201
|
Lenz KM, Pickett LA, Wright CL, Davis KT, Joshi A, McCarthy MM. Mast Cells in the Developing Brain Determine Adult Sexual Behavior. J Neurosci 2018; 38:8044-8059. [PMID: 30093566 PMCID: PMC6136154 DOI: 10.1523/jneurosci.1176-18.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Many sex differences in brain and behavior are programmed during development by gonadal hormones, but the cellular mechanisms are incompletely understood. We found that immune-system-derived mast cells are a primary target for the masculinizing hormone estradiol and that mast cells are in turn primary mediators of brain sexual differentiation. Newborn male rats had greater numbers and more activated mast cells in the preoptic area (POA), a brain region essential for male copulatory behavior, than female littermates during the critical period for sexual differentiation. Inhibiting mast cells with a stabilizing agent blunted the masculinization of both POA neuronal and microglial morphology and adult sex behavior, whereas activating mast cells in females, even though fewer in number, induced masculinization. Treatment of newborn females with a masculinizing dose of estradiol increased mast cell number and induced mast cells to release histamine, which then stimulated microglia to release prostaglandins and thereby induced male-typical synaptic patterning. These findings identify a novel non-neuronal origin of brain sex differences and resulting motivated behaviors.SIGNIFICANCE STATEMENT We found that immune-system-derived mast cells are a primary target for the masculinizing hormone estradiol and that mast cells are in turn primary mediators of brain sexual differentiation. These findings identify a novel non-neuronal origin of brain sex differences and resulting motivated behaviors.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology,
- Department of Neuroscience, and
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210; and
| | - Lindsay A Pickett
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Christopher L Wright
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Katherine T Davis
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Margaret M McCarthy
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
202
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
203
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
204
|
Mrvová N, Škandík M, Bezek Š, Sedláčková N, Mach M, Gaspárová Z, Luptáková D, Padej I, Račková L. Pyridoindole SMe1EC2 as cognition enhancer in ageing-related cognitive decline. Interdiscip Toxicol 2018; 10:11-19. [PMID: 30123031 PMCID: PMC6096865 DOI: 10.1515/intox-2017-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/10/2017] [Indexed: 11/15/2022] Open
Abstract
Synthetic pyridoindole-type substances derived from the lead compound stobadine represent promising agents in treatment of a range of pathologies including neurological disorders. The beneficial biological effects were suggested to be likely associated with their capacity to ameliorate oxidative damage. In our study, the effect of supplementation with the derivative of stobadine, SMe1EC2, on ageing-related cognitive decline in rats was investigated. The 20-months-old male Wistar rats were administered SMe1EC2 at a low dose, 0.5 mg/kg, daily during eight weeks. Morris water maze test was performed to assess the spatial memory performances. The cell-based assays of capacity of SMe1EC2 to modulate proinflammatory generation of oxidants by microglia were also performed. The rats treated with SMe1EC2 showed significantly increased path efficiency, significantly shorter time interval of successful trials and exerted also notably lower frequencies of clockwise rotations in the pool compared to non-supplemented aged animals. Mildly improved parameters included test durations, distances to reach the platform, time in periphery of the pool and overall rotations in the water maze. However, the pyridoindole SMe1EC2 did not show profound inhibitory effect on production of nitric oxide and superoxide by activated microglial cells. In conclusion, our study suggests that pyridoindole SMe1EC2, at low doses administered chronically, can act as cognition enhancing agent in aged rats. The protective mechanism less likely involves direct modulation of proinflammatory and prooxidant state of microglia, the prominent mediators of neurotoxicity in brain ageing and neurodegeneration.
Collapse
Affiliation(s)
- Nataša Mrvová
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Škandík
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Štefan Bezek
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Natália Sedláčková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mojmír Mach
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zdenka Gaspárová
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Luptáková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivan Padej
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Račková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
205
|
Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 2018; 310:14-21. [PMID: 30138606 DOI: 10.1016/j.expneurol.2018.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023]
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by the aggregation of Tau protein. Activated microglia and elevated levels of pro-inflammatory molecules are also pathological hallmarks of tauopathies. In these diseases, intracellular Tau is secreted to the extracellular space, where it interacts with other cells, such as neurons and glia, promoting inflammation. However, the mechanism through which extracellular Tau triggers pro-inflammatory responses in microglia remains unknown. Primary microglia cultures were treated with extracellular Tau in its hyperphosphorylated, dephosphorylated or non-phosphorylated form. Protein cytokine arrays, real-time PCR, inhibition of the p38 MAPK pathway, phosphatase assays, and quantification of proteins through immunoblotting were used to analyze the effect of extracellular Tau on the pro-inflammatory response of microglia. The main finding of this work is that extracellular non-phosphorylated and dephosphorylated forms of Tau, rather than hyperphosphorylated Tau, activate the p38 MAPK pathway in microglia, thus triggering a pro-inflammatory response in these cells.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
206
|
Model Senescent Microglia Induce Disease Related Changes in α-Synuclein Expression and Activity. Biomolecules 2018; 8:biom8030067. [PMID: 30071596 PMCID: PMC6164966 DOI: 10.3390/biom8030067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is the most prominent risk factor for most neurodegenerative diseases. However, incorporating aging-related changes into models of neurodegeneration rarely occurs. One of the significant changes that occurs in the brain as we age is the shift in phenotype of the resident microglia population to one less able to respond to deleterious changes in the brain. These microglia are termed dystrophic microglia. In order to better model neurodegenerative diseases, we have developed a method to convert microglia into a senescent phenotype in vitro. Mouse microglia grown in high iron concentrations showed many characteristics of dystrophic microglia including, increased iron storage, increased expression of proteins, such as ferritin and the potassium channel, Kv1.3, increased reactive oxygen species production and cytokine release. We have applied this new model to the study of α-synuclein, a protein that is closely associated with a number of neurodegenerative diseases. We have shown that conditioned medium from our model dystrophic microglia increases α-synuclein transcription and expression via tumor necrosis factor alpha (TNFα) and mediated through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The conditioned medium also decreases the formation of α-synuclein tetramers, associated ferrireductase activity, and increases aggregates of α-synuclein. The results suggest that we have developed an interesting new model of aged microglia and that factors, including TNFα released from dystrophic microglia could have a significant influence on the pathogenesis of α-synuclein related diseases.
Collapse
|
207
|
Verma AK, Waghmare TS, Jachak GR, Philkhana SC, Reddy DS, Basu A. Nitrosporeusine analogue ameliorates Chandipura virus induced inflammatory response in CNS via NFκb inactivation in microglia. PLoS Negl Trop Dis 2018; 12:e0006648. [PMID: 30001342 PMCID: PMC6063446 DOI: 10.1371/journal.pntd.0006648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/27/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Chandipura Virus (CHPV), a negative-stranded RNA virus belonging to the Rhabdoviridae family, has been previously reported to bring neuronal apoptosis by activating several factors leading to neurodegeneration. Following virus infection of the central nervous system, microglia, the ontogenetic and functional equivalents of macrophages in somatic tissues gets activated and starts secreting chemokines, thereby recruiting peripheral leukocytes into the brain parenchyma. In the present study, we have systemically examined the effect of CHPV on microglia and the activation of cellular signalling pathways leading to chemokine expression upon CHPV infection. Protein and mRNA expression profiles of chemokine genes revealed that CHPV infection strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. CHPV infection triggered the activation of signalling pathways mediated by mitogen-activated protein kinases, including p38, JNK 1 and 2, and nuclear factor κB (NF-kappaB). CHPV-induced expression of CXCL10 and CCL5 was achieved by the activation of p38 and NF-kappaB pathways. Considering the important role of inflammation in neurodegeneration, we have targeted NF-kappaB using a newly synthesised natural product nitrosporeusine analogue and showed incapability of microglial supernatant of inducing apoptosis in neurons after treatment.
Collapse
Affiliation(s)
| | - Trushnal S. Waghmare
- National Brain Research Centre, Manesar, Haryana, India
- National Institute of Virology, Pune, India
| | | | | | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
208
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
209
|
Wolfe H, Minogue A, Rooney S, Lynch M. Infiltrating macrophages contribute to age-related neuroinflammation in C57/BL6 mice. Mech Ageing Dev 2018; 173:84-91. [DOI: 10.1016/j.mad.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
|
210
|
Guo C, Qu X, Rangaswamy N, Leehy B, Xiang C, Rice D, Prasanna G. A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate. PLoS One 2018; 13:e0196529. [PMID: 29949582 PMCID: PMC6021085 DOI: 10.1371/journal.pone.0196529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP) resulting in progressive loss of retinal ganglion cells (RGCs) and optic nerve degeneration, leading to blindness. New therapeutic approaches that better preserve the visual field by promoting survival and health of RGCs are highly needed since RGC death occurs despite good IOP control in glaucoma patients. We have developed a novel approach to reliably induce chronic IOP elevation in mouse using a photopolymerizable biomatrix, hyaluronic acid glycidyl methacrylate. This is achieved by rapid in vivo crosslinking of the biomatrix at the iridocorneal angle by a flash of ultraviolet A (UVA) light to impede the aqueous outflow pathway with a controllable manner. Sustained IOP elevation was induced after a single manipulation and was maintained at ~45% above baseline for >4 weeks. Significant thinning of the inner retina and ~35% reduction in RGCs and axons was noted within one month of IOP elevation. Optic nerve degeneration showed positive correlation with cumulative IOP elevation. Activation of astrocytes and microglia appeared to be an early event in response to IOP elevation preceding detectable RGC and axon loss. Attenuated glial reactivity was noted at later stage where significant RGC/axon loss had occurred suggesting astrocytes and microglia may play different roles over the course of glaucomatous degeneration. This novel murine glaucoma model is reproducible and displays cellular changes that recapitulate several pathophysiological features of glaucoma.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| | - Xin Qu
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Nalini Rangaswamy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Barrett Leehy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Chuanxi Xiang
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Dennis Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| |
Collapse
|
211
|
Diesselberg C, Ribes S, Seele J, Kaufmann A, Redlich S, Bunkowski S, Hanisch UK, Michel U, Nau R, Schütze S. Activin A increases phagocytosis of Escherichia coli K1 by primary murine microglial cells activated by toll-like receptor agonists. J Neuroinflammation 2018; 15:175. [PMID: 29880000 PMCID: PMC5992782 DOI: 10.1186/s12974-018-1209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro. Methods Primary murine microglial cells were treated with activin A (0.13 ng/ml–13 μg/ml) alone or in combination with agonists of TLR2, 4, and 9. Phagocytosis of Escherichia coli K1 as well as release of TNF-α, IL-6, CXCL1, and NO was assessed. Results Activin A dose-dependently enhanced the phagocytosis of Escherichia coli K1 by microglial cells activated by agonists of TLR2, 4, and 9 without further increasing NO and proinflammatory cytokine release. Cell viability of microglial cells was not affected by activin A. Conclusions Priming of microglial cells with activin A could increase the elimination of bacteria in bacterial CNS infections. This preventive strategy could improve the resistance of the brain to infections, particularly in elderly and immunocompromised patients.
Collapse
Affiliation(s)
- Catharina Diesselberg
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075, Göttingen, Germany
| | - Annika Kaufmann
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sandra Redlich
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Department of Geriatrics, AGAPLESION Frankfurter Diakonie Kliniken, Wilhelm-Epstein-Str. 4, 60431, Frankfurt am Main, Germany.
| |
Collapse
|
212
|
Yan W, Chen T, Long P, Zhang Z, Liu Q, Wang X, An J, Zhang Z. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats. Med Sci Monit 2018; 24:3840-3847. [PMID: 29875353 PMCID: PMC6020745 DOI: 10.12659/msm.907269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P<0.05). The number of the infiltrating cells in the ICB of rats from the H-O group was not significantly different from that of the model or N-O group (P>0.05), while the activation of microglia cells in the H-O group was somewhat reduced (P<0.05). CONCLUSIONS Post-treatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.
Collapse
Affiliation(s)
- Weiming Yan
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| | - Tao Chen
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| | - Pan Long
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| | - Qian Liu
- The Commission of Health and Family Planning of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Xiaocheng Wang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Zuoming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
213
|
Umholtz M, Nader ND. Anesthetic Immunomodulation of the Neuroinflammation in Postoperative Cognitive Dysfunction. Immunol Invest 2018; 46:805-815. [PMID: 29058541 DOI: 10.1080/08820139.2017.1373898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Postoperative delirium and cognitive dysfunction are phenomena that are associated with increases in morbidity, mortality, and resource utilization after surgery. This review scrutinized a number of studies in order to better characterize the biochemical basis for associated cognitive dysfunction and delirium, with particular focus paid to the interactions of the cholinergic system with innate immunity and how the modulation of the immune system contributes to associated neuroinflammation. Despite the clinical impact of postoperative cognitive dysfunction, evidence-based protocols for the prevention and treatment of these disorders are still lacking. Several previous trials have attempted to prevent or treat clinical manifestation by modulation of the cholinergic system with acetylcholinesterase inhibitors, the results of which have been largely ambiguous at best. As the biochemical basis of postoperative cognitive dysfunction becomes more clearly defined, future research into therapeutics based on immune modulation and treatment of neuroinflammation may prove to be very promising.
Collapse
Affiliation(s)
- Matthew Umholtz
- a Department of Anesthesiology , Brandon Regional Hospital , Tampa , FL
| | - Nader D Nader
- b Anesthesiology and Surgery, University at Buffalo , Buffalo , NY.,c Pathology and Anatomical Sciences, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
214
|
Yamada T, Vacas S, Gricourt Y, Cannesson M. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques. Front Med (Lausanne) 2018; 5:144. [PMID: 29868596 PMCID: PMC5966660 DOI: 10.3389/fmed.2018.00144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023] Open
Abstract
An increasing number of patients require precise intraoperative hemodynamic monitoring due to aging and comorbidities. To prevent undesirable outcomes from intraoperative hypotension or hypoperfusion, appropriate threshold settings are required. These setting can vary widely from patient to patient. Goal-directed therapy techniques allow for flow monitoring as the standard for perioperative fluid management. Based on the concept of personalized medicine, individual assessment and treatment are more advantageous than conventional or uniform interventions. The recent development of minimally and noninvasive monitoring devices make it possible to apply detailed control, tracking, and observation of broad patient populations, all while reducing adverse complications. In this manuscript, we review the monitoring features of each device, together with possible advantages and disadvantages of their use in optimizing patient hemodynamic management.
Collapse
Affiliation(s)
- Takashige Yamada
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yann Gricourt
- Departement Anesthesie Réanimation Douleur Urgence, Centre Hospitalaire Universitaire Caremeau, Nimes, France
| | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
215
|
Sun L, Li Y, Jia X, Wang Q, Li Y, Hu M, Tian L, Yang J, Xing W, Zhang W, Wang J, Xu H, Wang L, Zhang D, Ren H. Neuroprotection by IFN-γ via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget 2018; 8:40065-40078. [PMID: 28454116 PMCID: PMC5522245 DOI: 10.18632/oncotarget.16990] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
Inflammation eliminates pathogenic infections while also threatening the integrity of the central nervous system. In this study, using in vivo and in vitro models of acute neuroinflammation, we investigated the mechanisms by which inflammation and astrocytes affect neuronal apoptosis. The in vitro model mimicked acute neuroinflammation by incubation in IFN-γ-containing media with primary cultured cerebellar granule neurons, with or without cultured astrocytes. This quickly induced neuronal apoptosis characterized by cleaved caspase-3 expression, Hoechst 33342 staining, and intercellular Ca2+ influx, whereas the presence of astrocytes significantly protected neurons from these effects. IFN-γ in the inflammation media also promoted astrocyte secretion of IL-6, essential for protection. The supernatants of rat peripheral blood mononuclear cells stimulated by lymphocyte mitogen lipopolysaccharide or concanavalin A were used as inflammation media to verify the results. The in vivo model involved a peripheral challenge with lipopolysaccharide, with or without recombinant IFN-γ, in C57BL/6 mice. This confirmed the in vitro results: anti-IFN-γ antibodies exacerbated the acute course of neuroinflammation and led to neurocyte apoptosis in vivo. The pro-inflammatory cytokine IFN-γ provided neuroprotection during acute neuroinflammation via induction of astrocyte-secreted IL-6. The findings provide novel insights into the mechanisms of neuroprotection by IFN-γ during acute neuroinflammation, and may impact therapies for inflammation-related central nervous system injury and disease.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yan Li
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Xiuzhi Jia
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Qi Wang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yue Li
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Minghui Hu
- Department of Clinical Laboratory, The Affiliated Hospital to Qingdao University, Qingdao, China
| | - Linlu Tian
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Jinfeng Yang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jingtao Wang
- Department of Epidemiology and Biostatistics, The Public Health Institute, Harbin Medical University, Harbin, China
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Lihua Wang
- Department of Neuroscience, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| |
Collapse
|
216
|
Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E5164-E5173. [PMID: 29760073 DOI: 10.1073/pnas.1718946115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.
Collapse
|
217
|
Tan C, Zhao S, Higashikawa K, Wang Z, Kawabori M, Abumiya T, Nakayama N, Kazumata K, Ukon N, Yasui H, Tamaki N, Kuge Y, Shichinohe H, Houkin K. [ 18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia. EJNMMI Res 2018; 8:35. [PMID: 29717383 PMCID: PMC5930298 DOI: 10.1186/s13550-018-0392-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [18F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [18F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [18F]DPA-714 PET was performed 3 and 10 days after MCAO. Results Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [18F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. Conclusions The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [18F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan. .,Division of Clinical Research Administration, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
218
|
Zhang W, Wu S, Guo K, Hu Z, Peng J, Li J. Correlation and clinical significance of LC3, CD68+ microglia, CD4+ T lymphocytes, and CD8+ T lymphocytes in gliomas. Clin Neurol Neurosurg 2018; 168:167-174. [DOI: 10.1016/j.clineuro.2018.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
|
219
|
Ameratunga M, Coleman N, Welsh L, Saran F, Lopez J. CNS cancer immunity cycle and strategies to target this for glioblastoma. Oncotarget 2018; 9:22802-22816. [PMID: 29854316 PMCID: PMC5978266 DOI: 10.18632/oncotarget.24896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapeutics have revolutionized the management of solid malignancies over the last few years. Nevertheless, despite relative successes of checkpoint inhibitors in numerous solid tumour types, success in tumours of the central nervous system (CNS) has been lacking. There are several possible reasons for the relative lack of success of immunotherapeutics in this setting, including the immune microenvironment of glioblastoma, lymphocyte tracking through the blood-brain barrier (BBB) into the central nervous system and impairment of drug delivery into the CNS through the BBB. This review utilizes the cancer-immunity cycle as a conceptual framework through which the specific challenges associated with the development of immunotherapeutics for CNS malignancies can be viewed.
Collapse
Affiliation(s)
- Malaka Ameratunga
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Niamh Coleman
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Liam Welsh
- Department of Neuro-Oncology, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Frank Saran
- Department of Neuro-Oncology, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Juanita Lopez
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| |
Collapse
|
220
|
Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, La Cava A, Shi FD, Liu Q. Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury. Stroke 2018; 49:1471-1478. [PMID: 29695462 PMCID: PMC5976228 DOI: 10.1161/strokeaha.118.020203] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Methods— Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. Results— By coupling transfer of labeled MOG35-55-specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG91-108 and MOG103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Conclusions— Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury.
Collapse
Affiliation(s)
- Wei-Na Jin
- From the Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (W.-N.J., K.W., F.-D.S., Q.L.)
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix (R.G.)
| | - Yan Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (Y.F.)
| | - Kristofer Wood
- From the Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (W.-N.J., K.W., F.-D.S., Q.L.)
| | - Zhi Chai
- Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China (Z.C.)
| | - Jing-Fei Dong
- Puget Sound Blood Research Institute, Seattle, WA (J.-F.D.).,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle (J.-F.D.)
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (A.L.C.)
| | - Fu-Dong Shi
- From the Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (W.-N.J., K.W., F.-D.S., Q.L.)
| | - Qiang Liu
- From the Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (W.-N.J., K.W., F.-D.S., Q.L.)
| |
Collapse
|
221
|
Pellon A, Ramirez-Garcia A, Guruceaga X, Zabala A, Buldain I, Antoran A, Anguita J, Rementeria A, Matute C, Hernando FL. Microglial immune response is impaired against the neurotropic fungus Lomentospora prolificans. Cell Microbiol 2018; 20:e12847. [PMID: 29582549 DOI: 10.1111/cmi.12847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/13/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
Lomentospora (Scedosporium) prolificans is an opportunistic pathogen capable of causing invasive infections in immunocompromised patients. The fungus is able to disseminate via the bloodstream finally arriving at the central nervous system producing neurological symptoms and, in many cases, patient death. In this context, microglial cells, which are the resident immune cells in the central nervous system, may play an important role in these infections. However, this aspect of anti-L. prolificans immunity has been poorly researched to date. Thus, the interactions and activity of microglial cells against L. prolificans were analysed, and the results show that there was a remarkable impairment in their performance regarding phagocytosis, the development of oxidative burst, and in the production of pro-inflammatory cytokines, compared with macrophages. Interestingly, L. prolificans displays great growth also when challenged with immune cells, even when inside them. We also proved that microglial phagocytosis of the fungus is highly dependent on mannose receptor and especially on dectin-1. Taken together, these data provide evidence for an impaired microglial response against L. prolificans and contribute to understanding the pathobiology of its neurotropism.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alazne Zabala
- Laboratory of Neurobiology, Department of Neuroscience, Achucarro Basque Center for Neuroscience, University of the Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Department of Neuroscience, Achucarro Basque Center for Neuroscience, University of the Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
222
|
Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A. Automated Morphological Analysis of Microglia After Stroke. Front Cell Neurosci 2018; 12:106. [PMID: 29725290 PMCID: PMC5917008 DOI: 10.3389/fncel.2018.00106] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.
Collapse
Affiliation(s)
- Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
223
|
Gunasekaran M, Chatterjee PK, Shih A, Imperato GH, Addorisio M, Kumar G, Lee A, Graf JF, Meyer D, Marino M, Puleo C, Ashe J, Cox MA, Mak TW, Bouton C, Sherry B, Diamond B, Andersson U, Coleman TR, Metz CN, Tracey KJ, Chavan SS. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Front Immunol 2018; 9:638. [PMID: 29755449 PMCID: PMC5932385 DOI: 10.3389/fimmu.2018.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.
Collapse
Affiliation(s)
- Manojkumar Gunasekaran
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Prodyot K. Chatterjee
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrew Shih
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gavin H. Imperato
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Meghan Addorisio
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gopal Kumar
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Annette Lee
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - John F. Graf
- GE Global Research Center, Niskayuna, NY, United States
| | - Dan Meyer
- GE Global Research Center, Niskayuna, NY, United States
| | | | | | - Jeffrey Ashe
- GE Global Research Center, Niskayuna, NY, United States
| | - Maureen A. Cox
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Chad Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Barbara Sherry
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Thomas R. Coleman
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Christine N. Metz
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kevin J. Tracey
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S. Chavan
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
224
|
Sevenich L. Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Front Immunol 2018; 9:697. [PMID: 29681904 PMCID: PMC5897444 DOI: 10.3389/fimmu.2018.00697] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a hallmark of different central nervous system (CNS) pathologies. It has been linked to neurodegenerative disorders as well as primary and metastatic brain tumors. Microglia, the brain-resident immune cells, are emerging as a central player in regulating key pathways in CNS inflammation. Recent insights into neuroinflammation indicate that blood-borne immune cells represent an additional critical cellular component in mediating CNS inflammation. The lack of experimental systems that allow for discrimination between brain-resident and recruited myeloid cells has previously halted functional analysis of microglia and their blood-borne counterparts in brain malignancies. However, recent conceptual and technological advances, such as the generation of lineage tracing models and the identification of cell type-specific markers provide unprecedented opportunities to study the cellular functions of microglia and macrophages by functional interference. The use of different “omic” strategies as well as imaging techniques has significantly increased our knowledge of disease-associated gene signatures and effector functions under pathological conditions. In this review, recent developments in evaluating functions of brain-resident and recruited myeloid cells in neurodegenerative disorders and brain cancers will be discussed and unique or shared cellular traits of microglia and macrophages in different CNS disorders will be highlighted. Insight from these studies will shape our understanding of disease- and cell-type-specific effector functions of microglia or macrophages and will open new avenues for therapeutic intervention that target aberrant functions of myeloid cells in CNS pathologies.
Collapse
Affiliation(s)
- Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| |
Collapse
|
225
|
Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3740461. [PMID: 29707568 PMCID: PMC5863339 DOI: 10.1155/2018/3740461] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid-β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.
Collapse
|
226
|
Zafeiris D, Rutella S, Ball GR. An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer's Disease as a Case Study. Comput Struct Biotechnol J 2018; 16:77-87. [PMID: 29977480 PMCID: PMC6026215 DOI: 10.1016/j.csbj.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
The field of machine learning has allowed researchers to generate and analyse vast amounts of data using a wide variety of methodologies. Artificial Neural Networks (ANN) are some of the most commonly used statistical models and have been successful in biomarker discovery studies in multiple disease types. This review seeks to explore and evaluate an integrated ANN pipeline for biomarker discovery and validation in Alzheimer's disease, the most common form of dementia worldwide with no proven cause and no available cure. The proposed pipeline consists of analysing public data with a categorical and continuous stepwise algorithm and further examination through network inference to predict gene interactions. This methodology can reliably generate novel markers and further examine known ones and can be used to guide future research in Alzheimer's disease.
Collapse
Affiliation(s)
- Dimitrios Zafeiris
- John van Geest Cancer Research Centre, College of Science and Technology, Nottingham Trent University, United Kingdom
| | | | | |
Collapse
|
227
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
228
|
Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sci 2018; 8:brainsci8020030. [PMID: 29414883 PMCID: PMC5836049 DOI: 10.3390/brainsci8020030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is known as one of the most devastating diseases in the central nervous system. In the past few decades, research on SAH has focused on cerebral vasospasm to prevent post-SAH delayed cerebral ischemia (DCI) and to improve outcomes. However, increasing evidence has suggested that early brain injury (EBI) is an important mechanism contributing to DCI, cerebral vasospasm as well as poor outcomes. Though the mechanism of EBI is very complex, inflammation is thought to play a pivotal role in EBI. Galectin-3 is a unique chimera type in the galectin family characterized by its β-galactoside-binding lectin, which mediates various pathologies, such as fibrosis, cell adhesion, and inflammation. Recently, two clinical studies revealed galectin-3 to be a possible prognostic biomarker in SAH patients. In addition, our recent report suggested that higher acute-stage plasma galectin-3 levels correlated with subsequent development of delayed cerebral infarction that was not associated with vasospasm in SAH patients. We review the possible role and molecular mechanisms of inflammation as well as galectin-3 in brain injuries, especially focusing on EBI after SAH, and discuss galectin-3 as a potential new therapeutic or research target in post-SAH brain injuries.
Collapse
|
229
|
Lee KS, Lee K, Yun S, Moon S, Park Y, Han JH, Kim CY, Lee HS, Choe G. Prognostic relevance of programmed cell death ligand 1 expression in glioblastoma. J Neurooncol 2018; 136:453-461. [PMID: 29147863 DOI: 10.1007/s11060-017-2675-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to determine the clinicopathological significance of programmed cell death ligand 1 (PD-L1) expression in glioblastoma (GBM). In a retrospective cohort of 115 consecutive patients with GBM, PD-L1 expression was determined using immunohistochemistry (IHC). Membranous and fibrillary PD-L1 staining of any intensity in > 5% neoplastic cells and tumour infiltrating immune cells (TIIs) was considered positive staining. In addition, isocitrate dehydrogenase-1 (IDH-1) (R132H) expression and cluster of differentiation 3 (CD3)-positive T-cell infiltration were investigated using IHC. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation assay and fluorescence in situ hybridization (FISH) for the assessment of 1p/19q deletion were performed. Expression of PD-L1 in tumour cells and TIIs was found in 37 (32.2%) and 6 (5.2%) patients, respectively. Kaplan-Meier analysis indicated that PD-L1 expression in tumour cells was significantly associated with poor overall survival (OS) (P = 0.017), though multivariate Cox analysis did not confirm this association (hazard ratio 1.204; P = 0.615). PD-L1 expression in TIIs did not correlate with the patient prognosis (P = 0.545). In addition, MGMT methylation and IDH-1 (R132H) expression were associated with a better prognosis (P < 0.001 and P = 0.024, respectively). The expression of PD-L1 was associated with CD3-positive T-cell infiltration (P < 0.001), and IDH-1 wild type status (P = 0.008). A deeper insight into PD-L1 expression could help to ensure the success of future immunotherapy in GBM. Our study suggested that PD-L1 target therapy might be beneficial for PD-L1-expressing GBM patients with a poor prognosis.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-Si, Kangwon-Do, 200-722, Republic of Korea
| | - Sumi Yun
- Department of Diagnostic Pathology, Samkwang Medical Laboratories, 57, Baumoe-ro 41-gil, Seocho-gu, Seoul, Republic of Korea
| | - Seyoung Moon
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Yujun Park
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.
| |
Collapse
|
230
|
Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicol Lett 2018; 283:21-31. [DOI: 10.1016/j.toxlet.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
|
231
|
Inhibitory Activity of Ficus deltoidea var. trengganuensis Aqueous Extract on Lipopolysaccharide-Induced TNF- α Production from Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:2623163. [PMID: 29358962 PMCID: PMC5735785 DOI: 10.1155/2017/2623163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
Abstract
Objective To explore the effect of Ficus deltoidea (FD) aqueous extracts on the release of tumor necrosis factor-α (TNF-α), the expression of CD40, and the morphology of microglial cells in lipopolysaccharide- (LPS-) activated BV2 cells. Methods The cytotoxicity of FD extract was assessed by MTS solution. BV2 cells were divided into 5 experimental groups, intervened, respectively, by FD (4 mg/mL) and LPS + FD (0, 1, 2, and 4 mg/mL). Besides, a blank control group was set up without any intervention. TNF-α release was assessed by enzyme linked immunosorbent assay (ELISA). The expression of CD40 was examined by flow cytometry. Immunocytochemical staining was used to show the morphology of BV2 cells. Results FD extract of different concentrations (1, 2, and 4 mg/mL) had no significant toxic effects on the BV2 cells. FD suppressed the activation of microglia in morphology and reduced TNF-α production and expression of CD40 induced by LPS. Conclusion FD extract has a therapeutic potential against neuroinflammatory diseases.
Collapse
|
232
|
Taylor AN, Tio DL, Paydar A, Sutton RL. Sex Differences in Thermal, Stress, and Inflammatory Responses to Minocycline Administration in Rats with Traumatic Brain Injury. J Neurotrauma 2018; 35:630-638. [PMID: 29179648 DOI: 10.1089/neu.2017.5238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Persistent inflammation, mediated in part by increases in cytokines, is a hallmark of traumatlc brain injury (TBI). Minocycline has been shown to inhibit post-TBI neuroinflammation in male rats and mice, but has not been tested in females. Here, we studied sex differences in thermal, stress, and inflammatory responses to TBI and minocycline. Female rats were ovariectomized under isoflurane anesthesia at 33-36 days of age. At 45-55 days of age, male and female rats were implanted intraperitoneally (i.p.) with calibrated transmitters for monitoring body temperature. Moderate cortical contusion injury (CCI) or sham surgery was performed when the rats attained 60-70 days of age. One hour after surgery, rats were injected i.p. with minocycline (50 mg/kg) or saline (0.3 mL); injections were repeated once daily for the next 3 days. At 28 days after CCI or sham surgery, 30 min restraint stress was initiated and blood samples were obtained by tail venipuncture before the onset of restraint and at 30, 60, and 90 min after stress onset. At 35 days after CCI or sham surgery, rats were decapitated and blood was collected for corticosterone (CORT) and cytokine analysis. The brains were removed and ipsilateral cortical tissue and hippocampus were dissected and subsequently assayed for interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Hyperthermia occurred during days 1-6 post-CCI in male rats, but only on the day of CCI in female rats, and minocycline prevented its occurrence in both sexes. Minocycline facilitated suppression of the CORT response to restraint stress in both sexes. In females, but not males, hippocampal IL-6 content increased post-CCI compared with sham-injured controls, whereas IL-1β content was augmented by minocycline. Hippocampal TNF-α was unaffected by CCI and minocycline. These results demonstrate sex differences in immediate thermal and long-lasting stress and cytokine responses to CCI, and only short-term protective effects of minocycline on hyperthermia.
Collapse
Affiliation(s)
- Anna N Taylor
- 1 Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Delia L Tio
- 1 Department of Neurobiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Afshin Paydar
- 2 Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Richard L Sutton
- 2 Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, California
| |
Collapse
|
233
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2018; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
234
|
Xu L, Qi X, Zhu C, Wan L. Activation of IL-8 and its participation in cancer in schizophrenia patients: new evidence for the autoimmune hypothesis of schizophrenia. Neuropsychiatr Dis Treat 2018; 14:3393-3403. [PMID: 30587991 PMCID: PMC6298395 DOI: 10.2147/ndt.s188210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the autoimmune mechanisms of schizophrenia, we explored the relationship between schizophrenia and cancer using gene expression data of peripheral blood mononuclear cells from GSE27383 datasets. Gene screening and enrichment analysis using Gene Set Enrichment Analysis were applied to identify possible connections between schizophrenia and cancer. Real-time PCR (quantitative PCR), Western blotting and immunohistochemistry were performed on the brain tissue from both schizophrenia patients and normal controls. The genes for IL-8, as well as PTGS2, TPR, JUN, CXCL1, CXCL3, CXCL5 and PARD3 were highly expressed in schizophrenia patients. Cancer and chemokine signaling pathways were enriched in the schizophrenic group, related to the high expression of IL-8. Increased expression of IL-8 was further confirmed by quantitative PCR, Western blotting and immunohistochemistry results. Our results suggest that IL-8 may participate specifically in the pathophysiological changes that occur in schizophrenia. Additionally, our findings provide novel evidence supporting the autoimmune hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Lvzi Xu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China,
| | - Xiao Qi
- Department of Rehabilitation, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chi Zhu
- Department of Neurology, Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Wan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China,
| |
Collapse
|
235
|
Burke NN, Fan CY, Trang T. Microglia in health and pain: impact of noxious early life events. Exp Physiol 2018; 101:1003-21. [PMID: 27474262 DOI: 10.1113/ep085714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the origins and development of microglia, and how stress, pain or inflammation in early life disturbs microglial function during critical developmental periods, leading to altered pain sensitivity and/or increased risk of chronic pain in later life. What advances does it highlight? We highlight recent advances in understanding how disrupted microglial function impacts the developing nervous system and the consequences for pain processing and susceptibility for development of chronic pain in later life. The discovery of microglia is accredited to Pío del Río-Hortega, who recognized this 'third element' of CNS cells as being morphologically distinct from neurons and astrocytes. For decades after this finding, microglia were altogether ignored or relegated as simply being support cells. Emerging from virtual obscurity, microglia have now gained notoriety as immune cells that assume a leading role in the development, maintenance and protection of a healthy CNS. Pioneering studies have recently shed light on the origins of microglia, their role in the developing nervous system and the complex roles they play beyond the immune response. These studies reveal that altered microglial function can have a profoundly negative impact on the developing brain and may be a determinant in a range of neurodevelopmental disorders and neurodegenerative diseases. The realization that aberrant microglial function also critically underlies chronic pain, a debilitating disorder that afflicts over 1.5 billion people worldwide, was a major conceptual leap forward in the pain field. Adding to this advance is emerging evidence that early life noxious experiences can have a long-lasting impact on central pain processing and adult pain sensitivity. With microglia now coming of age, in this review we examine the association between adverse early life events, such as stress, injury or inflammation, and the influence of sex differences, on the role of microglia in pain physiology in adulthood.
Collapse
Affiliation(s)
- Nikita N Burke
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Churmy Y Fan
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
236
|
Kornguth S, Rutledge N, Perlaza G, Bray J, Hardin A. A Proposed Mechanism for Development of CTE Following Concussive Events: Head Impact, Water Hammer Injury, Neurofilament Release, and Autoimmune Processes. Brain Sci 2017; 7:E164. [PMID: 29257064 PMCID: PMC5742767 DOI: 10.3390/brainsci7120164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
During the past decade, there has been an increasing interest in early diagnosis and treatment of traumatic brain injuries (TBI) that lead to chronic traumatic encephalopathy (CTE). The subjects involved range from soldiers exposed to concussive injuries from improvised explosive devices (IEDs) to a significant number of athletes involved in repetitive high force impacts. Although the forces from IEDs are much greater by a magnitude than those from contact sports, the higher frequency associated with contact sports allows for more controlled assessment of the mechanism of action. In our study, we report findings in university-level women soccer athletes followed over a period of four and a half years from accession to graduation. Parameters investigated included T1-, T2-, and susceptibility-weighted magnetic resonance images (SWI), IMPACT (Immediate Post-Concussion Assessment and Cognitive Testing), and C3 Logix behavioral and physiological assessment measures. The MRI Studies show several significant findings: first, a marked increase in the width of sulci in the frontal to occipital cortices; second, an appearance of subtle hemorrhagic changes at the base of the sulci; third was a sustained reduction in total brain volume in several soccer players at a developmental time when brain growth is generally seen. Although all of the athletes successfully completed their college degree and none exhibited long term clinical deficits at the time of graduation, the changes documented by MRI represent a clue to the pathological mechanism following an injury paradigm. The authors propose that our findings and those of prior publications support a mechanism of injury in CTE caused by an autoimmune process associated with the release of neural proteins from nerve cells at the base of the sulcus from a water hammer injury effect. As evidence accumulates to support this hypothesis, there are pharmacological treatment strategies that may be able to mitigate the development of long-term disability from TBI.
Collapse
Affiliation(s)
- Steven Kornguth
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, USA.
- Department of Neurology Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Neal Rutledge
- Research Imaging Center, Austin Radiological Association, Austin, TX 78705, USA.
| | - Gabe Perlaza
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
| | - James Bray
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
- Department of Population Health, University of Texas, Austin, TX 78712, USA.
| | - Allen Hardin
- Department of Intercollegiate Athletics, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
237
|
Aarts SABM, Seijkens TTP, van Dorst KJF, Dijkstra CD, Kooij G, Lutgens E. The CD40-CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2017; 8:1791. [PMID: 29312317 PMCID: PMC5732943 DOI: 10.3389/fimmu.2017.01791] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
The CD40-CD40L dyad is an immune checkpoint regulator that promotes both innate and adaptive immune responses and has therefore an essential role in the development of inflammatory diseases, including multiple sclerosis (MS). In MS, CD40 and CD40L are expressed on immune cells present in blood and lymphoid organs, affected resident central nervous system (CNS) cells, and inflammatory cells that have infiltrated the CNS. CD40-CD40L interactions fuel the inflammatory response underlying MS, and both genetic deficiency and antibody-mediated inhibition of the CD40-CD40L dyad reduce disease severity in experimental autoimmune encephalomyelitis (EAE). Both proteins are therefore attractive therapeutic candidates to modulate aberrant inflammatory responses in MS. Here, we discuss the genetic, experimental and clinical studies on the role of CD40 and CD40L interactions in EAE and MS and we explore novel approaches to therapeutically target this dyad to combat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Suzanne A. B. M. Aarts
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom T. P. Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| | | | - Christine D. Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
238
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Łabuzek K, Kapustka B, Staszkiewicz R, Rosicka P, Kalita K, Węglarz W, Lewin-Kowalik J. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats. Exp Ther Med 2017; 14:4869-4877. [PMID: 29201191 PMCID: PMC5704303 DOI: 10.3892/etm.2017.5130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/28/2017] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (P<0.05). MRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some positive effects for the regeneration of the white matter.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Łabuzek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bartosz Kapustka
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paulina Rosicka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Katarzyna Kalita
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Władysław Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
239
|
Wei S, Luo C, Yu S, Gao J, Liu C, Wei Z, Zhang Z, Wei L, Yi B. Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway. Exp Cell Res 2017; 361:342-352. [DOI: 10.1016/j.yexcr.2017.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
240
|
P2Y14 receptor activation decreases interleukin-6 production and glioma GL261 cell proliferation in microglial transwell cultures. J Neurooncol 2017; 137:23-31. [PMID: 29189936 DOI: 10.1007/s11060-017-2700-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022]
Abstract
Gliomas are rich in extracellular nucleotides that modulate glioma cell production of multiple cytokines including interleukin (IL)-6, which strongly contributes to glioma cell proliferation. However, little is known about how nucleotide signaling modulates microglial/macrophage (MG/MP) cytokine production in the context of gliomas, nor how MG/MP purinergic P2 receptor expression changes in the tumor micro-environment. We hypothesized that: (1) expression of key P2Y receptors will be augmented in glioma-derived MG/MP, and (2) selective activation of these receptors in vitro will regulate microglial production of IL-6 and glioma cell proliferation. We tested these hypotheses using the murine GL261 glioma model. Compared to MG/MP isolated from the normal brain tissue, CD11b+ cells isolated from GL261 tumors expressed higher levels of several P2 receptors, including P2Y14 receptors. To evaluate microglial P2Y14 receptor function in the context of tumor cells, we first cultured N9 microglia in transwells with GL261 cells and found that microglial P2Y14 mRNA levels were similarly increased in transwell cultures. GL261 cells did not express detectable P2Y14 levels either when they were cultured alone or in transwell cultures with N9 cells. Selective P2Y14 receptor activation with UDP-glucose (UDPG) did not affect IL-6 levels in either cell type cultured alone, but in transwell cultures, UDPG decreased IL-6 protein levels in the medium. Application of conditioned medium from UDPG-treated microglia reduced GL261 cell proliferation. Together, these data suggest that P2Y14 receptors may be a key a receptor involved in glioma cell-MG/MP communication in the tumor environment.
Collapse
|
241
|
Qu J, Tao XY, Teng P, Zhang Y, Guo CL, Hu L, Qian YN, Jiang CY, Liu WT. Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation. J Neuroinflammation 2017; 14:228. [PMID: 29178967 PMCID: PMC5702153 DOI: 10.1186/s12974-017-0997-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Long-term use of morphine induces analgesic tolerance, which limits its clinical efficacy. Evidence indicated morphine-evoked neuroinflammation mediated by toll-like receptor 4 (TLR4) - NOD-like receptor protein 3 (NLRP3) inflammasome was important for morphine tolerance. In our study, we investigated whether other existing alternative pathways caused morphine-induced activation of TLR4 in microglia. We focused on heat shock protein 70 (HSP70), a damage-associated molecular pattern (DAMP), which was released from various cells upon stimulations under the control of KATP channel and bound with TLR4-inducing inflammation. Glibenclamide, a classic KATP channel blocker, can improve neuroinflammation by inhibiting the activation of NLRP3 inflammasome. Our present study investigated the effect and possible mechanism of glibenclamide in improving morphine tolerance via its specific inhibition on the release of HSP70 and activation of NLRP3 inflammasome induced by morphine. METHODS CD-1 mice were used for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 and neural cell line SH-SY5Y were used to investigate the pharmacological effects and the mechanism of glibenclamide on morphine-induced neuroinflammation. The activation of microglia was accessed by immunofluorescence staining. Neuroinflammation-related cytokines were measured by western blot and real-time PCR. The level of HSP70 and related signaling pathway were evaluated by western blot and immunofluorescence staining. RESULTS Morphine induced the release of HSP70 from neurons. The released HSP70 activated microglia and triggered TLR4-mediated inflammatory response, leading to the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) p65 and the activation of NLRP3 inflammasome. Moreover, anti-HSP70 neutralizing antibody partly attenuated chronic morphine tolerance. The secretion of HSP70 was under the control of MOR/AKT/KATP/ERK signal pathway. Glibenclamide as a classic KATP channel blocker markedly inhibited the release of HSP70 induced by morphine and suppressed HSP70-TLR4-NLRP3 inflammasome-mediated neuroinflammation, which consequently attenuated morphine tolerance. CONCLUSIONS Our study indicated that morphine-induced extracellular HSP70 was an alternative way for the activation of TLR4-NLRP3 in analgesic tolerance. The release of HSP70 was regulated by MOR/AKT/KATP/ERK pathway. Our study suggested a promising target, KATP channel and a new leading compound, glibenclamide, for treating morphine tolerance.
Collapse
Affiliation(s)
- Jie Qu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xue-You Tao
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.,Department of Anesthesiology, Yangzhou Maternal and Child Health Hospital Affiliated with Yangzhou Medical University, Yangzhou, China.,Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Teng
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Yan Zhang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.,Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ci-Liang Guo
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Yan-Ning Qian
- Department of Anesthesiology, 1st Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China. .,Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
242
|
Caplan HW, Cox CS, Bedi SS. Do microglia play a role in sex differences in TBI? J Neurosci Res 2017; 95:509-517. [PMID: 27870453 DOI: 10.1002/jnr.23854] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/15/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality for both males and females and is, thus, a major focus of current study. Although the overall death rate of TBI for males is roughly three times higher than that for females, males have been disproportionately represented in clinical and preclinical studies. Gender differences are known to exist in many neurologic disorders, such as multiple sclerosis and stroke, and differences appear to exist in TBI. Furthermore, it is known that microglia have sexually dimorphic roles in CNS development and other neurologic conditions; however, most animal studies of microglia and TBI have focused on male subjects. Microglia are a current target of many preclinical and clinical therapeutic trials for TBI. Understanding the relationship among sex, sex hormones, and microglia is critical to truly understanding the pathophysiology of TBI. However, the evidence for sex differences in TBI centers mainly on sex hormones, and evidenced-based conclusions are often contradictory. In an attempt to review the current literature, it is apparent that sex differences likely exist, but the contradictory nature and magnitude of such differences in the existing literature does not allow definite conclusions to be drawn, except that more investigation of this issue is necessary. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henry W Caplan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Supinder S Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
243
|
Ning R, Venkat P, Chopp M, Zacharek A, Yan T, Cui X, Seyfried D, Chen J. D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget 2017; 8:95481-95494. [PMID: 29221142 PMCID: PMC5707036 DOI: 10.18632/oncotarget.20751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 01/28/2023] Open
Abstract
D-4F is an apolipoprotein-A1 mimetic peptide that promotes anti-inflammatory effects. MicroRNA-124 is the most abundant brain-specific microRNA and has anti-inflammatory effects. In this study, we investigated the therapeutic efficacy and mechanisms of D-4F treatment of stroke in type one diabetes mellitus (T1DM) rats. Male Wistar rats were induced with T1DM, subjected to embolic middle cerebral artery occlusion and treated with PBS or D-4F (1 mg/kg i.p.) at 2, 24 and 48 hours after stroke (n=8/group). A battery of function tests, brain blood barrier (BBB) integrity, white matter changes and microRNA expression were evaluated in vivo and in vitro. D-4F treatment in T1DM-stroke rats significantly improves functional outcome, decreases BBB leakage, increases tight junction protein expression, decreases white matter damage and inflammatory factor expression, while increasing anti-inflammatory M2 macrophage polarization in the ischemic brain. D-4F significantly increases microRNA-124a expression, and decreases matrix metalloproteinase-9, tumor necrosis factor-α and toll-like receptor-4 gene expression in the ischemic brain, and in primary cortical neuronal and microglial cultures. Inhibition of microRNA-124 in cultured primary cortical neurons and microglia attenuates D-4F induced anti-inflammatory effects and M2 macrophage polarization. D-4F treatment of T1DM-stroke increases microRNA-124 expression, promotes anti-inflammatory effects and M2 macrophage polarization, which may contribute to D-4F-induced improvement in neurological function, and BBB and white matter integrity.
Collapse
Affiliation(s)
- Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, First Hospital Harbin, Harbin, China
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Tao Yan
- Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Don Seyfried
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
244
|
Investigation of Sex Differences in the Microglial Response to Binge Ethanol and Exercise. Brain Sci 2017; 7:brainsci7100139. [PMID: 29064447 PMCID: PMC5664066 DOI: 10.3390/brainsci7100139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
The female brain appears selectively vulnerable to the neurotoxic effects of alcohol, but the reasons for this are unclear. One possibility is an exaggerated neuroimmune response in the female brain, such that alcohol increases microglia number and reactivity to subsequent stimuli, such as exercise. It is important to better characterize the interactive neural effects of alcohol and exercise, as exercise is increasingly being used in the treatment of alcohol use disorders. The present study compared the number of microglia and evidence of their activation in alcohol-vulnerable regions of the brain (medial prefrontal cortex and hippocampus) in male and female rats following binge alcohol and/or exercise. Binge alcohol increased microglia number and morphological characteristics consistent with their activation in the female brain but not the male, regardless of exercise. Binge alcohol followed by exercise did increase the number of MHC II+ (immunocompetent) microglia in females, although the vast majority of microglia did not express MHC II. These results indicate that binge alcohol exerts sex-specific effects on microglia that may result in enhanced reactivity to a subsequent challenge and in part underlie the apparent selective vulnerability of the female brain to alcohol.
Collapse
|
245
|
Nguyen TTN, Seo E, Choi J, Le OTT, Kim JY, Jou I, Lee SY. Phosphatidylinositol 4-phosphate 5-kinase α contributes to Toll-like receptor 2-mediated immune responses in microglial cells stimulated with lipoteichoic acid. Cell Signal 2017; 38:159-170. [DOI: 10.1016/j.cellsig.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
|
246
|
Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 2017; 37:67-79. [DOI: 10.1016/j.cytogfr.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022]
|
247
|
Khalid SI, Ampie L, Kelly R, Ladha SS, Dardis C. Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials. Front Neurol 2017; 8:486. [PMID: 28993751 PMCID: PMC5622209 DOI: 10.3389/fneur.2017.00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Though many molecular and genetic causes are thought to serve as predisposing or disease propagating factors, the underlying pathogenesis of the disease is not known. Recent discoveries have demonstrated the presence of inflammation propagating substrates in the central nervous system of patients afflicted with ALS. Over the past decade, this hypothesis has incited an effort to better understand the role of the immune system in ALS and has led to the trial of several potential immune-modulating therapies. Here, we briefly review advances in the role of such therapies. The clinical trials discussed here are currently ongoing or have been concluded at the time of writing.
Collapse
Affiliation(s)
| | - Leonel Ampie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, United States.,Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States.,Georgetown University School of Medicine, Washington, DC, United States
| | - Ryan Kelly
- Georgetown University School of Medicine, Washington, DC, United States
| | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Christopher Dardis
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
248
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
249
|
Xie F, Min S, Chen J, Yang J, Wang X. Ulinastatin inhibited sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction in an experimental rat model of neuromyopathy. J Neurochem 2017; 143:225-235. [PMID: 28796387 DOI: 10.1111/jnc.14145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Sepsis initiates a neuroinflammatory cascade that contributes to spinal cord inflammation and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In this study, we tested the hypothesis that ulinastatin (ULI) inhibits sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction through the TLR4/myeloid differentiation factor 88 (MyD88)/NF-κB signaling pathway. Muscular function, spinal cord water content, and cytokine levels of spinal cord were tested in TLR4-inhibited rats subjected to cecal ligation and puncture (CLP). The normal rats were intrathecally injected with different concentrations of ULI or normal saline 60 min before CLP. At 24 h after CLP, the activation of microglia/macrophage was detected by immunofluorescence staining; and the cytokines were assayed by ELISA. The protein expression level of the TLR4 and its downstream effectors (MyD88 and NF-κB), the neuregulin-1, and the γ- and α7-nicotinic acetylcholine receptor was measured using western blotting. The protein expression of TLR4 in the spinal cord reached a maximum at 24 h post-CLP. Compared to the sham rats, the TLR4-inhibited rats showed attenuated functional impairment and cytokine release. ULI (5000 U/kg ) treatment pre-CLP significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release in septic rats. Furthermore, the levels of TLR4, MyD88, and NF-κB and the expression level of γ-/α7-nicotinic acetylcholine receptors also decreased after ULI treatment. ULI administration may improve patient outcome by reducing the spinal inflammation through a mechanism involving the TLR4/MyD88/NF-κB signaling in sepsis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
250
|
Caggiu E, Paulus K, Galleri G, Arru G, Manetti R, Sechi G, Sechi L. Homologous HSV1 and alpha-synuclein peptides stimulate a T cell response in Parkinson's disease. J Neuroimmunol 2017; 310:26-31. [DOI: 10.1016/j.jneuroim.2017.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
|