201
|
Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, Refolo L, Petanceska S, Pappolla MA. Hyperhomocysteinemic Alzheimer's mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiol Dis 2006; 22:651-6. [PMID: 16516482 DOI: 10.1016/j.nbd.2006.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/15/2006] [Indexed: 11/23/2022] Open
Abstract
Recent epidemiological and clinical data suggest that elevated serum homocysteine levels may increase the risk of developing Alzheimer's disease (AD), but the underlying mechanisms are unknown. We tested the hypothesis that high serum homocysteine concentration may increase amyloid beta-peptide (Abeta) levels in the brain and could therefore accelerate AD neuropathology. For this purpose, we mated a hyperhomocysteinemic CBS(tm1Unc) mouse carrying a heterozygous dominant mutation in cystathionine-beta-synthase (CBS*) with the APP*/PS1* mouse model of brain amyloidosis. The APP*/PS1*/CBS* mice showed significant elevations of serum homocysteine levels compared to the double transgenic APP*/PS1* model of amyloidosis. Results showed that female (but not male) APP*/PS1*/CBS* mice exhibited significant elevations of Abeta40 and Abeta42 levels in the brain. Correlations between homocysteine levels in serum and brain Abeta levels were statistically significant. No increases in beta secretase activity or evidence of neuronal cell loss in the hyperhomocysteinemic mice were found. The causes of neuronal dysfunction and degeneration in AD are not fully understood, but increased production of Abeta seems to be of major importance. By unveiling a link between homocysteine and Abeta levels, these findings advance our understanding on the mechanisms involved in hyperhomocysteinemia as a risk factor for AD.
Collapse
Affiliation(s)
- Javier Pacheco-Quinto
- Neuroscience Center of Excellence, LSU Health Science Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Hartman RE, Izumi Y, Bales KR, Paul SM, Wozniak DF, Holtzman DM. Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer's disease. J Neurosci 2006; 25:6213-20. [PMID: 15987951 PMCID: PMC6725066 DOI: 10.1523/jneurosci.0664-05.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PDAPP transgenic mice overexpress a mutant form of human amyloid precursor protein under control of the platelet-derived growth factor promoter in CNS neurons that causes early onset, familial Alzheimer's disease in humans. These mice, on a mixed genetic background, have been shown to have substantial learning impairments from early ages, as well as an age-dependent decline in learning ability that has been hypothesized to be caused by amyloid-beta (Abeta) accumulation. The goals of this study were to determine: (1) whether PDAPP mice on a pure C57BL/6 background develop more severe age-dependent learning deficits than wild-type mice; (2) if so, whether Abeta accumulation accounts for the excessive decline in learning ability; and (3) whether the learning deficits are reversible, even after significant Abeta deposition. At 4-6, 10-12, or 17-19 months of age, PDAPP and littermate wild-type mice on a C57BL/6 background were tested on a 5 week water maze protocol in which the location of the escape platform changed weekly, requiring the mice to repeatedly learn new information. PDAPP mice exhibited impaired spatial learning as early as 4 months (pre-Abeta deposition), and the performance of both wild-type and PDAPP mice declined with age. However, PDAPP mice exhibited significantly greater deterioration with age. Direct evidence for the role of Abeta accumulation in the age-related worsening in PDAPP mice was provided by the observation that systemic treatment over several weeks with the anti-Abeta antibody 10D5 reduced plaque deposition, increased plasma Abeta, improved hippocampal long-term potentiation, and improved behavioral performance in aged PDAPP mice with substantial Abeta burden.
Collapse
Affiliation(s)
- Richard E Hartman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
203
|
Tayebati SK. Animal models of cognitive dysfunction. Mech Ageing Dev 2006; 127:100-8. [PMID: 16293295 DOI: 10.1016/j.mad.2005.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/04/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
The increased life expectancy in industrialised countries in the last half century has also brought to a greater incidence of neurological disorders, including neurodegenerative diseases and developing in a rather long time. In this respect, Alzheimer's disease (AD), for the large incidence, and the dramatic loss of autonomy caused by its cognitive and behavioural symptoms represents one of the main challenges of modern medicine. Although AD is a typical human disease and probably includes several nosographic entities, the use of animal models may contribute to understand specific aspects of pathophysiology of the disease. The most widely used animal models are rodents and non-human primates. In this review different animal models characterised by impaired cognitive functions are analysed. None of the models available mimics exactly cognitive, behavioural, biochemical and histopathological abnormalities observed in neurological disorders characterised by cognitive impairment. However, partial reproduction of neuropathology and/or cognitive deficits of Alzheimer's disease (AD), vascular dementia and dementia occurring in Huntington's and Parkinson's diseases, or in other neurodegenerative disorders may represent a basis for understanding pathophysiological traits of these diseases and for contributing to their treatments.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- Anatomia Umana, Dipartimento di Medicina Sperimentale e Sanità Pubblica Università di Camerino, 62032 Camerino, Italy.
| |
Collapse
|
204
|
Hölscher C. Development of beta-amyloid-induced neurodegeneration in Alzheimer's disease and novel neuroprotective strategies. Rev Neurosci 2006; 16:181-212. [PMID: 16323560 DOI: 10.1515/revneuro.2005.16.3.181] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a form of dementia in which people develop rapid neurodegeneration, complete loss of cognitive abilities, and are likely to die prematurely. At present, no treatment for AD is known. One of the hallmarks in the development of AD is the aggregation of amyloid protein fragments in the brain, and much evidence points towards beta-amyloid fragments being one of the main causes of the neurodegenerative processes. This review summarises the present concepts and theories on how AD develops, and lists the evidence that supports them. A cascade of biochemical events is initiated that ultimately leads to neuronal death involving an imbalance of intracellular calcium homeostasis via activation of calcium channels, intracellular calcium stores, and subsequent production of free radicals by calcium-sensitive enzymes. Secondary processes include inflammatory responses that produce more free radicals and the induction of apoptosis. Recently, several new strategies have been proposed to try to ameliorate the neurodegenerative developments associated with AD. These include the activation of neuronal growth factor receptors and insulin-like receptors, both of which have neuroprotective properties. Furthermore, the role of cholesterol and potential protective properties of cholesterol-lowering drugs are under intense investigation. Other promising strategies include the inhibition of beta- and gamma-secretases which produce beta-amyloid, activation of proteases that degrade beta-amyloid, glutamate receptor selective drugs, antioxidants, and metal chelating agents, all of which prevent formation of plaques. Novel drugs that act at different levels of the neurodegenerative processes show great promise to reduce neurodegeneration. They could help to prolong the time of unimpaired cognitive abilities of people who develop AD, allowing them to lead an independent life.
Collapse
Affiliation(s)
- Christian Hölscher
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland.
| |
Collapse
|
205
|
Kouznetsova E, Klingner M, Sorger D, Sabri O, Grossmann U, Steinbach J, Scheunemann M, Schliebs R. Developmental and amyloid plaque‐related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice. Int J Dev Neurosci 2006; 24:187-93. [PMID: 16423498 DOI: 10.1016/j.ijdevneu.2005.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 12/25/2022] Open
Abstract
There is experimental evidence that cerebral perfusion is decreased during aging and in Alzheimer's disease. To characterize the temporal relationship between amyloid deposition, plaque size and cerebrovascular abnormalities, a semiquantitative immunohistochemical study was performed in transgenic Tg2576 mice that express the Swedish double mutation of human amyloid precursor protein (APP) and progressively develop Alzheimer-like beta-amyloid deposits. Cortical cryocut sections, obtained from mice at ages ranging between 4 and 18 months, were immunostained to label glucose transporter type 1 (GLUT1), a marker of vascular endothelial cells, and thioflavine-S to visualize plaques. Regardless of age and transgene, a laminar distribution of capillaries was observed being highest in cortical layers IV and V. The density of microvessels estimated in cortical regions with high plaque load was found to be significantly lower as compared to areas with low plaque load. Around large thioflavine-S-positive senile plaques the capillary density was low, while diffuse plaques demonstrated a close association of capillaries with no signs of any damage. The data suggest that amyloid plaque deposition differentially affects the cerebrovascular system in an age- and plaque type-related manner, and provide further evidence that beta-amyloid, in addition to its well-described neurotoxic effects, may also contribute to neuronal dysfunction through its actions on the cerebrovasculature.
Collapse
Affiliation(s)
- Elena Kouznetsova
- Paul Flechsig Institute for Brain Research, University of Leipzig, Department of Neurochemistry, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Liskowsky W, Schliebs R. Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci 2006; 24:149-56. [PMID: 16423497 DOI: 10.1016/j.ijdevneu.2005.11.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 01/05/2023] Open
Abstract
The molecular mechanisms of the interrelationship between cholinergic neurotransmission, processing of amyloid precursor protein (APP) and beta-amyloid (Abeta) production in vivo are still less understood. To reveal any effect of cholinergic dysfunction on APP processing in vivo, 11-month-old transgenic Tg2576 mice with Abeta plaque pathology received intraperitoneal injections of scopolamine at a daily dosage of 2mg/kg body weight for 14 days in order to suppress cortical cholinergic transmission by chronic inhibition of muscarinic acetylcholine receptors. Scopolamine treatment of transgenic Tg2576 mice resulted in increased levels of fibrillar Abeta(1-40) and Abeta(1-42), while the soluble, SDS-extractable Abeta level remained unchanged as compared to vehicle-injected Tg2576 mice. alpha-Secretase activity determined in cortical tissue from scopolamine-treated Tg2576 mice was lower by about 30% as compared to that assayed in control mice, while beta-secretase activity and BACE1 protein expression appeared unaffected by scopolamine treatment. The amount of sAPPalpha, the product secreted by alpha-secretase-mediated APP cleavage, and the unprocessed APP were assayed in the soluble and membrane fraction, respectively, of cortical tissue preparations from treated and control mice by Western blotting. Using the anti antibody 6E10 which specifically labels human sAPPalpha and full length APP in transgenic Tg2576, an enhanced APP level was detected in the membrane fraction from treated mice as compared to controls, while in the soluble fraction scopolamine treatment did not affect the protein level of sAPPalpha. These data indicate an accumulation of APP in cortical membrane fraction in scopolamine-treated Tg2576 mice presumably due to the decreased level of alpha-secretase-mediated APP cleavage, and further suggest that chronic suppression of cortical muscarinic cholinergic transmission may alter the balance between alpha- and beta-secretory APP processing by favouring the amyloidogenic route.
Collapse
Affiliation(s)
- Wolfgang Liskowsky
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, Medical Faculty, University of Leipzig, D-04109 Leipzig, Germany
| | | |
Collapse
|
207
|
Crameri A, Biondi E, Kuehnle K, Lütjohann D, Thelen KM, Perga S, Dotti CG, Nitsch RM, Ledesma MD, Mohajeri MH. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 2006; 25:432-43. [PMID: 16407971 PMCID: PMC1383521 DOI: 10.1038/sj.emboj.7600938] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 12/06/2005] [Indexed: 02/07/2023] Open
Abstract
The cholesterol-synthesizing enzyme seladin-1, encoded by the Dhcr24 gene, is a flavin adenine dinucleotide-dependent oxidoreductase and regulates responses to oncogenic and oxidative stimuli. It has a role in neuroprotection and is downregulated in affected neurons in Alzheimer's disease (AD). Here we show that seladin-1-deficient mouse brains had reduced levels of cholesterol and disorganized cholesterol-rich detergent-resistant membrane domains (DRMs). This was associated with inefficient plasminogen binding and plasmin activation, the displacement of beta-secretase (BACE) from DRMs to APP-containing membrane fractions, increased beta-cleavage of APP and high levels of Abeta peptides. In contrast, overexpression of seladin-1 increased both cholesterol and the recruitment of DRM components into DRM fractions, induced plasmin activation and reduced both BACE processing of APP and Abeta formation. These results establish a role of seladin-1 in the formation of DRMs and suggest that seladin-1-dependent cholesterol synthesis is involved in lowering Abeta levels. Pharmacological enhancement of seladin-1 activity may be a novel Abeta-lowering approach for the treatment of AD.
Collapse
Affiliation(s)
- Arames Crameri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Elisa Biondi
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
| | - Katrin Kuehnle
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Dieter Lütjohann
- Department of Clinical Pharmacology, University of Bonn, Germany
| | - Karin M Thelen
- Department of Clinical Pharmacology, University of Bonn, Germany
| | - Simona Perga
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
- Center for Human Genetics, Catholic University of Leuven and Flanders Interuniversitary Institute for Biotechnology (VIB4), Leuven, Belgium
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Maria Dolores Ledesma
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
- Center for Human Genetics, Catholic University of Leuven and Flanders Interuniversitary Institute for Biotechnology (VIB4), Leuven, Belgium
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, AO San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy. Tel.: +39 011 670 5482; Fax: +39 011 670 5449; E-mail:
| | - M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Division of Psychiatry Research, University of Zurich, August-Forel Strasse 1, 8008 Zurich, Switzerland. Tel.: +41 44 634 8872; Fax: +41 44 634 8874; E-mail:
| |
Collapse
|
208
|
Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20:187-98. [PMID: 16242627 DOI: 10.1016/j.nbd.2005.02.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 12/21/2004] [Accepted: 02/28/2005] [Indexed: 02/07/2023] Open
Abstract
Synaptic dysfunction is increasingly viewed as an early manifestation of Alzheimer's disease (AD), but the cellular mechanism by which beta-amyloid (Abeta) may affect synapses remains unclear. Since cultured neurons derived from APP mutant transgenic mice secrete elevated levels of Abeta and parallel the subcellular Abeta accumulation seen in vivo, we asked whether alterations in synapses occur in this setting. We report that cultured Tg2576 APP mutant neurons have selective alterations in pre- and post-synaptic compartments compared to wild-type neurons. Post-synaptic compartments appear fewer in number and smaller, while active pre-synaptic compartments appear fewer in number and enlarged. Among the earliest changes in synaptic composition in APP mutant neurons were reductions in PSD-95, a protein involved in recruiting and anchoring glutamate receptor subunits to the post-synaptic density. In agreement, we observed early reductions in surface expression of glutamate receptor subunit GluR1 in APP mutant neurons. We provide evidence that Abeta is specifically involved in these alterations in synaptic biology, since alterations in PSD-95 and GluR1 are blocked by gamma-secretase inhibition, and since exogenous addition of synthetic Abeta to wild-type neurons parallels changes in synaptic PSD-95 and GluR1 observed in APP mutant neurons.
Collapse
Affiliation(s)
- Claudia G Almeida
- Department of Neurology and Neuroscience, Laboratory of Alzheimer's Disease Neurobiology, Weill Medical College of Cornell University, 525 E 68th Street, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Peretto I, Radaelli S, Parini C, Zandi M, Raveglia LF, Dondio G, Fontanella L, Misiano P, Bigogno C, Rizzi A, Riccardi B, Biscaioli M, Marchetti S, Puccini P, Catinella S, Rondelli I, Cenacchi V, Bolzoni PT, Caruso P, Villetti G, Facchinetti F, Del Giudice E, Moretto N, Imbimbo BP. Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of beta-amyloid(1)(-)(42) secretion. J Med Chem 2005; 48:5705-20. [PMID: 16134939 DOI: 10.1021/jm0502541] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flurbiprofen, a nonsteroidal antiinflammatory drug (NSAID), has been recently described to selectively inhibit beta-amyloid(1)(-)(42) (Abeta42) secretion, the most toxic component of the senile plaques present in the brain of Alzheimer patients. The use of this NSAID in Alzheimer's disease (AD) is hampered by a significant gastrointestinal toxicity associated with cyclooxygenase (COX) inhibition. New flurbiprofen analogues were synthesized, with the aim of increasing Abeta42 inhibitory potency while removing anti-COX activity. In vitro ADME developability parameters were taken into account in order to identify optimized compounds at an early stage of the project. Appropriate substitution patterns at the alpha position of flurbiprofen allowed for the complete removal of anti-COX activity, while modifications at the terminal phenyl ring resulted in increased inhibitory potency on Abeta42 secretion. In rats, some of the compounds appeared to be well absorbed after oral administration and to penetrate into the central nervous system. Studies in a transgenic mice model of AD showed that selected compounds significantly decreased plasma Abeta42 concentrations. These new flurbiprofen analogues represent potential drug candidates to be developed for the treatment of AD.
Collapse
Affiliation(s)
- Ilaria Peretto
- Research and Development, Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K, Fuortes M, Lin M, Ehrt S, Kwon NS, Chen J, Vodovotz Y, Kipiani K, Beal MF. Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. ACTA ACUST UNITED AC 2005; 202:1163-9. [PMID: 16260491 PMCID: PMC2213235 DOI: 10.1084/jem.20051529] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Brains from subjects who have Alzheimer's disease (AD) express inducible nitric oxide synthase (iNOS). We tested the hypothesis that iNOS contributes to AD pathogenesis. Immunoreactive iNOS was detected in brains of mice with AD-like disease resulting from transgenic expression of mutant human beta-amyloid precursor protein (hAPP) and presenilin-1 (hPS1). We bred hAPP-, hPS1-double transgenic mice to be iNOS(+/+) or iNOS(-/-), and compared them with a congenic WT strain. Deficiency of iNOS substantially protected the AD-like mice from premature mortality, cerebral plaque formation, increased beta-amyloid levels, protein tyrosine nitration, astrocytosis, and microgliosis. Thus, iNOS seems to be a major instigator of beta-amyloid deposition and disease progression. Inhibition of iNOS may be a therapeutic option in AD.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Belur LR, James RI, May C, Diers MD, Swanson D, Gunther R, McIvor RS. Methotrexate preconditioning allows sufficient engraftment to confer drug resistance in mice transplanted with marrow expressing drug-resistant dihydrofolate reductase activity. J Pharmacol Exp Ther 2005; 314:668-74. [PMID: 15857949 DOI: 10.1124/jpet.104.082982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is an effective antitumor agent that has been demonstrated to be particularly useful in the treatment of hematopoietic neoplasms but causes substantial hematologic and gastrointestinal toxicity. We previously demonstrated that transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase (DHFR) into animals preconditioned by irradiation substantially protected recipient mice from the toxic side effects of methotrexate administration. Here we test the use of methotrexate itself as a preconditioning agent for engraftment of drug-resistant transgenic marrow, subsequently conferring drug resistance upon recipient animals. Administration of methotrexate beginning 1 or 2 weeks prior to or on the same day as transplantation with drug-resistant DHFR transgenic marrow did not allow sufficient engraftment to confer drug resistance to most unirradiated recipients. A small number of animals were curiously protected from lethal MTX toxicity but exhibited extremely low hematocrits and were not engrafted with stem cells, as indicated by low engraftment levels assessed in secondary transplant recipients. However, we subsequently found that MTX preconditioning allowed sufficient engraftment of DHFR transgenic marrow to confer drug resistance if MTX administration was withdrawn at the time of bone marrow transplantation (BMT) and withheld until 2 weeks post-transplant. Quantitative molecular analysis of primary and secondary recipients indicated a stem cell engraftment level of approximately 1%, consistent with previous studies demonstrating that a low level of DHFR transgenic cell engraftment was sufficient to confer drug resistance in recipient animals. We conclude that MTX can be used as a preconditioning agent for subsequent engraftment of hematopoietic stem cells, in this case conferring resistance to MTX.
Collapse
Affiliation(s)
- Lalitha R Belur
- Dept. of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Kobayashi DT, Chen KS. Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2005; 4:173-96. [PMID: 15810905 DOI: 10.1111/j.1601-183x.2005.00124.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative affliction of the elderly, presenting with progressive memory loss and dementia and terminating with death. There have been significant advances in understanding the biology and subsequent diagnosis of AD; however, the furious pace of research has not yet translated into a disease-modifying treatment. While scientific inquiry in AD is largely centered on identifying biological players and pathological mechanisms, the day-to-day realities of AD patients and their caregivers revolve around their steady and heartbreaking cognitive decline. In the past decade, AD research has been fundamentally transformed by the development of genetically modified animal models of amyloid-driven neurodegeneration. These important in vivo models not only replicate some of the hallmark pathology of the disease, such as plaque-like amyloid accumulations and astrocytic inflammation, but also some of the cognitive impairments relevant to AD. In this article, we will provide a detailed review of the behavioral and cognitive deficits present in several transgenic mouse models of AD and discuss their functional changes in response to experimental treatments.
Collapse
Affiliation(s)
- D T Kobayashi
- Pharmacology Department, Elan Pharmaceuticals, South San Francisco, CA 94080, USA
| | | |
Collapse
|
213
|
Toscano A, Messina S, Campo GM, Di Leo R, Musumeci O, Rodolico C, Aguennouz M, Annesi G, Messina C, Vita G. Oxidative stress in myotonic dystrophy type 1. Free Radic Res 2005; 39:771-776. [PMID: 16036357 DOI: 10.1080/10715760500138932] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy affecting adults. The genetic basis of DM1 consists of a mutational expansion of a repetitive trinucleotide sequence (CTG). The number of triplets expansion divides patients in four categories related to the molecular changes (E1, E2, E3, E4). The pathogenic mechanisms of multi-systemic involvement of DM1 are still unclear. DM1 has been suspected to be due to premature aging, that is known to be sustained by increased free radicals levels and/or decreased antioxidants activities in neurodegenerative disorders. Recently, the gain-of-function at RNA level hypothesis has gained great attention, but oxidative stress might act in the disease progression. We have investigated 36 DM1 patients belonging to 22 unrelated families, 10 patients with other myotonic disorders (OMD) and 22 age-matched healthy controls from the clinical, biochemical and molecular point of view. Biochemical analysis detected blood levels of superoxide dismutase (SOD), malonilaldehyde (MDA), vitamin E (Vit E), hydroxyl radicals (OH) and total antioxidant system (TAS). Results revealed that DM1 patients showed significantly higher levels of SOD (+40%; MAL (+57%; RAD 2 (+106%; and TAS (+20%; than normal controls. Our data support the hypothesis of a pathogenic role of oxidative stress in DM1 and therefore confirm the detrimental role played by free radicals in this pathology and suggest the opportunity to undertake clinical trials with antioxidants in this disorder.
Collapse
Affiliation(s)
- Antonio Toscano
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Sebastiani G, Morissette C, Lagacé C, Boulé M, Ouellette MJ, McLaughlin RW, Lacombe D, Gervais F, Tremblay P. The cAMP-specific phosphodiesterase 4B mediates Abeta-induced microglial activation. Neurobiol Aging 2005; 27:691-701. [PMID: 15993984 DOI: 10.1016/j.neurobiolaging.2005.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 02/08/2005] [Accepted: 03/30/2005] [Indexed: 01/09/2023]
Abstract
Microglial activation is a key player in the degenerative process that accompanies the deposition of amyloid-beta (Abeta) peptide into senile plaques in Alzheimer's disease (AD) patients. The goal of this study is to identify novel genes involved in microglial activation in response to Abeta peptide. Prompted by the fact that soluble Abeta(1-42) (sAbeta(1-42))-stimulated primary rat microglia produce more tumor necrosis factor-alpha (TNF-alpha) than fibrillar Abeta(1-42) (fAbeta(1-42))-stimulated microglia, we examined gene expression in these cells following stimulation using cDNA arrays. This analysis confirms the upregulation caused by both sAbeta(1-42) and fAbeta(1-42) of pro-inflammatory molecules such as TNF-alpha, interleukin-1beta and macrophage inflammatory protein-1alpha. In addition, other transcripts not previously described in the context of Abeta-induced microglial activation were identified. The modulation of some of these genes within microglial cells seems to be specific to sAbeta(1-42) as compared to fAbeta(1-42) suggesting that different forms of Abeta may activate distinct pathways during the progression of AD. Importantly, we demonstrate that Pde4B, a cAMP-specific phosphodiesterase, is upregulated by Abeta and results in an increased production of TNF-alpha. Inhibition of Pde4B reduces by up to 70% the release of TNF-alpha from sAbeta-stimulated microglial cells, implicating cAMP as an important mediator of Abeta-induced microglial activation.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- 3',5'-Cyclic-AMP Phosphodiesterases/physiology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Cell Separation
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cytokines/metabolism
- DNA, Complementary/biosynthesis
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Microglia/drug effects
- Microglia/enzymology
- Microglia/metabolism
- Microscopy, Electron, Transmission
- Nucleic Acid Hybridization
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Rolipram/pharmacology
Collapse
|
215
|
Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1475-85. [PMID: 15855647 PMCID: PMC1606401 DOI: 10.1016/s0002-9440(10)62364-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-beta peptide (Abeta) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Abeta deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Abeta-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Abeta (an indicator of fibrillar Abeta) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Abeta deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Abeta deposition by reducing Abeta clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer's disease and positively affect disease outcomes.
Collapse
Affiliation(s)
- Masaru Yamamoto
- Center for Neurovirology and Neurodegenerative Disorders and Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Mastrangelo P, Mathews PM, Chishti MA, Schmidt SD, Gu Y, Yang J, Mazzella MJ, Coomaraswamy J, Horne P, Strome B, Pelly H, Levesque G, Ebeling C, Jiang Y, Nixon RA, Rozmahel R, Fraser PE, St George-Hyslop P, Carlson GA, Westaway D. Dissociated phenotypes in presenilin transgenic mice define functionally distinct gamma-secretases. Proc Natl Acad Sci U S A 2005; 102:8972-7. [PMID: 15951428 PMCID: PMC1149500 DOI: 10.1073/pnas.0500940102] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gamma-secretase depends on presence of presenilins (PS), Nct, Aph-1, and PEN-2 within a core complex. This endoproteolytic activity cleaves within transmembrane domains of amyloid-beta precursor protein (APP) and Notch, and familial Alzheimer's disease (FAD) mutations in PS1 or PS2 genes shift APP cleavage from production of amyloid-beta (Abeta) 40 peptide to greater production of Abeta42. Although studies in PS1/PS2-deficient embryonic cells define overlapping activities for these proteins, in vivo complementation of PS1-deficient animals described here reveals an unexpected spectrum of activities dictated by PS1 and PS2 alleles. Unlike PS1 transgenes, wild-type PS2 transgenes expressed in the mouse CNS support little Abeta40 or Abeta42 production, and FAD PS2 alleles support robust production of only Abeta42. Although wild-type PS2 transgenes failed to rescue Notch-associated skeletal defects in PS1 hypomorphs, a "gained" competence in this regard was apparent for FAD alleles of PS2. The range of discrete and divergent processing activities in mice reconstituted with different PS genes and alleles argues against gamma-secretase being a single enzyme with intrinsically relaxed substrate and cleavage site specificities. Instead, our studies define functionally distinct gamma-secretase variants. We speculate that extrinsic components, in combination with core complexes, may tailor functional variants of this enzyme to their preferred substrates.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 3H2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM, Lapustea N, Murphy GM. Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer's disease: a role for cholinergic transmission. Neuroscience 2005; 131:375-85. [PMID: 15708480 DOI: 10.1016/j.neuroscience.2004.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/18/2022]
Abstract
The Tg2576 mouse model of Alzheimer's disease (AD) exhibits age-dependent amyloid beta (Abeta) deposition in the brain. We studied electroencephalographically defined sleep and the circadian regulation of waking activities in Tg2576 mice to determine whether these animals exhibit sleep abnormalities akin to those in AD. In Tg2576 mice at all ages studied, the circadian period of wheel running rhythms in constant darkness was significantly longer than that of wild type mice. In addition, the increase in electroencephalographic delta (1-4 Hz) power that occurs during non-rapid eye movement sleep after sleep deprivation was blunted in Tg2576 mice relative to controls at all ages studied. Electroencephalographic power during non-rapid eye movement sleep was shifted to higher frequencies in plaque-bearing mice relative to controls. The wake-promoting efficacy of the acetylcholinesterase inhibitor donepezil was lower in plaque-bearing Tg2576 mice than in controls. Sleep abnormalities in Tg2576 mice may be due in part to a cholinergic deficit in these mice. At 22 months of age, two additional deficits emerged in female Tg2576 mice: time of day-dependent modulation of sleep was blunted relative to controls and rapid eye movement sleep as a percentage of time was lower in Tg2576 than in wild type controls. The rapid eye movement sleep deficit in 22 month-old female Tg2576 mice was abolished by brief passive immunization with an N-terminal antibody to Abeta. The Tg2576 model provides a uniquely powerful tool for studies on the pathophysiology of and treatments for sleep deficits and associated cholinergic abnormalities in AD.
Collapse
Affiliation(s)
- J P Wisor
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Chen Z, Duan RS, Lepécheur M, Paly E, London J, Zhu J. SOD-1 inhibits FAS expression in cortex of APP transgenic mice. Apoptosis 2005; 10:499-502. [PMID: 15909112 DOI: 10.1007/s10495-005-1879-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Peptides derived from proteolytic processing of the amyloid precursor protein (APP) are important for the pathogenesis of Alzheimer's disease (AD). In the present study, we found that transgenic mice overexpressing wild-type human APP gene (hAPP/+) displayed a much higher expression of FAS, one of the death receptor subfamily. This FAS overexpression was significantly reduced in the cortex of mice overexpressing both wild-type hAPP gene and wild-type human superoxide dismutase-1 gene (hSOD-1). Moreover hSOD-1 transgenic expression was associated with an increase of Glial fibrillary acidic protein (GFAP) production. This study indicates that SOD-1 overexpression can inhibit FAS expression, which may be beneficial in AD.
Collapse
Affiliation(s)
- Z Chen
- Division of Experimental Geriatrics, Department of Neurotec, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
219
|
Schiltz JG, Salzer U, Mohajeri MH, Franke D, Heinrich J, Pavlovic J, Wollmer MA, Nitsch RM, Moelling K. Antibodies from a DNA peptide vaccination decrease the brain amyloid burden in a mouse model of Alzheimer's disease. J Mol Med (Berl) 2005; 82:706-14. [PMID: 15241501 DOI: 10.1007/s00109-004-0570-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathology of Alzheimer's disease(AD) is characterized by the accumulation of amyloid peptide Abeta in the brain derived from proteolytic cleavage of the amyloid precursor protein (APP). Vaccination of mice with plasmid DNA coding for the human Abeta42 peptide together with low doses of preaggregated peptide induced antibodies with detectable titers after only 2 weeks. One serum was directed against the four aminoterminal amino acids DAEF and differs from previously described ones. Both immune sera and monoclonal antibodies solubilized preformed aggregates of Abeta42 in vitro and recognized amyloid plaques in brain sections of mice transgenic for human APP. Passive immunization of transgenic AD mice caused a significant and rapid reduction in brain amyloid plaques within 24 h. The combined DNA peptide vaccine may prove useful for active immunization with few inoculations and low peptide dose which may prevent the recently described inflammatory reactions inpatients. The monoclonal antibodies are applicable for passive immunization studies and may lead to a therapy of AD.
Collapse
Affiliation(s)
- Jan G Schiltz
- Institute if Medical Virology, University of Zurich, Gloriastrasse 30, 8028 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O'Banion K, Klockgether T, Van Leuven F, Landreth GE. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain 2005; 128:1442-53. [PMID: 15817521 DOI: 10.1093/brain/awh452] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuritic plaques in the brain of Alzheimer's disease patients are characterized by beta-amyloid deposits associated with a glia-mediated inflammatory response. Non-steroidal anti-inflammatory drug (NSAID) therapy reduces Alzheimer's disease risk and ameliorates microglial reactivity in Alzheimer's disease brains; however, the molecular mechanisms subserving this effect are not yet clear. Since several NSAIDs bind to and activate the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) which acts to inhibit the expression of proinflammatory genes, this receptor appears a good candidate to mediate the observed anti-inflammatory effects. Recent data in vitro suggested that NSAIDs negatively regulate microglial activation and immunostimulated amyloid precursor protein processing via PPARgamma activation. We report that an acute 7 day oral treatment of 10-month-old APPV717I mice with the PPARgamma agonist pioglitazone or the NSAID ibuprofen resulted in a reduction in the number of activated microglia and reactive astrocytes in the hippocampus and cortex. Drug treatment reduced the expression of the proinflammatory enzymes cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS). In parallel to the suppression of inflammatory markers, pioglitazone and ibuprofen treatment decreased beta-secretase-1 (BACE1) mRNA and protein levels. Importantly, we observed a significant reduction of the total area and staining intensity of Abeta1-42-positive amyloid deposits in the hippocampus and cortex. Additionally, animals treated with pioglitazone revealed a 27% reduction in the levels of soluble Abeta1-42 peptide. These findings demonstrate that anti-inflammatory drugs can act rapidly to inhibit inflammatory responses in the brain and negatively modulate amyloidogenesis.
Collapse
|
221
|
Van Dam D, Vloeberghs E, Abramowski D, Staufenbiel M, De Deyn PPP. APP23 mice as a model of Alzheimer's disease: an example of a transgenic approach to modeling a CNS disorder. CNS Spectr 2005; 10:207-22. [PMID: 15744222 DOI: 10.1017/s1092852900010051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animal models are considered essential in research ensuing elucidation of human disease processes and subsequently, testing of potential therapeutic strategies. This is especially true for neurodegenerative disorders, in which the first steps in pathogenesis are often not accessible in human patients. Alzheimer's disease is vastly becoming a major medical and socioeconomic problem in our aging society. Valid animal models for this uniquely human condition should exhibit histopathological, biochemical, cognitive, and behavioral alterations observed in Alzheimer's disease patients. Major progress has been made since the understanding of the genetic basis of Alzheimer's disease and the development and improvement of transgenic mouse models. All present Alzheimer's disease models developed are partial but nevertheless essential in further unraveling the nature and spatial and temporal development of the complex molecular pathology underlying this condition. One of the more recent transgenic attempts to model Alzheimer's disease is the APP23 transgenic mouse. This article describes the development and assessment of this human amyloid precursor protein overexpression model. We summarize histopathological and biochemical, cognitive and behavioral observations made in heterozygous APP23 mice, thereby emphasizing the model's contribution to clarification of neurodegenerative disease mechanisms. In addition, the first therapeutic interventions in the APP23 model are included.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
222
|
Sommer B. Recent advances in transgenic model development for Alzheimer's disease. Expert Opin Investig Drugs 2005; 7:2017-25. [PMID: 15991944 DOI: 10.1517/13543784.7.12.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The lack of a small animal model that represents major features of Alzheimer's disease has long been considered a major handicap for research and drug development. Transgenic technology has been used to introduce potential pathological start points as well as established genetic causes of the disease to trigger pathogenesis in a small animal model. This review describes various approaches, discusses the available transgenic mouse models and compares their similarities and differences, and their applicability for the testing of drugs aiming at a causal treatment of the disease.
Collapse
Affiliation(s)
- B Sommer
- Nervous System Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| |
Collapse
|
223
|
Cole SL, Grudzien A, Manhart IO, Kelly BL, Oakley H, Vassar R. Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem 2005; 280:18755-70. [PMID: 15718241 DOI: 10.1074/jbc.m413895200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of statins, 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that block the synthesis of mevalonate (and downstream products such as cholesterol and nonsterol isoprenoids), as a therapy for Alzheimer disease is currently the subject of intense debate. It has been reported that statins reduce the risk of developing the disorder, and a link between cholesterol and Alzheimer disease pathophysiology has been proposed. Moreover, experimental studies focusing on the cholesterol-dependent effects of statins have demonstrated a close association between cellular cholesterol levels and amyloid production. However, evidence suggests that statins are pleiotropic, and the potential cholesterol-independent effects of statins on amyloid precursor protein (APP) metabolism and amyloid beta-peptide (A beta) genesis are unknown. In this study, we developed a novel in vitro system that enabled the discrete analysis of cholesterol-dependent and -independent (i.e. isoprenoid-dependent) statin effects on APP cleavage and A beta formation. Given the recent interest in the role that intracellular A beta may play in Alzheimer disease, we analyzed statin effects on both secreted and cell-associated A beta. As reported previously, low cellular cholesterol levels favored the alpha-secretase pathway and decreased A beta secretion presumably within the endocytic pathway. In contrast, low isoprenoid levels resulted in the accumulation of APP, amyloidogenic fragments, and A beta likely within biosynthetic compartments. Importantly, low cholesterol and low isoprenoid levels appeared to have completely independent effects on APP metabolism and A beta formation. Although the implications of these effects for Alzheimer disease pathophysiology have yet to be investigated, to our knowledge, these results provide the first evidence that isoprenylation is involved in determining levels of intracellular A beta.
Collapse
Affiliation(s)
- Sarah L Cole
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
224
|
Lalonde R, Dumont M, Staufenbiel M, Strazielle C. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav Brain Res 2005; 157:91-8. [PMID: 15617775 DOI: 10.1016/j.bbr.2004.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/12/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
The SHIRPA primary screen comprises 40 measures covering various reflexes and basic sensorimotor functions. This multi-test battery was used to compare non-transgenic controls with APP23 transgenic mice, expressing the 751 isoform of human beta-amyloid precursor protein and characterized by amyloid deposits in parenchyma and vessel walls. The APP23 mice were distinguishable from controls by pathological limb reflexes, myoclonic jumping, seizure activity, and tail malformation. In addition, this mouse model of Alzheimer's disease was also marked by a crooked swimming trajectory. APP23 mice were also of lighter weight and were less inclined to stay immobile during a transfer arousal test. Despite the neurologic signs, APP23 transgenic mice were not deficient in stationary beam, coat-hanger, and rotorod tests, indicating intact motor coordination abilities.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, IFRMP23, Bâtiment de Recherche, 76183 Rouen Cedex, France.
| | | | | | | |
Collapse
|
225
|
Koistinaho M, Koistinaho J. Interactions between Alzheimer's disease and cerebral ischemia--focus on inflammation. ACTA ACUST UNITED AC 2005; 48:240-50. [PMID: 15850663 DOI: 10.1016/j.brainresrev.2004.12.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 12/27/2022]
Abstract
Progressive memory impairment, beta-amyloid (Abeta) plaques associated with local inflammation, neurofibrillary tangles, and loss of neurons in selective brain areas are hallmarks of Alzheimer's disease (AD). Although beta-amyloid precursor protein (APP) and Abeta have a central role in the etiology of AD, it is not clear which forms of APP or Abeta are responsible for the neuronal vulnerability in AD brain. Brain ischemia, another cause of dementia in the elderly, has recently been recognized to contribute to the pathogenesis of AD and individuals with severe cognitive decline and possibly underlying AD are at increased risk for ischemic events in the brain. Moreover, the epsilon4 allele of apolipoprotein E (ApoE) is a risk factor for both AD and poor outcome following brain ischemia and hemorrhage. Several factors and molecular mechanisms that lower the threshold of neuronal death in models of AD have recently been described. Among these neuroinflammation seems to play an important role. The development and maturation of both AD neuropathology and ischemic lesions in the central nervous system are characterized by activation of glial cells and upregulation of inflammatory mediators. Indeed, anti-inflammatory approaches have proven to be beneficial in the prevention and treatment of AD-like neuropathology and ischemic injuries in vivo. This review summarizes some of the findings suggesting that neuronal overexpression of human APP renders the brain more vulnerable to ischemic injury and describes the factors that are involved in increased neuronal susceptibility to ischemic stroke.
Collapse
Affiliation(s)
- Milla Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland.
| | | |
Collapse
|
226
|
Apelt J, Bigl M, Wunderlich P, Schliebs R. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci 2004; 22:475-84. [PMID: 15465277 DOI: 10.1016/j.ijdevneu.2004.07.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022] Open
Abstract
The molecular mechanisms of beta-amyloidogenesis in sporadic Alzheimer's disease are still poorly understood. To reveal whether aging-associated increases in brain oxidative stress and inflammation may trigger onset or progression of beta-amyloid deposition, a transgenic mouse (Tg2576) that express the Swedish double mutation of human amyloid precursor protein (APP) was used as animal model to study the developmental pattern of markers of oxidative stress and APP processing. In Tg2576 mouse brain, cortical levels of soluble beta-amyloid (1-40) and (1-42) steadily increased with age, but significant deposition of fibrillary beta-amyloid in cortical areas did not occur before postnatal age of 10 months. The slope of increase in cerebral cortical beta-secretase (BACE1) activities in Tg2576 mice between ages of 9 and 13 months was significantly higher as compared to that of the alpha-secretase, while the expression level of BACE1 protein and mRNA did not change with age. The activities of superoxide dismutase and glutathione peroxidase in cortical tissue from Tg2576 mice steadily increased from postnatal age 9-12 months. The levels of cortical nitric oxide, and reactive nitrogen species demonstrated peak values around 9 months of age, while the level of interleukin-1beta steadily increased from postnatal month 13 onwards. The developmental temporal coincidence of increased levels of reactive nitrogen species and antioxidative enzymes with the onset of beta-amyloid plaque deposition provides further evidence that developmentally and aging-induced alterations in brain oxidative status exhibit a major factor in triggering enhanced production and deposition of beta-amyloid, and potentially predispose to Alzheimer's disease.
Collapse
Affiliation(s)
- Jenny Apelt
- Department of Neurochemistry, University of Leipzig, Paul Flechsig Institute for Brain Research, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | |
Collapse
|
227
|
Abstract
Fragile X mental retardation and Friedreich's ataxia were among the first pathogenic trinucleotide repeat disorders to be described in which noncoding repeat expansions interfere with gene expression and cause a loss of protein production. Invoking a similar loss-of-function hypothesis for the CTG expansion causing myotonic dystrophy type 1 (DM1) located in the 3' noncoding portion of a kinase gene was more difficult because DM is a dominantly inherited multisystemic disorder in which the second copy of the gene is unaffected. However, the discovery that a transcribed but untranslated CCTG expansion causes myotonic dystrophy type 2 (DM2), along with other discoveries on DM1 and DM2 pathogenesis, indicate that the CTG and CCTG expansions are pathogenic at the RNA level. This review will detail recent developments on the molecular mechanisms of RNA pathogenesis in DM, and the growing number of expansion disorders that might involve similar pathogenic RNA mechanisms.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, MMC 206, 420 Delaware St S.E., University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
228
|
Dudal S, Krzywkowski P, Paquette J, Morissette C, Lacombe D, Tremblay P, Gervais F. Inflammation occurs early during the Abeta deposition process in TgCRND8 mice. Neurobiol Aging 2004; 25:861-71. [PMID: 15212840 DOI: 10.1016/j.neurobiolaging.2003.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 06/25/2003] [Accepted: 08/28/2003] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by a progressive cognitive decline leading to dementia and involves the deposition of amyloid-beta (Abeta) peptides into senile plaques. Other neuropathological features that accompany progression of the disease include a decrease in synaptic density, neurofibrillary tangles, dystrophic neurites, inflammation, and neuronal cell loss. In this study, we report the early kinetics of brain amyloid deposition and its associated inflammation in an early onset transgenic mouse model of AD (TgCRND8) harboring the human amyloid precursor protein gene with the Indiana and Swedish mutations. Both diffuse and compact plaques were detected as early as 9-10 weeks of age. Abeta-immunoreactive (Abeta-IR) plaques (4G8-positive) appeared first in the neocortex and amygdala, then in the hippocampal formation, and lastly in the thalamus. Compact plaques (ThioS-positive) with an amyloid core were observed as early as diffuse plaques were detected, but in lower numbers. Amyloid deposition increased progressively with age. The formation of plaques was concurrent with the appearance of activated microglial cells and shortly followed by the clustering of activated astrocytes around plaques at 13-14 weeks of age. This TgCRND8 mouse model allows for a rapid, time-dependent study of the relationship between the fibrillogenic process and the inflammatory response during the brain amyloidogenic process.
Collapse
Affiliation(s)
- Sherri Dudal
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Qué., Canada
| | | | | | | | | | | | | |
Collapse
|
229
|
Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2004; 10:463-70. [PMID: 14745459 DOI: 10.1038/sj.mn.7800212] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 02/10/2003] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To establish the generality of cerebrovascular pathology frequently observed with Alzheimer disease, we have assessed blood-brain barrier (BBB) integrity using the Alzheimer disease model Tg2576 mice in which cognitive deficits and neuritic plaque formation develop around 10-12 months of age. METHODS We assessed BBB integrity using well-established methods involving albumin and Evans blue uptake and introduce the use of a novel perfusion protocol using succinimidyl ester of carboxyfluorescein diacetate. RESULTS BBB permeability is increased in the cerebral cortex of 10-month-old Tg2576 mice preceding Alzheimer disease pathology presentation. Furthermore, when compared with their nontransgenic littermates, 4-month-old Tg2576 mice exhibit compromised BBB integrity in some areas of the cerebral cortex. An age-related increase in albumin uptake by the brains of Tg2576 mice, compared with nontransgenic mice, was also observed. These findings were supported by quantitative Evans blue analysis (p = 0.07, two-way analysis of variance). CONCLUSION A breakdown of BBB was evident in young 4- to 10-month-old Tg2576 mice. Compromised barrier function could explain the mechanisms of Abeta entry into the brain observed in experimental Alzheimer disease vaccination models. Such structural changes to the BBB caused by elevated Abeta could play a central role in Alzheimer disease development and might define an early point of intervention for designing effective therapy against the disease.
Collapse
Affiliation(s)
- Maki Ujiie
- Biotechnology Laboratory, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | |
Collapse
|
230
|
Colas D, London J, Gharib A, Cespuglio R, Sarda N. Sleep-wake architecture in mouse models for Down syndrome. Neurobiol Dis 2004; 16:291-9. [PMID: 15193286 DOI: 10.1016/j.nbd.2004.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 02/11/2004] [Accepted: 03/01/2004] [Indexed: 11/22/2022] Open
Abstract
Sleep-wake homeostasis is crucial for behavioral performances and memory both in the general population and in patients with learning disability, among whom were Down syndrome (DS) patients. We investigated, in mouse models of DS, cortical EEG and sleep-wake architecture under baseline conditions and after a 4-h sleep deprivation (SD). Young hemizygous mice (hSODwt/+) transgenic for the human CuZn superoxide dismutase (hSOD1) or for the human amyloid precursor protein (HuAPP(695); hAPPwt/+) were obtained on the same FVB/N inbred background. Baseline records for slow wave sleep (SWS) and wake (W) parameters were unchanged, whereas paradoxical sleep (PS) episode numbers were decreased and PS latency increased after lights off in hSODwt/+ mice versus controls. hSODwt/+ mice did not experience SWS or PS rebounds after SD but EEG activity in the delta-SWS activity (SWA) was enhanced. hAPPwt/+ mice exhibited no change in PS but an increase in W and a decrease in SWS before light transition as well as an increase in theta-power in PS and W. After SD, hAPPwt/+ mice exhibited SWS and PS rebounds as well as enhancement of SWA. We investigated also the nitrite/nitrate levels in all mice and found an increase in the brainstem of hSODwt/+ mice only versus control ones. These preliminary data provide useful results to investigate other genetically manipulated mice and to better understand the biochemical basis of sleep disorders in DS patients.
Collapse
Affiliation(s)
- Damien Colas
- Unite INSERM Unit 480, Claude Bernard University, 69373 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
231
|
Chin J, Palop JJ, Yu GQ, Kojima N, Masliah E, Mucke L. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J Neurosci 2004; 24:4692-7. [PMID: 15140940 PMCID: PMC6729387 DOI: 10.1523/jneurosci.0277-04.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, results in progressive degeneration of synapses and aberrant sprouting of axon terminals. The mechanisms underlying these seemingly opposing cellular phenomena are unclear. We hypothesized that Fyn kinase may play a role in one or both of these processes because it is increased in AD brains and because it is involved in synaptic plasticity and axonal outgrowth. We investigated the effects of Fyn on AD-related synaptotoxicity and aberrant axonal sprouting by ablating or overexpressing Fyn in human amyloid precursor protein (hAPP) transgenic mice. On the fyn+/+ background, hAPP/amyloid beta peptide (Abeta) decreased hippocampal levels of synaptophysin-immunoreactive presynaptic terminals (SIPTs), consistent with previous findings. On the fyn-/- background, hAPP/Abeta did not affect SIPTs. SIPT reductions correlated with hippocampal Abeta levels in hAPP/fyn+/+, but not hAPP/fyn-/-, mice suggesting that Fyn provides a critical link between hAPP/Abeta and SIPTs. Furthermore, overexpression of Fyn exacerbated SIPT reductions in hAPP mice. We also found that the susceptibility of mice to hAPP/Abeta-induced premature mortality was decreased by Fyn ablation and increased by Fyn overexpression. In contrast, axonal sprouting in the hippocampus of hAPP mice was unaffected. We conclude that Fyn-dependent pathways are critical in AD-related synaptotoxicity and that the pathogenesis of hAPP/Abeta-induced neuronal alterations may be mechanistically heterogenous.
Collapse
Affiliation(s)
- Jeannie Chin
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
232
|
Sadowski M, Pankiewicz J, Scholtzova H, Ji Y, Quartermain D, Jensen CH, Duff K, Nixon RA, Gruen RJ, Wisniewski T. Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol 2004; 63:418-28. [PMID: 15198121 DOI: 10.1093/jnen/63.5.418] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Alzheimer disease (AD) patients, early memory dysfunction is associated with glucose hypometabolism and neuronal loss in the hippocampus. Double transgenic (Tg) mice co-expressing the M146L presenilin 1 (PS1) and K670N/M671L, the double "Swedish" amyloid precursor protein (APP) mutations, are a model of AD amyloid-beta deposition (Abeta) that exhibits earlier and more profound impairments of working memory and learning than single APP mutant mice. In this study we compared performance on spatial memory tests, regional glucose metabolism, Abeta deposition, and neuronal loss in APP/PS1, PS1, and non-Tg (nTg) mice. At the age of 2 months no significant morphological and metabolic differences were detected between 3 studied genotypes. By 8 months, however, APP/PS1 mice developed selective impairment of spatial memory, which was significantly worse at 22 months and was accompanied by reduced glucose utilization in the hippocampus and a 35.8% dropout of neurons in the CA1 region. PS1 mice exhibited a similar degree of neuronal loss in CA1 but minimal memory deficit and no impairment of glucose utilization compared to nTg mice. Deficits in 22 month APP/PS1 mice were accompanied by a substantially elevated Abeta load, which rose from 2.5% +/- 0.4% at 8 months to 17.4% +/- 4.6%. These findings implicate Abeta or APP in the behavioral and metabolic impairments in APP/PS1 mice and the failure to compensate functionally for PS1-related hippocampal cell loss.
Collapse
Affiliation(s)
- Marcin Sadowski
- Department of Neurology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Ranum LPW, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 2004; 74:793-804. [PMID: 15065017 PMCID: PMC1181975 DOI: 10.1086/383590] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 02/12/2004] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM)--the most common form of muscular dystrophy in adults, affecting 1/8000 individuals--is a dominantly inherited disorder with a peculiar and rare pattern of multisystemic clinical features affecting skeletal muscle, the heart, the eye, and the endocrine system. Two genetic loci have been associated with the DM phenotype: DM1, on chromosome 19, and DM2, on chromosome 3. In 1992, the mutation responsible for DM1 was identified as a CTG expansion located in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). How this untranslated CTG expansion causes myotonic dystrophy type 1(DM1) has been controversial. The recent discovery that myotonic dystrophy type 2 (DM2) is caused by an untranslated CCTG expansion, along with other discoveries on DM1 pathogenesis, indicate that the clinical features common to both diseases are caused by a gain-of-function RNA mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. We discuss the pathogenic mechanisms that have been proposed for the myotonic dystrophies, the clinical and molecular features of DM1 and DM2, and the characterization of murine and cell-culture models that have been generated to better understand these diseases.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
234
|
Friedlich AL, Lee JY, van Groen T, Cherny RA, Volitakis I, Cole TB, Palmiter RD, Koh JY, Bush AI. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer's disease. J Neurosci 2004; 24:3453-9. [PMID: 15056725 PMCID: PMC6730042 DOI: 10.1523/jneurosci.0297-04.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/20/2004] [Accepted: 02/21/2004] [Indexed: 11/21/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is common in Alzheimer's disease (AD) and may contribute to dementia and cerebral hemorrhage. Parenchymal beta-amyloid deposition is dependent on the activity of zinc transporter 3 (ZnT3), a neocortical synaptic vesicle membrane protein that causes enrichment of exchangeable Zn2+ in the vesicle, which is externalized on neurotransmission. However, the contribution of zinc to vascular beta-amyloid deposition remains unclear. Here, we identify for the first time an exchangeable pool of Zn2+ in the cerebrovascular wall of normal mice. This histochemically reactive Zn2+ is enriched in CAA in a transgenic mouse model of AD (Tg2576), and a dramatic reduction of CAA occurs after targeted disruption of the Znt3 gene in these mice. Also, in Znt3 knock-out mice, the amount of exchangeable Zn2+ [detected by N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulphonamide (TFL-Zn)] in the perivascular space was significantly decreased in the neocortex but not in peripheral organs. ZnT3 was not detected in the cerebral vessel walls or in blood components of wild-type mice. Thus, synaptic ZnT3 activity may promote CAA by indirectly raising exchangeable Zn2+ concentrations in the perivascular spaces of the brain.
Collapse
Affiliation(s)
- Avi L Friedlich
- Laboratory for Oxidation Biology, Genetics and Aging Research Unit, Massachusetts General Hospital, and Department of Psychiatry, Harvard Medical School, Charlestown, Massachusetts 02129-4404, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Mohajeri MH, Kuehnle K, Li H, Poirier R, Tracy J, Nitsch RM. Anti-amyloid activity of neprilysin in plaque-bearing mouse models of Alzheimer's disease. FEBS Lett 2004; 562:16-21. [PMID: 15043995 DOI: 10.1016/s0014-5793(04)00169-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 02/05/2004] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Abnormally high concentrations of beta-amyloid peptide (Abeta) and amyloid plaque formation in Alzheimer's disease (AD) may be caused either by increased generation or by decreased degradation of Abeta. Therefore, activation of mechanisms that lower brain Abeta levels is considered valuable for AD therapy. Neuronal upregulation of neprilysin (NEP) in young transgenic mice expressing the AD-causing amyloid precursor protein mutations (SwAPP) led to reduction of brain Abeta levels and delayed Abeta plaque deposition. In contrast, a comparable increase of brain NEP levels in aged SwAPP mice with pre-existing plaque pathology did not result in a significant reduction of plaque pathology. Therefore, we suggest that the potential of NEP for AD therapy is age-dependent and most effective early in the course of AD pathophysiology.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, August Forel Str. 1, 8008 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
236
|
de la Torre JC. Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 2004; 3:184-90. [PMID: 14980533 DOI: 10.1016/s1474-4422(04)00683-0] [Citation(s) in RCA: 580] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cause of Alzheimer's disease (AD) is unknown. This gap in knowledge has created a stumbling block in the search for a genuinely effective treatment or cure for this dementia. This article summarises the arguments for a causal role for either amyloid deposition or cerebrovascular pathology as the primary trigger in the development of non-genetic AD. A bare-bones survey of the published research reveals no compelling evidence that amyloid deposition is neurotoxic in human beings or that it results in neurodegenerative changes involving synaptic, metabolic, or neuronal loss in human or transgenic-mouse brains. By contrast, the data supporting AD as a primary vascular disorder are more convincing. Findings suggesting a vascular cause of AD come from epidemiological, neuroimaging, pathological, pharmacotherapeutic, and clinical studies. The consensus of these studies indicates that chronic brain hypoperfusion is linked to AD risk factors, AD preclinical detection and pharmacotherapeutic action of AD symptoms.
Collapse
Affiliation(s)
- Jack C de la Torre
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
237
|
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-Active Metals, Oxidative Stress, and Alzheimer's Disease Pathology. Ann N Y Acad Sci 2004; 1012:153-63. [PMID: 15105262 DOI: 10.1196/annals.1306.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Considerable evidence is mounting that dyshomeostasis of the redox-active biometals, Cu and Fe, and oxidative stress contribute to the neuropathology of Alzheimer's disease (AD). Present data suggest that metals can interact directly with Abeta peptide, the principal component of beta-amyloid that is one of the primary lesions in AD. The binding of metals to Abeta modulates several physiochemical properties of Abeta that are thought to be central to the pathogenicity of the peptide. First, we and others have shown that metals can promote the in vitro aggregation into tinctorial Abeta amyloid. Studies have confirmed that insoluble amyloid plaques in postmortem AD brain are abnormally enriched in Cu, Fe, and Zn. Conversely, metal chelators dissolve these proteinaceous deposits from postmortem AD brain tissue and attenuate cerebral Abeta amyloid burden in APP transgenic mouse models of AD. Second, we have demonstrated that redox-active Cu(II) and, to a lesser extent, Fe(III) are reduced in the presence of Abeta with concomitant production of reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)) and hydroxyl radical (OH*). These Abeta/metal redox reactions, which are silenced by redox-inert Zn(II), but exacerbated by biological reducing agents, may lead directly to the widespread oxidation damages observed in AD brains. Moreover, studies have also shown that H(2)O(2) mediates Abeta cellular toxicity and increases the production of both Abeta and amyloid precursor protein (APP). Third, the 5' untranslated region (5'UTR) of APP mRNA has a functional iron-response element (IRE), which is consistent with biochemical evidence that APP is a redox-active metalloprotein. Hence, the redox interactions between Abeta, APP, and metals may be at the heart of a pathological positive feedback system wherein Abeta amyloidosis and oxidative stress promote each other. The emergence of redox-active metals as key players in AD pathogenesis strongly argues that amyloid-specific metal-complexing agents and antioxidants be investigated as possible disease-modifying agents for treating this horrible disease.
Collapse
Affiliation(s)
- Xudong Huang
- Laboratory for Oxidation Biology, Genetics and Aging Research Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
238
|
Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG. Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 2004; 127:601-9. [PMID: 15283960 DOI: 10.1016/j.neuroscience.2004.05.040] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 12/29/2022]
Abstract
Tg2576 transgenic mice (mice overexpressing the "Swedish" mutation in the human amyloid precursor protein 695) demonstrated a decreased capacity for cell proliferation in the dentate gyrus of the hippocampus compared with non-transgenic littermates at 3 months, 6 months and 9 months of age. Isolation stress induced by individually housing each mouse from the time of weaning further decreased hippocampal cell proliferation in Tg2576 mice as well as in non-transgenic littermates at 6 months of age. Decreases in hippocampal cell proliferation in isolated Tg2576 mice were associated with impairments in contextual but not cued memory. Fluoxetine administration increased cell proliferation and improved contextual memory in isolated Tg2576 mice. Further, isolation stress accelerated the age-dependent deposition of beta-amyloid 42 plaques in Tg2576 mice. Numerous beta-amyloid plaques were found in isolated but not non-isolated Tg2576 mice at 6 months of age. These results suggest that Tg2576 mice, a mouse model of Alzheimer disease, have an impaired ability to generate new cells in the dentate gyrus of the hippocampus and that the magnitude of this impairment can be modulated by behavioral interventions and drugs known to have effects on hippocampal neurogenesis in normal rodents. Unexpectedly, isolation stress also appeared to accelerate the underlying process of beta-amyloid plaque deposition in Tg2576 mice. These results suggest that stress may have an impact on the underlying disease process associated with Alzheimer's disease.
Collapse
Affiliation(s)
- H Dong
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
239
|
Phinney AL, Horne P, Yang J, Janus C, Bergeron C, Westaway D. Mouse models of Alzheimer's disease: the long and filamentous road. Neurol Res 2003; 25:590-600. [PMID: 14503012 DOI: 10.1179/016164103101202020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory impairment leading to dementia, deposition of amyloid plaques and neurofibrillary tangles (NFTs), and neuronal loss. The major component of plaques is the amyloid beta peptide, A beta, whereas NFTs contain hyperphosphorylated forms of the microtubule-associated protein tau (tau). Familial AD (FAD) mutations either elevate A beta synthesis by favoring 'secretase' of the Alzheimer beta-amyloid precursor protein (APP) or enhance the fibrillogenic properties of this peptide. Mutations in the tau gene cause a different disease denoted FTPD-17, but suggest that the aberrant forms of tau seen in AD are unlikely to be benign. These findings imply a complex pathogenic cascade in AD and important goals of transgenic modeling are to capture and stratify this pathogenic process. Several laboratories have created APP transgenic (Tg) mice that exhibit AD-like amyloid pathology and A beta burdens. These Tg lines also exhibit deficits in spatial reference and/or working memory, with immunization against A beta attenuating both AD-associated phenotypes. Tangle-like pathologies are observed in mice expressing FTPD-17 mutant forms of tau, but florid tau pathologies based upon the wild type (wt) tau isoforms present in AD have proven more elusive. Creation of animal models with robust amyloid and tau pathologies, yet free of irrelevant confounding pathologies, remains a major objective in this field.
Collapse
Affiliation(s)
- Amie L Phinney
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
240
|
Tabira T. Alzheimer's disease: Mechanisms and development of therapeutic strategies. Geriatr Gerontol Int 2003. [DOI: 10.1111/j.1444-1586.2003.00082.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
241
|
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ. Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death. Neuron 2003; 40:1087-93. [PMID: 14687544 DOI: 10.1016/s0896-6273(03)00787-6] [Citation(s) in RCA: 540] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Abeta levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Abeta-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schüssel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003; 100:14187-92. [PMID: 14617773 PMCID: PMC283567 DOI: 10.1073/pnas.2332818100] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Indexed: 11/18/2022] Open
Abstract
The Cu-binding beta-amyloid precursor protein (APP), and the amyloid Abeta peptide have been proposed to play a role in physiological metal regulation. There is accumulating evidence of an unbalanced Cu homeostasis with a causative or diagnostic link to Alzheimer's disease. Whereas elevated Cu levels are observed in APP knockout mice, APP overexpression results in reduced Cu in transgenic mouse brain. Moreover, Cu induces a decrease in Abeta levels in APP-transfected cells in vitro. To investigate the influence of bioavailable Cu, transgenic APP23 mice received an oral treatment with Cu-supplemented sucrose-sweetened drinking water (1). Chronic APP overexpression per se reduced superoxide dismutase 1 activity in transgenic mouse brain, which could be restored to normal levels after Cu treatment (2). A significant increase of brain Cu indicated its bioavailability on Cu treatment in APP23 mice, whereas Cu levels remained unaffected in littermate controls (3). Cu treatment lowered endogenous CNS Abeta before a detectable reduction of amyloid plaques. Thus, APP23 mice reveal APP-induced alterations linked to Cu homeostasis, which can be reversed by addition of dietary Cu.
Collapse
Affiliation(s)
- Thomas A Bayer
- Department of Psychiatry, Division of Neurobiology, University of the Saarland Medical Center, D-66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y, Horne P, Yang J, Sekoulidis J, Coomaraswamy J, Chishti MA, Cox DW, Mathews PM, Nixon RA, Carlson GA, St George-Hyslop P, Westaway D. In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci U S A 2003; 100:14193-8. [PMID: 14617772 PMCID: PMC283568 DOI: 10.1073/pnas.2332851100] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cu ions have been suggested to enhance the assembly and pathogenic potential of the Alzheimer's disease amyloid-beta (Abeta) peptide. To explore this relationship in vivo, toxic-milk (txJ) mice with a mutant ATPase7b transporter favoring elevated Cu levels were analyzed in combination with the transgenic (Tg) CRND8 amyloid precursor protein mice exhibiting robust Abeta deposition. Unexpectedly, TgCRND8 mice homozygous for the recessive txJ mutation examined at 6 months of age exhibited a reduced number of amyloid plaques and diminished plasma Abeta levels. In addition, homozygosity for txJ increased survival of young TgCRND8 mice and lowered endogenous CNS Abeta at times before detectable increases in Cu in the CNS. These data suggest that the beneficial effect of the txJ mutation on CNS Abeta burden may proceed by a previously undescribed mechanism, likely involving increased clearance of peripheral pools of Abeta peptide.
Collapse
Affiliation(s)
- Amie L Phinney
- Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Iadecola C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer's dementia. Cell Mol Neurobiol 2003; 23:681-9. [PMID: 14514024 PMCID: PMC11530195 DOI: 10.1023/a:1025092617651] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The amyloid B-peptide (AB) is involved in the mechanisms of Alzheimer dementia. This paper reviews experimental evidence indicating that AB exerts profound effects on the regulation of the cerebral circulation. 2. Thus, AB compromises the ability of cerebral endothelial cells to produce vascular relaxing factors, impairs the ability of cerebral blood vessels to maintain adequate flow during hypotension, and attenuates the increases in CBF evoked by enhanced brain activity. 3. Studies in transgenic mice overexpressing the amyloid precursor protein suggest that these cerebrovascular alterations disrupt the delicate balance between the brain's energy requirements and cerebral blood supply, rendering the brain more vulnerable to ischemic injury. 4. The findings support the recently emerged notion that vascular factors play a pathogenic role in the early stages of Alzheimer dementia.
Collapse
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, Weill Medical College of Cornell University, 411 East 69th Street, New York, New York 10021, USA.
| |
Collapse
|
245
|
|
246
|
Ahmad-Annuar A, Tabrizi SJ, Fisher EMC. Mouse models as a tool for understanding neurodegenerative diseases. Curr Opin Neurol 2003; 16:451-8. [PMID: 12869802 DOI: 10.1097/01.wco.0000084221.82329.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to present recent advances in the both the creation and the use of mouse models of human neurodegenerative disease. We briefly touch on the technologies used to make these models, and then focus on recent results from new models. We discuss why such models are useful when they do - and do not - mimic the human disorder. RECENT FINDINGS The numbers of mouse models are increasing dramatically and are starting to yield important results for human disease. We present a selection of new and important models and the results of recent investigations of these animals. SUMMARY An accepted protocol when studying any form of human neurodegenerative disease is to investigate the genetics, pathology, neurophysiology, response to therapeutics, etc., of the disorder in the mouse. This approach is clearly bearing fruit for our understanding and treatment of human neurodegeneration.
Collapse
Affiliation(s)
- Azlina Ahmad-Annuar
- Institute of Neurology, National Hospital of Neurology and Neurosurgery, London, UK
| | | | | |
Collapse
|
247
|
Strazielle C, Sturchler-Pierrat C, Staufenbiel M, Lalonde R. Regional brain cytochrome oxidase activity in beta-amyloid precursor protein transgenic mice with the Swedish mutation. Neuroscience 2003; 118:1151-63. [PMID: 12732258 DOI: 10.1016/s0306-4522(03)00037-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome oxidase activity was examined in a transgenic mouse model of Alzheimer's disease with overexpression of the 751 amino acid isoform of beta-amyloid precursor protein with the Swedish mutation under control of the murine thy-1 promoter. The neuritic plaques, abundantly localized in the hippocampus and anterior neocortical areas, showed a core devoid of enzymatic activity surrounded by higher cytochrome oxidase activity at the sites of the dystrophic neurites and activated glial cells. Quantitative measures, taken only in the healthy-appearing regional areas without neuritic plaques, were higher in numerous limbic and non-limbic regions of transgenic mice in comparison with controls. Enzymatic activity was higher in the dentate gyrus and CA2-CA3 region of the hippocampus, the anterior cingulate and primary visual cortex, two olfactory structures, the ventral part of the neostriatum, the parafascicularis nucleus of the thalamus, and the subthalamic nucleus. Brainstem regions anatomically related with altered forebrain regions were more heavily labeled as well, including the substantia nigra, the periaqueductal gray, the superior colliculus, the medial raphe, the locus coeruleus and the adjacent parabrachial nucleus, as well as the pontine nuclei, red nucleus, and trigeminal motor nucleus. Functional brain organization is discussed in the context of Alzheimer's disease. Although hypometabolism is generally observed in this pathology, the increased cytochrome oxidase activity obtained in these transgenic mice can be the result of a functional compensation on the surviving neurons, or of an early mitochondrial alteration related to increased oxidative damage.
Collapse
Affiliation(s)
- C Strazielle
- Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition and the Service de Microscopie Electronique, Faculté de Médecine, Université Henri Poincaré, 7 Allée de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
248
|
Lüth HJ, Apelt J, Ihunwo AO, Arendt T, Schliebs R. Degeneration of beta-amyloid-associated cholinergic structures in transgenic APP SW mice. Brain Res 2003; 977:16-22. [PMID: 12788508 DOI: 10.1016/s0006-8993(03)02658-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cholinergic dysfunction is a consistent feature of Alzheimer's disease, and the interrelationship between beta-amyloid deposits, inflammation and early cholinergic cell loss is still not fully understood. To characterize the mechanisms by which beta-amyloid and pro-inflammatory cytokines may exert specific degenerating actions on cholinergic cells ultrastructural investigations by electron microscopy were performed in brain sections from transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein and progressively develop beta-amyloid plaques during aging. Both light and electron microscopical investigations of the cerebral cortex of 19-month-old transgenic mice revealed a number of pathological tissue responses in close proximity of beta-amyloid plaques, such as activated microglia, astroglial proliferation, increased number of fibrous astrocytes, brain edema, degeneration of nerve cells, dendrites and axon terminals. Ultrastructural detection of choline acetyl transferase (ChAT)-immunostaining in cerebral cortical sections of transgenic mice clearly demonstrated degeneration of ChAT-immunoreactive fibres in the environment of beta-amyloid plaques and activated glial cells suggesting a role of beta-amyloid and/or inflammation in specific degeneration of cholinergic synaptic structures.
Collapse
Affiliation(s)
- Hans-Joachim Lüth
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | |
Collapse
|
249
|
Lalonde R, Lewis TL, Strazielle C, Kim H, Fukuchi K. Transgenic mice expressing the betaAPP695SWE mutation: effects on exploratory activity, anxiety, and motor coordination. Brain Res 2003; 977:38-45. [PMID: 12788511 DOI: 10.1016/s0006-8993(03)02694-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional consequences of the betaAPP transgene with the Swedish mutation in mice were assessed in tests of exploratory activity and motor coordination. The betaAPP(695)SWE (Tg2576) transgenic mice are characterized by Abeta plaque formation in the neocortex and hippocampus. By comparison to non-transgenic mice controlled for age and gender, 17-month-old betaAPP(695)SWE transgenic mice displayed impaired spontaneous alternation, increased activity levels in the peripheral part of the open-field, and reduced anxiety in the elevated plus-maze. These results are similar to the loss of inhibitory control observed in some patients with Alzheimer's disease. These measures may be added to cognitive dysfunctions as testing ground for Abeta vaccination and other attempts at experimental therapies.
Collapse
Affiliation(s)
- R Lalonde
- Faculté de Médecine et de Pharmacie, Université de Rouen, 22 boulevard Gambetta, INSERM EMI 9906, IFRMP 23, Bâtiment de Recherche, Salle 1D18, 76183 Rouen Cedex, France.
| | | | | | | | | |
Collapse
|
250
|
Münch G, Apelt J, Stahl P, Lüth HJ, Schliebs R. Advanced glycation endproducts and pro-inflammatory cytokines in transgenic Tg2576 mice with amyloid plaque pathology. J Neurochem 2003; 86:283-9. [PMID: 12871569 DOI: 10.1046/j.1471-4159.2003.01837.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.
Collapse
Affiliation(s)
- Gerald Münch
- Neuroimmunological Cell Biology Unit, Interdisciplinary Center for Clinical Research, Leipzig, Germany.
| | | | | | | | | |
Collapse
|