201
|
|
Pal S, Bhattacharya M, Lee SS, Chakraborty C. Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics. Mol Biotechnol 2023. [PMID: 37244882 DOI: 10.1007/s12033-023-00765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.
Collapse
Affiliation(s)
- Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
202
|
|
Rahav Y, Rajagopal SK, Dishi O, Bogoslavsky B, Gidron O. Alternating behavior in furan-acetylene macrocycles reveals the size-dependency of Hückel's rule in neutral molecules. Commun Chem 2023; 6:100. [PMID: 37244950 DOI: 10.1038/s42004-023-00902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
Aromaticity can be assigned by Hückel's rule, which predicts that planar rings with delocalized (4n + 2) π-electrons are aromatic, whereas those with 4n π-electrons are antiaromatic. However, for neutral rings, the maximal value of "n" to which Hückel's rule applies remains unknown. Large macrocycles exhibiting global ring current can serve as models for addressing this question, but the global ring current are often overshadowed in these molecules by the local ring current of the constituent units. Here, we present a series of furan-acetylene macrocycles, ranging from the pentamer to octamer, whose neutral states display alternating contributions from global aromatic and antiaromatic ring currents. We find that the odd-membered macrocycles display global aromatic characteristics, whereas the even-membered macrocycles display contributions from globally antiaromatic ring current. These factors are expressed electronically (oxidation potentials), optically (emission spectra), and magnetically (chemical shifts), and DFT calculations predict global ring current alternations up to 54 π-electrons.
Collapse
Affiliation(s)
- Yuval Rahav
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Shinaj K Rajagopal
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Or Dishi
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Ori Gidron
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
203
|
|
Yang R, Kvetny M, Brown W, Ogbonna EN, Wang G. A Single-Entity Method for Actively Controlled Nucleation and High-Quality Protein Crystal Synthesis. Anal Chem 2023. [PMID: 37243709 DOI: 10.1021/acs.analchem.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lack of controls and understanding in nucleation, which proceeds crystal growth and other phase transitions, has been a bottleneck challenge in chemistry, materials, biology, and other fields. The exemplary needs for better methods for biomacromolecule crystallization include (1) synthesizing crystals for high-resolution structure determinations in fundamental research and (2) tuning the crystal habit and thus the corresponding properties in materials and pharmaceutical applications. Herein, a deterministic method is established capable of sustaining the nucleation and growth of a single crystal using the protein lysozyme as a prototype. The supersaturation is localized at the interface between a sample and a precipitant solution, spatially confined by the tip of a single nanopipette. The exchange of matter between the two solutions determines the supersaturation, which is controlled by electrokinetic ion transport driven by an external potential waveform. Nucleation and subsequent crystal growth disrupt the ionic current limited by the nanotip and are detected. The nucleation and growth of individual single crystals are measured in real time. Electroanalytical and optical signatures are elucidated as feedbacks with which active controls in crystal quality and method consistency are achieved: five out of five crystals diffract at a true atomic resolution of up to 1.2 Å. As controls, those synthesized under less optimized conditions diffract poorly. The crystal habits during the growth process are tuned successfully by adjusting the flux. The universal mechanism of nano-transport kinetics, together with the correlations of the diffraction quality and crystal habit with the crystallization control parameters, lay the foundation for the generalization to other materials systems.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Maksim Kvetny
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Warren Brown
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Edwin N Ogbonna
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
204
|
|
Chhetri M, Wan M, Jin Z, Yeager J, Sandor C, Rapp C, Wang H, Lee S, Bodenschatz CJ, Zachman MJ, Che F, Yang M. Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO(2) reduction. Nat Commun 2023; 14:3075. [PMID: 37244900 DOI: 10.1038/s41467-023-38777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2 reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2 reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2 reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1 moieties on copper surfaces, facile CO* hydrogenation to CHO* or CO-CHO* coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4 or C2H4 through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2 reduction in aqueous phases.
Collapse
Affiliation(s)
- Manjeet Chhetri
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Mingyu Wan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Zehua Jin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - John Yeager
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Case Sandor
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Conner Rapp
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Hui Wang
- Institute for New Energy Materials and Low Carbon Technology, Tianjin University of Technology, Tianjin, China
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Cameron J Bodenschatz
- Environmental Effects and Coatings Branch, NASA John H. Glenn Research Center, Cleveland, OH, USA
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Ming Yang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
205
|
|
Darwish GH, Massey M, Daudet G, Alde LG, Algar WR. Tetrameric Antibody Complexes and Affinity Tag Peptides for the Selective Immobilization and Imaging of Single Quantum Dots. Bioconjug Chem 2023. [PMID: 37243625 DOI: 10.1021/acs.bioconjchem.3c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Colloidal semiconductor quantum dots (QDs) are of widespread interest as fluorescent labels for bioanalysis and imaging applications. Single-particle measurements have proven to be a very powerful tool for better understanding the fundamental properties and behaviors of QDs and their bioconjugates; however, a recurring challenge is the immobilization of QDs in a solution-like environment that minimizes interactions with a bulk surface. Immobilization strategies for QD-peptide conjugates are particularly underdeveloped within this context. Here, we present a novel strategy for the selective immobilization of single QD-peptide conjugates using a combination of tetrameric antibody complexes (TACs) and affinity tag peptides. A glass substrate is modified with an adsorbed layer of concanavalin A (ConA) that binds a subsequent layer of dextran that minimizes nonspecific binding. A TAC with anti-dextran and anti-affinity tag antibodies binds to the dextran-coated glass surface and to the affinity tag sequence of QD-peptide conjugates. The result is spontaneous and sequence-selective immobilization of single QDs without any chemical activation or cross-linking. Controlled immobilization of multiple colors of QDs is possible using multiple affinity tag sequences. Experiments confirmed that this approach positions the QD away from the bulk surface. The method supports real-time imaging of binding and dissociation, measurements of Förster resonance energy transfer (FRET), tracking of dye photobleaching, and detection of proteolytic activity. We anticipate that this immobilization strategy will be useful for studies of QD-associated photophysics, biomolecular interactions and processes, and digital assays.
Collapse
Affiliation(s)
- Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Gabrielle Daudet
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Luis G Alde
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
206
|
|
Tuncer M, Alcan S. Pyroptosis: a new therapeutic strategy in cancer. Mol Biol Rep 2023. [PMID: 37243815 DOI: 10.1007/s11033-023-08482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/29/2023]
Abstract
Programmed cell death pathways play important roles in a wide variety of physiological processes. Although it has similarities with apoptosis pyroptosis is a different type of programmed cell death. Pyroptosis can be triggered by different molecules originating from the cells or their environment. Once a pyroptotic pathway is started, it is followed by different molecular steps, and, it ends with the disruption of cell membrane integrity and the onset of inflammatory processes. In addition to the role of pyroptosis in the host's innate immunity against pathogens, uncontrolled pyroptosis can lead to increased inflammation and lead various diseases. The contradictory role of pyroptosis-related molecular changes in the pathogenesis of cancer has attracted attention lately. Excessive or decreased expression of molecules involved in pyroptotic pathways is associated with various cancers. There are ongoing studies on the use of different treatment methods for cancer in combination with new therapies targeting pyroptosis. The potential beneficial effects or side-effect profiles of these protocols targeting pyroptosis still need to be investigated. This will provide us with more efficient and safer options to treat cancer. This review aims to overview the main pathways and mechanisms of pyroptosis and to discuss its role in cancer.
Collapse
Affiliation(s)
- Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey.
| | - Simay Alcan
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey
| |
Collapse
|
207
|
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
208
|
|
Jiang QQ, Li YJ, Wu Q, Liang RP, Wang X, Zhang R, Wang YA, Liu X, Qiu JD. Molecular Insertion: A Master Key to Unlock Smart Photoelectric Responses of Covalent Organic Frameworks. Small 2023;:e2302254. [PMID: 37236205 DOI: 10.1002/smll.202302254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Indexed: 05/28/2023]
Abstract
Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of photoelectric COFs has to meet overmuch high conditions, limiting the breakthrough and modulation in photoelectric responses. Herein, the study reports a creative "lock-key model" based on molecular insertion strategy. A COF with suitable cavity size, TP-TBDA, is used as the host to load guests. Merely through the volatilization of mixed solution, TP-TBDA and guests can be spontaneously assembled via non-covalent interactions (NCIs) to produce molecular-inserted COFs (MI-COFs). The NCIs between TP-TBDA and guests acted as a bridge to facilitate charge transfer in MI-COFs, unlocking the photoelectric responses of TP-TBDA. By exploiting the controllability of NCIs, the MI-COFs can realize the smart modulation of photoelectric responses by simply changing the guest molecule, thus avoiding the arduous selection of monomers and condensation reactions required by conventional COFs. The construction of molecular-inserted COFs circumvents complicated procedures for achieving performance improvement and modulation, providing a promising direction to construct late-model photoelectric responsive materials.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ying-Ao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
| |
Collapse
|
209
|
|
Parvin T. Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles. Top Curr Chem (Cham) 2023; 381:19. [PMID: 37237061 DOI: 10.1007/s41061-023-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Synthesis of pyrazole-fused heterocycles has gained considerable attention in recent years due to their wide applications in medicinal chemistry. Aminopyrazoles are versatile building blocks for the synthesis of pyrazole-fused heterocycles by multicomponent reactions. Due to the presence of multiple reaction sites, they have fascinating chemical reactivity. Thus, they have been extensively used in multicomponent reactions for the construction of pyrazole-fused heterocycles. Although few review articles on the preparation and applications of aminopyrazoles are known in the literature, to date there is no dedicated review article on the construction of pyrazole-fused heterocycles exploring the reactivity of amino pyrazoles as C,N-binucleophiles in multicomponent reactions. Considering this, herein the multicomponent reactions for the construction of pyrazole-fused heterocycles exploring C,N-binucleophilic nature of amino pyrazoles have been reported.
Collapse
Affiliation(s)
- Tasneem Parvin
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800005, India.
| |
Collapse
|
210
|
|
El Hamd MA, El-Maghrabey M, Magdy G, Mahdi WA, Alshehri S, Bass AKA, Batakoushy HA. Application of quality-by-design for adopting an environmentally green fluorogenic determination of benoxinate hydrochloride in eye drops and artificial aqueous humour. Sci Rep 2023; 13:8559. [PMID: 37237000 DOI: 10.1038/s41598-023-35347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, a sensitive and selective spectrofluorimetric method has been developed for the determination of the ocular local anesthetic benoxinate hydrochloride (BEN-HCl) in eye drops and artificial aqueous humour. The proposed method is based on the interaction of fluorescamine with the primary amino group of BEN-HCl at room temperature. Following the excitation of the reaction product at 393 nm, the emitted relative fluorescence intensity (RFI) was measured at 483 nm. The key experimental parameters were carefully examined and optimized by adopting an analytical quality-by-design approach. The method used a two-level full factorial design (24 FFD) to obtain the optimum RFI of the reaction product. The calibration curve was linear at the range of 0.10-1.0 μg/mL of BEN-HCl with sensitivity down to 0.015 μg/mL. The method was applied for analyzing the BEN-HCl eye drops and could also assess its spiked levels in artificial aqueous humour with high % recoveries (98.74-101.37%) and low SD values (≤ 1.11). To investigate the green profile of the proposed method, a greenness assessment was performed with the aid of the Analytical Eco-Scale Assessment (ESA) and GAPI. The developed method obtained a very high ESA rating score in addition to being sensitive, affordable, and environmentally sustainable. The proposed method was validated according to ICH guidelines.
Collapse
Affiliation(s)
- Mohamed A El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt.
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin Elkom, 32511, Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin Elkom, 32511, Egypt.
| |
Collapse
|
211
|
|
Paul M, Thomulka T, Harnying W, Neudörfl JM, Adams CR, Martens J, Berden G, Oomens J, Meijer AJHM, Berkessel A, Schäfer M. Hydrogen Bonding Shuts Down Tunneling in Hydroxycarbenes: A Gas-Phase Study by Tandem-Mass Spectrometry, Infrared Ion Spectroscopy, and Theory. J Am Chem Soc 2023. [PMID: 37235775 DOI: 10.1021/jacs.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.
Collapse
Affiliation(s)
- Mathias Paul
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Thomas Thomulka
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Wacharee Harnying
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Charlie R Adams
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Mathias Schäfer
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| |
Collapse
|
212
|
|
Qiu R, Chen F, Álvarez Z, Clemons TD, Biswas S, Karver MR, Takata N, Sai H, Peng H, Weigand S, Palmer LC, Stupp SI. Supramolecular Nanofibers Block SARS-CoV-2 Entry into Human Host Cells. ACS Appl Mater Interfaces 2023. [PMID: 37235485 DOI: 10.1021/acsami.3c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.
Collapse
Affiliation(s)
- Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Feng Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States
| | - Tristan D Clemons
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Suvendu Biswas
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Mark R Karver
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Nozomu Takata
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Han Peng
- Department of Dermatology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Advanced Photon Source (APS)/Argonne National Laboratory 432-A004, Northwestern University, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
213
|
|
Lyons S, Baile Pomares P, Vidal L, McGarry K, Morrin A, Brougham DF. Surface Potential Modulation in Boronate-Functionalized Magnetic Nanoparticles Reveals Binding Interactions: Toward Magnetophoretic Capture/Quantitation of Sugars from Extracellular Matrix. Langmuir 2023. [PMID: 37235552 DOI: 10.1021/acs.langmuir.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.
Collapse
Affiliation(s)
- Stephen Lyons
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paola Baile Pomares
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Lorena Vidal
- Departamento de Química Analítica, Nutrición y Bromatología, Instituto Universitario de Materiales, Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
| | - Katie McGarry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
214
|
|
Qian Y, Han Z, Yang D, Cai Y, Jin J, Yang Z. Metal-Organic Frameworks Facilitate Nucleic Acids for Multimode Synergistic Therapy of Breast Cancer. Langmuir 2023. [PMID: 37236267 DOI: 10.1021/acs.langmuir.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compared with traditional medical methods, gene therapy and photodynamic therapy are the new fields of cancer treatment, and they more accurately and effectively obtain preferable therapeutic effects. In this study, a chemotherapy drug-free nanotherapeutic system based on ZIF-90 encapsulated with Ce6-G3139 and Ce6-DNAzyme for gene and photodynamic therapies was constructed. Once entering the cancer cell, the therapy system will decompose and release Zn2+, Ce6-G3139, and Ce6-DNAzyme in the acidic environment. On the one hand, G3139 binds to the antiapoptotic gene BCL-2 in tumor cells and downregulates related proteins to inhibit tumor proliferation. On the other hand, Zn2+ produced by the decomposition of ZIF-90 can be used as a cofactor to activate the cleavage activity of DNAzyme to initiate gene therapy. Proliferation and metastasis of tumors were further inhibited by DNAzyme, targeting and cutting the gene of human early growth factor-1 (EGR-1). In addition, the photosensitizer Ce6 carried by the nucleic acid will produce cytotoxic ROS to kill cancer cells after irradiation. The results of this study demonstrated that the designed nanoplatform, which synergistically combines gene and photodynamic therapies, has shown great potential for cancer treatment.
Collapse
Affiliation(s)
- Yue Qian
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoyu Han
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
215
|
|
de Sousa RR Jr, Heinze DA, Sacramento JB, Lanfredi AJC, Carastan DJ. Electrical Conductivity and In Situ SAXS Probing of Block Copolymer Nanocomposites Under Mechanical Stretching. ACS Appl Mater Interfaces 2023. [PMID: 37235644 DOI: 10.1021/acsami.3c03573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Elastomers based on block copolymers can self-organize into ordered nanoscale structures, making them attractive for use as flexible conductive nanocomposites. Understanding how ordered structures impact electrical properties is essential for practical applications. This study investigated the morphological evolution of flexible conductive elastomers based on polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers with aligned single- or multi-wall carbon nanotubes (SWCNTs or MWCNTs) and their electrical conductivity under large deformations. Oriented nanocomposites were obtained through injection molding and characterized using two different setups: tensile testing monitored by in situ small-angle X-ray scattering (SAXS) and tensile testing with simultaneous electrical conductivity measurements. Our findings demonstrate that structural orientation significantly influences electrical conductivity, with higher conductivity in the longitudinal direction due to the preferred orientation of carbon nanotubes. Tensile testing demonstrated that carbon nanotubes accelerate the process of realignment of the ordered structure. As a consequence, higher deformations reduced the conductivity of samples with longitudinal alignment due to the disruption of percolation contacts between nanotubes, while in samples with a transverse alignment the process promoted the formation of a new conductive network, increasing electrical conductivity.
Collapse
Affiliation(s)
- Rogerio R de Sousa
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Daniel A Heinze
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Joana B Sacramento
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Alexandre J C Lanfredi
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Danilo J Carastan
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
216
|
|
Awati A, Zhou S, Shi T, Zeng J, Yang R, He Y, Zhang X, Zeng H, Zhu D, Cao T, Xie L, Liu M, Kong B. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. ACS Appl Mater Interfaces 2023. [PMID: 37235387 DOI: 10.1021/acsami.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Capturing the abundant salinity gradient power into electric power by nanofluidic systems has attracted increasing attention and has shown huge potential to alleviate the energy crisis and environmental pollution problems. However, not only the imbalance between permeability and selectivity but also the poor stability and high cost of traditional membranes limit their scale-up realistic applications. Here, intertwined "soft-hard" nanofibers/tubes are densely super-assembled on the surface of anodic aluminum oxide (AAO) to construct a heterogeneous nanochannel membrane, which exhibits smart ion transport and improved salinity gradient power conversion. In this process, one-dimensional (1D) "soft" TEMPO-oxidized cellulose nanofibers (CNFs) are wrapped around "hard" carbon nanotubes (CNTs) to form three-dimensional (3D) dense nanochannel networks, subsequently forming a CNF-CNT/AAO hybrid membrane. The 3D nanochannel networks constructed by this intertwined "soft-hard" nanofiber/tube method can significantly enhance the membrane stability while maintaining the ion selectivity and permeability. Furthermore, benefiting from the asymmetric structure and charge polarity, the hybrid nanofluidic membrane displays a low membrane inner resistance, directional ionic rectification characteristics, outstanding cation selectivity, and excellent salinity gradient power conversion performance with an output power density of 3.3 W/m2. Besides, a pH sensitive property of the hybrid membrane is exhibited, and a higher power density of 4.2 W/m2 can be achieved at a pH of 11, which is approximately 2 times more compared to that of pure 1D nanomaterial based homogeneous membranes. These results indicate that this interfacial super-assembly strategy can provide a way for large-scale production of nanofluidic devices for various fields including salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shan Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yanjun He
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tongcheng Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lei Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Shandong 250103, P. R. China
| |
Collapse
|
217
|
|
Wang P, Wu B, Li M, Song Y, Chen C, Feng G, Mao D, Hu F, Liu B. Lysosome-Targeting Aggregation-Induced Emission Nanoparticle Enables Adoptive Macrophage Transfer-Based Precise Therapy of Bacterial Infections. ACS Nano 2023. [PMID: 37235750 DOI: 10.1021/acsnano.3c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traditional antibacterial procedures are getting inefficient due to the emergence of antimicrobial resistance, which makes alternative treatments in urgent demand. However, the selectivity toward infectious bacteria is still challenging. Herein, by taking advantage of the self-directed capture of infectious bacteria by macrophages, we developed a strategy to realize precise in vivo antibacterial photodynamic therapy (APDT) through adoptive photosensitizer-loaded macrophage transfer. TTD with strong reactive oxygen species (ROS) production and bright fluorescence was first synthesized and was subsequently formulated into TTD nanoparticles for lysosome targeting. TTD-loaded macrophages (TLMs) were constructed by direct incubation of TTD nanoparticles with macrophages, in which the TTD was localized in the lysosomes to meet the captured bacteria in the phagolysosomes. The TLMs could precisely capture and eradicate bacteria while being activated toward the proinflammatory and antibacterial M1 phenotype upon light illumination. More importantly, after subcutaneous injection, TLMs could effectively inhibit bacteria in the infected tissue through APDT, leading to good tissue recovery from severe bacterial infection. Overall, the engineered cell-based therapeutic approach shows great potential in the treatment of severe bacterial infectious diseases.
Collapse
Affiliation(s)
- Peng Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Biru Wu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Min Li
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuchen Song
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chengjian Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
218
|
|
Lu YX, Lv XJ, Liu C, Liu YK. Triethylamine-Promoted Henry Reaction/Elimination of HNO(2)/Cyclization Sequence of Functionalized Nitroalkanes and 2-Oxoaldehydes: Diversity-Oriented Synthesis of Oxacycles. Org Lett 2023. [PMID: 37235554 DOI: 10.1021/acs.orglett.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The triethylamine-promoted cascade Henry reaction/elimination of HNO2/cyclization reaction of 2-oxoaldehydes with nitroalkanes bearing various remote functionalities is described. Both chiral and achiral nitroalkanes were applicable to this protocol, leading to a variety of oxacycles, such as chromenes, chromanes, cyclic hemiacetals, and polycyclic acetals. An unexpected regioselective photooxygenation occurred without sensitizer during derivatization to convert a derived diene product into a dioxetane by reaction with singlet oxygen, which provided chromen-2-one and benzaldehyde after fragmentation.
Collapse
Affiliation(s)
- Yu-Xia Lu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xue-Jiao Lv
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chang Liu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
219
|
|
Zhang Y, Gu L, Zhang Y, Yang J, Li Q, Yu S, Li C, Wei K. Energy-efficient reuse of bio-treated textile wastewater by a porous-structure electrochemical PbO2 filter: Performance and mechanism. Environ Res 2023;:116254. [PMID: 37245572 DOI: 10.1016/j.envres.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
In this work, a novel porous-structure electrochemical PbO2 filter (PEF-PbO2) was developed to achieve the reuse of bio-treated textile wastewater. The characterization of PEF-PbO2 confirmed that its coating has a variable pore size that increases with depth from the substrate, and the pores with a size of 5 μm account for the largest proportion. The study on the role of this unique structure illustrated that PEF-PbO2 possesses a larger electroactive area (4.09 times) than the conventional electrochemical PbO2 filter (EF-PbO2) and enhanced mass transfer (1.39 times) in flow mode. The investigation of operating parameters with a special discussion of electric energy consumption suggested that the optimal conditions were a current density of 3 mA cm-2, Na2SO4 concentration of 10 g L-1 and pH value of 3, which resulted in 99.07% and 53.3% removal of Rhodamine B and TOC, respectively, together with an MCETOC of 24.6%. A stable removal of 65.9% COD and 99.5% Rhodamine B with a low electric energy consumption of 5.19 kWh kg-1 COD under long-term reuse of bio-treated textile wastewater indicated that PEF-PbO2 was durable and energy-efficient in practical applications. Mechanism study by simulation calculation illustrated that the part of the pore of the PEF-PbO2's coating with small size (5 μm) plays an important role in this excellent performance which provides the advantage of rich ·OH concentration, short pollutant diffusion distance and high contact possibility.
Collapse
Affiliation(s)
- Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liankai Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qian Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kajia Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
220
|
|
Li Z, Ni H, Wang P, Liu Z, Ao C, Zhang L, Wang Y. Evolution hydrothermal aging mechanism for Ag/CeO(2) catalysts in regeneration of catalytic diesel particulate filter with DFT calculation. Environ Sci Pollut Res Int 2023. [PMID: 37231133 DOI: 10.1007/s11356-023-27626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In order to avoid the high cost of existing precious metal catalyst like Pt, Ag/CeO2 was the most promising catalysts for mobile source soot emission control technologies, but there was a clear trade-off between hydrothermal aging resistance and catalytic oxidation performance hindered the application of this catalyst. In order to reveal the hydrothermal aging mechanism of Ag/CeO2 catalysts, the TGA (thermogravimetric analysis) experiments were investigated to reveal the mechanism of Ag modification on catalytic activity of CeO2 catalyst between fresh and hydrothermal aging and were also characterized with the related characterization experiments to in-depth research the lattice morphology and valence changes. The degradation mechanism of Ag/CeO2 catalysts in vapor with high-temperature was also explained and demonstrated based on density functional and molecular thermodynamics theories. The experimental and simulation data showed that the catalytic activity of soot combustion within Ag/CeO2 decreased more significantly after hydrothermal aging than CeO2 due to the less agglomerated, which caused by the decreased in OII/OI and Ce3+/Ce4+ compared with CeO2. As shown in density function theory (DFT) calculation, the decreased surface energy and the increased oxygen vacancy formation energy of the low Mille index surface after Ag modification led to the instability structure and the high catalytic activity. Ag modification also increased the adsorption energy and Gibbs free energy of H2O on the low Miller index surface compared to CeO2, indicating that the desorption temperature of H2O molecules in (1 1 0) and (1 0 0) was higher than (1 1 1) in CeO2 and Ag/CeO2, which led to the migration of (1 1 1) crystal surfaces to (1 1 0) and (1 0 0) in the vapor environment. These conclusions can provide a valuable addition to the regenerative application of Ce-based catalysts in diesel exhaust aftertreatment system the aerial pollution.
Collapse
Affiliation(s)
- Zonglin Li
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong Ni
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Pan Wang
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Riskj Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengcheng Ao
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| |
Collapse
|
221
|
|
Zhang W, Xi D, Chen Y, Chen A, Jiang Y, Liu H, Zhou Z, Zhang H, Liu Z, Long R, Xiong Y. Light-driven flow synthesis of acetic acid from methane with chemical looping. Nat Commun 2023; 14:3047. [PMID: 37236986 DOI: 10.1038/s41467-023-38731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative carbonylation of methane is an appealing approach to the synthesis of acetic acid but is limited by the demand for additional reagents. Here, we report a direct synthesis of CH3COOH solely from CH4 via photochemical conversion without additional reagents. This is made possible through the construction of the PdO/Pd-WO3 heterointerface nanocomposite containing active sites for CH4 activation and C-C coupling. In situ characterizations reveal that CH4 is dissociated into methyl groups on Pd sites while oxygen from PdO is the responsible for carbonyl formation. The cascade reaction between the methyl and carbonyl groups generates an acetyl precursor which is subsequently converted to CH3COOH. Remarkably, a production rate of 1.5 mmol gPd-1 h-1 and selectivity of 91.6% toward CH3COOH is achieved in a photochemical flow reactor. This work provides insights into intermediate control via material design, and opens an avenue to conversion of CH4 to oxygenates.
Collapse
Affiliation(s)
- Wenqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, Hefei, Anhui, 230031, China
| | - Dawei Xi
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aobo Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zeyu Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hui Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, Hefei, Anhui, 230031, China.
- Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, 241002, China.
| |
Collapse
|
222
|
|
Pozdeev AS, Chen WJ, Choi HW, Kulichenko M, Yuan DF, Boldyrev AI, Wang LS. Photoelectron Spectroscopy and Theoretical Study of Di-Copper-Boron Clusters: Cu(2)B(3)(-) and Cu(2)B(4)(). J Phys Chem A 2023. [PMID: 37235389 DOI: 10.1021/acs.jpca.3c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Copper has been found to be able to mediate the formation of bilayer borophenes. Copper-boron binary clusters are ideal model systems to probe the copper-boron interactions, which are essential to understand the growth mechanisms of borophenes on copper substrates. Here, we report a joint photoelectron spectroscopy and theoretical study on two di-copper-doped boron clusters: Cu2B3- and Cu2B4-. Well-resolved photoelectron spectra are obtained, revealing the presence of a low-lying isomer in both cases. Theoretical calculations show that the global minimum of Cu2B3- (C2v, 1A1) contains a doubly aromatic B3- unit weakly interacting with a Cu2 dimer, while the low-lying isomer (C2v, 1A1) consists of a B3 triangle with the two Cu atoms covalently bonded to two B atoms at two vertexes. The global minimum of Cu2B4- (D2h, 2Ag) is found to consist of a rhombus B4 unit covalently bonded to the two Cu atoms at two opposite vertexes, whereas in the low-lying isomer (Cs, 2A'), one of the two Cu atoms is bonded to two B atoms.
Collapse
Affiliation(s)
- Anton S Pozdeev
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hyun Wook Choi
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Alexander I Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
223
|
|
Zhang Y, He SR, Yang Y, Zhang TS, Zhu ZM, Fei W, Li MB. Preorganized Nitrogen Sites for Au(11) Amidation: A Generalizable Strategy toward Precision Functionalization of Metal Nanoclusters. J Am Chem Soc 2023. [PMID: 37235477 DOI: 10.1021/jacs.3c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atomically precise metal nanoclusters have received tremendous attention due to their unique structures and properties. Although synthetic approaches to this kind of nanomaterial have been well developed, methods toward precision functionalization of the as-synthesized metal nanoclusters are extremely limited, hindering their interfacial modification and related performance improvement. Herein, an amidation strategy has been developed for the precision functionalization of the Au11 nanocluster based on preorganized nitrogen sites. The nanocluster amidation did not change the number of gold atoms in the Au11 kernel and their bonding mode to the surface ligands but slightly modified the arrangement of gold atoms with the introduction of functionality and chirality, thus representing a relatively mild method for the modification of metal nanoclusters. The stability and oxidation barrier of the Au11 nanocluster are also improved accordingly. The method developed here would be a generalizable strategy for the precision functionalization of metal nanoclusters.
Collapse
Affiliation(s)
- Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Sheng-Rong He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P. R. China
| | - Tai-Song Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ze-Min Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
224
|
|
Li Y, Gao H, Jin Y, Zhao R, Huang Y. Peptide-derived coordination frameworks for biomimetic and selective separation. Anal Bioanal Chem 2023. [PMID: 37233765 DOI: 10.1007/s00216-023-04761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Peptide-derived metal-organic frameworks (PMOFs) have emerged as a class of biomimetic materials with attractive performances in analytical and bioanalytical chemistry. The incorporation of biomolecule peptides gives the frameworks conformational flexibility, guest adaptability, built-in chirality, and molecular recognition ability, which greatly accelerate the applications of PMOFs in enantiomeric separation, affinity separation, and the enrichment of bioactive species from complicated samples. This review focuses on the recent advances in the engineering and applications of PMOFs in selective separation. The unique biomimetic size-, enantio-, and affinity-selective performances for separation are discussed along with the chemical structures and functions of MOFs and peptides. Updates of the applications of PMOFs in adaptive separation of small molecules, chiral separation of drug molecules, and affinity isolation of bioactive species are summarized. Finally, the promising future and remaining challenges of PMOFs for selective separation of complex biosamples are discussed.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
225
|
|
Yokoi F, Deguchi S, Takayama K. Organ-on-a-chip models for elucidating the cellular biology of infectious diseases. Biochim Biophys Acta Mol Cell Res 2023;:119504. [PMID: 37245539 DOI: 10.1016/j.bbamcr.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Infectious diseases are caused by the invasion of pathogens into a host. To explore the mechanisms of pathogen infections and cellular responses, human models that can accurately recapitulate human pathophysiology are needed. Organ-on-a-chip is a type of advanced in vitro model system that cultures cells in microfluidic devices to replicate physiologically relevant microenvironments such as 3D structures, shear stress, and mechanical stimulation. Recently, organ-on-a-chips have been widely adopted to examine the pathophysiology of infectious diseases in detail. Here, we will summarize recent advances in infectious disease research of visceral organs such as the lung, intestine, liver, and kidneys, using organ-on-a-chips.
Collapse
Affiliation(s)
- Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Medical Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
226
|
|
Mezghrani B, Ali LMA, Cubedo N, Rossel M, Hesemann P, Durand JO, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for Dual Cancer Therapy: Two-Photon Excitation siRNA Gene Silencing in Cells and Photodynamic Therapy in Zebrafish Embryos. Int J Pharm 2023;:123083. [PMID: 37245740 DOI: 10.1016/j.ijpharm.2023.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Photodynamic therapy (PDT) and photochemical internalization (PCI) are two methods that use light to provoke cell death or disturbance of cellular membranes, respectively, via excitation of a photosensitizer and the formation of reactive oxygen species (ROS). In this context, two-photon excitation (TPE) is of high interest for PCI and/or PDT due to spatiotemporal resolution of two-photon light and deeper penetration of near-infrared light in biological tissues. Here, we report that Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) containing porphyrin groups allow the complexation of pro-apoptotic siRNA. These nano-objects were incubated with MDA-MB-231 breast cancer cells, and TPE-PDT led to significant cell death. Finally, MDA-MB-231 breast cancer cells were pre-incubated with the nanoparticles and then injected in the pericardial cavity of zebrafish embryos. After 24 hours, the xenografts were irradiated with femtosecond pulsed laser and the size monitoring by imaging showed a decrease 24 h after irradiation. Pro-apoptotic siRNA was complexed with the nanoparticles and incubation with MDA-MB-231 cells did not lead to cancer cell death in dark conditions, but with two-photon irradiation, TPE-PCI was observed and a synergic effect between pro-apoptotic siRNA and TPE-PDT was noticed, leading to 90% of cancer cell death. Therefore, PMINPs represent an interesting system for nanomedicine applications.
Collapse
Affiliation(s)
- Braham Mezghrani
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; Department of Biochemistry, Medical Research Institute, Alexandria University, 21561 Alexandria, Egypt
| | - Nicolas Cubedo
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Mireille Rossel
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France.
| |
Collapse
|
227
|
|
Audet F, Donnard M, Panossian A, Bernier D, Pazenok S, Leroux FR. New Chemical Transformations Involving SO(2) F(2) -Mediated Alcohol Activation. CHEM REC 2023;:e202300107. [PMID: 37236146 DOI: 10.1002/tcr.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Sulfuryl fluoride is a gas produced on a multi-ton scale for its use as a fumigant. In the last decades, it has gained interest in organic synthesis as a reagent with unique properties in terms of stability and reactivity when compared to other sulfur-based reagents. Sulfuryl fluoride has not only been used for sulfur-fluoride exchange (SuFEx) chemistry but also encountered applications in classic organic synthesis as an efficient activator of both alcohols and phenols, forming a triflate surrogate, namely a fluorosulfonate. A long-standing industrial collaboration in our research group drove our work on the sulfuryl fluoride-mediated transformations that will be highlighted below. We will first describe recent works on metal-catalyzed transformations from aryl fluorosulfonates while emphasizing the one-pot processes from phenol derivatives. In a second section, nucleophilic substitution reactions on polyfluoroalkyl alcohols will be discussed and the value of polyfluoroalkyl fluorosulfonates in comparison to alternative triflate and halide reagents will be brought to light.
Collapse
Affiliation(s)
- Florian Audet
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - David Bernier
- Bayer S.A.S., 14 impasse Pierre Baizet, 69263, Lyon, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred Nobel Straße 50, 40789, Monheim, Germany
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
228
|
|
Zhang X, Tang Q, Sun J, Guo Y, Zhang S, Liang S, Dai P, Chen X. Cellular-scale proximity labeling for recording cell spatial organization in mouse tissues. Sci Adv 2023; 9:eadg6388. [PMID: 37235653 DOI: 10.1126/sciadv.adg6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Proximity labeling has emerged as a powerful strategy for interrogating cell-cell interactions. However, the nanometer-scale labeling radius impedes the use of current methods for indirect cell communications and makes recording cell spatial organization in tissue samples difficult. Here, we develop quinone methide-assisted identification of cell spatial organization (QMID), a chemical strategy with the labeling radius matching the cell dimension. The activating enzyme is installed on the surface of bait cells, which produces QM electrophiles that can diffuse across micrometers and label proximal prey cells independent of cell-cell contacts. In cell coculture, QMID reveals gene expression of macrophages that are regulated by spatial proximity to tumor cells. Furthermore, QMID enables labeling and isolation of proximal cells of CD4+ and CD8+ T cells in the mouse spleen, and subsequent single-cell RNA sequencing uncovers distinctive cell populations and gene expression patterns within the immune niches of specific T cell subtypes. QMID should facilitate dissecting cell spatial organization in various tissues.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jiayu Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yilan Guo
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
229
|
|
Yang Y, Wang J, Kim SC, Zhang W, Peng Y, Zhang P, Vilá RA, Ma Y, Jeong YK, Cui Y. In Situ Prelithiation by Direct Integration of Lithium Mesh into Battery Cells. Nano Lett 2023. [PMID: 37236151 DOI: 10.1021/acs.nanolett.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Silicon (Si)-based anodes are promising for next-generation lithium (Li)-ion batteries due to their high theoretical capacity (∼3600 mAh/g). However, they suffer quantities of capacity loss in the first cycle from initial solid electrolyte interphase (SEI) formation. Here, we present an in situ prelithiation method to directly integrate a Li metal mesh into the cell assembly. A series of Li meshes are designed as prelithiation reagents, which are applied to the Si anode in battery fabrication and spontaneously prelithiate Si with electrolyte addition. Various porosities of Li meshes tune prelithiation amounts to control the degree of prelithiation precisely. Besides, the patterned mesh design enhances the uniformity of prelithiation. With an optimized prelithiation amount, the in situ prelithiated Si-based full cell shows a constant >30% capacity improvement in 150 cycles. This work presents a facile prelithiation approach to improve battery performance.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jiangyan Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sang Cheol Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rafael A Vilá
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yinxing Ma
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - You Kyeong Jeong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
230
|
|
Bai H, Gong W, Pang Y, Shi C, Zhang Z, Guo L, Li Y, Guo L, Wang W, Wang H. Synthesis, cytotoxicity, and biomacromolecule binding: Three isomers of nitrosylruthenium complexes with bidentate bioactive molecules as co-ligands. Int J Biol Macromol 2023;:125009. [PMID: 37245757 DOI: 10.1016/j.ijbiomac.2023.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Three isomeric nitrosylruthenium complexes [RuNO(Qn)(PZA)Cl] (P1, P2, and P3) with bioactive small molecules 8-hydroxyquinoline (Qn) and pyrazinamide (PZA) as co-ligands were synthesized, and their crystal structures were determined using X-ray diffraction technique. The cellular toxicity of the isomeric complexes was compared to understand the effects of the geometries on the biological activity of the complexes. Both the complexes and the human serum albumin (HSA) complex adducts affected the extent of proliferation of HeLa cells (IC50: 0.77-1.45 μM). P2 showed prominent activity-induced cell apoptosis and arrested cell cycles at the G1 phase. The binding constants (Kb) of the complex with calf thymus DNA (CT-DNA) and HSA were quantitatively evaluated using fluorescence spectroscopy in the range of 0.17-1.56 × 104 M-1 and 0.88-3.21 × 105 M-1, respectively. The average binding site (n) number was close to 1. Moreover, the structure of HSA and the P2 complex adduct solved at the resolution of 2.48 Å revealed that one PZA-coordinated nitrosylruthenium complex bound at the subdomain I of HSA via a noncoordinative bond. HSA could serve as a potential nano-delivery system. This study provides a framework for the rational design of metal-based drugs.
Collapse
|