201
|
Fonseca A, Reis J, Silva T, Matos MJ, Bagetta D, Ortuso F, Alcaro S, Uriarte E, Borges F. Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis? J Med Chem 2017; 60:7206-7212. [DOI: 10.1021/acs.jmedchem.7b00918] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- André Fonseca
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department
of Organic Chemistry, Faculty of Pharmacy, Universidad of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Joana Reis
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Tiago Silva
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Maria João Matos
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department
of Organic Chemistry, Faculty of Pharmacy, Universidad of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Donatella Bagetta
- Department
of “Scienze della Salute”, University “Magna Græcia” of Catanzaro, Campus “Salvatore Venuta”,
Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Department
of “Scienze della Salute”, University “Magna Græcia” of Catanzaro, Campus “Salvatore Venuta”,
Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department
of “Scienze della Salute”, University “Magna Græcia” of Catanzaro, Campus “Salvatore Venuta”,
Viale Europa, 88100 Catanzaro, Italy
| | - Eugenio Uriarte
- Department
of Organic Chemistry, Faculty of Pharmacy, Universidad of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Applied
Chemical Science Institute, Universidad Autonoma de Chile, 7500912 Santiago de Chile, Chile
| | - Fernanda Borges
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
202
|
Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 2017; 22:72-82. [PMID: 28745142 DOI: 10.1080/1028415x.2017.1354543] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protocatechuic acid has very promising properties potentially useful in the inhibition of neurodegenerative diseases progression. It is the main metabolite of the complex polyphenolic compounds and is believed to be responsible for beneficial effects associated with consumption of the food products rich in polyphenols. Protocatechuic acid is present in the circulation significantly longer and at higher concentrations than parent compounds and easily crosses the blood brain barrier. The aim of the following paper is to provide an extensive and actual report on protocatechuic acid and its pharmacological potential in prevention and/or treatment of neurodegenerative diseases in humans based on existing data from both in vitro and in vivo studies. Experimental studies strongly support the role of protocatechuic acid in the prevention of neurodegenerative processes, including Alzheimer's and Parkinson's diseases, due to its favorable influence on processes underlying cognitive and behavioral impairment, namely accumulation of the β-amyloid plaques in brain tissues, hyperphosphorylation of tau protein in neurons, excessive formation of reactive oxygen species and neuroinflammation. There is a growing evidence that protocatechuic acid may become in the future efficacious and safe substance that protects against neurodegenerative disorders.
Collapse
Affiliation(s)
- Kinga Krzysztoforska
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Dagmara Mirowska-Guzel
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Ewa Widy-Tyszkiewicz
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
203
|
Lopes J, Correia M, Martins I, Henriques AG, Delgadillo I, da Cruz E Silva O, Nunes A. FTIR and Raman Spectroscopy Applied to Dementia Diagnosis Through Analysis of Biological Fluids. J Alzheimers Dis 2017; 52:801-12. [PMID: 27079713 DOI: 10.3233/jad-151163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, it is still difficult to perform an early and accurate diagnosis of dementia, therefore significant research has focused on finding new dementia biomarkers that can aid in this respect. There is an urgent need for non-invasive, rapid, and relatively inexpensive procedures for early diagnostics. Studies have demonstrated that of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy could be a useful and accurate procedure to diagnose dementia. Given that several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids; blood-based samples coupled to spectroscopic analyses can be used as a simple and less invasive approach.
Collapse
Affiliation(s)
- Jéssica Lopes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Marta Correia
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ilka Martins
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ivonne Delgadillo
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Alexandra Nunes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
204
|
Batista ÂG, Soares ES, Mendonça MCP, da Silva JK, Dionísio AP, Sartori CR, da Cruz-Höfling MA, Maróstica Júnior MR. Jaboticaba berry peel intake prevents insulin-resistance-induced tau phosphorylation in mice. Mol Nutr Food Res 2017; 61. [PMID: 28544198 DOI: 10.1002/mnfr.201600952] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 01/06/2023]
Abstract
The hyperphosphorylation of microtubule-associated protein tau (tau) in the hippocampus can be caused by central and peripheral insulin resistance and these alterations are related to the development of tauopathies, such as Alzheimer's disease. In this study, we used a high-fat diet to induce obesity and insulin resistance in adult Swiss mice and checked whether supplementation with Myrciaria jaboticaba berry peel for 10 weeks could improve insulin sensitivity, learning/memory performance, and prevent tau phosphorylation in the hippocampus. Furthermore, adipocytokines, inflammatory markers, and oxidative stress were assessed. Myrciaria jaboticaba peel has phenolic compounds (e.g., cyanidin, ellagic acid), dietary fiber and carotenoids, which contribute to great antioxidant capacity. Supplementation of the high-fat diet with 4% M. jaboticaba peel prevented fat weight gain and reduced peripheral insulin resistance. The treated group also showed lower tau phosphorylation in the hippocampus corroborating better learning/memory performance in the Morris water maze test. Maintenance of neuronal viability, lower levels of hippocampal inflammatory markers, and improved brain antioxidant defenses were also related to the consumption of M. jaboticaba peel. These findings contribute to a better understanding of how a high-fat diet supplemented with jaboticaba berry peel counteracts the impairment of cognitive functions caused by high-fat diet intake and diet-induced insulin resistance.
Collapse
Affiliation(s)
- Ângela G Batista
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Edilene S Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Monique C P Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Department of Pharmacology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Juliana K da Silva
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Dionísio
- Brazilian Agricultural Research Corporation, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | - Cesar R Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Department of Pharmacology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Mário R Maróstica Júnior
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
205
|
Troncone L, Luciani M, Coggins M, Wilker EH, Ho CY, Codispoti KE, Frosch MP, Kayed R, Del Monte F. Aβ Amyloid Pathology Affects the Hearts of Patients With Alzheimer's Disease: Mind the Heart. J Am Coll Cardiol 2017; 68:2395-2407. [PMID: 27908343 DOI: 10.1016/j.jacc.2016.08.073] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/08/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Individually, heart failure (HF) and Alzheimer's disease (AD) are severe threats to population health, and their potential coexistence is an alarming prospect. In addition to sharing analogous epidemiological and genetic profiles, biochemical characteristics, and common triggers, the authors recently recognized common molecular and pathological features between the 2 conditions. Whereas cognitive impairment has been linked to HF through perfusion defects, angiopathy, and inflammation, whether patients with AD present with myocardial dysfunction, and if the 2 conditions bear a common pathogenesis as neglected siblings are unknown. OBJECTIVES Here, the authors investigated whether amyloid beta (Aβ) protein aggregates are present in the hearts of patients with a primary diagnosis of AD, affecting myocardial function. METHODS The authors examined myocardial function in a retrospective cross-sectional study from a cohort of AD patients and age-matched controls. Imaging and proteomics approaches were used to identify and quantify Aβ deposits in AD heart and brain specimens compared with controls. Cell shortening and calcium transients were measured on isolated adult cardiomyocytes. RESULTS Echocardiographic measurements of myocardial function suggest that patients with AD present with an anticipated diastolic dysfunction. As in the brain, Aβ40 and Aβ42 are present in the heart, and their expression is increased in AD. CONCLUSIONS Here, the authors provide the first report of the presence of compromised myocardial function and intramyocardial deposits of Aβ in AD patients. The findings depict a novel biological framework in which AD may be viewed either as a systemic disease or as a metastatic disorder leading to heart, and possibly multiorgan failure. AD and HF are both debilitating and life-threatening conditions, affecting enormous patient populations. Our findings underline a previously dismissed problem of a magnitude that will require new diagnostic approaches and treatments for brain and heart disease, and their combination.
Collapse
Affiliation(s)
- Luca Troncone
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Marco Luciani
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Matthew Coggins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elissa H Wilker
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cheng-Ying Ho
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch Health, Galveston, Texas
| | - Federica Del Monte
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Cardiology Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
206
|
Abstract
Wnt signals regulate cell proliferation, migration and differentiation during development, as well as synaptic transmission and plasticity in the adult brain. Abnormal Wnt signaling is central to a number of brain pathologies. We review here, the significance of this pathway focused in the contribution of the most frequent alterations in receptors, secretable modulators and downstream targets in Alzheimer's disease (AD) and Glioblastoma (GBM). β-catenin and GSK3 levels are pivotal in the neurodegeneration associated to AD contributing to memory deficits, tau phosphorylation, increased β-amyloid production and modulation of Apolipoprotein E in the brain. In consequence, β-catenin and GSK3 are targets for potential treatments in AD. Also, Wnt pathway components and secreted molecules interfering with this signaling contribute to the progression of tumoral cells. Wnt pathway activation is a bad prognosis in brain cancer; however, mutations in WNT or Frizzled (FZD) genes do not account for the cases of GBM. Instead, recent studies indicate that epigenetic modifications contribute to the development of GBMs opening novel strategies to study GBM progression.
Collapse
|
207
|
Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med 2017; 23:512-533. [DOI: 10.1016/j.molmed.2017.03.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 03/26/2017] [Indexed: 01/17/2023]
|
208
|
Lakey-Beitia J, Doens D, Jagadeesh Kumar D, Murillo E, Fernandez PL, Rao KS, Durant-Archibold AA. Anti-amyloid aggregation activity of novel carotenoids: implications for Alzheimer's drug discovery. Clin Interv Aging 2017; 12:815-822. [PMID: 28553090 PMCID: PMC5440000 DOI: 10.2147/cia.s134605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 33.5 million people worldwide. Aging is the main risk factor associated with AD. Drug discovery based on nutraceutical molecules for prevention and treatment of AD is a growing topic. In this sense, carotenoids are phytochemicals present mainly in fruits and vegetables with reported benefits for human health. In this research, the anti-amyloidogenic activity of three carotenoids, cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin, was assessed. Cryptocapsin showed the highest bioactivity, while cryptocapsin-5,6-epoxide and zeaxanthin exhibited similar activity on anti-aggregation assays. Molecular modeling analysis revealed that the evaluated carotenoids might follow two mechanisms for inhibiting Aβ aggregation: by preventing the formation of the fibril and through disruption of the Aβ aggregates. Our studies provided evidence that cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin have anti-amyloidogenic potential and could be used for prevention and treatment of AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Deborah Doens
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India.,Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - D Jagadeesh Kumar
- Department of Biotechnology, Sir M Visvesvaraya Institute of Technology, Bangalore, India
| | - Enrique Murillo
- Department of Biochemistry, College of Natural, Exact Sciences and Technology, University of Panama, Panama, Republic of Panama
| | - Patricia L Fernandez
- Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - K S Rao
- Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - Armando A Durant-Archibold
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biochemistry, College of Natural, Exact Sciences and Technology, University of Panama, Panama, Republic of Panama
| |
Collapse
|
209
|
Synthesis and biological assessment of racemic benzochromenopyrimidinetriones as promising agents for Alzheimer's disease therapy. Future Med Chem 2017; 9:715-721. [DOI: 10.4155/fmc-2017-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Due to the complex nature of Alzheimer's disease, there is a renewed search for multitarget directed drugs. Results: This paper describes the synthesis and in vitro biological evaluation of six racemic 13-aryl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-triones (1a–6a), and six racemic 15-aryl-8,9,10,11,12,15-hexahydro-14H-benzo[6′,7′]chromeno[2′,3:4,5] pyr-imido [1,2-a]azepine-5,14,16-triones (1b–6b), showing antioxidant and cholinesterase inhibitory capacity. Among these compounds, 13-phenyl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-trione (1a) is a nonhepatotoxic at 300 μmol/l dose concentration, and a selective EeAChE inhibitor showing good antioxidant power. Conclusion: A new family of racemic benzochromenopyrimidinetriones has been investigated for their potential use in the treatment of Alzheimer's disease.
Collapse
|
210
|
Yang J, Ju B, Yan Y, Xu H, Wu S, Zhu D, Cao D, Hu J. Neuroprotective effects of phenylethanoid glycosides in an in vitro model of Alzheimer's disease. Exp Ther Med 2017; 13:2423-2428. [PMID: 28565858 DOI: 10.3892/etm.2017.4254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the neuroprotective effects of phenylethanol glycosides (PhGs) on H2O2- and β-amyloid peptide (Aβ)1-42-induced injury of PC12 cells as an in vitro model of Alzheimer's disease (AD). The optimal induction conditions were established through screening of various incubation times and concentrations. PC12 cells were treated with 0.5 µM Aβ1-42 and H2O2 in the presence of PhGs for 24 h and the cell viability was then evaluated by an MTT assay; lactate dehydrogenase (LDH) release and malondialdehyde (MDA) content were also measured. The optimal conditions for establishing the AD model were the treatment of PC12 cells with 0.5 µM Aβ1-42 for 48 h, or with 25 µM H2O2 dissolved in DMEM with PBS. PhGs at concentrations of 5, 25 and 50 µg/ml increased the viability and decreased LDH and MDA release by PC12 cells injured with Aβ1-42 or H2O2. In conclusion, the model of Aβ1-42- and H2O2-induced PC12 cell injury was successfully established. PhGs were shown to have a significant neuroprotective effect against Aβ1-42- or H2O2-induced cell injury.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Bowei Ju
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yao Yan
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huanhuan Xu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shanshan Wu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Dandan Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Dandan Cao
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Junping Hu
- Department of Natural Medicines, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
211
|
Ortiz GG, Pacheco Moisés FP, Mireles-Ramírez M, Flores-Alvarado LJ, González-Usigli H, Sánchez-González VJ, Sánchez-López AL, Sánchez-Romero L, Díaz-Barba EI, Santoscoy-Gutiérrez JF, Rivero-Moragrega P. Oxidative Stress: Love and Hate History in Central Nervous System. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:1-31. [PMID: 28427557 DOI: 10.1016/bs.apcsb.2017.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Molecular oxygen is essential for aerobic organisms in order to synthesize large amounts of energy during the process of oxidative phosphorylation and it is harnessed in the form of adenosine triphosphate, the chemical energy of the cell. Oxygen is toxic for anaerobic organisms but it is also less obvious that oxygen is poisonous to aerobic organisms at higher concentrations of oxygen. For instance, oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen at increased partial pressures. Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen that are formed as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. However, in pathological conditions ROS levels can increase dramatically. This may result in significant damage to cell structures. Living organisms have been adapted to the ROS in two ways: they can mitigate the unwanted effects through removal by the antioxidant systems and can advantageously use them as messengers in cell signaling and regulation of body functions. Some other physiological functions of ROS include the regulation of vascular tone, detection, and adaptation to hypoxia. In this review, we describe the mechanisms of oxidative damage and its relationship with the most highly studied neurodegenerative diseases.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| | - Fermín P Pacheco Moisés
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mario Mireles-Ramírez
- Hospital de Especialidades, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | - Luis J Flores-Alvarado
- Centro Universitario de Ciencias Exactas de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Héctor González-Usigli
- Hospital de Especialidades, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | | | - Angélica L Sánchez-López
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Lorenzo Sánchez-Romero
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Eduardo I Díaz-Barba
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - J Francisco Santoscoy-Gutiérrez
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Paloma Rivero-Moragrega
- Laboratorio de Mitocondria-Estrés Oxidativo y Patología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
212
|
Jhan JH, Yang YH, Chang YH, Guu SJ, Tsai CC. Hormone therapy for prostate cancer increases the risk of Alzheimer's disease: a nationwide 4-year longitudinal cohort study. Aging Male 2017; 20:33-38. [PMID: 28067607 DOI: 10.1080/13685538.2016.1271782] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Androgen-deprivation therapy (ADT) is recognized to be the preferred first-line treatment for advanced prostate cancer. However, the risk-benefit ratio of ADT remains poorly defined and the relationship between androgen depletion and dementia is not clear. AIM To investigate the risk of developing Alzheimer's disease (AD) in patients undergoing ADT for prostate cancer. METHODS Data from 24 360 prostate cancer patients were collected from the Longitudinal Health Insurance Database of Taiwan. In total, 15 959 patients who underwent ADT were included in the study cohort, and another 8401 patients who did not receive ADT were included as a non-ADT cohort. RESULTS During the average 4-year follow-up period, the incidence of AD was 2.78 per 1000 person-years in the non-ADT cohort and 5.66 per 1000 person-years in the ADT cohort. After adjusting for age and all comorbidities, the combined ADT cohort was found to be 1.84 times more likely to develop AD than the non-ADT control group (95%CI 1.33-2.55, p < 0.001). CONCLUSIONS The present results suggest that ADT use is associated with an increased risk of developing AD.
Collapse
Affiliation(s)
- Jhen-Hao Jhan
- a Department of Urology , School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Urology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Yuan-Han Yang
- c Department of Neurology , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
| | - Yu-Han Chang
- d Kaohsiung Municipal Ta-Tung Hospital, Management Offices , Kaohsiung , Taiwan , and
| | - Shiao-Jin Guu
- a Department of Urology , School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Urology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chia-Chun Tsai
- a Department of Urology , School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Urology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
- e Department of Urology , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
| |
Collapse
|
213
|
Jia Z, Dong A, Che H, Zhang Y. 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA Cell Biol 2017; 36:95-102. [PMID: 27982695 DOI: 10.1089/dna.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhuopeng Jia
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Arui Dong
- Department of Neurosurgery, Shaanxi Second Provincial People's Hospital, Xi'an, China
| | - Hongmin Che
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Yu Zhang
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| |
Collapse
|
214
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
215
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
216
|
Qin Y, Gu JW. A Surgical Method to Improve the Homeostasis of CSF for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2016; 8:261. [PMID: 27853433 PMCID: PMC5090002 DOI: 10.3389/fnagi.2016.00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
Reduced cerebrospinal fluid (CSF) production and increased resistance to CSF outflow are considered to be associated with aging, and are also characteristics of Alzheimer's disease (AD). These changes probably result in a decrease in the efficiency of the mechanism by which CSF removes toxic molecules such as amyloid-β (Aβ) and tau from the interstitial fluid space. Soluble Aβ is potently neurotoxic and dysfunctional in CSF circulation and can accelerate the progression of AD. Current therapies for AD exhibit poor efficiency; therefore, a surgical method to improve the homeostasis of CSF is worthy of investigation. To achieve this, we conceived a novel device, which consists of a ventriculo-peritoneal shunt, an injection port and a portable infusion pump. Artificial CSF (ACSF) is pumped into the ventricles and the ACSF composition, infusion modes and pressure threshold of shunting can be adjusted according to the intracranial pressure and CSF contents. We hypothesize that this active treatment for CSF circulation dysfunction will significantly retard the progression of AD.
Collapse
Affiliation(s)
- Yang Qin
- Department of Neurosurgery, Chengdu Military General Hospital Chengdu, China
| | - Jian W Gu
- Department of Neurosurgery, Chengdu Military General HospitalChengdu, China; Department of Neurosurgery, The 306th Hospital of PLABeijing, China
| |
Collapse
|
217
|
Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur J Med Chem 2016; 124:1105-1120. [DOI: 10.1016/j.ejmech.2016.07.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
|
218
|
Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis 2016; 54:859-878. [DOI: 10.3233/jad-160517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamàs Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
219
|
Tommonaro G, García-Font N, Vitale RM, Pejin B, Iodice C, Cañadas S, Marco-Contelles J, Oset-Gasque MJ. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur J Med Chem 2016; 122:326-338. [DOI: 10.1016/j.ejmech.2016.06.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/02/2016] [Accepted: 06/19/2016] [Indexed: 02/06/2023]
|
220
|
Long Z, Zeng Q, Wang K, Sharma A, He G. Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2016; 48:930-938. [PMID: 27614317 DOI: 10.1093/abbs/gmw085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/26/2016] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive impairment with gender difference in specific cognitive ability domains, pathology, and risk of AD. Since valproic acid (VPA) is a widely used mood stabilizer and an antiepileptic drug, which exhibits multiple neuroprotective activities on AD, this study intended to investigate the gender difference in the effect of VPA on APP/PS1 double transgenic mice modeling AD. Behavioral experiments showed that VPA reduced the autonomous behaviors, improved learning and memory, and exhibited gender differences in AD mice compared with the control mice. The decrease in senile plaque, amyloid β (Aβ) 40, and Aβ42 caused by VPA in the male AD mice was more notable than that in the female AD mice. Meanwhile, VPA protected brain cells from dying notably in the male AD mice but only slightly in the female AD mice, and VPA treatment thickened the postsynaptic density and markedly increased the number and density of presynaptic vesicles in both male and female AD mice. However, the effects of rescuing early synaptic structural and functional deficits by VPA were more obvious in the male mice. Overall, these results supported the hypothesis that gender difference significantly influences AD and indicated that VPA may be a promising remedy for AD if basic biological differences and gender specificity were prudently taken into account.
Collapse
Affiliation(s)
- Zhimin Long
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Qinghua Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Kejian Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Akhilesh Sharma
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
221
|
Soler H, Dorca-Arévalo J, González M, Rubio SE, Ávila J, Soriano E, Pascual M. The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. Neurobiol Aging 2016; 49:40-51. [PMID: 27743524 DOI: 10.1016/j.neurobiolaging.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia nowadays, has been linked to alterations in the septohippocampal pathway (SHP), among other circuits in the brain. In fact, the GABAergic component of the SHP, which controls hippocampal rhythmic activity crucial for learning and memory, is altered in the J20 mouse model of AD-a model that mimics the amyloid pathology of this disease. However, AD is characterized by another pathophysiological hallmark: the hyperphosphorylation and aggregation of the microtubule-associated protein Tau. To evaluate whether tauopathies alter the GABAergic SHP, we analyzed transgenic mice expressing human mutated Tau (mutations G272V, P301L, and R406W, VLW transgenic strain). We show that pyramidal neurons, mossy cells, and some parvalbumin (PARV)-positive hippocampal interneurons in 2- and 8-month-old (mo) VLW mice accumulate phosphorylated forms of Tau (P-Tau). By tract-tracing studies of the GABAergic SHP, we describe early-onset deterioration of GABAergic septohippocampal (SH) innervation on PARV-positive interneurons in 2-mo VLW mice. In 8-mo animals, this alteration was more severe and affected mainly P-Tau-accumulating PARV-positive interneurons. No major loss of GABAergic SHP neurons or PARV-positive hippocampal interneurons was observed, thereby indicating that this decline is not caused by neuronal loss but by the reduced number and complexity of GABAergic SHP axon terminals. The decrease in GABAergic SHP described in this study, targeted onto the PARV-positive/P-Tau-accumulating inhibitory neurons in the hippocampus, establishes a cellular correlation with the dysfunctions in rhythmic neuronal activity and excitation levels in the hippocampus. These dysfunctions are associated with the VLW transgenic strain in particular and with AD human pathology in general. These data, together with our previous results in the J20 mouse model, indicate that the GABAergic SHP is impaired in response to both amyloid-β and P-Tau accumulation. We propose that alterations in the GABAergic SHP, together with a dysfunction of P-Tau-accumulating PARV-positive neurons, contribute to the cognitive deficits and altered patterns of hippocampal activity present in tauopathies, including AD.
Collapse
Affiliation(s)
- Helena Soler
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Jonatan Dorca-Arévalo
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Marta González
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Sara Esmeralda Rubio
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats Academia, Barcelona, Spain
| | - Marta Pascual
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Barcelona, Spain.
| |
Collapse
|
222
|
Sheng C, Peng W, Chen Z, Cao Y, Gong W, Xia ZA, Wang Y, Su N, Wang Z. Impact of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside on cognitive deficits in animal models of Alzheimer's disease: a systematic review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:320. [PMID: 27565551 PMCID: PMC5002158 DOI: 10.1186/s12906-016-1313-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The efficacy of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) treatment on cognitive decline in individuals with Alzheimer's disease (AD) has not been investigated. Therefore, we systematically reviewed the effect of TSG on cognitive deficits in a rodent model of AD. METHODS We identified eligible studies published from January 1980 to April 2015 by searching seven electronic databases. We assessed the study quality, evaluated the efficacy of TSG treatment, and performed a stratified meta-analysis and meta-regression analysis to assess the influence of study design on TSG efficacy. RESULTS Among a total of 381 publications, 18 fulfilled our inclusion criteria. The overall methodological quality of these studies was poor. The meta-analysis revealed a statistically significant benefit of TSG on acquisition memory (standardized mean difference [SMD] = -1.46 (95 % CI: -1.81 to -1.10, P < 0.0001) and retention memory (SMD =1.93 (95 % CI: 1.40 to 2.46, P < 0.0001) in experimental models of AD. The stratified analysis revealed a significantly higher effect size for both acquisition and retention memory in studies that used mixed sex models and a significantly higher effect size for acquisition memory in studies that used transgenic models. CONCLUSIONS Our meta-analysis highlights a significantly better treatment effect in rodent AD models that received TSG that in those that did not. These findings indicate a potential therapeutic role of TSG in AD therapy. However, additional well-designed and detailed experimental studies are needed to evaluate the safety of TSG.
Collapse
|
223
|
García-Font N, Hayour H, Belfaitah A, Pedraz J, Moraleda I, Iriepa I, Bouraiou A, Chioua M, Marco-Contelles J, Oset-Gasque MJ. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer's disease. Eur J Med Chem 2016; 118:178-92. [DOI: 10.1016/j.ejmech.2016.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
|
224
|
Bhatti AB, Usman M, Ali F, Satti SA. Vitamin Supplementation as an Adjuvant Treatment for Alzheimer's Disease. J Clin Diagn Res 2016; 10:OE07-11. [PMID: 27656493 DOI: 10.7860/jcdr/2016/20273.8261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/19/2016] [Indexed: 01/15/2023]
Abstract
Alzheimer's Disease (AD) is a slowly progressing neurodegenerative disorder representing a major health concern worldwide. This disorder is characterised by progressive dementia and cognitive decline. The pathological hallmarks of AD include the presence of Aβ plaques and tau neurofibrils. Research has shown that oxidative stress represents a major risk factor associated with AD pathology. Accumulation of Aβ plaques and relative lack of antioxidant defence mechanisms, including cellular antioxidant enzymes and dietary antioxidants like vitamins, assist in the exacerbation of oxidative stress. Reactive Oxygen Species (ROS) produced as the result of oxidative stress, that increase structural and functional abnormalities in brain neurons, which then manifests as dementia and decline in cognition. Data from numerous epidemiological studies suggests that nutrition is one of the most important yet modifiable risk factors for AD. Since oxidative stress contributes a great deal in the development and progression of AD, anything that could attenuate oxidative stress would help in decreasing the prevalence and incidence of AD. There is increasing evidence that supports the use of different antioxidant as an adjuvant treatment for AD. Vitamins are one such antioxidant that can be used as an adjuvant in AD treatment. This paper will focus on the evidence, based on current literature, linking the use of vitamin supplementations as an adjuvant treatment for AD.
Collapse
Affiliation(s)
- Adnan Bashir Bhatti
- Research Fellow, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| | - Muhammad Usman
- Research Fellow, Department of Medicine, Jinnah Hospital Lahore (JHL)/Allama Iqbal Medical College (AIMC) , Lahore, Pakistan
| | - Farhan Ali
- Associate Professor, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| | - Siddique Akbar Satti
- Professor Head, Department of Medicine, Capital Development Authority (CDA) Hospital , Islamabad, Pakistan
| |
Collapse
|
225
|
Takamura R, Watamura N, Nikkuni M, Ohshima T. All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer's mouse model. J Neurosci Res 2016; 95:897-906. [PMID: 27448243 DOI: 10.1002/jnr.23843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive impairment with neuronal loss. The number of patients suffering from AD has increased, but none of the present therapies stops the progressive symptoms in patients with AD. It has been reported that the activation of microglial cells induces harmful chronic inflammation, leading to neuronal death. Furthermore, the impairment of adult neurogenesis in the hippocampus has been observed earlier than amyloid plaque formation. Inflammatory response may lead to impaired adult neurogenesis in patients with AD. This study examines the relationship between adult neurogenesis and neuroinflammation using APPswe/PS1M146V/tauP301L (3 × Tg) mice. We observed a decline in the proliferation of neural stem cells and the occurrence of severe inflammation in the hippocampus of 3 × Tg mouse brains at 12 months of age. Previously, our research had shown an anti-inflammatory effect of all-trans retinoic acid (ATRA) in the 3 × Tg mouse brain. We found that ATRA has effects on the recovery of proliferative cells along with suppression of activated microglia in the hippocampus. These results suggest that the inhibition of microglial activation by ATRA leads to recovery of adult neurogenesis in the hippocampus in an AD mouse model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Risa Takamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Naoto Watamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miyu Nikkuni
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
226
|
Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M. Three-Dimensional Study of Alzheimer's Disease Hallmarks Using the iDISCO Clearing Method. Cell Rep 2016; 16:1138-1152. [PMID: 27425620 DOI: 10.1016/j.celrep.2016.06.060] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 06/11/2016] [Indexed: 12/20/2022] Open
Abstract
Amyloidosis is a major problem in over one hundred diseases, including Alzheimer's disease (AD). Using the iDISCO visualization method involving targeted molecular labeling, tissue clearing, and light-sheet microscopy, we studied plaque formation in the intact AD mouse brain at up to 27 months of age. We visualized amyloid plaques in 3D together with tau, microglia, and vasculature. Volume imaging coupled to automated detection and mapping enables precise and fast quantification of plaques within the entire intact mouse brain. The present methodology is also applicable to analysis of frozen human brain samples without specialized preservation. Remarkably, amyloid plaques in human brain tissues showed greater 3D complexity and surprisingly large three-dimensional amyloid patterns, or TAPs. The ability to visualize amyloid in 3D, especially in the context of their micro-environment, and the discovery of large TAPs may have important scientific and medical implications.
Collapse
Affiliation(s)
- Thomas Liebmann
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Nicolas Renier
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA
| | - Karima Bettayeb
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
227
|
Trovato A, Siracusa R, Di Paola R, Scuto M, Ontario ML, Bua O, Di Mauro P, Toscano MA, Petralia CCT, Maiolino L, Serra A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis. IMMUNITY & AGEING 2016; 13:23. [PMID: 27398086 PMCID: PMC4938991 DOI: 10.1186/s12979-016-0078-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023]
Abstract
Background There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. Results Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase −1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous “braking signal” in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. Conclusions Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Collapse
Affiliation(s)
- A Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - R Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - M Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - M L Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ornella Bua
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Paola Di Mauro
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - M A Toscano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - C C T Petralia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - L Maiolino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - A Serra
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - S Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
228
|
Chen Y, Bian Y, Sun Y, Kang C, Yu S, Fu T, Li W, Pei Y, Sun H. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. PeerJ 2016; 4:e2140. [PMID: 27441112 PMCID: PMC4941764 DOI: 10.7717/peerj.2140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
Inhibition of acetylcholinesterase (AChE) using small molecules is still one of the most successful therapeutic strategies in the treatment of Alzheimer's disease (AD). Previously we reported compound T5369186 with a core of quinolone as a new cholinesterase inhibitor. In the present study, in order to identify new cores for the designing of AChE inhibitors, we screened different derivatives of this core with the aim to identify the best core as the starting point for further optimization. Based on the results, we confirmed that only 4-aminoquinoline (compound 04 and 07) had cholinesterase inhibitory effects. Considering the simple structure and high inhibitory potency against AChE, 4-aminoquinoline provides a good starting core for further designing novel multifunctional AChEIs.
Collapse
Affiliation(s)
- Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yuan Sun
- Department of Chemistry and Biochemistry, Ohio State University , Columbus , OH , United States
| | - Chen Kang
- Division of Pharmacology, College of Pharmacy, Ohio State University , Columbus , OH , United States
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
229
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
230
|
Current pharmacotherapy and putative disease-modifying therapy for Alzheimer's disease. Neurol Sci 2016; 37:1403-35. [PMID: 27250365 DOI: 10.1007/s10072-016-2625-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease of the central nervous system correlated with the progressive loss of cognition and memory. β-Amyloid plaques, neurofibrillary tangles and the deficiency in cholinergic neurotransmission constitute the major hallmarks of the AD. Two major hypotheses have been implicated in the pathogenesis of AD namely the cholinergic hypothesis which ascribed the clinical features of dementia to the deficit cholinergic neurotransmission and the amyloid cascade hypothesis which emphasized on the deposition of insoluble peptides formed due to the faulty cleavage of the amyloid precursor protein. Current pharmacotherapy includes mainly the acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor agonist which offer symptomatic therapy and does not address the underlying cause of the disease. The disease-modifying therapy has garnered a lot of research interest for the development of effective pharmacotherapy for AD. β and γ-Secretase constitute attractive targets that are focussed in the disease-modifying approach. Potentiation of α-secretase also seems to be a promising approach towards the development of an effective anti-Alzheimer therapy. Additionally, the ameliorative agents that prevent aggregation of amyloid peptide and also the ones that modulate inflammation and oxidative damage associated with the disease are focussed upon. Development in the area of the vaccines is in progress to combat the characteristic hallmarks of the disease. Use of cholesterol-lowering agents also is a fruitful strategy for the alleviation of the disease as a close association between the cholesterol and AD has been cited. The present review underlines the major therapeutic strategies for AD with focus on the new developments that are on their way to amend the current therapeutic scenario of the disease.
Collapse
|
231
|
Solanki I, Parihar P, Parihar MS. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem Int 2016; 95:100-8. [PMID: 26550708 DOI: 10.1016/j.neuint.2015.11.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Isha Solanki
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | - Priyanka Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, MP, India
| | | |
Collapse
|
232
|
Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer's disease. Future Med Chem 2016; 7:845-55. [PMID: 26061104 DOI: 10.4155/fmc.15.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Due to the complex nature of Alzheimer's disease, there is a renewed search for multipotent, nonhepatotoxic tacrines. RESULTS This paper describes the synthesis and in vitro biological evaluation of eight new racemic 3-methyl-4-aryl-2,4,6,7,8,9-hexahydropyrazolo[4',3':5,6]pyrano[2,3-b]quinolin-5-amines (pyranopyrazolotacrines, PPT) as nonhepatotoxic multipotent tacrine analogs. Among these compounds, PPT4 is the less hepatotoxic in the cell viability assay on HepG2 cells, showing a good neuroprotective effect in the decreased cortical neuron viability induced by oligomycin A/rotenone analysis. PPT4 is a selective and good, noncompetitive EeAChE inhibitor, able to completely inhibit the Aβ1-40 aggregation induced by acetylcholinesterase. CONCLUSION A new family of nonhepatotoxic showing selective acetylcholinesterase inhibition, permeable tacrine analogs have been discovered for the potential treatment of Alzheimer's disease.
Collapse
|
233
|
Ravishankar HN, Dutta A, Lewis AG, Mohan A. Advances in therapies and scope for personalized medicine in Alzheimer's disease. Per Med 2016; 13:189-199. [PMID: 29749899 DOI: 10.2217/pme.15.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease is one of the leading causes of death worldwide and currently does not have any cure. The rate of incidence of Alzheimer's from 2010 is up by 71%, whereas many other diseases have been decreasing in their prevalence. In this review, we have attempted to cover the current landscape of treatment alongside forthcoming advances. We have also covered the present genes identified through genome-wide association studies, which could be used as novel biomarkers and could eventually reduce the cost of treatment through early diagnosis. As this disease is highly polymorphic, applications of personalized medicine have also found its way. All these upcoming developments offer a bright hope in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Hosakere N Ravishankar
- Department of Biotechnology, R.V. College of Engineering, Mysore Road, Bangalore 560059, Karnataka, India
| | - Abhik Dutta
- Department of Biotechnology, R.V. College of Engineering, Mysore Road, Bangalore 560059, Karnataka, India
| | - Alisha G Lewis
- Department of Biotechnology, R.V. College of Engineering, Mysore Road, Bangalore 560059, Karnataka, India
| | - Amogh Mohan
- Department of Biotechnology, R.V. College of Engineering, Mysore Road, Bangalore 560059, Karnataka, India
| |
Collapse
|
234
|
Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, Koverech G, Luca M, Serra A, Toscano MA, Petralia A, Cuzzocrea S, Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer's disease pathogenesis. Neurotoxicology 2016; 53:350-358. [PMID: 26433056 DOI: 10.1016/j.neuro.2015.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Collapse
Affiliation(s)
- A Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - R Siracusa
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - M Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - V Fronte
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - G Koverech
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Luca
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Serra
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - M A Toscano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Petralia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - S Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - V Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
235
|
Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T. Protective Effect of Amyloid-β Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model. J Alzheimers Dis 2016; 50:1227-41. [DOI: 10.3233/jad-150652] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Aurélie Le Page
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamás Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
236
|
McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Pacut CM, Hazel T, Johe K, Sakowski SA, Feldman EL. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. Stem Cells Transl Med 2016; 5:379-91. [PMID: 26744412 PMCID: PMC4807660 DOI: 10.5966/sctm.2015-0103] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erika Sims
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S Bruno
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Crystal M Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tom Hazel
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Karl Johe
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
237
|
Cutts J, Brookhouser N, Brafman DA. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Methods Mol Biol 2016; 1516:121-144. [PMID: 27106497 DOI: 10.1007/7651_2016_357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA.
| |
Collapse
|
238
|
Synthesis and Biological Evaluation of Novel Piperazine Containing Hydrazone Derivatives. J CHEM-NY 2016. [DOI: 10.1155/2016/5878410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Some hydrazone derivatives were synthesized and their potential anticholinesterase activities were examined. A series of eleven new compounds of N′-(2,4-disubstitutedbenzylidene)-2-(4-(4-nitrophenyl)piperazin-1-yl)acetohydrazide derivatives were obtained via reaction of 2-[4-(4-nitrophenyl)piperazin-1-yl]acetohydrazide with aromatic aldehydes. The chemical structures of the compounds were enlightened by FT-IR,1H-NMR,13C-NMR, and HRMS (ESI) spectral data. The inhibition potency of the compounds3a–kagainst AChE and BuChE was measured and evaluated using a modification of Ellman’s spectrophotometric method. Among the tested compounds, compound3cwas assigned to be the most active derivative. Galantamine was used as a standard drug.
Collapse
|
239
|
Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. PATHOBIOLOGY OF NEURODEGENERATION: THE ROLE FOR ASTROGLIA. OPERA MEDICA ET PHYSIOLOGICA 2016; 1:13-22. [PMID: 27308639 PMCID: PMC4905715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The common denominator of neurodegenerative diseases, which mainly affect humans, is the progressive death of neural cells resulting in neurological and cognitive deficits. Astroglial cells are the central elements of the homoeostasis, defence and regeneration of the central nervous system, and their malfunction or reactivity contribute to the pathophysiology of neurodegenerative diseases. Pathological remodelling of astroglia in neurodegenerative context is multifaceted. Both astroglial atrophy with a loss of function and astroglial reactivity have been identified in virtually all the forms of neurodegenerative disorders. Astroglia may represent a novel target for therapeutic strategies aimed at preventing and possibly curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK
- University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4; SI-1000, Ljubljana, Slovenia
- Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Jose J. Rodriguez
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429, University of Alabama, Birmingham, AL 35294-0021, USA
| |
Collapse
|
240
|
Fonseca A, Matos MJ, Reis J, Duarte Y, Gutiérrez M, Santana L, Uriarte E, Borges F. Exploring coumarin potentialities: development of new enzymatic inhibitors based on the 6-methyl-3-carboxamidocoumarin scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra05262b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel 6-methyl-3-carboxamidocoumarins were synthesized by an effective three step synthetic strategy and screened towards MAO, AChE and BuChE enzymes.
Collapse
Affiliation(s)
- A. Fonseca
- CIQUP/Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
- Portugal
| | - M. J. Matos
- CIQUP/Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
- Portugal
| | - J. Reis
- CIQUP/Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
- Portugal
| | - Y. Duarte
- Laboratorio de Síntesis Orgánica
- Instituto de Química de Recursos Naturales Universidad de Talca
- Talca
- Chile
| | - M. Gutiérrez
- Laboratorio de Síntesis Orgánica
- Instituto de Química de Recursos Naturales Universidad de Talca
- Talca
- Chile
| | - L. Santana
- Departamento de Química Orgánica
- Faculdade de Farmacia
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - E. Uriarte
- Departamento de Química Orgánica
- Faculdade de Farmacia
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - F. Borges
- CIQUP/Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
- Portugal
| |
Collapse
|
241
|
Martin A, Tegla CA, Cudrici CD, Kruszewski AM, Azimzadeh P, Boodhoo D, Mekala AP, Rus V, Rus H. Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunol Res 2015; 61:187-97. [PMID: 25281273 DOI: 10.1007/s12026-014-8557-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. SIRT1 is a member of the histone deacetylase class III family of proteins and is an NAD(+)-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and plays an important role as a key regulator of a wide variety of cellular and physiological processes including DNA damage, cell survival, metabolism, aging, and neurodegeneration. It has gained a lot of attention recently because many studies in animal models of demyelinating and neurodegenerative diseases have shown that SIRT1 induction can ameliorate the course of the disease. SIRT1 expression was found to be decreased in the peripheral blood mononuclear cells of MS patients during relapses. SIRT1 represents a possible biomarker of relapses and a potential new target for therapeutic intervention in MS. Modulation of SIRT1 may be a valuable strategy for treating or preventing MS and neurodegenerative central nervous system disorders.
Collapse
Affiliation(s)
- Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Protective Mechanisms of Flavonoids in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:314560. [PMID: 26576219 PMCID: PMC4630416 DOI: 10.1155/2015/314560] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a chronic, debilitating neurodegenerative movement disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region in human midbrain. To date, oxidative stress is the well accepted concept in the etiology and progression of Parkinson's disease. Hence, the therapeutic agent is targeted against suppressing and alleviating the oxidative stress-induced cellular damage. Within the past decades, an explosion of research discoveries has reported on the protective mechanisms of flavonoids, which are plant-based polyphenols, in the treatment of neurodegenerative disease using both in vitro and in vivo models. In this paper, we have reviewed the literature on the neuroprotective mechanisms of flavonoids in protecting the dopaminergic neurons hence reducing the symptoms of this movement disorder. The mechanism reviewed includes effect of flavonoids in activation of endogenous antioxidant enzymes, suppressing the lipid peroxidation, inhibition of inflammatory mediators, flavonoids as a mitochondrial target therapy, and modulation of gene expression in neuronal cells.
Collapse
|
243
|
Sun Y, Gao W, Zheng H, Jiang G, Chen C. Pulmonary lobectomies for patients with cognitive impairment: the importance of postoperative respiratory care. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:195. [PMID: 26417579 DOI: 10.3978/j.issn.2305-5839.2015.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Patients with cognitive impairment (CI) may have an increased risk of complications after major thoracic surgery. However, little is known about this risk and the corresponding management. METHODS Clinical data of patients who underwent pulmonary lobectomy via open thoracotomy between January 2006 and December 2008 in our institution were retrospectively reviewed. RESULTS Overall, 1,325 patients who underwent pulmonary lobectomy via open thoracotomy were analyzed retrospectively, in which five patients were diagnosed with CI. Sputum retention was common and led to significant hypoxemia in all five patients. Four patients were re-intubated due to severe respiratory dysfunction, and three underwent tracheotomy 7 days after intubation due to respiratory infection. Regarding to duration of chest tube placement, length of hospital stay, morbidity rate, and hospital cost, CI patients were significant higher compared with cognitively normal patients undergoing lobectomy via open thoracotomy. CONCLUSIONS Patients with CI may have difficulties in expectoration after pulmonary lobectomy, and develop multiple respiratory complications, thus increasing hospital stay. Efficacious sputum and airway clearance is critical in these patients.
Collapse
Affiliation(s)
- Yifeng Sun
- 1 Department of Thoracic Surgery, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030, China ; 2 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wen Gao
- 1 Department of Thoracic Surgery, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030, China ; 2 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hui Zheng
- 1 Department of Thoracic Surgery, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030, China ; 2 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Gening Jiang
- 1 Department of Thoracic Surgery, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030, China ; 2 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- 1 Department of Thoracic Surgery, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030, China ; 2 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
244
|
Peptide-Induced Amyloid-Like Conformational Transitions in Proteins. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:723186. [PMID: 26435719 PMCID: PMC4578744 DOI: 10.1155/2015/723186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022]
Abstract
Changes in protein conformation can occur both as part of normal protein functioning and during disease pathogenesis. The most common conformational diseases are amyloidoses. Sometimes the development of a number of diseases which are not traditionally related to amyloidoses is associated with amyloid-like conformational transitions of proteins. Also, amyloid-like aggregates take part in normal physiological processes such as memorization and cell signaling. Several primary structural features of a protein are involved in conformational transitions. Also the protein proteolytic fragments can cause the conformational transitions in the protein. Short peptides which could be produced during the protein life cycle or which are encoded by short open reading frames can affect the protein conformation and function.
Collapse
|
245
|
Mohibbullah M, Hannan MA, Choi JY, Bhuiyan MMH, Hong YK, Choi JS, Choi IS, Moon IS. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons. J Med Food 2015; 18:960-71. [PMID: 26106876 PMCID: PMC4580144 DOI: 10.1089/jmf.2014.3369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2',7'-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - Md. Abdul Hannan
- Department of Biotechnology, Pukyong National University, Busan, Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ji-Young Choi
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | | | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Busan, Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Busan, Korea
- Department of Biological Science, Silla University, Busan, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongbuk, Korea
| |
Collapse
|
246
|
Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorg Med Chem Lett 2015. [DOI: 10.1016/j.bmcl.2015.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
247
|
Velagapudi R, Baco G, Khela S, Okorji U, Olajide O. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur J Nutr 2015; 55:1653-60. [PMID: 26155780 DOI: 10.1007/s00394-015-0984-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Pomegranate fruit, Punica granatum L. (Punicaceae), and its constituents have been shown to inhibit inflammation. In this study, we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β-stimulated SK-N-SH cells. METHODS An enzyme immunoassay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β-stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB, and phospho-IKK proteins was evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. RESULTS PWE (25-200 μg/ml) dose dependently reduced COX-2-dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK was significantly (p < 0.001) inhibited by PWE (50-200 μg/ml). Our studies also show that PWE (50-200 μg/ml) significantly (p < 0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore, PWE inhibited BACE-1 and Aβ expression in SK-N-SH cells treated with IL-1β. CONCLUSIONS Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Gina Baco
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Sunjeet Khela
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Uchechukwu Okorji
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Olumayokun Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.
| |
Collapse
|
248
|
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci 2015; 7:119. [PMID: 26150787 PMCID: PMC4473000 DOI: 10.3389/fnagi.2015.00119] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| |
Collapse
|
249
|
Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Resveratrol: A Focus on Several Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392169. [PMID: 26180587 PMCID: PMC4477222 DOI: 10.1155/2015/392169] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, L. go F. Vito n.1, 00168 Rome, Italy
- C.N.R. Institute of Chemistry of Molecular Recognition, L. go F. Vito n.1, 00168 Rome, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
250
|
Folch J, Patraca I, Martínez N, Pedrós I, Petrov D, Ettcheto M, Abad S, Marin M, Beas-Zarate C, Camins A. The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci 2015; 140:19-28. [PMID: 25998028 DOI: 10.1016/j.lfs.2015.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Leptin (Lep) is emerging as a pivotal molecule involved in both the early events and the terminal phases of Alzheimer's disease (AD). In the canonical pathway, Lep acts as an anorexigenic factor via its effects on hypothalamic nucleus. However, additional functions of Lep in the hippocampus and cortex have been unravelled in recent years. Early events in the sporadic form of AD likely involve cellular level alterations which can have an effect on food intake and metabolism. Thus, AD can be conceivably interpreted as a multiorgan pathology that not only results in a dramatic neuronal loss in brain areas such as the hippocampus and the cortex (ultimately leading to a significant cognitive impairment) but as a disease which also affects body-weight homeostasis. According to this view, body-weight control disruptions are to be expected in both the early- and late-stage AD, concomitant with changes in serum Lep content, alterations in Lep transport across the blood-brain barrier (BBB) and Lep receptor-related signalling abnormalities. Lep is a member of the adipokine family of molecules, while the Lep receptor belongs to the class I cytokine receptors. Since cellular response to adipokine signalling can be either potentiated or diminished as a result of specific ligand-receptor interactions, Lep interactions with other members of the adipokine family including amylin, ghrelin and hormones such as prolactin require further investigation. In this review, we provide a general perspective on the functions of Lep in the brain, with a particular focus on the sporadic AD.
Collapse
Affiliation(s)
- Jaume Folch
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Iván Patraca
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Nohora Martínez
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Ignacio Pedrós
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201 Reus, Tarragona, Spain; Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Dmitry Petrov
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Miren Ettcheto
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Sonia Abad
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain
| | - Miguel Marin
- Centro de Biotecnología, Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia, Loja, Ecuador
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, C.U.C.B.A., Universidad de Guadalajara and División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Mexico; Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos Tercero, Madrid, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia, Loja, Ecuador.
| |
Collapse
|