity. Structure 2004; 12:1471-80. [PMID: 15296740 DOI: 10.1016/j.str.2004.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/05/2004] [Accepted: 05/18/2004] [Indexed: 11/23/2022]
Abstract
The chaperonins GroEL and GroES are essential mediators of protein folding. GroEL binds nonnative protein, ATP, and GroES, generating a ternary complex in which protein folding occurs within the cavity capped by GroES (cis-cavity). We determined the crystal structure of the native GroEL-GroES-ADP homolog from Thermus thermophilus, with substrate proteins in the cis-cavity, at 2.8 A resolution. Twenty-four in vivo substrate proteins within the cis-cavity were identified from the crystals. The structure around the cis-cavity, which encapsulates substrate proteins, shows significant differences from that observed for the substrate-free Escherichia coli GroEL-GroES complex. The apical domain around the cis-cavity of the Thermus GroEL-GroES complex exhibits a large deviation from the 7-fold symmetry. As a result, the GroEL-GroES interface differs considerably from the previously reported E. coli GroEL-GroES complex, including a previously unknown contact between GroEL and GroES.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
2154
|
Quigley PM, Korotkov K, Baneyx F, Hol WGJ. A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Sci 2004; 13:269-77. [PMID: 14691241 PMCID: PMC2286521 DOI: 10.1110/ps.03399604] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heat shock proteins and proteases play a crucial role in cell survival under conditions of environmental stress. The heat shock protein Hsp31, produced by gene hchA at elevated temperatures in Escherichia coli, is a homodimeric protein consisting of a large A domain and a smaller P domain connected by a linker. Two catalytic triads are present per dimer, with the Cys and His contributed by the A domain and an Asp by the P domain. A new crystal Form II confirms the dimer and catalytic triad arrangement seen in the earlier crystal Form I. In addition, several loops exhibit increased flexibility compared to the previous Hsp31 dimer structure. In particular, loops D2 and D3 are intriguing because their mobility leads to the exposure of a sizable hydrophobic patch made up by surface areas of both subunits near the dimer interface. The residues creating this hydrophobic surface are completely conserved in the Hsp31 family. At the same time, access to the catalytic triad is increased. These observations lead to the hypothesis for the functioning of Hsp31 wherein loops D2 and D3 play a key role: first, at elevated temperatures, by becoming mobile and uncovering a large hydrophobic area that helps in binding to client proteins, and second, by removing the client protein from the hydrophobic patch when the temperature decreases and the loops adopt their low-temperature positions at the Hsp31 surface. The proposed mode of action of flexible loops in the functioning of Hsp31 may be a general principle employed by other chaperones.
Collapse
Affiliation(s)
- Paulene M Quigley
- Department of Biochemistry, Department of Chemical Engineering, and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195-7742, USA
| | | | | | | |
Collapse
|
2155
|
Agorogiannis EI, Agorogiannis GI, Papadimitriou A, Hadjigeorgiou GM. Protein misfolding in neurodegenerative diseases. Neuropathol Appl Neurobiol 2004; 30:215-24. [PMID: 15175075 DOI: 10.1111/j.1365-2990.2004.00558.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A common pathogenic mechanism shared by diverse neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease and transmissible spongiform encephalopathies, may be altered protein homeostasis leading to protein misfolding and aggregation of a wide variety of different proteins in the form of insoluble fibrils. Mutations in the genes encoding protein constituents of these aggregates have been linked to the corresponding diseases, thus a reasonable scenario of pathogenesis was based on misfolding of a neurone-specific protein that forms insoluble fibrils that subsequently kill neuronal cells. However, during the past 5 years accumulating evidence has revealed the neurotoxic role of prefibrillar intermediate forms (soluble oligomers and protofibrils) produced during fibril formation. Many think these may be the predominant neurotoxic species, whereas microscopically visible fibrillar aggregates may not be toxic. Large protein aggregates may rather be simply inactive, or even represent a protective state that sequesters and inactivates toxic oligomers and protofibrils. Further understanding of the biochemical mechanisms involved in protein misfolding and fibrillization may optimize the planning of common therapeutic approaches for neurodegenerative diseases, directed towards reversal of protein misfolding, blockade of protein oligomerization and interference with the action of toxic proteins.
Collapse
Affiliation(s)
- E I Agorogiannis
- University of Thessaly Medical School, Department of Neurology and Neurogenetics, Larissa, Greece
| | | | | | | |
Collapse
|
2156
|
Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 2004; 117:4055-66. [PMID: 15280428 DOI: 10.1242/jcs.01275] [Citation(s) in RCA: 484] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein folding in the mitochondria is assisted by nuclear-encoded compartment-specific chaperones but regulation of the expression of their encoding genes is poorly understood. We found that the mitochondrial matrix HSP70 and HSP60 chaperones, encoded by the Caenorhabditis elegans hsp-6 and hsp-60 genes, were selectively activated by perturbations that impair assembly of multi-subunit mitochondrial complexes or by RNAi of genes encoding mitochondrial chaperones or proteases, which lead to defective protein folding and processing in the organelle. hsp-6 and hsp-60 induction was specific to perturbed mitochondrial protein handling, as neither heat-shock nor endoplasmic reticulum stress nor manipulations that impair mitochondrial steps in intermediary metabolism or ATP synthesis activated the mitochondrial chaperone genes. These observations support the existence of a mitochondrial unfolded protein response that couples mitochondrial chaperone gene expression to changes in the protein handling environment in the organelle.
Collapse
Affiliation(s)
- Takunari Yoneda
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
2157
|
Abstract
The general approach to analysis of the kinetics of protein aggregation registered by the turbidimetric method has been elaborated. The terminal part of the kinetic curves is analyzed using a theoretical equation connecting the derivative of the apparent absorbance (A) with respect to time (dA/dt) and A (t is time). This analysis allows the limiting value of A at t--> infinity (A(lim)) and the order of aggregation with respect to protein (n) to be calculated. Approach proposed was applied to analysis of thermal and acidification-induced aggregation of firefly luciferase. In both cases the A(lim) value is a linear function of the protein concentration. The terminal part of the kinetic curves of thermal aggregation follows the first-order kinetics (n=1), whereas the kinetics of acidification-induced aggregation are characterized by the value of n higher than unity (n=1.29). The mechanism of nucleation-dependent aggregation has been discussed.
Collapse
Affiliation(s)
- Keyang Wang
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
2158
|
Kinjo AR, Takada S. Competition between protein folding and aggregation with molecular chaperones in crowded solutions: insight from mesoscopic simulations. Biophys J 2004; 85:3521-31. [PMID: 14645047 PMCID: PMC1303659 DOI: 10.1016/s0006-3495(03)74772-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The living cell is inherently crowded with proteins and macromolecules. To avoid aggregation of denatured proteins in the living cell, molecular chaperones play important roles. Here we introduce a simple model to describe crowded protein solutions with chaperone-like species based on a dynamic density functional theory. As predicted by others, our simulations show that macromolecular crowding enhances the association of proteins and chaperones. However, when the intrinsic folding rate of the protein is slow, it is possible that crowding also enhances aggregation of proteins. The results of simulation suggest that, when the concentration of the crowding agent is as high as that in the cell, the association of the protein and unbound chaperone becomes correlated with the aggregation process, and that the protein-bound chaperones efficiently destroy the potential nuclei of aggregates and thus prevent the aggregation.
Collapse
Affiliation(s)
- Akira R Kinjo
- PRESTO, Japan Science and Technology Corporation, Kobe University, Kobe, Japan
| | | |
Collapse
|
2159
|
Gelinas AD, Toth J, Bethoney KA, Stafford WF, Harrison CJ. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation. J Mol Biol 2004; 339:447-58. [PMID: 15136046 DOI: 10.1016/j.jmb.2004.03.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/11/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
DnaK, the prokaryotic Hsp70 molecular chaperone, requires the nucleotide exchange factor and heat shock protein GrpE to release ADP. GrpE and DnaK are tightly associated molecules with an extensive protein-protein interface, and in the absence of ADP, the dissociation constant for GrpE and DnaK is in the low nanomolar range. GrpE reduces the affinity of DnaK for ADP, and the reciprocal linkage is also true: ADP reduces the affinity of DnaK for GrpE. The energetic contributions of GrpE side-chains to GrpE-DnaK binding were probed by alanine-scanning mutagenesis. Sedimentation velocity (SV) analytical ultracentrifugation (AUC) was used to measure the equilibrium constants (Keq) for GrpE binding to the ATPase domain of DnaK in the presence of ADP. ADP-bound DnaK is the natural target of GrpE, and the addition of ADP (final concentration of 5 microM) to the preformed GrpE-DnaK(ATPase) complexes allowed the equilibrium association constants to be brought into an experimentally accessible range. Under these experimental conditions, the substitution of one single GrpE amino acid residue, arginine 183 with alanine, resulted in a GrpE-DnaK(ATPase) complex that was weakly associated (Keq =9.4 x 10(4) M). This residue has been previously shown to be part of a thermodynamic linkage between two structural domains of GrpE: the thermosensing long helices and the C-terminal beta-domains. Several other GrpE side-chains were found to have a significant change in the free energy of binding (DeltaDeltaG approximately 1.5 to 1.7 kcal mol(-1)), compared to wild-type GrpE.DnaK(ATPase) in the same experimental conditions. Overall, the strong interactions between GrpE and DnaK appear to be dominated by electrostatics, not unlike barnase and barstar, another well-characterized protein-protein interaction. GrpE, an inherent thermosensor, exhibits non-Arrhenius behavior with respect to its nucleotide exchange function at bacterial heat shock temperatures, and mutation of several solvent-exposed side-chains located along the thermosensing indicated that these residues are indeed important for GrpE-DnaK interactions.
Collapse
Affiliation(s)
- Amy D Gelinas
- Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA
| | | | | | | | | |
Collapse
|
2160
|
Ueno T, Taguchi H, Tadakuma H, Yoshida M, Funatsu T. GroEL mediates protein folding with a two successive timer mechanism. Mol Cell 2004; 14:423-34. [PMID: 15149592 DOI: 10.1016/s1097-2765(04)00261-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 03/29/2004] [Accepted: 03/30/2004] [Indexed: 11/23/2022]
Abstract
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.
Collapse
Affiliation(s)
- Taro Ueno
- Department of Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
2161
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
2162
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
2163
|
Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:98-112. [PMID: 15200645 DOI: 10.1111/j.1365-313x.2004.02111.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat stress transcription factors (Hsfs) are the major regulators of the plant heat stress (hs) response. Sequencing of the Arabidopsis genome revealed the existence of 21 open-reading frames (ORFs) encoding putative Hsfs assigned to classes A-C. Here we present results of a functional genomics approach to the Arabidopsis Hsf family focused on the analysis of their C-terminal domains (CTDs) harboring conserved modules for their function as transcription factors and their intracellular localization. Using reporter assays in tobacco protoplasts and yeast as well as glutathione-S-transferase (GST) pull-down assays, we demonstrate that short peptide motifs enriched with aromatic and large hydrophobic amino acid (aa) residues embedded in an acidic surrounding (AHA motifs) are essential for transcriptional activity of class A Hsfs. In contrast to this, class B and C Hsfs lack AHA motifs and have no activator function on their own. We also provide evidence for the function of a leucine (Leu)-rich region centered around a conserved QMGPhiL motif at the very C-terminus as a nuclear export signal (NES) of class A Hsfs. Sequence comparison indicates that the combination of a C-terminal AHA motif with the consensus sequence FWxxF/L,F/I/L as well as the adjacent NES represents a signature domain for plant class A Hsfs, which allowed to identify more than 60 new Hsfs from the expressed sequence tag (EST) database.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
2164
|
Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 2004; 136:51-62. [PMID: 15138067 DOI: 10.1016/j.molbiopara.2004.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/08/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
We have resolved the proteome of axenically differentiated Leishmania mexicana parasites by two-dimensional gel electrophoresis (2DE), employing optimised, robust and reproducible procedures, and visualised (by silver staining) approximately 2000 protein species in each of three developmental stages: procyclic promastigotes, metacyclic promastigotes and amastigotes. This analysis has used homogeneous populations of these parasite stages, characterised according to their morphology, protease and nuclease activity profiles and expression of stage-specific antigens. Following comparison of the whole proteome profiles between stages, 47 spots were found to be stage-specific, while a further 100 spots changed in intensity during differentiation. The majority of "unique" spots were expressed during the infective stages of parasite differentiation, metacyclic promastigotes and amastigotes. CapLC-QTOF mass spectrometry has allowed the identification of 47 protein species to date, including a number which are only detected in the amastigote stage. Proteins identified are members of eight functionally related groupings, some of which are implicated in infectivity and host-parasite interactions.
Collapse
Affiliation(s)
- Philip G Nugent
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
2165
|
Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, Bublak D, Scharf KD. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. PLANT PHYSIOLOGY 2004; 135:1457-70. [PMID: 15247379 PMCID: PMC519062 DOI: 10.1104/pp.104.042820] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/16/2004] [Accepted: 05/16/2004] [Indexed: 05/17/2023]
Abstract
HsfA2 is a heat stress (hs)-induced Hsf in peruvian tomato (Lycopersicon peruvianum) and the cultivated form Lycopersicon esculentum. Due to the high activator potential and the continued accumulation during repeated cycles of heat stress and recovery, HsfA2 becomes a dominant Hsf in thermotolerant cells. The formation of heterooligomeric complexes with HsfA1 leads to nuclear retention and enhanced transcriptional activity of HsfA2. This effect seems to represent one part of potential molecular mechanisms involved in its activity control. As shown in this paper, the activity of HsfA2 is also controlled by a network of nucleocytoplasmic small Hsps influencing its solubility, intracellular localization and activator function. By yeast two-hybrid interaction and transient coexpression studies in tobacco (Nicotiana plumbaginifolia) mesophyll protoplasts, we found that tomato (Lycopersicon esculentum) Hsp17.4-CII acts as corepressor of HsfA2. Given appropriate conditions, both proteins together formed large cytosolic aggregates which could be solubilized in presence of class CI sHsps. However, independent of the formation of aggregates or of the nucleocytoplasmic distribution of HsfA2, its transcriptional activity was specifically repressed by interaction of Hsp17.4-CII with the C-terminal activator domain. Although not identical in all aspects, the situation with the highly expressed, heat stress-inducible Arabidopsis HsfA2 was found to be principally similar. In corresponding reporter assays its activity was repressed in presence of AtHsp17.7-CII but not of AtHsp17.6-CII or LpHsp17.4-CII.
Collapse
Affiliation(s)
- Markus Port
- Biocenter of the Goethe University, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2166
|
Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J. Sequence-specific Interaction between Mitochondrial Fe-S Scaffold Protein Isu and Hsp70 Ssq1 Is Essential for Their in Vivo Function. J Biol Chem 2004; 279:29167-74. [PMID: 15123690 DOI: 10.1074/jbc.m402947200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isu, the scaffold for assembly of Fe-S clusters in the yeast mitochondrial matrix, is a substrate protein for the Hsp70 Ssq1 and the J-protein Jac1 in vitro. As expected for an Hsp70-substrate interaction, the formation of a stable complex between Isu and Ssq1 requires Jac1 in the presence of ATP. Here we report that a conserved tripeptide, PVK, of Isu is critical for interaction with Ssq1 because amino acid substitutions in this tripeptide inhibit both the formation of the Isu-Ssq1 complex and the ability of Isu to stimulate the ATPase activity of Ssq1. These biochemical defects correlate well with the growth defects of cells expressing mutant Isu proteins. We conclude that the Ssq1-Isu substrate interaction is critical for Fe-S cluster biogenesis in vivo. The ability of Jac1 and mutant Isu proteins to cooperatively stimulate the ATPase activity of Ssq1 was also measured. Increasing the concentration of Jac1 and mutant Isu together but not individually partially overcame the effect of the reduced affinity of the Isu mutant proteins for Ssq1. These results, along with the observation that overexpression of Jac1 was able to suppress the growth defect of an ISU mutant, support the hypothesis that Isu is "targeted" to Ssq1 by Jac1, with a preformed Jac1-Isu complex interacting with Ssq1.
Collapse
Affiliation(s)
- Rafal Dutkiewicz
- Department of Molecular and Cellular Biology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
2167
|
Buckley BA, Hofmann GE. Magnitude and Duration of Thermal Stress Determine Kinetics ofhspGene Regulation in the GobyGillichthys mirabilis. Physiol Biochem Zool 2004; 77:570-81. [PMID: 15449228 DOI: 10.1086/420944] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2003] [Indexed: 11/03/2022]
Abstract
The stress-induced transcription of heat shock genes is controlled by heat shock transcription factor 1 (HSF1), which becomes activated in response to heat and other protein denaturants. In previous research on the eurythermal goby Gillichthys mirabilis, thermal activation of HSF1 was shown to vary as a function of acclimation temperature, suggesting the mechanistic importance of HSF1 activation to the plasticity of heat shock protein (Hsp) induction temperature. We examined the effect of season on the thermal activation of HSF1 in G. mirabilis, as well as the relative kinetics of HSF1 activation and Hsp70 mRNA production at ecologically relevant temperatures. There was no predictable seasonality in the thermal activation of HSF1, perhaps due to the existence of stressors, in addition to heat, acting in the field. Concentrations of Hsp70, a negative regulator of HSF1, as well as those of HSF1, varied with collection date. The rapidity of HSF1 activation and of Hsp70 mRNA synthesis increased with laboratory exposure temperature. Furthermore, Hsp70 mRNA production was more sustained at 35 degrees C than at 30 degrees C. Therefore, both the magnitude and the duration of a heat shock are important in determining the intensity of heat shock gene induction.
Collapse
Affiliation(s)
- Bradley A Buckley
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
2168
|
Masson N, Appelhoff RJ, Tuckerman JR, Tian YM, Demol H, Puype M, Vandekerckhove J, Ratcliffe PJ, Pugh CW. The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Lett 2004; 570:166-70. [PMID: 15251459 DOI: 10.1016/j.febslet.2004.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/28/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.
Collapse
Affiliation(s)
- Norma Masson
- The Henry Wellcome Building of Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
2169
|
Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W. The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J Biol Chem 2004; 279:38047-54. [PMID: 15218029 DOI: 10.1074/jbc.m404319200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of preproteins into the mitochondrial matrix requires the presequence translocase of the inner membrane (TIM23 complex) and the presequence translocase-associated motor (PAM). The motor consists of five essential subunits, the mitochondrial heat shock protein 70 (mtHsp70) and four cochaperones, the nucleotide exchange-factor Mge1, the translocase-associated fulcrum Tim44, the J-protein Pam18, and Pam16. Pam16 forms a complex with Pam18 and displays similarity to J-proteins but lacks the canonical tripeptide motif His-Pro-Asp (HPD). We report that Pam16 does not function as a typical J-domain protein but, rather, antagonizes the function of Pam18. Pam16 specifically inhibits the Pam18-mediated stimulation of the ATPase activity of mtHsp70. The inclusion of the HPD motif in Pam16 does not confer the ability to stimulate mtHsp70 activity. Pam16-HPD fully substitutes for wild-type Pam16 in vitro and in vivo but is not able to replace Pam18. Pam16 represents a new type of cochaperone that controls the stimulatory effect of the J-protein Pam18 and regulates the interaction of mtHsp70 with precursor proteins during import into mitochondria.
Collapse
Affiliation(s)
- Yanfeng Li
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
2170
|
Alberti S, Böhse K, Arndt V, Schmitz A, Höhfeld J. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004; 15:4003-10. [PMID: 15215316 PMCID: PMC515335 DOI: 10.1091/mbc.e04-04-0293] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The CHIP ubiquitin ligase turns molecular chaperones into protein degradation factors. CHIP associates with the chaperones Hsc70 and Hsp90 during the regulation of signaling pathways and during protein quality control, and directs chaperone-bound clients to the proteasome for degradation. Obviously, this destructive activity should be carefully controlled. Here, we identify the cochaperone HspBP1 as an inhibitor of CHIP. HspBP1 attenuates the ubiquitin ligase activity of CHIP when complexed with Hsc70. As a consequence, HspBP1 interferes with the CHIP-induced degradation of immature forms of the cystic fibrosis transmembrane conductance regulator (CFTR) and stimulates CFTR maturation. Our data reveal a novel regulatory mechanism that determines folding and degradation activities of molecular chaperones.
Collapse
Affiliation(s)
- Simon Alberti
- Institut für Zellbiologie and Bonner Forum Biomedizin, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
2171
|
Barkhausen T, van Griensven M, Zeichen J, Bosch U. Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. ACTA ACUST UNITED AC 2004; 55:153-8. [PMID: 14620536 DOI: 10.1078/0940-2993-00302] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mechanical stress is a factor that is thought to play an essential role in tissue generation and reparation processes. The aim of the present study was to investigate the influence of different repetitive cyclic longitudinal stress patterns on proliferation, apoptosis and expression of heat shock protein (HSP) 72. To perform this study, human tendon fibroblasts were seeded on flexible silicone dishes. After adherence to the dish, cells were longitudinally stressed with three different repetitive stress patterns having a frequency of 1 Hz and an amplitude of 5%. The proliferation and apoptosis rates were investigated 0, 6, 12 and 24 hours after application of cyclic mechanical longitudinal strain. Expression of HSP 72 was tested after 0, 2, 4 and 8 hours. Control cells were also grown on silicone dishes, but did not receive any stress. Stress patterns applied during one day resulted in a significant increase in proliferation and a slight increase in apoptosis. HSP 72 expression was rather unchanged. A stress pattern applied during two days resulted in a reduced proliferation and apoptosis rate whereas the expression of HSP 72 showed a significant increase. This study shows that different stress patterns result in different cellular reactions dependent on the strength of applied stress. Repetitive stress applied during one day stimulated proliferation and apoptosis in contrast to an extended stress duration. The latter induced an inhibition of proliferation and apoptosis probably through an increased HSP 72 activity. This may be related to an excess of applied stress. Our results may implicate future modulation techniques for tissue reparation and tissue engineering.
Collapse
Affiliation(s)
- Tanja Barkhausen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | |
Collapse
|
2172
|
Ben-Zvi A, De Los Rios P, Dietler G, Goloubinoff P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J Biol Chem 2004; 279:37298-303. [PMID: 15201275 DOI: 10.1074/jbc.m405627200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70 is a central molecular chaperone that passively prevents protein aggregation and uses the energy of ATP hydrolysis to solubilize, translocate, and mediate the proper refolding of proteins in the cell. Yet, the molecular mechanism by which the active Hsp70 chaperone functions are achieved remains unclear. Here, we show that the bacterial Hsp70 (DnaK) can actively unfold misfolded structures in aggregated polypeptides, leading to gradual disaggregation. We found that the specific unfolding and disaggregation activities of individual DnaK molecules were optimal for large aggregates but dramatically decreased for small aggregates. The active unfolding of the smallest aggregates, leading to proper global refolding, required the cooperative action of several DnaK molecules per misfolded polypeptide. This finding suggests that the unique ATP-fueled locking/unlocking mechanism of the Hsp70 chaperones can recruit random chaperone motions to locally unfold misfolded structures and gradually disentangle stable aggregates into refoldable proteins.
Collapse
Affiliation(s)
- Anat Ben-Zvi
- Départment de Biologie Moléculaire Végétale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
2173
|
Rusin M, Zientek H, Krześniak M, Małusecka E, Zborek A, Krzyzowska-Gruca S, Butkiewicz D, Vaitiekunaite R, Lisowska K, Grzybowska E, Krawczyk Z. Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol Carcinog 2004; 39:155-63. [PMID: 14991745 DOI: 10.1002/mc.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Somatic mutations of 11q23.3-linked constitutive heat shock protein 70 gene (HSPA8 alias HSC70) are detected by others in breast carcinomas. To examine whether intragenic, somatic mutations of HSPA8 occur in lung carcinomas, we sequenced its exons 2-8, with adjacent intronic sequences, in a series of DNA samples from non-small-cell lung cancers (NSCLC). Twenty-one polymorphisms were detected, but no somatic mutation. However, we observed an association between the HSC70 1541-1542delGT genotype and the immunohistochemical staining pattern of HSC70 protein. Tumors with weak (+) HSC70 protein staining were more frequent in the carriers of the polymorphic 1541-1542delGT allele than in the homozygotes of the major allele (20% vs. 6%, P=0.05 by Fisher's exact test). This statistically significant association prompted us to test the polymorphism functionally. The method we developed for the functional evaluation of intronic sequence alterations showed that the HSPA8 intron 2 with the deleted GT dinucleotide was associated with noticeable (approximately 20%) and statistically significant (P=0.005) reduction of the reporter gene activity. Our case-control analysis showed that the 1541-1542delGT heterozygous genotype was associated with significantly decreased risk for lung cancer (crude odds ratio (OR)=0.44; 95% confidence interval (CI): 0.23-0.84). To the best of our knowledge, this is the first report on the association between a polymorphism of a gene coding for the chaperone protein and lung cancer risk. Moreover, the simple method reported here, based on the dual-luciferase reporter assay system, can be useful for testing functional significance of polymorphisms located in introns of other genes.
Collapse
Affiliation(s)
- Marek Rusin
- Department of Tumor Biology, Center of Oncology-Maria Skłodowska-Curie Memorial Institute, Gliwice, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2174
|
Jones G, Song Y, Chung S, Masison DC. Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding. Mol Cell Biol 2004; 24:3928-37. [PMID: 15082786 PMCID: PMC387751 DOI: 10.1128/mcb.24.9.3928-3937.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.
Collapse
Affiliation(s)
- Gary Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0851, USA
| | | | | | | |
Collapse
|
2175
|
Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Müller M, Streeck RE, Sapp M. Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol 2004; 78:5546-53. [PMID: 15140951 PMCID: PMC415841 DOI: 10.1128/jvi.78.11.5546-5553.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minor capsid protein L2 of papillomaviruses plays an essential role in virus assembly by recruiting viral components to PML bodies, the proposed sites of virus morphogenesis. We demonstrate here that the function of L2 in virus assembly requires the chaperone Hsc70. Hsc70 was found dispersed in naturally infected keratinocytes and cultured cells. A dramatic relocation of Hsc70 from the cytoplasm to PML bodies was induced in these cells by L2 expression. Hsc70-L2 complex formation was confirmed by coimmunoprecipitation. The complex was modulated by the cochaperones Hip and Bag-1, which stabilize and destabilize Hsc70-substrate complexes, respectively. Cytoplasmic depletion of Hsc70 caused retention of wild-type and N-terminally truncated L2, but not of C-terminally truncated L2, in the cytoplasm. This retention was partially reversed by overexpression of Hsc70 fused to green fluorescent protein but not by ATPase-negative Hsc70. Hsc70 associated with L1-L2 virus-like particles (VLPs) but not with VLPs composed either of L1 alone or of L1 and C-terminally truncated L2. Moreover, displacement of Hsc70 from L1-L2 VLPs by encapsidation of DNA, generating pseudovirions, was found. These data indicate that Hsc70 transiently associates with viral capsids during the integration of L2, possibly via the L2 C terminus. Completion of virus assembly results in displacement of Hsc70 from virions.
Collapse
Affiliation(s)
- Luise Florin
- Institut für Medizinische Mikrobiologie und Hygiene, Johannes Gutenberg-Universität Mainz, Hochhaus am Augustusplatz, D-55101 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2176
|
|
2177
|
Dunn CD, Jensen RE. Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA. Genetics 2004; 165:35-45. [PMID: 14504216 PMCID: PMC1462761 DOI: 10.1093/genetics/165.1.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Delta mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Delta cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
2178
|
Sastry MSR, Quigley PM, Hol WGJ, Baneyx F. The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures. Proc Natl Acad Sci U S A 2004; 101:8587-92. [PMID: 15173574 PMCID: PMC423238 DOI: 10.1073/pnas.0403033101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise control of substrate binding and release is essential for molecular chaperones to exert their protective function in times of stress. The mechanisms used are diverse and have been difficult to unravel. Escherichia coli heat-shock protein 31 (Hsp31) is a recent addition to the known complement of eubacterial chaperones. Crystallographic studies have revealed the presence of a hydrophobic bowl at the Hsp31 dimer interface and shown that the linker region connecting the two structural domains within each subunit is disordered. Together with a neighboring flexible loop, the linker caps a hydrophobic area adjacent to the bowl. Using a collection of Hsp31 mutants, we show that although both bowl and linker-loop-shielded residues participate in substrate binding, the latter are critical for protein capture at high temperature. Linker immobilization via an artificial disulfide bridge abolishes chaperone activity at elevated temperatures by precluding exposure of the underlying hydrophobic domain. We conclude that Hsp31 uses its linker-loop region as a thermally activated gate to control nonnative protein annealing to a high-affinity substrate-binding site. This simple yet efficient strategy to capture partially folded proteins under heat-shock conditions may be shared by other folding modulators.
Collapse
Affiliation(s)
- M S R Sastry
- Departments of Chemical Engineering and Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
2179
|
Dumitru GL, Groemping Y, Klostermeier D, Restle T, Deuerling E, Reinstein J. DafA Cycles Between the DnaK Chaperone System and Translational Machinery. J Mol Biol 2004; 339:1179-89. [PMID: 15178257 DOI: 10.1016/j.jmb.2004.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
DafA is encoded by the dnaK operon of Thermus thermophilus and mediates the formation of a highly stable complex between the chaperone DnaK and its co-chaperone DnaJ under normal growth conditions. DafA(Tth) contains 87 amino acid residues and is the only member of the DnaK(Tth) chaperone system for which no corresponding protein has yet been identified in other organisms and whose particular function has remained elusive. Here, we show directly that the DnaK(Tth)-DnaJ(Tth)-DafA(Tth) complex cannot represent the active chaperone species since DafA(Tth) inhibits renaturation of firefly luciferase by suppressing substrate association. Since DafA(Tth) must be released before the substrate proteins can bind we hypothesized that free DafA(Tth) might have regulatory functions connected to the heat shock response. Here, we present evidence that supports this hypothesis. We identified the 70S ribosome as binding target of free DafA(Tth). Our results show that the association of DafA(Tth) and 70S ribosomes does not require the participation of DnaK(Tth) or DnaJ(Tth). On the contrary, the assembly of DnaK(Tth)-DnaJ(Tth)-DafA(Tth) and ribosome-DafA(Tth) complexes seems to be competitive. These findings strongly suggest the involvement of DafA(Tth) in regulatory processes occurring at a translational level, which could represent a new mechanism of heat shock response as an adaptation to elevated temperature.
Collapse
Affiliation(s)
- Georgeta L Dumitru
- Max-Planck-Institut für molekulare Physiologie, Abteilung physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
2180
|
Sawasaki T, Hasegawa Y, Morishita R, Seki M, Shinozaki K, Endo Y. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. PHYTOCHEMISTRY 2004; 65:1549-1555. [PMID: 15276451 DOI: 10.1016/j.phytochem.2004.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/31/2004] [Indexed: 05/24/2023]
Abstract
Since the complete genomic DNA sequencing of various species, attention has turned to the structural properties, and functional characteristics of proteins. Current cell-free protein expression systems from eukaryotes are capable of synthesizing proteins with high speed and accuracy; however, the yields are low due to their instability over time. This report reviews the high-throughput, genome-scale biochemical annotation method based on the cell-free system prepared from wheat embryos. We first briefly reviewed our highly efficient and robust wheat germ cell-free protein synthesis system, and then showed an application of the system for materialization and characterization of genetic information taking a cDNA library of protein kinase from Arabidopsis thaliana as an example. The procedure consists of: (1) fusion of the gene-of-interest to a purification-tag, amplified by the split-primer PCR method; (2) transcription and purification of mRNA; (3) cell-free protein synthesis in the bilayer system using 96-well titer plate; (4) affinity purification and activity measurement. We took 439 cDNAs encoding kinases among 1064 genes annotated so far, and they were translated in parallel into protein. Subsequent assay revealed 207 products having autophosphorylation activity. Furthermore, seven proteins out of 26 calcium-dependent protein kinase genes tested did phosphorylate a synthetic peptide substrate in the presence of calcium ion, demonstrating that the translation products, retained their substrate specificity. The information on biochemical function of gene products accumulated should revolutionize our understanding of biology and fundamentally alter the practice of medicine and influence other industries as well.
Collapse
Affiliation(s)
- Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, The Venture Business Laboratory, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | |
Collapse
|
2181
|
Heller M, John M, Coles M, Bosch G, Baumeister W, Kessler H. NMR studies on the substrate-binding domains of the thermosome: structural plasticity in the protrusion region. J Mol Biol 2004; 336:717-29. [PMID: 15095983 DOI: 10.1016/j.jmb.2003.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/01/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Group II chaperonins close their cavity with the help of conserved, helical extensions, the so-called protrusions, which emanate from the apical or substrate-binding domains. A comparison of previously solved crystal structures of the apical domains of the thermosome from Thermoplasma acidophilum showed structural plasticity in the protrusion parts induced by extensive packing interactions. In order to assess the influence of the crystal contacts we investigated both the alpha and beta-apical domains (alpha-ADT and beta-ADT) in solution by NMR spectroscopy. Secondary structure assignments and 15N backbone relaxation measurements showed mostly rigid structural elements in the globular parts of the domains, but revealed intrinsic structural disorder and partial helix fraying in the protrusion regions. On the other hand, a beta-turn-motif conserved in archaeal group II chaperonins might facilitate substrate recognition. Our results help us to specify the idea of the open, substrate-accepting state of the thermosome and may provide an additional jigsaw piece in understanding the mode of substrate binding of group II chaperonins.
Collapse
Affiliation(s)
- Markus Heller
- Institut für Organische Chemie und Biochemie II, Technische Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
2182
|
Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G. Differential Up-Regulation of Cytosolic and Membrane-Bound Heat Shock Protein 70 in Tumor Cells by Anti-Inflammatory Drugs. Clin Cancer Res 2004; 10:3354-64. [PMID: 15161689 DOI: 10.1158/1078-0432.ccr-03-0382] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Modulation of the heat shock protein (HSP) response affects sensitivity to therapeutic agents in cancer. Here, drugs with anti-inflammatory potential (cyclooxygenase 1/2 inhibitors) and peroxidase proliferator-activated receptor-gamma agonists were analyzed for their capacity to affect Hsp70 expression in human cancer cells with a divergent Hsp70 membrane expression pattern. EXPERIMENTAL DESIGN In dose kinetics, the nonlethal concentration of acetyl-salicyl acid, celecoxib, rofecoxib, and the insulin-sensitizer pioglitazone was identified for the human adenocarcinoma cell line CX-. With the exception of CLX, which was diluted in DMSO, all reagents were dissolved in water. After treatment with the different compounds at nontoxic concentrations for 6 h, followed by a 1-h recovery period, the cytosolic Hsp70 levels were measured in CX-2 and CX- tumor cells by Western blot analysis. Fold increase was calculated in relation to the housekeeping protein tubulin. Membrane-bound Hsp70 was analyzed by flow cytometry using a FITC-labeled Hsp70-specific monoclonal antibody. Untreated cells and cells incubated with equivalent amounts of the diluting agents served as controls. The immunological function was tested in granzyme B apoptosis assays, standard (51)Cr release assays, and antibody blocking studies. RESULTS Compared with aqua dest, the cytoplasmic amount of Hsp70 was equally enhanced in CX-2 and CX- cells by all compounds. An increase in membrane-bound Hsp70, detected selectively in CX- cells, corresponded to an enhanced sensitivity to granzyme B- and natural killer cell-mediated kill that was blockable by using a Hsp70-specific antibody. CONCLUSIONS Although increase in cytosolic Hsp70 levels conferred resistance to further stress, membrane-bound Hsp70 rendered tumor cells more sensitive to the immunological attack mediated by granzyme B and natural killer cells. Our data provide a biological rational for combining anti-inflammatory drugs with immunotherapy in cancer therapy.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
2183
|
Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M, Stemp M, Georgopoulos C, Hartl FU, Barral JM. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 2004; 117:199-209. [PMID: 15084258 DOI: 10.1016/s0092-8674(04)00299-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 02/19/2004] [Accepted: 02/26/2004] [Indexed: 01/28/2023]
Abstract
Trigger factor and DnaK protect nascent protein chains from misfolding and aggregation in the E. coli cytosol, but how these chaperones affect the mechanism of de novo protein folding is not yet understood. Upon expression under chaperone-depleted conditions, multidomain proteins such as bacterial beta-galactosidase (beta-gal) and eukaryotic luciferase fold by a rapid but inefficient default pathway, tightly coupled to translation. Trigger factor and DnaK improve the folding yield of these proteins but markedly delay the folding process both in vivo and in vitro. This effect requires the dynamic recruitment of additional trigger factor molecules to translating ribosomes. While beta-galactosidase uses this chaperone mechanism effectively, luciferase folding in E. coli remains inefficient. The efficient cotranslational domain folding of luciferase observed in the eukaryotic system is not compatible with the bacterial chaperone system. These findings suggest important differences in the coupling of translation and folding between bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Vishwas R Agashe
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2184
|
Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S. Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. ACTA ACUST UNITED AC 2004; 271:1372-81. [PMID: 15030488 DOI: 10.1111/j.1432-1033.2004.04049.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A psychrotrophic bacterium Shewanella sp. strain SIB1 was grown at 4 and 20 degrees C, and total soluble proteins extracted from the cells were analyzed by two-dimensional polyacrylamide gel electrophoresis. Comparison of these patterns showed that the cellular content of a protein with a molecular mass of 28 kDa and an isoelectric point of four greatly increased at 4 degrees C compared to that at 20 degrees C. Determination of the N-terminal amino acid sequence, followed by the cloning and sequencing of the gene encoding this protein, revealed that this protein is a member of the FKBP family of proteins with an amino acid sequence identity of 56% to Escherichia coli FKBP22. This protein was overproduced in E. coli in a His-tagged form, purified, and analyzed for peptidyl-prolyl cis-trans isomerase activity. When this activity was determined by the protease coupling assay using N-succinyl-Ala-Leu-Pro-Phe-p-nitroanilide as a substrate at various temperatures, the protein exhibited the highest activity at 10 degrees C with a k(cat)/K(m) value of 0.87 micro m(-1) x s(-1). When the peptidyl-prolyl cis-trans isomerase activity was determined by the RNase T(1) refolding assay at 10 and 20 degrees C, the protein exhibited higher activity at 10 degrees C with a k(cat)/K(m) value of 0.50 micro m(-1) x s(-1). These k(cat)/K(m) values are lower but comparable to those of E. coli FKBP22. We propose that a FKBP family protein is involved in cold-adaptation of psychrotrophic bacteria.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | |
Collapse
|
2185
|
Billecke SS, Draganov DI, Morishima Y, Murphy PJM, Dunbar AY, Pratt WB, Osawa Y. The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase. J Biol Chem 2004; 279:30252-8. [PMID: 15155759 DOI: 10.1074/jbc.m403864200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.
Collapse
Affiliation(s)
- Scott S Billecke
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | | | | | |
Collapse
|
2186
|
Buskiewicz I, Deuerling E, Gu SQ, Jöckel J, Rodnina MV, Bukau B, Wintermeyer W. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc Natl Acad Sci U S A 2004; 101:7902-6. [PMID: 15148364 PMCID: PMC419529 DOI: 10.1073/pnas.0402231101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trigger factor (TF) and signal recognition particle (SRP) bind to the bacterial ribosome and are both crosslinked to protein L23 at the peptide exit, where they interact with emerging nascent peptide chains. It is unclear whether TF and SRP exclude one another from their ribosomal binding site(s). Here we show that SRP and TF can bind simultaneously to ribosomes or ribosome nascent-chain complexes exposing a SRP-specific signal sequence. Based on changes of the crosslinking pattern and on results obtained by fluorescence measurements using fluorescence-labeled SRP, TF binding induces structural changes in the ribosome-SRP complex. Furthermore, we show that binding of the SRP receptor, FtsY, to ribosome-bound SRP excludes TF from the ribosome. These results suggest that TF and SRP sample nascent chains on the ribosome in a nonexclusive fashion. The decision for ribosome nascent-chain complexes exposing a signal sequence to enter SRP-dependent membrane targeting seems to be determined by the binding of SRP, which is stabilized by signal sequence recognition, and promoted by the exclusion of TF due to the binding of the SRP receptor to ribosome-bound SRP.
Collapse
Affiliation(s)
- Iwona Buskiewicz
- Institute für Molekularbiologie und Physikalische Biochemie, Universität Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | | | | | |
Collapse
|
2187
|
Baneyx F. Keeping up with protein folding. Microb Cell Fact 2004; 3:6. [PMID: 15144563 PMCID: PMC419362 DOI: 10.1186/1475-2859-3-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 05/14/2004] [Indexed: 11/10/2022] Open
Affiliation(s)
- François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA.
| |
Collapse
|
2188
|
Abstract
Protein-damaging stresses induce the expression of 'heat-shock proteins', which have essential roles in protecting cells from the potentially lethal effects of stress and proteotoxicity. These stress-protective heat-shock proteins are often overexpressed in cells of various cancers and have been suggested to be contributing factors in tumorigenesis. An underlying basis of oncogenesis is the acquisition and accumulation of mutations that provide the transformed cell with the combined characteristics of deregulated cell proliferation and suppressed cell death. Heat-shock proteins with dual roles as regulators of protein conformation and stress sensors may therefore have intriguing and central roles in both cell proliferation and apoptosis. It has been established that heat-shock proteins exhibit specificity to particular classes of polypeptide substrates and client proteins in vivo, and that chaperones can stabilize mutations that affect the folded conformation. Likewise, overexpression of chaperones has also been shown to protect cells against apoptotic cell death. The involvement of chaperones, therefore, in such diverse roles might suggest novel anticancer therapeutic approaches targeting heat-shock protein function for a broad spectrum of tumor types.
Collapse
Affiliation(s)
- Dick D Mosser
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
2189
|
Wickner RB, Edskes HK, Roberts BT, Baxa U, Pierce MM, Ross ED, Brachmann A. Prions: proteins as genes and infectious entities. Genes Dev 2004; 18:470-85. [PMID: 15037545 DOI: 10.1101/gad.1177104] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
2190
|
Sreedhar AS, Soti C, Csermely P. Inhibition of Hsp90: a new strategy for inhibiting protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:233-42. [PMID: 15023364 DOI: 10.1016/j.bbapap.2003.11.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/12/2003] [Indexed: 01/22/2023]
Abstract
The 90-kDa heat shock protein (Hsp90) is a ubiquitous, evolutionarily highly conserved, molecular chaperone in the eukaryotic cytosol. Hsp90, together with a number of other chaperones, promotes the conformational maturation of a large variety of protein kinases. Inhibition of Hsp90 function results in the collapse of the metastable conformation of most of these kinases and leads to their proteolytic elimination by the proteasome. Numerous natural and synthetic Hsp90 inhibitors have been developed in recent years. Some of these inhibitors are also involved in sensitizing tumor cells to pro-apoptotic insults, hence serve as anti-cancer drugs. Here we review these novel protein kinase inhibitors and their emerging role in various cellular processes, apart from their inhibition of Hsp90 protein function. We focus not only on Hsp90-tumor progression, but also on cytoarchitecture, as the higher levels of cellular organization need constant remodeling, where the role of Hsp90 requires investigation. Our last major aspect deals with protein oxidation, since several Hsp90 inhibitors exert pro-oxidant effects.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University Medical School, P.O. Box 260, H-1444 Budapest 8, Hungary
| | | | | |
Collapse
|
2191
|
Ullers RS, Luirink J, Harms N, Schwager F, Georgopoulos C, Genevaux P. SecB is a bona fide generalized chaperone in Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:7583-8. [PMID: 15128935 PMCID: PMC419649 DOI: 10.1073/pnas.0402398101] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is known that the DnaK and Trigger Factor (TF) chaperones cooperate in the folding of newly synthesized cytosolic proteins in Escherichia coli. We recently showed that despite a very narrow temperature range of growth and high levels of aggregated cytosolic proteins, E. coli can tolerate deletion of both chaperones, suggesting that other chaperones might be involved in this process. Here, we show that the secretion-dedicated chaperone SecB efficiently suppresses both the temperature sensitivity and the aggregation-prone phenotypes of a strain lacking both TF and DnaK. SecB suppression is independent of a productive interaction with the SecA subunit of the translocon. Furthermore, in vitro cross-linking experiments demonstrate that SecB can interact both co- and posttranslationally with short nascent chains of both secretory and cytosolic proteins. Finally, we show that such cotranslational substrate recognition by SecB is greatly suppressed in the presence of ribosome-bound TF, but not by DnaK. Taken together, our data demonstrate that SecB acts as a bona fide generalized chaperone.
Collapse
Affiliation(s)
- Ronald S Ullers
- Department of Molecular Microbiology, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
2192
|
Affiliation(s)
- Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
2193
|
Yano M, Koumoto Y, Kanesaki Y, Wu X, Kido H. 20S Proteasome Prevents Aggregation of Heat-Denatured Proteins without PA700 Regulatory Subcomplex Like a Molecular Chaperone. Biomacromolecules 2004; 5:1465-9. [PMID: 15244466 DOI: 10.1021/bm049957a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.
Collapse
Affiliation(s)
- Mihiro Yano
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
2194
|
Zippay ML, Place SP, Hofmann GE. The molecular chaperone Hsc70 from a eurythermal marine goby exhibits temperature insensitivity during luciferase refolding assays. Comp Biochem Physiol A Mol Integr Physiol 2004; 138:1-7. [PMID: 15165564 DOI: 10.1016/j.cbpb.2004.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 02/05/2004] [Accepted: 02/05/2004] [Indexed: 11/16/2022]
Abstract
The role and function of molecular chaperones has been widely studied in model systems (e.g. yeast, Escherichia coli and cultured mammalian cells), however, comparatively little is known about the function of molecular chaperones in eurythermal ectotherms. To investigate the thermal sensitivity of molecular chaperone function in non-model ectotherms, we examined the in vitro activity of Hsc70, a constitutively expressed member of the 70-kDa heat-shock protein gene family, purified from white muscle of the eurythermal marine goby Gillichthys mirabilis. The activity of G. mirabilis Hsc70 was assessed with an in vitro refolding assay where the percent refolding of thermally denatured luciferase was monitored using a luminometer. Assays were conducted from 10-40 degrees C, a range of temperatures that is ecologically relevant for this estuarine species. The results showed that isolated Hsc70 displayed chaperone characteristics in vitro, and was relatively thermally insensitive across the range of experimental temperatures. In addition, the thermal stability of the luciferase refolding capacity of Hsc70 was relatively stable, with refolding activity occurring as high as 50 degrees C. Overall, Hsc70 from G. mirabilis displayed thermal properties in vitro that suggest that the molecular chaperone is capable of binding and chaperoning proteins at temperatures that the goby encounters in nature.
Collapse
Affiliation(s)
- Mackenzie L Zippay
- Department of Ecology, Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
2195
|
Khor HK, Fisher MT, Schöneich C. Potential Role of Methionine Sulfoxide in the Inactivation of the Chaperone GroEL by Hypochlorous Acid (HOCl) and Peroxynitrite (ONOO–). J Biol Chem 2004; 279:19486-93. [PMID: 14757771 DOI: 10.1074/jbc.m310045200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GroEL is an Escherichia coli molecular chaperone that functions in vivo to fold newly synthesized polypeptides as well as to bind and refold denatured proteins during stress. This protein is a suitable model for its eukaryotic homolog, heat shock protein 60 (Hsp60), due to the high number of conserved amino acid sequences and similar function. Here, we will provide evidence that GroEL is rather insensitive to oxidants produced endogenously during metabolism, such as nitric oxide (.NO) or hydrogen peroxide (H(2)O(2)), but is modified and inactivated by efficiently reactive species generated by phagocytes, such as peroxynitrite (ONOO(-)) and hypochlorous acid (HOCl). For the exposure of 17.5 microm GroEL to 100-250 microm HOCl, the major pathway of inactivation was through the oxidation of methionine to methionine sulfoxide, established through mass spectrometric detection of methionine sulfoxide and the reactivation of a significant fraction of inactivated GroEL by the enzyme methionine sulfoxide reductase B/A (MsrB/A). In addition to the oxidation of methionine, HOCl caused the conversion of cysteine to cysteic acid and this product may account for the remainder of inactivated GroEL not recoverable through MsrB/A. In contrast, HOCl produced only negligible yields of 3-chlorotyrosine. A remarkable finding was the conversion of Met(111) and Met(114) to Met sulfone, which suggests a rather low reduction potential of these 2 residues in GroEL. The high sensitivity of GroEL toward HOCl and ONOO(-) suggests that this protein may be a target for bacterial killing by phagocytes.
Collapse
Affiliation(s)
- Hui Koon Khor
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047-3729, USA
| | | | | |
Collapse
|
2196
|
Lan C, Lee HC, Tang S, Zhang L. A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem 2004; 279:27607-12. [PMID: 15102838 DOI: 10.1074/jbc.m402777200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones Hsp90 and Hsp70 control many signal transducers, including cyclin-dependent kinases and steroid receptors. The yeast heme-responsive transcriptional activator Hap1 is a native substrate of both Hsp90 and Hsp70. Hsp90 and Hsp70 are critical for the precise regulation of Hap1 activity by heme. Here, to decipher the molecular events underlying the actions of Hsp90 and Hsp70 in heme regulation, we purified various multichaperone-Hap1 complexes and characterized the complexes linked to Hap1 repression and activation by two-dimensional electrophoresis analysis. Notably, we found that in vitro Hap1 is associated continuously with Ssa and its co-chaperones, and this association is not weakened by heme. Heme enhances the interaction between Hap1 and Hsp90. In vivo, defective Ssa, Ydj1, or Sro9 function causes Hap1 derepression in the absence of heme, whereas defective Hsp90 function causes reduced Hap1 activity at high heme concentrations. These results show that continuous association of Hap1 with Ssa, Ydj1, and Sro9 confers Hap1 repression, whereas enhanced association of Hsp90 with the repressed Hap1-Ssa-Ydj1-Sro9 complex by heme causes Hap1 activation. This novel mechanism of chaperone action may operate to control the activity of other important signal transducers.
Collapse
Affiliation(s)
- Changgui Lan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, New York 10032, USA
| | | | | | | |
Collapse
|
2197
|
Brehmer D, Gässler C, Rist W, Mayer MP, Bukau B. Influence of GrpE on DnaK-substrate interactions. J Biol Chem 2004; 279:27957-64. [PMID: 15102842 DOI: 10.1074/jbc.m403558200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.
Collapse
Affiliation(s)
- Dirk Brehmer
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
2198
|
Abstract
Extensive work in the last 10 years has suggested that heat shock proteins (HSPs) may be potent activators of the innate immune system. It has been reported that Hsp60, Hsp70, Hsp90, and gp96 are capable of inducing the production of proinflammatory cytokines by the monocyte-macrophage system and the activation and maturation of dendritic cells (antigen-presenting cells) in a manner similar to the effects of lipopolysaccharide (LPS) and bacterial lipoprotein, e.g., via CD14/Toll-like receptor2 (TLR2) and CD14/TLR4 receptor complex-mediated signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be due to the contaminating LPS and LPS-associated molecules. The reasons for previous failure to recognize the contaminant(s) as being responsible for the reported HSP cytokine effects include failure to use highly purified, low-LPS preparations of HSPs; failure to recognize the heat sensitivity of LPS; and failure to consider contaminant(s) other than LPS. Thus it is essential that efforts should be directed to conclusively determine whether the reported HSP cytokine effects are due to HSPs or to contaminant(s) present in the HSP preparations before further exploring the implication and therapeutic potential of the putative cytokine function of HSPs.
Collapse
Affiliation(s)
- Min-Fu Tsan
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA.
| | | |
Collapse
|
2199
|
Chen Y, Song J, Sui SF, Wang DN. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr Purif 2004; 32:221-31. [PMID: 14965767 DOI: 10.1016/s1046-5928(03)00233-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/22/2003] [Indexed: 10/27/2022]
Abstract
Overexpression of CorA, the major magnesium transporter from bacterial inner membrane, in Escherichia coli resulted in the synthesis of 60mg of protein per liter of culture, most of which however was in the form of inclusion bodies. The levels of inclusion body formation were reduced by lowering the cell culture temperature. To dissect CorA inclusion body formation and the folding process involved, we co-expressed the protein with various chaperones and other folding modulators. Expression of DnaK/DnaJ (Hsp70) prevented inclusion bodies from forming and resulted in the integration of more CorA into the membrane. GroEL/GroES (Hsp60/Hsp10) were less effective at reducing CorA inclusion body formation. Co-expression with either Ffh/4.5S-RNA, the signal recognition particle, or SecA, the ATPase that drives protein insertion into the membrane, had little effect on CorA folding. These results indicate: (1) that CorA inclusion bodies form immediately after synthesis at 37 degrees C, (2) that CorA solubility in the cytosol can be increased by co-expressing a chaperone system, (3) membrane targeting is probably not a rate-limiting factor, and (4) that membrane insertion becomes a limitation only when large amounts of soluble CorA are present in the cytosol. These co-expression systems can be used for producing other membrane proteins in large quantities.
Collapse
Affiliation(s)
- Yong Chen
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
2200
|
Zourlidou A, Payne Smith MD, Latchman DS. HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 2004; 88:1439-48. [PMID: 15009645 DOI: 10.1046/j.1471-4159.2003.02273.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
alpha-Synuclein is a neuronally expressed protein which is mutated in familial Parkinson's disease. We have previously shown that disease-associated mutants of alpha-synuclein cause enhanced neuronal cell death in response to a variety of stimuli, whereas wild-type alpha-synuclein has a protective effect against some stimuli, whilst enhancing the death response to others. We demonstrate, for the first time, that over-expression of the heat shock protein HSP27 has a potent protective anti-apoptotic effect against the damaging effects of wild-type and particularly of mutant alpha-synuclein. In contrast, HSP70 has some protective effect against the damaging effect of the wild-type protein, but has no effect against the mutant proteins, whilst HSP56 has no protective effect in this system. Our results indicate that disease-associated mutants of alpha-synuclein enhance its death-inducing properties and lead to increased apoptosis, which can be mitigated by either the use of specific caspase inhibitors or HSP27 over-expression. This potent protective effect of HSP27 against the mutant and wild-type proteins may be of potential therapeutic importance.
Collapse
Affiliation(s)
- Alexandra Zourlidou
- Medical Molecular Biology Unit, Institute of Child Health, University College, London, UK
| | | | | |
Collapse
|