201
|
Chiral resolution of plasma amino acids reveals enantiomer-selective associations with organ functions. Amino Acids 2022; 54:421-432. [PMID: 35226151 DOI: 10.1007/s00726-022-03140-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Plasma amino acids reflect the dynamics of amino acids in organs and their levels have clinical significance. Amino acids as clinical indicators have been evaluated as a mixture of D- and L-amino acids because D-enantiomers are believed to be physiologically nonexistent. However, it has become clear that some D-amino acids are synthesized by endogenous enzymes and symbiotic bacteria. Here, using a two-dimensional HPLC system, we measured enantiomers of all proteinogenic amino acids in plasma and urine and analyzed for correlation with other biochemical parameters in humans who underwent health checkups at our institutional hospital. Four D-amino acids (D-asparagine, D-alanine, D-serine, and D-proline) were detected in the plasma, amounting to less than 1% of the quantities of L-amino acids, but in the urine at several tens of percent, showing that D-amino acids have much higher fractional excretion than their L-counterparts. Detected plasma D-amino acids and D-/L-amino acid ratios were well correlated with renal parameters, such as blood urea nitrogen, creatinine, and cystatin C. On the other hand, a set of plasma L-amino acids were associated with body mass index and correlated with metabolic parameters such as liver enzymes, lipids, blood glucose, and uric acid. Thus, chiral resolution of plasma amino acids revealed totally different associations of the enantiomers with organ functions, and warrants further investigation for clinical and laboratory usefulness.
Collapse
|
202
|
Chary S, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Sex-Specific Catabolic Metabolism Alterations in the Critically Ill following High Dose Vitamin D. Metabolites 2022; 12:metabo12030207. [PMID: 35323650 PMCID: PMC8953844 DOI: 10.3390/metabo12030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pharmacological interventions are essential for the treatment and management of critical illness. Although women comprise a large proportion of the critically ill, sex-specific pharmacological properties are poorly described in critical care. The sex-specific effects of vitamin D3 treatment in the critically ill are not known. Therefore, we performed a metabolomics cohort study with 1215 plasma samples from 428 patients from the VITdAL-ICU trial to study sex-specific differences in the metabolic response to critical illness following high-dose oral vitamin D3 intervention. In women, despite the dose of vitamin D3 being higher, pharmacokinetics demonstrated a lower extent of vitamin D3 absorption compared to men. Metabolic response to high-dose oral vitamin D3 is sex-specific. Sex-stratified individual metabolite associations with elevations in 25(OH)D following intervention showed female-specific positive associations in long-chain acylcarnitines and male-specific positive associations in free fatty acids. In subjects who responded to vitamin D3 intervention, significant negative associations were observed in short-chain acylcarnitines and branched chain amino acid metabolites in women as compared to men. Acylcarnitines and branched chain amino acids are reflective of fatty acid B oxidation, and bioenergesis may represent notable metabolic signatures of the sex-specific response to vitamin D. Demonstrating sex-specific pharmacometabolomics differences following intervention is an important movement towards the understanding of personalized medicine.
Collapse
Affiliation(s)
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Sherif H. Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
203
|
Böhler M, van den Berg EH, Almanza MCT, Connelly MA, Bakker SJL, de Meijer VE, Dullaart RPF, Blokzijl H. Branched Chain Amino Acids are associated with Metabolic Complications in Liver Transplant Recipients. Clin Biochem 2022; 102:26-33. [PMID: 35143831 DOI: 10.1016/j.clinbiochem.2022.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity, dyslipidemia and type 2 diabetes (T2D) contribute substantially to increased cardiovascular morbidity and mortality in patients after orthotopic liver transplantation (OLTx). Elevated plasma branched chain amino acids (BCAA) are linked to metabolic disturbances and cardiovascular disease (CVD) risk profiles in several non-OLTx populations. METHODS Cross-sectional analysis of liver transplant recipients from TransplantLines, a single-center biobank and cohort study. BCAA plasma levels were measured by means of nuclear-magnetic resonance spectroscopy. CVD and cardiometabolic factors were collected by using data from electronic patient records. Associations were determined between BCAA plasma levels and T2D, Metabolic Syndrome (MetS), CVD as well as mTOR inhibition in liver transplant recipients. RESULTS 336 Patients were divided into sex-stratified tertiles of total BCAA. MetS (P<0.001) and T2D (P=0.002) were significantly more frequent in subjects in the highest BCAA tertile. In logistic regression analyses, the multivariable adjusted odds ratio (OR) per 1 standard deviation increase in BCAA was 1.68 (95%CI: 1.18-2.20, P=0.003) for MetS and 1.60 (95%CI: 1.14-2.23, P=0.006) for T2D. Use of Sirolimus (mTOR inhibitor) was significantly associated with higher BCAA plasma levels, independent of age, sex, time after OLTx, MetS and other immunosuppressive medication (adjusted P=0.002). CONCLUSION Elevated BCAA plasma levels are associated with T2D, MetS and use of Sirolimus in liver transplant recipients. BCAA plasma levels may represent a valuable biomarker for cardiometabolic complications after OLTx.
Collapse
Affiliation(s)
- Marco Böhler
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Eline H van den Berg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Maria C T Almanza
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC 27560, United States of America
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
204
|
Rivera ME, Rivera CN, Vaughan RA. Branched-chain amino acids at supraphysiological but not physiological levels reduce myotube insulin sensitivity. Diabetes Metab Res Rev 2022; 38:e3490. [PMID: 34397159 DOI: 10.1002/dmrr.3490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
AIMS Branched-chain amino acids (BCAA) are often emphasized in the diets of avid exercisers, yet population data demonstrates a correlation between circulating BCAA and insulin resistance. However, it is unclear if BCAA independently promote insulin resistance in otherwise healthy cells. The purpose of this study is to examine the effect of a BCAA mixture on muscle insulin signaling in vitro in both insulin resistant and sensitive cells. MATERIALS AND METHODS C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.2, 2, or 20 mM (based on leucine content) for either 30 min, 1 day, or 6 days. Western blot was used to assess insulin sensitivity of cells treated with BCAA both with and without concurrent insulin resistance, and, with and without insulin stimulation. RESULTS BCAA treatment for 1 day significantly reduced basal, but not insulin-stimulated pAkt expression. BCAA treatment for 6 days resulted in significantly reduced basal insulin signaling in healthy cells and insulin-stimulated insulin signaling in insulin resistant (but not insulin sensitive) cells. CONCLUSION Similar to previous observations demonstrating BCAA may correlate with insulin resistance during metabolically stressed conditions, we demonstrate excessively high BCAA exposure can negatively influence basal insulin signaling, as well as insulin sensitivity in insulin resistant myotubes. However, given the intentionally high concentrations of BCAA used in this study, the extent to which these observations translate to in vivo models is unclear and warrants further investigation.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| | - Caroline N Rivera
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| |
Collapse
|
205
|
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol Metab 2022; 33:120-135. [PMID: 34924221 DOI: 10.1016/j.tem.2021.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Amino acids modulate glucose homeostasis. Cytosolic levels of amino acids are regulated by amino acid transporters, modulating insulin release, protein synthesis, cell proliferation, cell fate, and metabolism. In β-cells, amino acid transporters modulate incretin-stimulated insulin release. In the liver, amino acid transporters provide glutamine and alanine for gluconeogenesis. Intestinal amino acid transporters facilitate the intake of amino acids causing protein restriction when inactive. Adipocyte development is regulated by amino acid transporters through activation of mechanistic target of rapamycin (mTORC1) and amino acid-related metabolites. The accumulation and metabolism of branched-chain amino acids (BCAAs) in muscle depends on transporters. The integration between amino acid metabolism and transport is critical for the maintenance and function of tissues and cells involved in glucose homeostasis.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Acton 2601, Australia.
| |
Collapse
|
206
|
Prochazkova M, Budinska E, Kuzma M, Pelantova H, Hradecky J, Heczkova M, Daskova N, Bratova M, Modos I, Videnska P, Splichalova P, Sowah SA, Kralova M, Henikova M, Selinger E, Klima K, Chalupsky K, Sedlacek R, Landberg R, Kühn T, Gojda J, Cahova M. Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Front Nutr 2022; 8:783302. [PMID: 35071294 PMCID: PMC8777108 DOI: 10.3389/fnut.2021.783302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Aim: Plant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet. Methods: This cross-sectional study involved lean, healthy vegans (n = 62) and omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and employed an integrated multi-omics approach (16S rRNA sequencing, metabolomics profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum, and urine metabolomes. Results: The vegans had more favorable glucose and lipid homeostasis profiles than the omnivores. Long-term reported adherence to a vegan diet affected only 14.8% of all detected bacterial genera in fecal microbiome. However, significant differences in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified metabolites were significantly different between the vegans and omnivores, such as amino acid fermentation products p-cresol, scatole, indole, methional (lower in the vegans), and polysaccharide fermentation product short- and medium-chain fatty acids (SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids), and dimethylsulfone, the latter two being potential host microbiome co-metabolites. Using a machine-learning approach, we tested the discriminative power of each dataset. Best results were obtained for serum metabolome (accuracy rate 91.6%). Conclusion: While only small differences in the gut microbiota were found between the groups, their metabolic activity differed substantially. In particular, we observed a significantly different abundance of fermentation products associated with protein and carbohydrate intakes in the vegans. Vegans had significantly lower abundances of potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.) and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).
Collapse
Affiliation(s)
- Magdalena Prochazkova
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czechia
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Helena Pelantova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Jaromir Hradecky
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Marie Heczkova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Nikola Daskova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,First Faculty of Medicine, Charles University, Prague, Czechia
| | - Miriam Bratova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Istvan Modos
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Videnska
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Splichalova
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czechia
| | - Solomon A Sowah
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Maria Kralova
- Department of Applied Mathematics and Computer Science, Masaryk University, Brno, Czechia
| | - Marina Henikova
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eliska Selinger
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Krystof Klima
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Goteborg, Sweden
| | - Tilman Kühn
- Institute of Global Food Security, Queen's University Belfast, Belfast, United Kingdom.,Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jan Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Monika Cahova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
207
|
Lépine G, Tremblay-Franco M, Bouder S, Dimina L, Fouillet H, Mariotti F, Polakof S. Investigating the Postprandial Metabolome after Challenge Tests to Assess Metabolic Flexibility and Dysregulations Associated with Cardiometabolic Diseases. Nutrients 2022; 14:nu14030472. [PMID: 35276829 PMCID: PMC8840206 DOI: 10.3390/nu14030472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.
Collapse
Affiliation(s)
- Gaïa Lépine
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France;
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Sabrine Bouder
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
| | - Laurianne Dimina
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (H.F.); (F.M.)
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, 63000 Clermont-Ferrand, France; (G.L.); (S.B.); (L.D.)
- Correspondence:
| |
Collapse
|
208
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
209
|
Solon-Biet SM, Griffiths L, Fosh S, Le Couteur DG, Simpson SJ, Senior AM. Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. BMC Biol 2022; 20:19. [PMID: 35031039 PMCID: PMC8760763 DOI: 10.1186/s12915-021-01201-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background The role of dietary branched chain amino acids (BCAAs) and their effect on metabolic health is complex. How dietary BCAA levels and their interaction with background nutrition affect health is unclear. Here, we used meta-analysis and meta-regression, together with the nutritional modelling, to analyse the results of rodent studies that increased the level of dietary BCAAs and measured circulating levels, outcomes related to metabolic health, body mass and food intake. Results Across all studies, increasing dietary BCAAs resulted in increased levels of circulating BCAAs. These effects, however, were heavily moderated by background dietary levels whereby on high BCAA diets, further increases were not reflected in the blood. Impaired glucose tolerance was associated with elevated dietary BCAAs, with the greatest effect occurring with a simultaneous increase in total protein intake. Effects of dietary BCAAs on plasma glucose, insulin, or HOMA emerged only when dietary macronutrient background was considered. We found that elevated dietary BCAAs increases % body fat, with largest increases in adiposity occurring when BCAAs are increased on a high protein, low carbohydrate dietary background. Finally, we found that increased dietary BCAAs were associated with increased food intake when the background diet was low in BCAAs. Conclusion Our data highlights the interaction between BCAAs and background nutrition. We show that the effects of BCAAs on metabolic health cannot be studied in isolation but must be considered as part of complex mixture of dietary components. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01201-2.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Lucy Griffiths
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Sophie Fosh
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia.,ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia. .,School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
210
|
He Y, Zhang H, Yang Y, Yu X, Zhang X, Xing Q, Zhang G. Using Metabolomics in Diabetes Management with Traditional Chinese Medicine: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1813-1837. [PMID: 34961417 DOI: 10.1142/s0192415x21500865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The incidence of diabetes worldwide continues to rise, placing a huge economic and medical burden on human society. More than 90% of diabetic cases are type 2 diabetes (T2D). At present, the pathogenesis of T2D is not yet fully understood. Metabolomics uses high-resolution analytical techniques (typically NMR and MS) to help identify biomarkers associated with the risk of T2D and reveal potential pathogenesis. Many metabolites such as branched-chain amino acids (BCAAs), aromatic amino acids, glycine, 2-hydroxybutyric acid (2-HB), lysophosphatidylcholine (LPC) (18:2), and trehalose have proven to be biomarkers of T2D. Insulin resistance (IR) induced by BCAA in T2D mice is related to the activation of mammalian target of rapamycin (mTOR) and phosphorylation of insulin receptor substrate-1 (IRS1). Incomplete LCFA [Formula: see text]-oxidation promote acylcarnitine byproduct accumulation and stimulates proinflammatory NF[Formula: see text]B-related pathways to inhibit insulin action. Traditional Chinese Medicine (TCM) presents unique advantages in the treatment of T2D. Multiple metabolites and metabolic pathways have been identified in the treatment of TCM, providing valuable biomarkers and novel targets for drug therapy and pharmacological mechanism. Therefore, this paper reviews the modern achievements of metabolomics in T2D research and the progress of TCM management in recent years, in order to provide valuable information for related research.
Collapse
Affiliation(s)
- Yanling He
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Hefang Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China.,Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| | - Yufei Yang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Xianghui Yu
- Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| | - Xiao Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Qiaolin Xing
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Gengliang Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China.,Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| |
Collapse
|
211
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
212
|
Wang L, Wang Z, Yu Y, Ren Z, Jia Y, Wang J, Li S, Jiang T. Metabolomics analysis of stool in rats with type 2 diabetes mellitus after single-anastomosis duodenal-ileal bypass with sleeve gastrectomy. Front Endocrinol (Lausanne) 2022; 13:1013959. [PMID: 36204098 PMCID: PMC9530139 DOI: 10.3389/fendo.2022.1013959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) is one of the most effective bariatric procedures in the treatment of type 2 diabetes mellitus (T2DM). However, the mechanisms by which SADI-S improves T2DM are not well-known. OBJECTIVE To explore the effects of SADI-S on metabolites in the stool of rats with T2DM. METHODS Twenty rats were fed on high-fat diet and administered with a low-dose (30mg/kg) of streptozotocin to establish T2DM models. The rats were then randomly assigned to the SADI-S group (n=10) and sham operation group (n=9). Stool samples were collected from all rats at 8 weeks after surgery and stored at -80 °C. Metabolomics analysis was performed to identify differential metabolites through ultra- performance liquid chromatography-mass spectrometry. RESULTS At 8-week after surgery, rats of the SADI-S group showed significantly decreased fasting blood glucose, glucose tolerance test 2-hour, glycated haemoglobin, and body weight compared with those of the sham group. A total of 245 differential metabolites were identified between the two groups. Among them, 16 metabolites such as branched-chain amino acids (valine), aromatic amino acid (phenylalanine), bile acid (cholic acid, lithocholic acid, and β-muricholic acid), short-chain fatty acid (isobutyric acid), and phospholipid [lysoPE(17:0), lysoPE(20:3) and lysoPS(16:0)] were associated to the T2DM remission after SADI-S. CONCLUSION SADI-S improves T2DM in rats by regulating phenylalanine biosynthesis, valine, phenylalanine, alanine, glutamate, proline, bile acid, and phospholipid metabolism pathways.
Collapse
|
213
|
Agarwal P, Wicklow BA, Dart AB, Hizon NA, Sellers EA, McGavock JM, Talbot CPJ, Fonseca MA, Xu W, Davie JR, Jones MJ, Acharjee A, Dolinsky VW. Integrative analysis reveals novel associations between DNA methylation and the serum metabolome of adolescents with type 2 diabetes: A cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:934706. [PMID: 36303872 PMCID: PMC9593237 DOI: 10.3389/fendo.2022.934706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the metabolic alterations in adolescents with T2D. METHODS We performed a cross sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal Complications in Adolescents with type 2 diabetes through Research (iCARE) cohort study, to explore the molecular changes in adolescents with T2D. RESULTS Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others. CONCLUSIONS We identified DMRs and metabolites that merit further investigation to determine their significance in controlling gene expression and metabolism which could define T2D risk in adolescents.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Brandy A. Wicklow
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Allison B. Dart
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Nikho A. Hizon
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Elizabeth A.C. Sellers
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Jonathan M. McGavock
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Charlotte P. J. Talbot
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Mario A. Fonseca
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Wayne Xu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada
| | - James R. Davie
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada
| | - Meaghan J. Jones
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Winnipeg, MB, Canada
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
- *Correspondence: Vernon W. Dolinsky, ; Animesh Acharjee,
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Vernon W. Dolinsky, ; Animesh Acharjee,
| |
Collapse
|
214
|
Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K, Song Y. Present and Future: Crosstalks Between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Front Endocrinol (Lausanne) 2022; 13:933110. [PMID: 35928893 PMCID: PMC9343597 DOI: 10.3389/fendo.2022.933110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease, affecting 8%-13% of the females of reproductive age, thereby compromising their fertility and long-term health. However, the pathogenesis of PCOS is still unclear. It is not only a reproductive endocrine disease, dominated by hyperandrogenemia, but also is accompanied by different degrees of metabolic abnormalities and insulin resistance. With a deeper understanding of its pathogenesis, more small metabolic molecules, such as bile acids, amino acids, and short-chain fatty acids, have been reported to be involved in the pathological process of PCOS. Recently, the critical role of gut microbiota in metabolism has been focused on. The gut microbiota-related metabolic pathways can significantly affect inflammation levels, insulin signaling, glucose metabolism, lipid metabolism, and hormonal secretions. Although the abnormalities in gut microbiota and metabolites might not be the initial factors of PCOS, they may have a significant role in the pathological process of PCOS. The dysbiosis of gut microbiota and disturbance of gut metabolites can affect the progression of PCOS. Meanwhile, PCOS itself can adversely affect the function of gut, thereby contributing to the aggravation of the disease. Inhibiting this vicious cycle might alleviate the symptoms of PCOS. However, the role of gut microbiota in PCOS has not been fully explored yet. This review aims to summarize the potential effects and modulative mechanisms of the gut metabolites on PCOS and suggests its potential intervention targets, thus providing more possible treatment options for PCOS in the future.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yufan Song,
| |
Collapse
|
215
|
Wang X, Zhang Y, Zheng W, Wang J, Wang Y, Song W, Liang S, Guo C, Ma X, Li G. Dynamic changes and early predictive value of branched-chain amino acids in gestational diabetes mellitus during pregnancy. Front Endocrinol (Lausanne) 2022; 13:1000296. [PMID: 36313758 PMCID: PMC9614652 DOI: 10.3389/fendo.2022.1000296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) are closely associated with type 2 diabetes mellitus, but their roles in gestational diabetes mellitus (GDM) are still controversial. This study aims to explore the dynamic changes of BCAAs during pregnancy and identify potential early biomarkers for GDM. METHODS This study is a nested case-control study involved 49 women with GDM and 50 age- and body mass index (BMI)-matched healthy pregnant women. The dynamic changes of valine (Val), isoleucine (Ile), and leucine (Leu) were detected in the first (8-12 weeks) and second trimesters (24-28 weeks) by liquid chromatography-mass spectrometry. RESULTS Serum Val, Ile, and Leu were higher in GDM patients than in controls in the first trimester. Compared with the first trimester, the serum Val, Ile, and Leu in GDM patients were decreased in the second trimester. In addition, Val, Ile, and Leu in the first trimester were the risk factors for GDM, and Ile presented a high predictive value for GDM. Ile + age (≥ 35) + BMI (≥ 24) exhibited the highest predictive value for GDM (AUC = 0.902, sensitivity = 93.9%, specificity = 80%). CONCLUSION Maternal serum Ile in the first trimester was a valuable biomarker for GDM. Ile combined with advanced maternal age and overweight may be used for the early prediction of GDM.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ya Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
| | - Wei Zheng
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jia Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuanyuan Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
| | - Wei Song
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Shengnan Liang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Cuimei Guo
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
- *Correspondence: Xu Ma, ; Guanghui Li,
| | - Guanghui Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Xu Ma, ; Guanghui Li,
| |
Collapse
|
216
|
Xing WL, Liu HX, Niu Q, Wang YT, Zhu Y. Danhong injection improves elective percutaneous coronary intervention in ua patients with blood stasis syndrome revealed by perioperative metabolomics. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_63_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
217
|
Hu W, Yang P, Fu Z, Wang Y, Zhou Y, Ye Z, Gong Y, Huang A, Sun L, Zhao Y, Yang T, Li Z, Jiang XC, Yu W, Zhou H. High L-Valine Concentrations Associate with Increased Oxidative Stress and Newly-Diagnosed Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2022; 15:499-509. [PMID: 35221701 PMCID: PMC8865866 DOI: 10.2147/dmso.s336736] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) are essential AAs which are widely used as antioxidants in patients with liver and kidney dysfunction. However, BCAAs are strongly correlated with insulin resistance (IR) and diabetes. This study aimed to evaluate the relationship among BCAAs, oxidative stress, and type 2 diabetes mellitus (T2DM) in a Chinese population. METHODS Anthropometric and biochemical examinations were performed in 816 individuals who participated in the Huai'an Diabetes Prevention Program. Serum BCAAs concentrations were measured by hydrophilic interaction chromatography-tandem mass spectrometric method. Oxidative stress was evaluated by malondialdehyde (MDA) as an index of lipid peroxidation and the superoxide dismutase (SOD) activity. RESULTS A total of 816 participants were divided into three groups: normal glucose metabolism (NGM), prediabetes, and newly-diagnosed diabetes mellitus (NDM). Subjects in NDM group show higher MDA and lower SOD levels than subjects in other groups. L-Val levels positively correlated with MDA levels and negatively with SOD in NDM groups. After adjusting for T2DM risk factors, high L-Val levels were significantly associated with higher BMI, WC, FPG, increased LnTG and decreased HDL-C. L-Val was also independently associated with NDM (OR 1.06, 95% CI 1.02-1.10; P = 0.005). Furthermore, the odds ratios for NDM among participants with high L-Val (≥35.25μg/mL) levels showed a 2.25-fold (95% CI 1.11-4.57; P = 0.024) increase compared to participants with low L-Val (<27.26 μg/mL) levels after adjusting for MDA and confounding factors. CONCLUSION High serum L-Val levels are independently associated with oxidative stress, thus promoting IR and NDM. Further study should be done to clarify the mechanism.
Collapse
Affiliation(s)
- Wen Hu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
| | - Panpan Yang
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
| | - Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ying Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhengqin Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Aijie Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Luning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Zhao
- School of Public Health Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhong Li
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Weinan Yu
- Department of Endocrinology and Metabolism, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
- Weinan Yu, Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, 223001, People’s Republic of China, Email
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Hongwen Zhou, Department of endocrinology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People’s Republic of China, Tel +862583718836-6893, Fax +862583781781, Email
| |
Collapse
|
218
|
Karusheva Y. Die Rolle der verzweigtkettigen Aminosäuren in der Entwicklung und Progression der Insulinresistenz und des Typ-2-Diabetes – Förderpreis der DDG 2021 – eine Kurzübersicht der Geförderten Yanislava Karusheva. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1664-5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Trongtrakul K, Thonusin C, Pothirat C, Chattipakorn SC, Chattipakorn N. Past Experiences for Future Applications of Metabolomics in Critically Ill Patients with Sepsis and Septic Shocks. Metabolites 2021; 12:metabo12010001. [PMID: 35050123 PMCID: PMC8779293 DOI: 10.3390/metabo12010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
A disruption of several metabolic pathways in critically ill patients with sepsis indicates that metabolomics might be used as a more precise tool for sepsis and septic shock when compared with the conventional biomarkers. This article provides information regarding metabolomics studies in sepsis and septic shock patients. It has been shown that a variety of metabolomic pathways are altered in sepsis and septic shock, including amino acid metabolism, fatty acid oxidation, phospholipid metabolism, glycolysis, and tricarboxylic acid cycle. Based upon this comprehensive review, here, we demonstrate that metabolomics is about to change the world of sepsis biomarkers, not only for its utilization in sepsis diagnosis, but also for prognosticating and monitoring the therapeutic response. Additionally, the future direction regarding the establishment of studies integrating metabolomics with other molecular modalities and studies identifying the relationships between metabolomic profiles and clinical characteristics to address clinical application are discussed in this article. All of the information from this review indicates the important impact of metabolomics as a tool for diagnosis, monitoring therapeutic response, and prognostic assessment of sepsis and septic shock. These findings also encourage further clinical investigations to warrant its use in routine clinical settings.
Collapse
Affiliation(s)
- Konlawij Trongtrakul
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Chanisa Thonusin
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| | - Chaicharn Pothirat
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Siriporn C. Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| |
Collapse
|
220
|
Gander J, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Infanger D, Colledge F, Streese L, Wagner J, Klenk C, Nève G, Knaier R, Hanssen H, Schmidt-Trucksäss A, Ivanisevic J. Metabolic Impairment in Coronary Artery Disease: Elevated Serum Acylcarnitines Under the Spotlights. Front Cardiovasc Med 2021; 8:792350. [PMID: 34977199 PMCID: PMC8716394 DOI: 10.3389/fcvm.2021.792350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Coronary artery disease (CAD) remains the leading cause of death worldwide. Expanding patients' metabolic phenotyping beyond clinical chemistry investigations could lead to earlier recognition of disease onset and better prevention strategies. Additionally, metabolic phenotyping, at the molecular species level, contributes to unravel the roles of metabolites in disease development. In this cross-sectional study, we investigated clinically healthy individuals (n = 116, 65% male, 70.8 ± 8.7 years) and patients with CAD (n = 54, 91% male, 67.0 ± 11.5 years) of the COmPLETE study. We applied a high-coverage quantitative liquid chromatography-mass spectrometry approach to acquire a comprehensive profile of serum acylcarnitines, free carnitine and branched-chain amino acids (BCAAs), as markers of mitochondrial health and energy homeostasis. Multivariable linear regression analyses, adjusted for confounders, were conducted to assess associations between metabolites and CAD phenotype. In total, 20 short-, medium- and long-chain acylcarnitine species, along with L-carnitine, valine and isoleucine were found to be significantly (adjusted p ≤ 0.05) and positively associated with CAD. For 17 acylcarnitine species, associations became stronger as the number of affected coronary arteries increased. This implies that circulating acylcarnitine levels reflect CAD severity and might play a role in future patients' stratification strategies. Altogether, CAD is characterized by elevated serum acylcarnitine and BCAA levels, which indicates mitochondrial imbalance between fatty acid and glucose oxidation.
Collapse
Affiliation(s)
- Joséphine Gander
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rébecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christopher Klenk
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Gilles Nève
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Arno Schmidt-Trucksäss
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Julijana Ivanisevic
| |
Collapse
|
221
|
Mallol R, Vallvé JC, Solà R, Girona J, Bergmann S, Correig X, Rock E, Winklhofer-Roob BM, Rehues P, Guardiola M, Masana L, Ribalta J. Statistical mediation of the relationships between chronological age and lipoproteins by nonessential amino acids in healthy men. Comput Struct Biotechnol J 2021; 19:6169-6178. [PMID: 34900130 PMCID: PMC8632714 DOI: 10.1016/j.csbj.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
Aging is a major risk factor for metabolic impairment that may lead to age-related diseases such as cardiovascular disease. Different mechanisms that may explain the interplay between aging and lipoproteins, and between aging and low-molecular-weight metabolites (LMWMs), in the metabolic dysregulation associated with age-related diseases have been described separately. Here, we statistically evaluated the possible mediation effects of LMWMs on the relationships between chronological age and lipoprotein concentrations in healthy men ranging from 19 to 75 years of age. Relative and absolute concentrations of LMWMs and lipoproteins, respectively, were assessed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate linear regression and mediation analysis were conducted to explore the associations between age, lipoproteins and LMWMs. The statistical significance of the identified mediation effects was evaluated using the bootstrapping technique, and the identified mediation effects were validated on a publicly available dataset. Chronological age was statistically associated with five lipoprotein classes and subclasses. The mediation analysis showed that serine mediated 24.1% (95% CI: 22.9 – 24.7) of the effect of age on LDL-P, and glutamate mediated 17.9% (95% CI: 17.6 – 18.5) of the effect of age on large LDL-P. In the publicly available data, glutamate mediated the relationship between age and an NMR-derived surrogate of cholesterol. Our results suggest that the age-related increase in LDL particles may be mediated by a decrease in the nonessential amino acid glutamate. Future studies may contribute to a better understanding of the potential biological role of glutamate and LDL particles in aging mechanisms and age-related diseases.
Collapse
Affiliation(s)
- Roger Mallol
- La Salle, Ramon Llull University, Barcelona, Spain.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joan Carles Vallvé
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Rosa Solà
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xavier Correig
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Edmond Rock
- UMMM, INRA-Theix, St. Genes Champanelle, France
| | - Brigitte M Winklhofer-Roob
- Human Nutrition and Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Pere Rehues
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Montse Guardiola
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lluís Masana
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josep Ribalta
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
222
|
Chen W, Pang Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021; 11:metabo11120869. [PMID: 34940628 PMCID: PMC8709086 DOI: 10.3390/metabo11120869] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases among women of reproductive age and is associated with many metabolic manifestations, such as obesity, insulin resistance (IR) and hyperandrogenism. The underlying pathogenesis of these metabolic symptoms has not yet been fully elucidated. With the application of metabolomics techniques, a variety of metabolite changes have been observed in the serum and follicular fluid (FF) of PCOS patients and animal models. Changes in metabolites result from the daily diet and occur during uncommon physiological routines. However, some of these metabolite changes may provide evidence to explain possible mechanisms and new approaches for prevention and therapy. This article reviews the pathogenesis of PCOS metabolic symptoms and the relationship between metabolites and the pathophysiology of PCOS. Furthermore, the potential clinical application of some specific metabolites will be discussed.
Collapse
Affiliation(s)
- Weixuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
- Correspondence:
| |
Collapse
|
223
|
Yang X, Dong B, An L, Zhang Q, Chen Y, Wang H, Song Z. Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism. Front Pharmacol 2021; 12:756491. [PMID: 34899310 PMCID: PMC8654325 DOI: 10.3389/fphar.2021.756491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidences suggested an association between gut microbiome dysbiosis and impaired glycemic control. Ginsenoside Rb1 (Rb1) is a biologically active substance of ginseng, which serves anti-diabetic effects. However, its working mechanism especially interaction with gut microbes remains elusive in detail. In this study, we investigated the impact of Rb1 oral supplementation on high fat diet (HFD) induced obesity mice, and explored its mechanism in regulating blood glucose. The results showed that higher liver weight and lower cecum weight were observed in HFD fed mice, which was maintained by Rb1 administration. In addition, Rb1 ameliorated HFD induced blood lipid abnormality and improved insulin sensitivity. Several mRNA expressions in the liver were measured by quantitative real-time PCR, of which UCP2, Nr1H4, and Fiaf were reversed by Rb1 treatment. 16S rRNA sequencing analysis indicated that Rb1 significantly altered gut microbiota composition and increased the abundance of mucin-degrading bacterium Akkermansia spp. compared to HFD mice. As suggested via functional prediction, amino acid metabolism was modulated by Rb1 supplementation. Subsequent serum amino acids investigation indicated that several diabetes associated amino acids, like branched-chain amino acids, tryptophan and alanine, were altered in company with Rb1 supplementation. Moreover, correlation analysis firstly implied that the circulation level of alanine was related to Akkermansia spp.. In summary, Rb1 supplementation improved HFD induced insulin resistance in mice, and was associated with profound changes in microbial composition and amino acid metabolism.
Collapse
Affiliation(s)
- Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Bangjian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Honglin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
224
|
Cardelo MP, Alcala-Diaz JF, Gutierrez-Mariscal FM, Lopez-Moreno J, Villasanta-Gonzalez A, de Larriva APA, Cruz-Ares SDL, Delgado-Lista J, Rodriguez-Cantalejo F, Luque RM, Ordovas JM, Perez-Martinez P, Camargo A, Lopez-Miranda J. Diabetes remission is modulated by branched chain amino acids according to the diet consumed: from the CORDIOPREV study. Mol Nutr Food Res 2021; 66:e2100652. [PMID: 34863046 DOI: 10.1002/mnfr.202100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
SCOPE BCAA plasma levels may be differentially associated with type 2 diabetes mellitus (T2DM) remission through the consumption of the Mediterranean diet (Med) and a low-fat (LF) diet. METHODS 183 newly-diagnosed T2DM patients within the CORDIOPREV study were randomized to consume the Med or a LF diet. BCAA plasma levels (isoleucine, leucine and valine) were measured at fasting and after 120 min of an oral glucose tolerance test (OGTT) at the baseline of the study and after 5 y of the dietary intervention. RESULTS Isoleucine, leucine and valine plasma levels after 120 min of an OGTT in the Med diet (N = 80) were associated by COX analysis with T2DM remission: HR per SD (95%CI): 0.53 (0.37-0.77), 0.75 (0.52-1.08) and 0.61 (0.45-0.82), respectively; no association was found in patients who consumed a LF diet (N = 103). BCAA plasma levels combined in a score showed a HR of 3.33 (1.55-7.19) of T2DM remission for patients with a high score values in the Med diet, while in those with a LF diet no association was found. CONCLUSION Our study suggests that BCAA measurements potentially be used as a tool to select the most suitable diet to induce T2DM remission by nutritional strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Magdalena P Cardelo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Alejandro Villasanta-Gonzalez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Antonio P Arenas- de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC)
| | - Silvia de la Cruz-Ares
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC)
| | - Fernando Rodriguez-Cantalejo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC)
| | - Raul M Luque
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,Biochemical Laboratory, Reina Sofia University Hospital, Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, J.M.-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.,IMDEA Alimentación, Madrid, Spain, CNIC, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University, Hospital, Cordoba, 14004, Spain.,Department of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, 4004, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC).,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
225
|
Chorell E, Otten J, Stomby A, Ryberg M, Waling M, Hauksson J, Svensson M, Olsson T. Improved Peripheral and Hepatic Insulin Sensitivity after Lifestyle Interventions in Type 2 Diabetes Is Associated with Specific Metabolomic and Lipidomic Signatures in Skeletal Muscle and Plasma. Metabolites 2021; 11:metabo11120834. [PMID: 34940592 PMCID: PMC8708788 DOI: 10.3390/metabo11120834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Lifestyle interventions with weight loss can improve insulin sensitivity in type 2 diabetes (T2D), but mechanisms are unclear. We explored circulating and skeletal muscle metabolite signatures of altered peripheral (pIS) and hepatic insulin sensitivity (hIS) in overweight and obese T2D individuals that were randomly assigned a 12-week Paleolithic-type diet with (diet-ex, n = 13) or without (diet, n = 13) supervised exercise. Baseline and post-intervention measures included: mass spectrometry-based metabolomics and lipidomics of skeletal muscle and plasma; pIS and hIS; ectopic lipid deposits in the liver and skeletal muscle; and skeletal muscle fat oxidation rate. Both groups lowered BMI and total % fat mass and increased their pIS. Only the diet-group improved hIS and reduced ectopic lipids in the liver and muscle. The combined improvement in pIS and hIS in the diet-group were associated with decreases in muscle and circulating branched-chain amino acid (BCAA) metabolites, specifically valine. Improved pIS with diet-ex was instead linked to increased diacylglycerol (34:2) and triacylglycerol (56:0) and decreased phosphatidylcholine (34:3) in muscle coupled with improved muscle fat oxidation rate. This suggests a tissue crosstalk involving BCAA-metabolites after diet intervention with improved pIS and hIS, reflecting reduced lipid influx. Increased skeletal muscle lipid utilization with exercise may prevent specific lipid accumulation at sites that perturb insulin signaling.
Collapse
Affiliation(s)
- Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
- Correspondence: ; Tel.: +46-(0)90-785-1326
| | - Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Andreas Stomby
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Maria Waling
- Department of Food, Nutrition and Culinary Science, Umeå University, 901 87 Umeå, Sweden;
| | - Jon Hauksson
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden;
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| |
Collapse
|
226
|
Lépine G, Fouillet H, Rémond D, Huneau JF, Mariotti F, Polakof S. A Scoping Review: Metabolomics Signatures Associated with Animal and Plant Protein Intake and Their Potential Relation with Cardiometabolic Risk. Adv Nutr 2021; 12:2112-2131. [PMID: 34229350 PMCID: PMC8634484 DOI: 10.1093/advances/nmab073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
The dietary shift from animal protein (AP) to plant protein (PP) sources is encouraged for both environmental and health reasons. For instance, PPs are associated with lower cardiovascular and diabetes risks compared with APs, although the underlying mechanisms mostly remain unknown. Metabolomics is a valuable tool for globally and mechanistically characterizing the impact of AP and PP intake, given its unique ability to provide integrated signatures and specific biomarkers of metabolic effects through a comprehensive snapshot of metabolic status. This scoping review is aimed at gathering and analyzing the available metabolomics data associated with PP- and AP-rich diets, and discusses the metabolic effects underlying these metabolomics signatures and their potential implication for cardiometabolic health. We selected 24 human studies comparing the urine, plasma, or serum metabolomes associated with diets with contrasted AP and PP intakes. Among the 439 metabolites reported in those studies as able to discriminate AP- and PP-rich diets, 46 were considered to provide a robust level of evidence, according to a scoring system, especially amino acids (AAs) and AA-related products. Branched-chain amino acids, aromatic amino acids (AAAs), glutamate, short-chain acylcarnitines, and trimethylamine-N-oxide, which are known to be related to an increased cardiometabolic risk, were associated with AP-rich diets, whereas glycine (rather related to a reduced risk) was associated with PP-rich diets. Tricarboxylic acid (TCA) cycle intermediates and products from gut microbiota AAA degradation were also often reported, but the direction of their associations differed across studies. Overall, AP- and PP-rich diets result in different metabolomics signatures, with several metabolites being plausible candidates to explain some of their differential associations with cardiometabolic risk. Additional studies specifically focusing on protein type, with rigorous intake control, are needed to better characterize the associated metabolic phenotypes and understand how they could mediate differential AP and PP effects on cardiometabolic risk.
Collapse
Affiliation(s)
- Gaïa Lépine
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, Clermont-Ferrand, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Didier Rémond
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | | | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| |
Collapse
|
227
|
Kobayashi H, Amrein K, Lasky-Su JA, Christopher KB. Procalcitonin metabolomics in the critically ill reveal relationships between inflammation intensity and energy utilization pathways. Sci Rep 2021; 11:23194. [PMID: 34853395 PMCID: PMC8636627 DOI: 10.1038/s41598-021-02679-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Procalcitonin is a biomarker of systemic inflammation and may have importance in the immune response. The metabolic response to elevated procalcitonin in critical illness is not known. The response to inflammation is vitally important to understanding metabolism alterations during extreme stress. Our aim was to determine if patients with elevated procalcitonin have differences in the metabolomic response to early critical illness. We performed a metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Mixed-effects modeling was used to study changes in metabolites over time relative to procalcitonin levels adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and the 25-hydroxyvitamin D response to intervention. With elevated procalcitonin, multiple members of the short and medium chain acylcarnitine, dicarboxylate fatty acid, branched-chain amino acid, and pentose phosphate pathway metabolite classes had significantly positive false discovery rate corrected associations. Further, multiple long chain acylcarnitines and lysophosphatidylcholines had significantly negative false discovery rate corrected associations with elevated procalcitonin. Gaussian graphical model analysis revealed functional modules specific to elevated procalcitonin. Our findings show that metabolite differences exist with increased procalcitonin indicating activation of branched chain amino acid dehydrogenase and a metabolic shift.
Collapse
Affiliation(s)
- Hirotada Kobayashi
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Kenneth B Christopher
- Division of Renal Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
228
|
Rossmeislová L, Gojda J, Smolková K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev 2021; 40:1115-1139. [PMID: 34962613 DOI: 10.1007/s10555-021-10016-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
229
|
Genton L, Teta D, Pruijm M, Stoermann C, Marangon N, Mareschal J, Bassi I, Wurzner‐Ghajarzadeh A, Lazarevic V, Cynober L, Cani PD, Herrmann FR, Schrenzel J. Glycine increases fat-free mass in malnourished haemodialysis patients: a randomized double-blind crossover trial. J Cachexia Sarcopenia Muscle 2021; 12:1540-1552. [PMID: 34519439 PMCID: PMC8718019 DOI: 10.1002/jcsm.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Protein energy wasting is associated with negative outcome in patients under chronic haemodialysis (HD). Branched-chain amino acids (BCAAs) may increase the muscle mass. This post hoc analysis of a controlled double-blind randomized crossover study assessed the impact of BCAAs on nutritional status, physical function, and quality of life. METHODS We included 36 chronic HD patient features of protein energy wasting as plasma albumin <38 g/L, and dietary intakes <30 kcal/kg/day and <1 g protein/kg/day. Patients received either oral BCAA (2 × 7 g/day) or glycine (2 × 7 g/day) for 4 months (Period 1), followed by a washout period of 1 month, and then received the opposite supplement (Period 2). The outcomes were lean body mass measured by dual-energy X-ray absorptiometry, fat-free mass index measured by bioelectrical impedance, resting energy expenditure, dietary intake and appetite rating, physical activity and function, quality of life, and blood parameters. Analyses were performed by multiple mixed linear regressions including type of supplementation, months, period, sex, and age as fixed effects and subjects as random intercepts. RESULTS Twenty-seven patients (61.2 ± 13.7 years, 41% women) were compliant to the supplementations (consumption >80% of packs) and completed the study. BCAA did not affect lean body mass index and body weight, but significantly decreased fat-free mass index, as compared with glycine (coeff -0.27, 95% confidence interval -0.43 to -0.10, P = 0.002, respectively). BCAA and glycine intake had no effect on the other clinical parameters, blood chemistry tests, or plasma amino acids. CONCLUSIONS Branched-chain amino acid did not improve lean body mass as compared with glycine. Unexpectedly, glycine improved fat-free mass index in HD patients, as compared with BCAA. Whether long-term supplementation with glycine improves the clinical outcome remains to be demonstrated.
Collapse
Affiliation(s)
- Laurence Genton
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Daniel Teta
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | - Menno Pruijm
- Service of NephrologyUniversity Hospital of Lausanne and University of LausanneLausanneSwitzerland
| | - Catherine Stoermann
- Service of NephrologyGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Nicola Marangon
- Service of NephrologyGeneva University Hospitals and Clinique of ChampelGenevaSwitzerland
| | - Julie Mareschal
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Isabelle Bassi
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | | | - Vladimir Lazarevic
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Luc Cynober
- EA 4466, Faculty of PharmacyParis University, and Clin Chem Lab, Cochin HospitalParisFrance
| | - Patrice D. Cani
- Louvain Drug Research Institute Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO)Université catholique de LouvainBrusselsBelgium
| | - François R. Herrmann
- Department of Rehabilitation and GeriatricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Jacques Schrenzel
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| |
Collapse
|
230
|
Margolis LM, Karl JP, Wilson MA, Coleman JL, Whitney CC, Pasiakos SM. Serum Branched-Chain Amino Acid Metabolites Increase in Males When Aerobic Exercise Is Initiated with Low Muscle Glycogen. Metabolites 2021; 11:metabo11120828. [PMID: 34940586 PMCID: PMC8708125 DOI: 10.3390/metabo11120828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h of isocaloric refeeding to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate 1.0 g/kg fat) glycogen. Participants then performed 80 min of cycling (64 ± 3% VO2 peak) while ingesting 146 g carbohydrate. Serum was collected before glycogen depletion under resting and fasted conditions (BASELINE), and before (PRE) and after (POST) exercise. Changes in metabolite profiles were calculated by subtracting BASELINE from PRE and POST within LOW and AD. There were greater increases (p < 0.05, Q < 0.10) in 64% of branched-chain amino acids (BCAA) metabolites and 69% of acyl-carnitine metabolites in LOW compared to AD. Urea and 3-methylhistidine had greater increases (p < 0.05, Q < 0.10) in LOW compared to AD. Changes in metabolomics profiles indicate a greater reliance on BCAA catabolism for substrate oxidation when exercise is initiated with low glycogen stores. These findings provide a mechanistic explanation for anabolic resistance associated with low muscle glycogen, and suggest that exogenous BCAA requirements to optimize muscle recovery are likely greater than current recommendations.
Collapse
Affiliation(s)
- Lee M. Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
- Correspondence: ; Tel.: +508-206-2335
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Marques A. Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Julie L. Coleman
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37830, USA
| | - Claire C. Whitney
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| | - Stefan M. Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (J.P.K.); (M.A.W.); (J.L.C.); (C.C.W.); (S.M.P.)
| |
Collapse
|
231
|
Differential and Synergistic Effects of Low Birth Weight and Western Diet on Skeletal Muscle Vasculature, Mitochondrial Lipid Metabolism and Insulin Signaling in Male Guinea Pigs. Nutrients 2021; 13:nu13124315. [PMID: 34959870 PMCID: PMC8704817 DOI: 10.3390/nu13124315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar “Western” diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male “lean” offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.
Collapse
|
232
|
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021; 17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
233
|
McClain KM, Friedenreich CM, Matthews CE, Sampson JN, Check DP, Brenner DR, Courneya KS, Murphy RA, Moore SC. Body Composition and Metabolomics in the Alberta Physical Activity and Breast Cancer Prevention Trial. J Nutr 2021; 152:419-428. [PMID: 34791348 PMCID: PMC8826845 DOI: 10.1093/jn/nxab388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is correlated with many biomarkers, but the extent to which these correlate with underlying body composition is poorly understood. OBJECTIVES Our objectives were to 1) describe/compare distinct contributions of fat/lean mass with BMI-metabolite correlations and 2) identify novel metabolite biomarkers of fat/lean mass. METHODS The Alberta Physical Activity and Breast Cancer Prevention Trial was a 2-center randomized trial of healthy, inactive, postmenopausal women (n = 304). BMI (in kg/m2) was calculated using weight and height, whereas DXA estimated fat/lean mass. Ultra-performance liquid chromatography and mass spectrometry measured relative concentrations of serum metabolite concentrations. We estimated partial Pearson correlations between 1052 metabolites and BMI, adjusting for age, smoking, and site. Fat mass index (FMI; kg/m2) and lean mass index (LMI; kg/m2) correlations were estimated similarly, with mutual adjustment to evaluate independent effects. RESULTS Using a Bonferroni-corrected α level <4.75 × 10-5, we observed 53 BMI-correlated metabolites (|r| = 0.24-0.42). Of those, 21 were robustly correlated with FMI (|r| > 0.20), 25 modestly (0.10 ≤ |r| ≤ 0.20), and 7 virtually null (|r| < 0.10). Ten of 53 were more strongly correlated with LMI than with FMI. Examining non-BMI-correlated metabolites, 6 robustly correlated with FMI (|r| = 0.24-0.31) and 2 with LMI (r = 0.25-0.26). For these, correlations for fat and lean mass were in opposing directions compared with BMI-correlated metabolites, in which correlations were mostly in the same direction. CONCLUSIONS Our results demonstrate how a thorough evaluation of the components of fat and lean mass, along with BMI, provides a more accurate assessment of the associations between body composition and metabolites than BMI alone. Such an assessment makes evident that some metabolites correlated with BMI predominantly reflect lean mass rather than fat, and some metabolites related to body composition are not correlated with BMI. Correctly characterizing these relations is important for an accurate understanding of how and why obesity is associated with disease.
Collapse
Affiliation(s)
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Edmonton, AB, Canada,Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - David P Check
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Darren R Brenner
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Rachel A Murphy
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada,Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
234
|
AICAR stimulates mitochondrial biogenesis and BCAA catabolic enzyme expression in C2C12 myotubes. Biochimie 2021; 195:77-85. [PMID: 34798200 DOI: 10.1016/j.biochi.2021.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism. Insulin resistant populations often exhibit reduced expression of genes governing mitochondrial metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Interestingly, PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, the consistently observed increased circulating levels of BCAA in diabetics may be partially explained by reduced PGC-1α expression. Conversely, PGC-1α upregulation appears to increase BCAA catabolism. PGC-1α activity is regulated by 5'-AMP-activated protein kinase (AMPK), however, only limited experimental data exists on the effect of AMPK activation in the regulation of BCAA catabolism. The present report examined the effects of the commonly used AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) on the metabolism and expression of several related targets (including BCAA catabolic enzymes) of cultured myotubes. C2C12 myotubes were treated with AICAR at 1 mM for up to 24 h. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via qRT-PCR and western blot, respectively. AICAR treatment significantly increased mitochondrial content and peak mitochondrial capacity. AICAR treatment also increased AMPK activation and mRNA expression of several regulators of mitochondrial biogenesis but reduced glycolytic metabolism and mRNA expression of several glycolytic enzymes. Interestingly, branched-chain alpha-keto acid dehydrogenase a (BCKDHa) protein was significantly increased following AICAR-treatment suggesting increased overall BCAA catabolic capacity in AICAR-treated cells. Together, these experiments demonstrate AICAR/AMPK activation can upregulate BCAA catabolic machinery in a model of skeletal muscle.
Collapse
|
235
|
Zhang H, Zhao Y, Zhao D, Chen X, Khan NU, Liu X, Zheng Q, Liang Y, Zhu Y, Iqbal J, Lin J, Shen L. Potential biomarkers identified in plasma of patients with gestational diabetes mellitus. Metabolomics 2021; 17:99. [PMID: 34739593 DOI: 10.1007/s11306-021-01851-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common complication during pregnancy. Looking for reliable diagnostic markers for early diagnosis can reduce the impact of the disease on the fetus OBJECTIVE: The present study is designed to find plasma metabolites that can be used as potential biomarkers for GDM, and to clarify GDM-related mechanisms METHODS: By non-target metabolomics analysis, compared with their respective controls, the plasma metabolites of GDM pregnant women at 12-16 weeks and 24-28 weeks of pregnancy were analyzed. Multiple reaction monitoring (MRM) analysis was performed to verify the potential marker RESULTS: One hundred and seventy-two (172) and 478 metabolites were identified as differential metabolites in the plasma of GDM pregnant women at 12-16 weeks and 24-28 weeks of pregnancy, respectively. Among these, 40 metabolites were overlapped. Most of them are associated with the mechanism of diabetes, and related to short-term and long-term complications in the perinatal period. Among them, 7 and 10 differential metabolites may serve as potential biomarkers at the 12-16 weeks and 24-28 weeks of pregnancy, respectively. By MRM analysis, compared with controls, increased levels of 17(S)-HDoHE and sebacic acid may serve as early prediction biomarkers of GDM. At 24-28 weeks of pregnancy, elevated levels of 17(S)-HDoHE and L-Serine may be used as auxiliary diagnostic markers for GDM CONCLUSION: Abnormal amino acid metabolism and lipid metabolism in patients with GDM may be related to GDM pathogenesis. Several differential metabolites identified in this study may serve as potential biomarkers for GDM prediction and diagnosis.
Collapse
Affiliation(s)
- Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yi Liang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuhua Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
236
|
Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. GENES AND NUTRITION 2021; 16:20. [PMID: 34727893 PMCID: PMC8561969 DOI: 10.1186/s12263-021-00695-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives Circulating branched chain amino acids (BCAAs) increase the risk of type 2 diabetes (T2D). The genetic variants in the BCAA metabolic pathway influence the individual metabolic ability of BCAAs and may affect circulating BCAA levels together with dietary intakes. So, we investigated whether genetic predisposition to impaired BCAA metabolism interacts with dietary BCAA intakes on the risk of type 2 diabetes and related parameters. Methods We estimated dietary BCAA intakes among 434 incident T2D cases and 434 age-matched controls from The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases. The genetic risk score (GRS) was calculated on the basis of 5 variants having been identified in the BCAA metabolic pathway. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and HbA1c. Results Dietary BCAAs significantly interact with metabolism related GRS on T2D risk and HbA1c (p for interaction = 0.038 and 0.015, respectively). A high intake of dietary BCAAs was positively associated with diabetes incidence only among high GRS (OR 2.40, 95% CI 1.39, 4.12, P for trend = 0.002). Dietary BCAAs were associated with 0.14% elevated HbA1c (p = 0.003) and this effect increased to 0.21% in high GRS (p = 0.003). Furthermore, GRS were associated with 9.19 μmol/L higher plasma BCAA levels (p = 0.006, P for interaction = 0.015) only among the highest BCAA intake individuals. Conclusions Our study suggests that genetic predisposition to BCAA metabolism disorder modifies the effect of dietary BCAA intakes on T2D risk as well as HbA1c and that higher BCAA intakes exert an unfavorable effect on type 2 diabetes risk and HbA1c only among those with high genetic susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00695-3.
Collapse
|
237
|
Mapping of population disparities in the cholangiocarcinoma urinary metabolome. Sci Rep 2021; 11:21286. [PMID: 34711878 PMCID: PMC8553759 DOI: 10.1038/s41598-021-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Phenotypic diversity in urinary metabolomes of different geographical populations has been recognized recently. In this study, urinary metabolic signatures from Western (United Kingdom) and South-East Asian (Thai) cholangiocarcinoma patients were characterized to understand spectral variability due to host carcinogenic processes and/or exogenous differences (nutritional, environmental and pharmaceutical). Urinary liquid chromatography mass spectroscopy (LC–MS) spectral profiles from Thai (healthy = 20 and cholangiocarcinoma = 14) and UK cohorts (healthy = 22 and cholangiocarcinoma = 10) were obtained and modelled using chemometric data analysis. Healthy metabolome disparities between the two distinct populations were primarily related to differences in dietary practices and body composition. Metabolites excreted due to drug treatment were dominant in urine specimens from cholangiocarcinoma patients, particularly in Western individuals. Urine from participants with sporadic (UK) cholangiocarcinoma contained greater levels of a nucleotide metabolite (uridine/pseudouridine). Higher relative concentrations of 7-methylguanine were observed in urine specimens from Thai cholangiocarcinoma patients. The urinary excretion of hippurate and methyladenine (gut microbial-host co-metabolites) showed a similar pattern of lower levels in patients with malignant biliary tumours from both countries. Intrinsic (body weight and body composition) and extrinsic (xenobiotic metabolism) factors were the main causes of disparities between the two populations. Regardless of the underlying aetiology, biological perturbations associated with cholangiocarcinoma urine metabolome signatures appeared to be influenced by gut microbial community metabolism. Dysregulation in nucleotide metabolism was associated with sporadic cholangiocarcinoma, possibly indicating differences in mitochondrial energy production pathways between cholangiocarcinoma tumour subtypes. Mapping population-specific metabolic disparities may aid in interpretation of disease processes and identification of candidate biomarkers.
Collapse
|
238
|
Houron C, Ciocan D, Trainel N, Mercier-Nomé F, Hugot C, Spatz M, Perlemuter G, Cassard AM. Gut Microbiota Reshaped by Pectin Treatment Improves Liver Steatosis in Obese Mice. Nutrients 2021; 13:3725. [PMID: 34835981 PMCID: PMC8621973 DOI: 10.3390/nu13113725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT). Mice fed a high-fat diet, which induces NAFLD, were treated with pectin or received a fecal microbiota transfer (FMT) from mice treated with pectin before (preventive FMT) or after (curative FMT) being fed a high-fat diet. Pectin prevented the development of NAFLD, induced browning of adipose tissue, and modified the IM without increasing the abundance of proteobacteria. Preventive FMT also induced browning of white adipose tissue but did not improve liver steatosis, in contrast to curative FMT, which induced an improvement in steatosis. This was associated with an increase in the concentration of short-chain fatty acids (SCFAs), in contrast to preventive FMT, which induced an increase in the concentration of branched SCFAs. Overall, we show that the effect of pectin may be partially mediated by gut bacteria.
Collapse
Affiliation(s)
- Camille Houron
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Dragos Ciocan
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
- AP-HP, Hepato-Gastroenterology and Nutrition, Hôpital Antoine-Béclère, 92140 Clamart, France
| | - Nicolas Trainel
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, Inserm, CNRS, Institut Paris Saclay d’Innovation Thérapeutique, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France;
| | - Cindy Hugot
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Madeleine Spatz
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| | - Gabriel Perlemuter
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
- AP-HP, Hepato-Gastroenterology and Nutrition, Hôpital Antoine-Béclère, 92140 Clamart, France
| | - Anne-Marie Cassard
- Université Paris-Saclay, Inserm U996, Inflammation, Microbiome and Immunosurveillance, 32 rue des carnets, 92140 Clamart, France; (C.H.); (D.C.); (N.T.); (C.H.); (M.S.); (G.P.)
| |
Collapse
|
239
|
Lange M, Angelidou G, Ni Z, Criscuolo A, Schiller J, Blüher M, Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med 2021; 2:100407. [PMID: 34755127 PMCID: PMC8561168 DOI: 10.1016/j.xcrm.2021.100407] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.
Collapse
Affiliation(s)
- Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Georgia Angelidou
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
- Thermo Fisher Scientific, Dreieich, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
240
|
Liu J, Zhu L, Liao J, Liu X. Effects of Extreme Weight Loss on Cardiometabolic Health in Children With Metabolic Syndrome: A Metabolomic Study. Front Physiol 2021; 12:731762. [PMID: 34630148 PMCID: PMC8498573 DOI: 10.3389/fphys.2021.731762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: To evaluate the effect of extreme weight loss programs on circulating metabolites and their relationship with cardiometabolic health in children with metabolic syndrome. Methods: This study was a quasi-experimental design with a pretest and post-test. Thirty children with metabolic syndrome and aged 10–17years were recruited to an extreme weight loss program (i.e., exercise combined with diet control). The primary outcomes included plasma metabolites, body composition, and cardiometabolic risk factors. A total of 324 metabolites were quantitatively detected by an ultra-performance liquid chromatography coupled to tandem mass spectrometry system, and the variable importance in the projection (VIP) value of each metabolite was calculated by the orthogonal projection to latent structures discriminant analysis. The fold change (FC) and p value of each metabolite were used to screen differential metabolites with the following values: VIP>1, p value<0.05, and |log2FC|>0.25. Pathway enrichment and correlation analyses between metabolites and cardiometabolic risk factors were also performed. Result: A large effect size was observed, presenting a weight loss of −8.9kg (Cohen’s d=1.00, p<0.001), body mass index reduction of −3.3kg/m2 (Cohen’s d=1.47, p<0.001), and body fat percent reduction of −4.1 (%) (Cohen’s d=1.22, p<0.001) after the intervention. Similar improvements were found in total cholesterol (Cohen’s d=2.65, p<0.001), triglycerides (Cohen’s d=2.59, p<0.001), low-density lipoprotein cholesterol (Cohen’s d=2.81, p<0.001), glucose metabolism, and blood pressure. A total of 59 metabolites were changed after the intervention (e.g., aminoacyl-tRNA biosynthesis, glycine, serine, and threonine metabolism; nitrogen metabolism, tricarboxylic acid cycle, and phenylalanine, tyrosine, and tryptophan biosynthesis). The changes in metabolites (e.g., amino acids, fatty acids, organic acids, and carnitine) were related to lipid metabolism improvement (p<0.05). Organic acids and carnitines were associated with changes in the body composition (p<0.05). Conclusion: Exercise combined with dietary control improved the body composition and cardiometabolic health in children with metabolic syndrome, and these changes may be related to plasma metabolites.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Jing Liao
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
241
|
Lim RMH, Koh AS. Cardiovascular Aging and Physical Activity: Insights From Metabolomics. Front Cardiovasc Med 2021; 8:728228. [PMID: 34616784 PMCID: PMC8488139 DOI: 10.3389/fcvm.2021.728228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover mechanisms through which physical activity may influence the progression of cardiovascular aging. Cardiovascular aging is a process of functional and structural changes in older adults which can progress to cardiovascular disease. Metabolomics profiling is an investigative tool that can track the diverse changes which occur in human biochemistry with physical activity and aging. This mini review will summarize published investigations in metabolomics and physical activity, with a specific focus on the metabolic pathways that connect physical activity with cardiovascular aging.
Collapse
Affiliation(s)
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
242
|
Liu L, Wang X, Liu Y, Zhao X, Xu Z, Ma Y, Xu G, Wen D. Association of plasma branched-chain amino acids with overweight: A Mendelian randomization analysis. Obesity (Silver Spring) 2021; 29:1708-1718. [PMID: 34490739 DOI: 10.1002/oby.23240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A Mendelian randomization (MR) framework was applied to disentangle the causal effect of branched-chain amino acids (BCAAs) and overweight/obesity in Chinese adolescents. METHODS Circulating BCAA levels were measured by liquid chromatography coupled with mass spectrometry. A total of 7 BCAAs and 12 BMI-associated common variants identified from released genome-wide association study results were genotyped. Furthermore, a bidirectional MR approach was undertaken to disentangle the causal effect of BCAAs and overweight/obesity, using two-stage regression. RESULTS Using the inverse variance-weighted strategy and the weighted genetic scoring instruments, the estimated odds ratio per 1-arbitrary-unit increase in the total BCAA level on overweight and obesity odds after adjusting for age and sex was 2.40 (95% CI: 1.38 to 3.42, p < 0.001) and 2.55 (95% CI: 1.35 to 4.82, p = 0.004), respectively. Furthermore, additional MR tests were undertaken using a reversed model, testing the causal effect of increasing BMI variants on total BCAA level. By contrast, no evidence that increased BMI was causally associated with the total BCAA level (estimated β associated with 1-kg/m2 increase in BMI = 0.05, 95% CI: -0.17 to 0.28, p = 0.642) was observed. CONCLUSIONS In summary, BCAAs may be causally associated with overweight/obesity or, rather, a congenital dysmetabolism of BCAAs could be a cause of overweight/obesity in adolescents.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning Province, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning Province, China
| | - Zhiyong Xu
- Educational Research Centre of Huanggu District, Shenyang, Liaoning Province, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian, Liaoning Province, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
243
|
Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules 2021; 11:biom11101414. [PMID: 34680047 PMCID: PMC8533624 DOI: 10.3390/biom11101414] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The microbiota-harboring human gut is an exquisitely active ecosystem that has evolved in a constant symbiosis with the human host. It produces numerous compounds depending on its metabolic capacity and substrates availability. Diet is the major source of the substrates that are metabolized to end-products, further serving as signal molecules in the microbiota-host cross-talk. Among these signal molecules, branched-chain amino acids (BCAAs) has gained significant scientific attention. BCAAs are abundant in animal-based dietary sources; they are both produced and degraded by gut microbiota and the host circulating levels are associated with the risk of type 2 diabetes. This review aims to summarize the current knowledge on the complex relationship between gut microbiota and its functional capacity to handle BCAAs as well as the host BCAA metabolism in insulin resistance development. Targeting gut microbiota BCAA metabolism with a dietary modulation could represent a promising approach in the prevention and treatment of insulin resistance related states, such as obesity and diabetes.
Collapse
|
244
|
Zang B, Wang W, Wang Y, Li P, Xia T, Liu X, Chen D, Piao HL, Qi H, Ma Y. Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:721990. [PMID: 34568427 PMCID: PMC8459612 DOI: 10.3389/fmolb.2021.721990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant disease in eastern countries. However, a study of the metabolomic characteristics associated with other biological factors in esophageal squamous cell carcinoma (ESCC) is limited. Interleukin enhancer binding factor 2 (ILF2) and ILF3, double-stranded RNA-binding proteins, have been reported to contribute to the occurrence and development of various types of malignancy. Nevertheless, the underlying functions of ILF2 and ILF3 in ESCC metabolic reprogramming have never been reported. This study aimed to contribute to the metabolic characterization of ESCC and to investigate the metabolomic alterations associated with ILF2 and ILF3 in ESCC tissues. Here, we identified 112 differential metabolites, which were mainly enriched in phosphatidylcholine biosynthesis, fatty acid metabolism, and amino acid metabolism pathways, based on liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry approaches using ESCC tissues and paired para-cancer tissues from twenty-eight ESCC patients. In addition, ILF2 and ILF3 expression were significantly elevated in EC tissues compared to the histologically normal samples, and closely associated with PI3K/AKT and MAPK signaling pathways in ESCC. Moreover, in ESCC tissues with a high ILF2 expression, several short-chain acyl-carnitines (C3:0, C4:0, and C5:0) related to the BCAA metabolic pathway and long-chain acyl-carnitines (C14:0, C16:0, C16:0-OH, and C18:0) involved in the oxidation of fatty acids were obviously upregulated. Additionally, a series of intermediate metabolites involved in the glycolysis pathway, including G6P/F6P, F1,6BP, DHAP, G3P, and 2,3BPG, were remarkably downregulated in highly ILF3-expressed ESCC tissues compared with the corresponding para-cancer tissues. Overall, these findings may provide evidence for the roles of ILF2 and ILF3 during the process of ESCC metabolic alterations, and new insights into the development of early diagnosis and treatment for ESCC. Further investigation is needed to clarify the underlying mechanism of ILF2 and ILF3 on acyl-carnitines and the glycolysis pathway, respectively.
Collapse
Affiliation(s)
- Bin Zang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
245
|
Novak JSS, Baksh SC, Fuchs E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev 2021; 35:199-211. [PMID: 33526586 PMCID: PMC7849367 DOI: 10.1101/gad.346973.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.
Collapse
Affiliation(s)
- Jesse S S Novak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Sanjeethan C Baksh
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
246
|
Duan L, An X, Zhang Y, Jin D, Zhao S, Zhou R, Duan Y, Zhang Y, Liu X, Lian F. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 2021; 142:112094. [PMID: 34449321 DOI: 10.1016/j.biopha.2021.112094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.
Collapse
Affiliation(s)
- Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqing Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinmin Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
247
|
Liu J, Wu S, Cheng Y, Liu Q, Su L, Yang Y, Zhang X, Wu M, Choi JI, Tong H. Sargassum fusiforme Alginate Relieves Hyperglycemia and Modulates Intestinal Microbiota and Metabolites in Type 2 Diabetic Mice. Nutrients 2021; 13:2887. [PMID: 34445047 PMCID: PMC8398017 DOI: 10.3390/nu13082887] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Sargassum fusiforme alginate (SF-Alg) possess many pharmacological activities, including hypoglycemic and hypolipidemic. However, the hypoglycemic mechanisms of SF-Alg remain unclear due to its low bioavailability. In this study, we evaluated the therapeutic effect of SF-Alg on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. SF-Alg intervention was found to significantly reduce fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC), while increasing high-density lipoprotein cholesterol (HDL-c) and improving glucose tolerance. In addition, administrating SF-Alg to diabetic mice moderately attenuated pathological changes in adipose, hepatic, and heart tissues as well as skeletal muscle, and diminished oxidative stress. To probe the underlying mechanisms, we further analyzed the gut microbiota using 16S rRNA amplicon sequencing, as well as metabolites by non-targeted metabolomics. Here, SF-Alg significantly increased some benign bacteria (Lactobacillus, Bacteroides, Akkermansia Alloprevotella, Weissella and Enterorhabdus), and significantly decreased harmful bacteria (Turicibacter and Helicobacter). Meanwhile, SF-Alg dramatically decreased branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the colon of T2D mice, suggesting a positive benefit of SF-Alg as an adjvant agent for T2D.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Qiuhui Liu
- Bestchrom (Shanghai) Biosciences Co., Ltd., Shanghai 200120, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| |
Collapse
|
248
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
249
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
250
|
Wang QY, You LH, Xiang LL, Zhu YT, Zeng Y. Current progress in metabolomics of gestational diabetes mellitus. World J Diabetes 2021; 12:1164-1186. [PMID: 34512885 PMCID: PMC8394228 DOI: 10.4239/wjd.v12.i8.1164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders of pregnancy and can cause short- and long-term adverse effects in both pregnant women and their offspring. However, the etiology and pathogenesis of GDM are still unclear. As a metabolic disease, GDM is well suited to metabolomics study, which can monitor the changes in small molecular metabolites induced by maternal stimuli or perturbations in real time. The application of metabolomics in GDM can be used to discover diagnostic biomarkers, evaluate the prognosis of the disease, guide the application of diet or drugs, evaluate the curative effect, and explore the mechanism. This review provides comprehensive documentation of metabolomics research methods and techniques as well as the current progress in GDM research. We anticipate that the review will contribute to identifying gaps in the current knowledge or metabolomics technology, provide evidence-based information, and inform future research directions in GDM.
Collapse
Affiliation(s)
- Qian-Yi Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, Jiangsu Province, China
| | - Liang-Hui You
- Nanjing Maternity and Child Health Care Institute, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Lan-Lan Xiang
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yi-Tian Zhu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yu Zeng
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| |
Collapse
|